MAX1030BEEG+T [MAXIM]

ADC, Successive Approximation, 10-Bit, 1 Func, 16 Channel, Serial Access, BICMOS, PDSO24, QSOP-24;
MAX1030BEEG+T
型号: MAX1030BEEG+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 10-Bit, 1 Func, 16 Channel, Serial Access, BICMOS, PDSO24, QSOP-24

传感器 温度传感器 先进先出芯片
文件: 总24页 (文件大小:472K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2853; Rev 1; 7/03  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
General Description  
Features  
The MAX1026/MAX1028/MAX1030 are serial 10-bit ana-  
log-to-digital converters (ADCs) with an internal reference  
and an internal temperature sensor. These devices fea-  
ture on-chip FIFO, scan mode, internal clock mode, inter-  
nal averaging, and AutoShutdown™. The maximum  
sampling rate is 300ksps using an external clock. The  
MAX1030 has 16 input channels, the MAX1028 has 12  
input channels, and the MAX1026 has 8 input channels.  
All input channels are configurable for single-ended or  
differential inputs in unipolar or bipolar mode. All three  
devices operate from a +5V supply and contain a 10MHz  
SPI™/QSPI™/MICROWIRE™-compatible serial port.  
Internal Temperature Sensor (±±1° ꢀAAuraAcy  
±6-Entrc First-In/First-Out (FIFOy  
ꢀnalog Multiplexer with True Differential  
TraAk/Hold  
±6-, ±2-, 8-°hannel Single Ended  
8-, 6-, 4-°hannel True Differential  
(Unipolar or Bipolary  
ꢀAAuraAc: ±± ꢁSB Iꢂꢁ, ±± ꢁSB Dꢂꢁ, ꢂo Missing  
°odes Over Temperature  
SAan Mode, Internal ꢀveraging, and Internal °loAk  
The MAX1030 is available in 28-pin 5mm x 5mm QFN  
with exposed pad and 24-pin QSOP packages. The  
MAX1026/MAX1028 are only available in QSOP pack-  
ages. All three devices are specified over the extended  
-40°C to +85°C temperature range.  
ꢁow-Power Single +5V Operation  
±.9mꢀ at 300ksps  
Internal 4.096V ReferenAe or External Differential  
ReferenAe  
±0MHz 3-Wire SPI/QSPI/MI°ROWIRE-°ompatible  
InterfaAe  
________________________Applications  
System Supervision  
Data-Acquisition Systems  
Industrial Control Systems  
Patient Monitoring  
Data Logging  
SpaAe-Saving 28-Pin 5mm x 5mm QFꢂ PaAkage  
Ordering Information  
PART  
TEMP RANGE  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
16 QSOP  
MAX1026ACEE-T*  
MAX1026AEEE-T*  
Instrumentation  
16 QSOP  
*Future product—contact factory for availability.  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
Ordering Information continued at end of data sheet.  
Pin Configurations  
TOP VIEW  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
1
2
3
4
5
6
7
8
9
20 EOC  
19 DOUT  
18 DIN  
17 CS  
AIN0  
1
2
3
4
5
6
7
8
16 EOC  
15 DOUT  
14 DIN  
13 CS  
AIN1  
AIN2  
MAX1028  
16 SCLK  
AIN3  
MAX1026  
15  
14  
V
DD  
AIN4  
12 SCLK  
GND  
AIN5  
11  
10 GND  
REF+  
V
DD  
13 REF+  
REF-/AIN6  
CNVST/AIN7  
12 CNVST/AIN11  
11 REF-/AIN10  
9
AIN9 10  
QSOP  
QSOP  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
±
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND..............................................................-0.3V to +6V  
Operating Temperature Ranges  
CS% SCLK% DIN% EOC% DOUT to GND.........-0.3V to (V  
AIN0AIN13% REF-/AIN_% CNVST/AIN_%  
REF+ to GND.........................................-0.3V to (V  
Maximum Current into Any Pin............................................50mA  
+ 0.3V)  
MAX10__C__.......................................................0°C to +70°C  
MAX10__E__....................................................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering% 10s) .................................+300°C  
DD  
+ 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin QSOP (derate 8.3mW/°C above +70°C)...........667mW  
20-Pin QSOP (derate 9.1mW/°C above +70°C)...........727mW  
24-Pin QSOP (derate 9.5mW/°C above +70°C)...........762mW  
28-Pin QFN 5mm x 5mm  
(derate 20.8mW/°C above +70°C)..........................1667mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +5V 5ꢀ% ꢁ  
= 300kHz% ꢁ  
= 4.8MHz (50ꢀ duty cycle)% V  
= 4.096V% T = T  
to T  
% unless otherwise noted.  
MAX  
DD  
SAMPLE  
SCLK  
REF  
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RES  
INL  
10  
Bits  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Diꢁꢁerential Nonlinearity  
Oꢁꢁset Error  
1.0  
1.0  
2.0  
2.0  
DNL  
No missing codes over temperature  
(Note 2)  
0.5  
0.5  
Gain Error  
Oꢁꢁset Error Temperature  
Coeꢁꢁicient  
ppm/°C  
FSR  
2
Gain Temperature Coeꢁꢁicient  
0.8  
0.1  
ppm/°C  
Channel-to-Channel Oꢁꢁset  
Matching  
LSB  
DYNAMIC SPECIFICATIONS (10kHz sine wave input, 4.096VP-P, 300ksps, fSCLK = 4.8MHz)  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Power Bandwidth  
SINAD  
THD  
70  
-82  
80  
76  
1
dB  
dBc  
dBc  
dBc  
MHz  
kHz  
Up to the 5th harmonic  
SFDR  
IMD  
= 9.9kHz% ꢁ = 10.2kHz  
in2  
in1  
-3dB point  
Full-Linear Bandwidth  
S / (N + D) > 68dB  
25  
2
_______________________________________________________________________________________  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V 5ꢀ% ꢁ  
= 300kHz% ꢁ  
= 4.8MHz (50ꢀ duty cycle)% V  
= 4.096V% T = T  
to T  
% unless otherwise noted.  
MAX  
DD  
SAMPLE  
SCLK  
REF  
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CONVERSION RATE  
External reꢁerence  
0.8  
65  
Power-Up Time  
Acquisition Time  
Conversion Time  
t
µs  
µs  
µs  
PU  
Internal reꢁerence (Note 3)  
t
0.6  
ACQ  
Internally clocked  
3.5  
t
CONV  
Externally clocked (Note 4)  
Externally clocked conversion  
Data I/O  
2.7  
0.1  
4.8  
10  
60  
External Clock Frequency  
MHz  
SCLK  
SCLK Duty Cycle  
Aperture Delay  
Aperture Jitter  
40  
ns  
ps  
30  
<50  
ANALOG INPUT  
Unipolar  
0
V
REF  
Input Voltage Range  
V
Bipolar (Note 5)  
-V  
/ 2  
V
REF  
/ 2  
REF  
Input Leakage Current  
Input Capacitance  
V
= V  
0.01  
24  
1
µA  
pF  
IN  
DD  
During acquisition time (Note 6)  
INTERNAL TEMPERATURE SENSOR  
Grade A% T = +25°C  
0.3  
0.5  
0.75  
0.7  
1.2  
0.1  
1/8  
0.3  
A
Grade A% T = -20°C to +85°C  
1
A
Measurement Error (Note 7)  
Grade A% T = T  
to T  
1.5  
°C  
A
MIN  
MAX  
Grade B% T = +25°C  
A
Grade B% T = T  
A
to T  
3.0  
MIN  
MAX  
Temperature Measurement Noise  
Temperature Resolution  
Power-Supply Rejection  
INTERNAL REFERENCE  
REF Output Voltage  
°C  
RMS  
°C  
°C/V  
4.024  
4.096  
8
4.168  
V
Grade A  
Grade B  
REF Temperature Coeꢁꢁicient  
TC  
ppm/°C  
REF  
30  
Output Resistance  
6.5  
200  
-70  
kΩ  
REF Output Noise  
µV  
RMS  
REF Power-Supply Rejection  
EXTERNAL REFERENCE INPUT  
REF- Input Voltage Range  
REF+ Input Voltage Range  
PSRR  
dB  
V
0
500  
+ 50mV  
100  
mV  
V
REF-  
V
1.0  
V
DD  
REF+  
V
V
= 4.096V% ꢁ  
= 4.096V% ꢁ  
= 300ksps  
= 0  
40  
REF+  
REF+  
SAMPLE  
SAMPLE  
REF+ Input Current  
I
µA  
REF+  
0.1  
5
_______________________________________________________________________________________  
3
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +5V 5ꢀ% ꢁ  
= 300kHz% ꢁ  
= 4.8MHz (50ꢀ duty cycle)% V  
= 4.096V% T = T  
to T  
% unless otherwise noted.  
MAX  
DD  
SAMPLE  
SCLK  
REF  
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (SCLK, DIN, CS, CNVST)  
Input Voltage Low  
V
0.8  
V
V
IL  
Input Voltage High  
V
2.0  
IH  
Input Hysteresis  
V
200  
0.01  
15  
mV  
µA  
pF  
HYST  
Input Leakage Current  
Input Capacitance  
I
V
= 0 or V  
DD  
1.0  
IN  
IN  
C
IN  
DIGITAL OUTPUTS (DOUT, EOC)  
I
I
I
= 2mA  
= 4mA  
0.4  
0.8  
SINK  
Output Voltage Low  
V
V
OL  
SINK  
Output Voltage High  
V
= 1.5mA  
V - 0.5  
DD  
V
OH  
SOURCE  
Tri-State Leakage Current  
Tri-State Output Capacitance  
POWER REQUIREMENTS  
Supply Voltage  
I
CS = V  
CS = V  
0.05  
15  
1
µA  
pF  
L
DD  
DD  
C
OUT  
V
4.75  
5.25  
3100  
2300  
1350  
5
V
DD  
DD  
During temp sense  
2400  
1950  
1000  
0.2  
= 300ksps  
Internal  
reꢁerence  
SAMPLE  
SAMPLE  
= 0% REF on  
Supply Current (Note 8)  
I
µA  
Shutdown  
During temp sense  
1650  
1250  
0.2  
2300  
1500  
5
External  
reꢁerence  
= 300ksps  
SAMPLE  
Shutdown  
Power-Supply Rejection  
PSR  
V
= 4.75V to 5.25V; ꢁull-scale input  
0.2  
1
mV  
DD  
Note 1: Tested at V  
= +5V% unipolar input mode.  
DD  
Note 2: Oꢁꢁset nulled.  
Note 3: Time ꢁor reꢁerence to power up and settle to within 1 LSB.  
Note 4: Conversion time is deꢁined as the number oꢁ clock cycles multiplied by the clock period; clock has 50ꢀ duty cycle.  
Note 5: The operational input voltage range ꢁor each individual input oꢁ a diꢁꢁerentially conꢁigured pair is ꢁrom GND to V . The oper-  
DD  
ational input voltage diꢁꢁerence is ꢁrom -V  
/ 2 to +V  
/ 2.  
REF  
REF  
Note 6: See Figure 3 (Input Equivalent Circuit) and the Sampling Error vs. Source Impedance curve in the Typical Operating  
Characteristics section.  
Note 7: Fast automated test% excludes selꢁ-heating eꢁꢁects.  
Note 8: Supply current is speciꢁied depending on whether an internal or external reꢁerence is used ꢁor voltage conversions.  
Temperature measurements always use the internal reꢁerence.  
4
_______________________________________________________________________________________  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
TIMING CHARACTERISTICS (Figure 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
Externally clocked conversion  
Data I/O  
MIN  
208  
100  
40  
TYP  
MAX  
UNITS  
SCLK Clock Period  
t
ns  
CP  
SCLK Duty Cycle  
t
60  
40  
40  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
CH  
SCLK Fall to DOUT Transition  
CS Rise to DOUT Disable  
CS Fall to DOUT Enable  
DIN to SCLK Rise Setup  
SCLK Rise to DIN Hold  
CS to SCLK Rise Setup  
SCLK Rise to CS Hold  
t
C
C
C
= 30pF  
= 30pF  
= 30pF  
DOT  
LOAD  
LOAD  
LOAD  
t
DOD  
t
DOE  
t
DS  
DH  
t
0
t
40  
CSS  
CSH  
t
0
t
CKSEL = 00% CKSEL = 01 (temp sense)  
CKSEL = 01 (voltage conversion)  
Temp sense  
40  
1.4  
CSW  
CNVST Pulse Width  
t
t
55  
7
TS  
RP  
CS or CNVST Rise to EOC  
Low (Note 9)  
Voltage conversion  
µs  
Reꢁerence power-up  
65  
Note 9: This time is deꢁined as the number oꢁ clock cycles needed ꢁor conversion multiplied by the clock period. Iꢁ the internal reꢁer-  
ence needs to be powered up% the total time is additive. The internal reꢁerence is always used ꢁor temperature measurements.  
Typical Operating Characteristics  
(V  
= +5V% V  
= +4.096V% ꢁ  
= 4.8MHz% C  
= 30pF% T = +25°C% unless otherwise noted.)  
DD  
REF  
SCLK  
LOAD  
A
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
SINAD vs. FREQUENCY  
vs. OUTPUT CODE  
0.4  
0.4  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.3  
0.2  
0.3  
0.2  
0.1  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.1  
-0.2  
-0.3  
-0.4  
0
256  
512  
768  
1024  
0
256  
512  
768  
1024  
0.1  
1
10  
100  
1000  
OUTPUT CODE  
OUTPUT CODE  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
Typical Operating Characteristics (continued)  
(V  
= +5V% V  
= +4.096V% ꢁ  
= 4.8MHz% C  
= 30pF% T = +25°C% unless otherwise noted.)  
DD  
REF  
SCLK  
LOAD A  
SFDR vs. FREQUENCY  
SUPPLY CURRENT vs. SAMPLING RATE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
120  
100  
80  
60  
40  
20  
0
1200  
1200  
1150  
1100  
1050  
1000  
1000  
800  
600  
400  
200  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
FREQUENCY (kHz)  
SAMPLING RATE (ksps)  
SUPPLY VOLTAGE (V)  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
1300  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
f
S
= 300ksps  
1250  
1200  
1150  
1100  
1050  
1000  
0
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
4.0500  
4.0499  
4.0498  
4.0497  
4.0496  
4.0495  
4.0494  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
Typical Operating Characteristics (continued)  
(V  
= +5V% V  
= +4.096V% ꢁ  
= 4.8MHz% C  
= 30pF% T = +25°C% unless otherwise noted.)  
DD  
REF  
SCLK  
LOAD  
A
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
OFFSET ERROR  
vs. SUPPLY VOLTAGE  
OFFSET ERROR  
vs. TEMPERATURE  
4.051  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.050  
4.049  
4.048  
4.047  
0
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
GAIN ERROR vs. SUPPLY VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
0.5  
0
0.5  
0
-0.5  
-1.0  
-0.5  
-1.0  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SAMPLING ERROR  
vs. SOURCE IMPEDANCE  
TEMPERATURE SENSOR ERROR  
vs. TEMPERATURE  
1
1.00  
0.75  
0
-1  
-2  
-3  
-4  
-5  
0.50  
0.25  
GRADE A  
0
-0.25  
GRADE B  
-0.50  
-0.75  
-1.00  
0
2
4
6
8
10  
-40  
-15  
10  
35  
60  
85  
SOURCE IMPEDANCE (k)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
Pin Description  
MAX1030 MAX1030  
MAX1028 MAX1026  
NAME  
N.C.  
FUNCTION  
QFN  
QSOP  
1% 17% 19%  
25  
No Connection. Not internally connected.  
Analog Inputs  
212% 26%  
27% 28  
114  
AIN013  
110  
AIN09  
AIN05  
Analog Inputs  
Analog Inputs  
16  
Negative Input ꢁor External Diꢁꢁerential Reꢁerence/Analog Input 14.  
See Table 3 ꢁor details on programming the setup register.  
13  
14  
15  
16  
11  
12  
7
REF-/AIN14  
REF-/AIN10  
REF-/AIN6  
Negative Input ꢁor External Diꢁꢁerential Reꢁerence/Analog Input 10.  
See Table 3 ꢁor details on programming the setup register.  
Negative Input ꢁor External Diꢁꢁerential Reꢁerence/Analog Input 6.  
See Table 3 ꢁor details on programming the setup register.  
CNVST/  
AIN15  
Active-Low Conversion Start Input/Analog Input 15. See Table 3  
ꢁor details on programming the setup register.  
8
CNVST/  
AIN11  
Active-Low Conversion Start Input/Analog Input 11. See Table 3  
ꢁor details on programming the setup register.  
CNVST/  
AIN7  
Active-Low Conversion Start Input/Analog Input 7. See Table 3 ꢁor  
details on programming the setup register.  
15  
16  
18  
17  
18  
19  
13  
14  
15  
9
REF+  
GND  
Positive Reꢁerence Input. Bypass to GND with a 0.1µF capacitor.  
Ground  
10  
11  
V
Power Input. Bypass to GND with a 0.1µF capacitor.  
DD  
Serial Clock Input. Clocks data in and out oꢁ the serial interꢁace.  
(Duty cycle must be 40ꢀ to 60ꢀ.) See Table 3 ꢁor details on  
programming the clock mode.  
20  
20  
16  
12  
SCLK  
Active-Low Chip-Select Input. When CS is low% the serial interꢁace  
is enabled. When CS is high% DOUT is high impedance.  
21  
22  
21  
22  
17  
18  
13  
14  
CS  
Serial Data Input. DIN data is latched into the serial interꢁace on  
the rising edge oꢁ SCLK.  
DIN  
Serial Data Output. Data is clocked out on the ꢁalling edge oꢁ  
23  
24  
23  
24  
19  
20  
15  
16  
DOUT  
SCLK. High impedance when CS is connected to V  
.
DD  
EOC  
End oꢁ Conversion Output. Data is valid aꢁter EOC pulls low.  
8
_______________________________________________________________________________________  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
CS  
t
CSH  
t
t
CP  
t
CSH  
t
CH  
CSS  
t
CSS  
SCLK  
DIN  
t
DH  
t
DS  
t
t
DOT  
DOD  
t
DOE  
DOUT  
Figure 1. Detailed Serial-Interface Timing Diagram  
CS  
DIN  
SCLK  
SERIAL  
INTERFACE  
DOUT  
EOC  
OSCILLATOR  
CONTROL  
CNVST  
AIN1  
AIN2  
12-BIT  
SAR  
ADC  
FIFO AND  
ACCUMULATOR  
T/H  
AIN15  
TEMP  
SENSE  
REF-  
REF+  
INTERNAL  
REFERENCE  
MAX1026  
MAX1028  
MAX1030  
Figure 2. Functional Diagram  
conꢁigurations. Microprocessor (µP) control is made  
easy through a 3-wire SPI/QSPI/MICROWIRE-compati-  
ble serial interꢁace.  
Detailed Description  
The MAX1026/MAX1028/MAX1030 are low-power% seri-  
al-output% multichannel ADCs with temperature-sensing  
capability ꢁor temperature-control% process-control% and  
monitoring applications. These 10-bit ADCs have inter-  
nal track and hold (T/H) circuitry that supports single-  
ended and ꢁully diꢁꢁerential inputs. Data is converted  
ꢁrom an internal temperature sensor or analog voltage  
sources in a variety oꢁ channel and data-acquisition  
Figure 2 shows a simpliꢁied ꢁunctional diagram oꢁ the  
MAX1026/MAX1028/MAX1030 internal architecture. The  
MAX1026 has eight single-ended analog input chan-  
nels or ꢁour diꢁꢁerential channels. The MAX1028 has 12  
single-ended analog input channels or six diꢁꢁerential  
channels. The MAX1030 has 16 single-ended analog  
input channels or eight diꢁꢁerential channels.  
_______________________________________________________________________________________  
9
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
Tables 17 detail the register descriptions. Bits 5 and 4%  
Converter Operation  
The MAX1026/MAX1028/MAX1030 ADCs use a ꢁully diꢁ-  
ꢁerential% successive-approximation register (SAR) con-  
version technique and an on-chip T/H block to convert  
temperature and voltage signals into a 10-bit digital  
result. Both single-ended and diꢁꢁerential conꢁigurations  
are supported% with a unipolar signal range ꢁor single-  
ended mode and bipolar or unipolar ranges ꢁor diꢁꢁer-  
ential mode.  
CKSEL1 and CKSEL0% respectively% control the clock  
modes in the setup register (see Table 3). Choose  
between ꢁour diꢁꢁerent clock modes ꢁor various ways to  
start a conversion and determine whether the acquisi-  
tions are internally or externally timed. Select clock  
mode 00 to conꢁigure CNVST/AIN_ to act as a conver-  
sion start and use it to request the programmed inter-  
nally timed conversions without tying up the serial bus.  
In clock mode 01% use CNVST to request conversions  
one channel at a time% controlling the sampling speed  
without tying up the serial bus. Request and start inter-  
nally timed conversions through the serial interꢁace by  
writing to the conversion register in the deꢁault clock  
mode% 10. Use clock mode 11 with SCLK up to 4.8MHz  
ꢁor externally timed acquisitions to achieve sampling  
rates up to 300ksps. Clock mode 11 disables scanning  
and averaging. See Figures 47 ꢁor timing speciꢁica-  
tions and how to begin a conversion.  
Input Bandwidth  
The ADCs input-tracking circuitry has a 1MHz small-  
signal bandwidth% so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADCs sampling rate by  
using undersampling techniques. Anti-alias preꢁiltering  
oꢁ the input signals is necessary to avoid high-ꢁrequen-  
cy signals aliasing into the ꢁrequency band oꢁ interest.  
Analog Input Protection  
These devices ꢁeature an active-low% end-oꢁ-conversion  
output. EOC goes low when the ADC completes the  
last-requested operation and is waiting ꢁor the next  
input data byte (ꢁor clock modes 00 and 10). For clock  
mode 01% EOC goes low aꢁter the ADC completes each  
requested operation. EOC goes high when CS or CNVST  
goes low. EOC is always high in clock mode 11.  
Internal ESD protection diodes clamp all pins to V  
DD  
and GND% allowing the inputs to swing ꢁrom (GND -  
0.3V) to (V + 0.3V) without damage. However% ꢁor  
DD  
accurate conversions near ꢁull scale% the inputs must  
not exceed V by more than 50mV or be lower than  
DD  
GND by 50mV. Iꢁ an oꢁꢁ-channel analog input voltage  
exceeds the supplies% limit the input current to 2mA.  
Single-Ended/Differential Input  
The MAX1026/MAX1028/MAX1030 use a ꢁully diꢁꢁeren-  
tial ADC ꢁor all conversions. The analog inputs can be  
conꢁigured ꢁor either diꢁꢁerential or single-ended con-  
versions by writing to the setup register (see Table 3).  
Single-ended conversions are internally reꢁerenced to  
GND (see Figure 3).  
3-Wire Serial Interface  
The MAX1026/MAX1028/MAX1030 ꢁeature a serial  
interꢁace compatible with SPI/QSPI and MICROWIRE  
devices. For SPI/QSPI% ensure the CPU serial interꢁace  
runs in master mode so it generates the serial clock  
signal. Select the SCLK ꢁrequency oꢁ 10MHz or less%  
and set clock polarity (CPOL) and phase (CPHA) in the  
µP control registers to the same value. The MAX1026/  
MAX1028/MAX1030 operate with SCLK idling high or  
low% and thus operate with CPOL = CPHA = 0 or CPOL  
= CPHA = 1. Set CS low to latch input data at DIN on  
the rising edge oꢁ SCLK. Output data at DOUT is  
updated on the ꢁalling edge oꢁ SCLK. Bipolar true-diꢁ-  
ꢁerential results and temperature sensor results are  
available in twos complement ꢁormat% while all others  
are in binary.  
In diꢁꢁerential mode% the T/H samples the diꢁꢁerence  
between two analog inputs% eliminating common-mode  
DC oꢁꢁsets and noise. IN+ and IN- are selected ꢁrom  
the ꢁollowing pairs: AIN0/AIN1% AIN2/AIN3% AIN4/AIN5%  
AIN6/AIN7% AIN8/AIN9% AIN10/AIN11% AIN12/AIN13%  
and AIN14/AIN15. AIN0AIN7 are available on the  
MAX1026% MAX1028% and MAX1030. AIN8AIN11 are  
only available on the MAX1028 and MAX1030.  
AIN12AIN15 are only available on the MAX1030. See  
Tables 25 ꢁor more details on conꢁiguring the inputs.  
For the inputs that can be conꢁigured as CNVST or an  
analog input% only one can be used at a time. For the  
inputs that can be conꢁigured as REF- or an analog  
input% the REF- conꢁiguration excludes the analog input.  
Serial communication always begins with an 8-bit input  
data byte (MSB ꢁirst) loaded ꢁrom DIN. Send a second  
byte% immediately ꢁollowing the setup byte% to write to  
the unipolar mode or bipolar mode registers (see  
Tables 1% 3% 4% and 5). A high-to-low transition on CS ini-  
tiates the data input operation. The input data byte and  
the subsequent data bytes are clocked ꢁrom DIN into  
the serial interꢁace on the rising edge oꢁ SCLK.  
10 ______________________________________________________________________________________  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
needed ꢁor a signal to be acquired% plus the power-up  
time. It is calculated by the ꢁollowing equation:  
REF  
GND  
AIN0-AIN15  
(SINGLE ENDED);  
AIN0, AIN2,  
DAC  
t
= 9 x R + R  
x 24pF + t  
PWR  
(
)
AQC  
S
IN  
AIN4…AIN14  
(DIFFERENTIAL)  
CIN+  
COMPARATOR  
+
where R = 1.5k% R is the source impedance oꢁ the  
IN  
S
PWR  
input signal% and t  
= 1µs% the power-up time oꢁ the  
HOLD  
device. The varying power-up times are detailed in the  
explanation oꢁ the clock mode conversions.  
-
GND  
(SINGLE ENDED);  
AIN1, AIN3,  
AIN5…AIN15  
(DIFFERENTIAL)  
CIN-  
t
is never less than 1.4µs% and any source imped-  
ACQ  
ance below 300does not signiꢁicantly aꢁꢁect the  
HOLD  
HOLD  
ADCs AC perꢁormance. A high-impedance source can  
be accommodated either by lengthening t  
or by  
ACQ  
V /2  
DD  
placing a 1µF capacitor between the positive and neg-  
ative analog inputs.  
Figure 3. Equivalent Input Circuit  
Internal FIFO  
The MAX1026/MAX1028/MAX1030 contain a FIFO  
buꢁꢁer that can hold up to 16 ADC results plus one tem-  
perature result. This allows the ADC to handle multiple  
internally clocked conversions and a temperature mea-  
surement% without tying up the serial bus.  
Unipolar/Bipolar  
Address the unipolar and bipolar registers through the  
setup register (bits 1 and 0). Program a pair oꢁ analog  
channels ꢁor diꢁꢁerential operation by writing a 1 to the  
appropriate bit oꢁ the bipolar or unipolar register.  
Unipolar mode sets the diꢁꢁerential input range ꢁrom 0 to  
Iꢁ the FIFO is ꢁilled and ꢁurther conversions are request-  
ed without reading ꢁrom the FIFO% the oldest ADC  
results are overwritten by the new ADC results. Each  
result contains 2 bytes% with the MSB preceded by 4  
leading zeros and the LSB ꢁollowed by 2 sub-bits. Aꢁter  
each ꢁalling edge oꢁ CS% the oldest available byte oꢁ  
data is available at DOUT% MSB ꢁirst. When the FIFO is  
empty% DOUT is zero.  
V
. A negative diꢁꢁerential analog input in unipolar  
REF  
mode causes the digital output code to be zero.  
Selecting bipolar mode sets the diꢁꢁerential input range  
to  
V
/ 2. The digital output code is binary in unipo-  
REF  
lar mode and twos complement in bipolar mode (see  
the transꢁer ꢁunction graphs% Figures 8 and 9).  
In single-ended mode% the MAX1026/MAX1028/  
MAX1030 always operate in unipolar mode. The analog  
inputs are internally reꢁerenced to GND with a ꢁull-scale  
The ꢁirst 2 bytes oꢁ data read out aꢁter a temperature mea-  
surement always contain the temperature result preceded  
by 4 leading zeros% MSB ꢁirst. Iꢁ another temperature mea-  
surement is perꢁormed beꢁore the ꢁirst temperature result  
is read out% the old measurement is overwritten by the  
new result. Temperature results are in degrees Celsius  
(twos complement) at a resolution oꢁ 1/8 oꢁ a degree. See  
the Temperature Measurements section ꢁor details on  
converting the digital code to a temperature.  
input range ꢁrom 0 to V  
.
REF  
True Differential Analog Input T/H  
The equivalent circuit oꢁ Figure 3 shows the  
MAX1026/MAX1028/MAX1030sinput architecture. In  
track mode% a positive input capacitor is connected to  
AIN0AIN15 in single-ended mode (and AIN0% AIN2%  
AIN4AIN14 in diꢁꢁerential mode). A negative input  
capacitor is connected to GND in single-ended mode  
(or AIN1% AIN3% AIN5AIN15 in diꢁꢁerential mode). For  
external track-and-hold timing% use clock mode 01.  
Aꢁter the T/H enters hold mode% the diꢁꢁerence between  
the sampled positive and negative input voltages is  
converted. The time required ꢁor the T/H to acquire an  
input signal is determined by how quickly its input  
capacitance is charged. Iꢁ the input signals source  
impedance is high% the required acquisition time length-  
Internal Clock  
The MAX1026/MAX1028/MAX1030 operate ꢁrom an inter-  
nal oscillator% which is accurate within 10ꢀ oꢁ the  
4.4MHz nominal clock rate. The internal oscillator is  
active in clock modes 00% 01% and 10. Read out the data  
at clock speeds up to 10MHz. See Figures 47 ꢁor details  
on timing speciꢁications and starting a conversion.  
ens. The acquisition time% t  
% is the maximum time  
ACQ  
______________________________________________________________________________________ 11  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
t
= internal reꢁerence wake-up; set to zero iꢁ the inter-  
RP  
Applications Information  
nal reꢁerence is already powered up or iꢁ the external  
reꢁerence is being used  
Register Descriptions  
The MAX1026/MAX1028/MAX1030 communicate  
between the internal registers and the external circuitry  
through the SPI/QSPI-compatible serial interꢁace. Table  
1 details the registers and the bit names. Tables 27  
show the various ꢁunctions within the conversion regis-  
ter% setup register% averaging register% reset register%  
unipolar register% and bipolar register.  
In clock mode 01% the total conversion time depends on  
how long CNVST is held low or high% including any time  
required to turn on the internal reꢁerence. Conversion  
time in externally clocked mode (CKSEL1% CKSEL0 = 11)  
depends on the SCLK period and how long CS is held  
high between each set oꢁ eight SCLK cycles.  
Conversion Register  
Select active analog input channels% scan modes% and  
a single temperature measurement per scan by writing  
to the conversion register. Table 2 details channel  
selection% the ꢁour scan modes% and how to request a  
temperature measurement. Request a scan by writing  
to the conversion register when in clock mode 10 or 11%  
or by applying a low pulse to the CNVST pin when in  
clock mode 00 or 01.  
Conversion Time Calculations  
The conversion time ꢁor each scan is based on a num-  
ber oꢁ diꢁꢁerent ꢁactors: conversion time per sample%  
samples per result% results per scan% iꢁ a temperature  
measurement is requested% and iꢁ the external reꢁer-  
ence is in use.  
Use the ꢁollowing ꢁormula to calculate the total conver-  
sion time ꢁor an internally timed conversion in clock  
modes 00 and 10 (see the Electrical Characteristics  
section as applicable):  
A conversion is not perꢁormed iꢁ it is requested on a  
channel that has been conꢁigured as CNVST or REF-.  
Do not request conversions on channels 815 on the  
MAX1026 and channels 1215 on the MAX1028. Set  
CHSEL3:CHSEL0 to the lower channels binary value. Iꢁ  
the last two channels are conꢁigured as a diꢁꢁerential  
pair and one oꢁ them has been reconꢁigured as CNVST  
or REF-% the pair is ignored.  
total conversion time = t  
where:  
x n  
x n + t + t  
result TS RP  
cnv  
avg  
t
= t  
(max) + t  
(max)  
conv  
cnv  
acq  
n
n
= samples per result (amount oꢁ averaging)  
avg  
= number oꢁ FIFO results requested; determined  
result  
Select scan mode 00 or 01 to return one result per sin-  
gle-ended channel and one result per diꢁꢁerential pair  
within the requested range% plus one temperature result iꢁ  
selected. Select scan mode 10 to scan a single input  
channel numerous times% depending on NSCAN1 and  
NSCAN0 in the averaging register (Table 6). Select scan  
mode 11 to return only one result ꢁrom a single channel.  
by number oꢁ channels being scanned or by NSCAN1%  
NSCAN0  
t
= time required ꢁor temperature measurement; set  
TS  
to zero iꢁ temp measurement is not requested  
Table 1. Input Data Byte (MSB First)  
REGISTER NAME  
Conversion  
BIT 7  
BIT 6  
BIT 5  
CHSEL2  
CKSEL1  
1
BIT 4  
CHSEL1  
CKSEL0  
AVGON  
1
BIT 3  
CHSEL0  
REFSEL1  
NAVG1  
RESET  
BIT 2  
SCAN1  
REFSEL0  
NAVG0  
X
BIT 1  
SCAN0  
DIFFSEL1  
NSCAN1  
X
BIT 0  
TEMP  
1
CHSEL3  
Setup  
0
0
1
0
DIFFSEL0  
NSCAN0  
X
Averaging  
Reset  
0
0
0
Unipolar mode (setup)  
Bipolar mode (setup)  
UCH0/1  
BCH0/1  
UCH2/3  
BCH1/2  
UCH4/5  
BCH4/5  
UCH6/7  
BCH6/7  
UCH8/9*  
BCH8/9*  
UCH10/11* UCH12/13** UCH14/15**  
BCH10/11* BCH12/13** BCH14/15**  
*Unipolar/bipolar channels 8–15 are only valid on the MAX1028 and MAX1030.  
**Unipolar/bipolar channels 12–15 are only valid on the MAX1030.  
X = Don’t care.  
12 ______________________________________________________________________________________  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
Setup Register  
Table 2. Conversion Register*  
Write a byte to the setup register to conꢁigure the clock%  
reꢁerence% and power-down modes. Table 3 details the  
bits in the setup register. Bits 5 and 4 (CKSEL1 and  
CKSEL0) control the clock mode% acquisition and sam-  
pling% and the conversion start. Bits 3 and 2 (REFSEL1  
and REFSEL0) control internal or external reꢁerence use.  
Bits 1 and 0 (DIFFSEL1 and DIFFSEL0) address the  
unipolar mode and bipolar mode registers and conꢁigure  
the analog input channels ꢁor diꢁꢁerential operation.  
BIT  
NAME  
BIT  
FUNCTION  
7 (MSB) Set to 1 to select conversion register.  
CHSEL3  
CHSEL2  
CHSEL1  
CHSEL0  
SCAN1  
SCAN0  
6
5
4
3
2
1
Analog input channel select.  
Analog input channel select.  
Analog input channel select.  
Analog input channel select.  
Scan mode select.  
Unipolar/Bipolar Registers  
The ꢁinal 2 bits (LSBs) oꢁ the setup register control the  
unipolar/bipolar mode address registers. Set bits 1 and  
0 (DIFFSEL1 and DIFFSEL0) to 10 to write to the unipo-  
lar mode register. Set bits 1 and 0 to 11 to write to the  
bipolar mode register. In both cases% the setup byte  
must be ꢁollowed immediately by 1 byte oꢁ data written  
to the unipolar register or bipolar register. Hold CS low  
and run 16 SCLK cycles beꢁore pulling CS high. Iꢁ the  
last 2 bits oꢁ the setup register are 00 or 01% neither the  
unipolar mode register nor the bipolar mode register is  
written. Any subsequent byte is recognized as a new  
input data byte. See Tables 4 and 5 to program the  
unipolar and bipolar mode registers.  
Scan mode select.  
Set to 1 to take a single temperature  
TEMP 0 (LSB) measurement. The ꢁirst conversion result  
oꢁ a scan contains temperature inꢁormation.  
*See below for bit details.  
SELECTED  
CHSEL3 CHSEL2 CHSEL1 CHSEL0  
CHANNEL (N)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0  
AIN1  
AIN2  
Iꢁ a channel is conꢁigured as both unipolar and bipolar%  
the unipolar setting takes precedence. In unipolar  
AIN3  
AIN4  
mode% AIN+ can exceed AIN- by up to V  
. The out-  
REF  
AIN5  
put ꢁormat in unipolar mode is binary. In bipolar mode%  
AIN6  
either input can exceed the other by up to V  
output ꢁormat in bipolar mode is two's complement.  
/ 2. The  
REF  
AIN7  
AIN8  
Averaging Register  
Write to the averaging register to conꢁigure the ADC to  
average up to 32 samples ꢁor each requested result%  
and to independently control the number oꢁ results  
requested ꢁor single-channel scans.  
AIN9  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
Table 2 details the ꢁour scan modes available in the con-  
version register. All ꢁour scan modes allow averaging as  
long as the AVGON bit% bit 4 in the averaging register% is  
set to 1. Select scan mode 10 to scan the same channel  
multiple times. Clock mode 11 disables averaging.  
SCAN MODE (CHANNEL N IS  
SELECTED BY BITS CHSEL3CHSEL0)  
Reset Register  
Write to the reset register (as shown in Table 7) to clear  
the FIFO or to reset all registers to their deꢁault states.  
Set the RESET bit to 1 to reset the FIFO. Set the reset  
bit to zero to return the MAX1026/MAX1028/MAX1030  
to the deꢁault power-up state.  
SCAN1 SCAN0  
0
0
0
1
Scans channels 0 through N.  
Scans channels N through the highest  
numbered channel.  
Scans channel N repeatedly. The averaging  
register sets the number oꢁ results.  
1
1
0
1
No scan. Converts channel N once only.  
______________________________________________________________________________________ 13  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
Table 3. Setup Register*  
BIT NAME  
BIT  
FUNCTION  
7 (MSB) Set to zero to select setup register.  
6
Set to 1 to select setup register.  
CKSEL1  
CKSEL0  
REFSEL1  
REFSEL0  
DIFFSEL1  
DIFFSEL0  
5
Clock mode and CNVST conꢁiguration. Resets to 1 at power-up.  
Clock mode and CNVST conꢁiguration.  
4
3
Reꢁerence mode conꢁiguration.  
2
1
Reꢁerence mode conꢁiguration.  
Unipolar/bipolar mode register conꢁiguration ꢁor diꢁꢁerential mode.  
Unipolar/bipolar mode register conꢁiguration ꢁor diꢁꢁerential mode.  
0 (LSB)  
*See below for bit details.  
CKSEL1  
CKSEL0  
CONVERSION CLOCK  
Internal  
ACQUISITION/SAMPLING  
Internally timed  
CNVST CONFIGURATION  
CNVST  
0
0
1
1
0
1
0
1
Internal  
Externally timed through CNVST  
Internally timed  
CNVST  
Internal  
AIN15/11/7  
AIN15/11/7  
External (4.8MHz max)  
Externally timed through SCLK  
REFSEL1 REFSEL0  
VOLTAGE REFERENCE  
Internal  
AutoShutdown  
REF- CONFIGURATION  
AIN14/10/6  
Reꢁerence oꢁꢁ aꢁter scan; need  
wake-up delay.  
0
0
1
1
0
1
0
1
External single ended  
Internal  
Reꢁerence oꢁꢁ; no wake-up delay.  
AIN14/10/6  
Reꢁerence always on; no wake-up  
delay.  
AIN14/10/6  
External diꢁꢁerential  
Reꢁerence oꢁꢁ; no wake-up delay.  
REF-  
DIFFSEL1 DIFFSEL0  
FUNCTION  
0
0
1
1
0
1
0
1
No data ꢁollows the setup byte. Unipolar mode and bipolar mode registers remain unchanged.  
No data ꢁollows the setup byte. Unipolar mode and bipolar mode registers remain unchanged.  
One byte oꢁ data ꢁollows the setup byte and is written to the unipolar mode register.  
One byte oꢁ data ꢁollows the setup byte and is written to the bipolar mode register.  
14 ______________________________________________________________________________________  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
The reꢁerence voltage used ꢁor the temperature mea-  
surements is derived ꢁrom the internal reꢁerence source  
to ensure a resolution oꢁ 1/8 oꢁ a degree.  
Power-Up Default State  
The MAX1026/MAX1028/MAX1030 power up with all  
blocks in shutdown% including the reꢁerence. All registers  
power up in state 00000000% except ꢁor the setup regis-  
ter% which powers up in clock mode 10 (CKSEL1 = 1).  
Output Data Format  
Figures 47 illustrate the conversion timing ꢁor the  
MAX1026/MAX1028/MAX1030. The 10-bit conversion  
result is output in MSB-ꢁirst ꢁormat with 4 leading zeros  
and 2 trailing sub-bits. The 12-bit temperature mea-  
surement is output with 4 leading zeros. DIN data is  
latched into the serial interꢁace on the rising edge oꢁ  
SCLK. Data on DOUT transitions on the ꢁalling edge oꢁ  
SCLK. Conversions in clock modes 00 and 01 are initiat-  
ed by CNVST. Conversions in clock modes 10 and 11  
are initiated by writing an input data byte to the conver-  
sion register. Data is binary ꢁor unipolar mode and twos  
complement ꢁor bipolar mode.  
Temperature Measurements  
The MAX1026/MAX1028/MAX1030 perꢁorm tempera-  
ture measurements with an internal diode-connected  
transistor. The diode bias current changes ꢁrom 68µA  
to 4µA to produce a temperature-dependent bias volt-  
age diꢁꢁerence. The second conversion result at 4µA is  
subtracted ꢁrom the ꢁirst at 68µA to calculate a digital  
value that is proportional to absolute temperature. The  
output data appearing at DOUT is the above digital  
code minus an oꢁꢁset to adjust ꢁrom Kelvin to Celsius.  
Table 4. Unipolar Mode Register (Addressed Through Setup Register)  
BIT NAME  
UCH0/1  
BIT  
FUNCTION  
7 (MSB) Set to 1 to conꢁigure AIN0 and AIN1 ꢁor unipolar diꢁꢁerential conversion.  
UCH2/3  
6
Set to 1 to conꢁigure AIN2 and AIN3 ꢁor unipolar diꢁꢁerential conversion.  
UCH4/5  
5
Set to 1 to conꢁigure AIN4 and AIN5 ꢁor unipolar diꢁꢁerential conversion.  
UCH6/7  
4
Set to 1 to conꢁigure AIN6 and AIN7 ꢁor unipolar diꢁꢁerential conversion.  
UCH8/9  
3
Set to 1 to conꢁigure AIN8 and AIN9 ꢁor unipolar diꢁꢁerential conversion (MAX1028/MAX1030 only).  
Set to 1 to conꢁigure AIN10 and AIN11 ꢁor unipolar diꢁꢁerential conversion (MAX1028/MAX1030 only).  
Set to 1 to conꢁigure AIN12 and AIN13 ꢁor unipolar diꢁꢁerential conversion (MAX1030 only).  
Set to 1 to conꢁigure AIN14 and AIN15 ꢁor unipolar diꢁꢁerential conversion (MAX1030 only).  
UCH10/11  
UCH12/13  
UCH14/15  
2
1
0 (LSB)  
Table 5. Bipolar Mode Register (Addressed Through Setup Register)  
BIT NAME  
BCH0/1  
BIT  
FUNCTION  
7 (MSB) Set to 1 to conꢁigure AIN0 and AIN1 ꢁor bipolar diꢁꢁerential conversion.  
BCH2/3  
6
Set to 1 to conꢁigure AIN2 and AIN3 ꢁor bipolar diꢁꢁerential conversion.  
BCH4/5  
5
Set to 1 to conꢁigure AIN4 and AIN5 ꢁor bipolar diꢁꢁerential conversion.  
BCH6/7  
4
Set to 1 to conꢁigure AIN6 and AIN7 ꢁor bipolar diꢁꢁerential conversion.  
BCH8/9  
3
Set to 1 to conꢁigure AIN8 and AIN9 ꢁor bipolar diꢁꢁerential conversion (MAX1028/MAX1030 only).  
Set to 1 to conꢁigure AIN10 and AIN11 ꢁor bipolar diꢁꢁerential conversion (MAX1028/MAX1030 only).  
Set to 1 to conꢁigure AIN12 and AIN13 ꢁor bipolar diꢁꢁerential conversion (MAX1030 only).  
Set to 1 to conꢁigure AIN14 and AIN15 ꢁor bipolar diꢁꢁerential conversion (MAX1030 only).  
BCH10/11  
BCH12/13  
BCH14/15  
2
1
0 (LSB)  
______________________________________________________________________________________ 15  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
Table 6. Averaging Register*  
BIT NAME  
BIT  
FUNCTION  
7 (MSB) Set to zero to select averaging register.  
6
Set to zero to select averaging register.  
Set to 1 to select averaging register.  
5
AVGON  
NAVG1  
NAVG0  
NSCAN1  
NSCAN0  
4
Set to 1 to turn averaging on. Set to zero to turn averaging oꢁꢁ.  
Conꢁigures the number oꢁ conversions ꢁor single-channel scans.  
Conꢁigures the number oꢁ conversions ꢁor single-channel scans.  
3
2
1
Single-channel scan count. (Scan mode 10 only.)  
Single-channel scan count. (Scan mode 10 only.)  
0 (LSB)  
*See below for bit details.  
AVGON  
NAVG1  
NAVG0  
FUNCTION  
Perꢁorms 1 conversion ꢁor each requested result.  
0
1
1
1
1
x
0
0
1
1
x
0
1
0
1
Perꢁorms 4 conversions and returns the average ꢁor each requested result.  
Perꢁorms 8 conversions and returns the average ꢁor each requested result.  
Perꢁorms 16 conversions and returns the average ꢁor each requested result.  
Perꢁorms 32 conversions and returns the average ꢁor each requested result.  
NSCAN1  
NSCAN0  
FUNCTION (APPLIES ONLY IF SCAN MODE 10 IS SELECTED)  
0
0
1
1
0
1
0
1
Scans channel N and returns 4 results.  
Scans channel N and returns 8 results.  
Scans channel N and returns 12 results.  
Scans channel N and returns 16 results.  
Table 7. Reset Register  
BIT NAME  
BIT  
FUNCTION  
7 (MSB) Set to zero to select reset register.  
6
Set to zero to select reset register.  
Set to zero to select reset register.  
Set to 1 to select reset register.  
5
4
RESET  
3
Set to zero to reset all registers. Set to 1 to clear the FIFO only.  
Reserved. Dont care.  
x
x
x
2
1
Reserved. Dont care.  
0 (LSB)  
Reserved. Dont care.  
16 ______________________________________________________________________________________  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
the internal oscillator. See Figure 5 ꢁor clock mode 01  
timing.  
Internally Timed Acquisitions and  
Conversions Using CNVST  
Setting CNVST low begins an acquisition% wakes up the  
ADC% and places it in track mode. Hold CNVST low ꢁor  
at least 1.4µs to complete the acquisition. Iꢁ the internal  
reꢁerence needs to wake up% an additional 65µs is  
required ꢁor the internal reꢁerence to power up. Iꢁ a tem-  
perature measurement is being requested% reꢁerence  
power-up and temperature measurement are internally  
timed. In this case% hold CNVST low ꢁor at least 40ns.  
Performing Conversions in Clock Mode 00  
In clock mode 00% the wake up% acquisition% conversion%  
and shutdown sequences are initiated through CNVST  
and perꢁormed automatically using the internal oscilla-  
tor. Results are added to the internal FIFO to be read  
out later. See Figure 4 ꢁor clock mode 00 timing.  
Initiate a scan by setting CNVST low ꢁor at least 40ns  
beꢁore pulling it high again. The MAX1026/MAX1028/  
MAX1030 then wake up% scan all requested channels%  
store the results in the FIFO% and shut down. Aꢁter the  
scan is complete% EOC is pulled low and the results are  
available in the FIFO. Wait until EOC goes low beꢁore  
pulling CS low to communicate with the serial interꢁace.  
EOC stays low until CS or CNVST is pulled low again. A  
temperature measurement result% iꢁ requested% pre-  
cedes all other FIFO results.  
Set CNVST high to begin a conversion. Aꢁter the con-  
version is complete% the ADC shuts down and pulls  
EOC low. EOC stays low until CS or CNVST is pulled  
low again. Wait until EOC goes low beꢁore pulling CS or  
CNVST low.  
Iꢁ averaging is turned on% multiple CNVST pulses need  
to be perꢁormed beꢁore a result is written to the FIFO.  
Once the proper number oꢁ conversions has been per-  
ꢁormed to generate an averaged FIFO result% as speci-  
ꢁied by the averaging register% the scan logic  
automatically switches the analog input multiplexer to  
the next-requested channel. Iꢁ a temperature measure-  
ment is programmed% it is perꢁormed aꢁter the ꢁirst rising  
edge oꢁ CNVST ꢁollowing the input data byte written to  
the conversion register. The result is available on DOUT  
once EOC has been pulled low.  
Do not initiate a second CNVST beꢁore EOC goes low;  
otherwise% the FIFO can become corrupted.  
Externally Timed Acquisitions and  
Internally Timed Conversions with CNVST  
Performing Conversions in Clock Mode 01  
In clock mode 01% conversions are requested one at a  
time using CNVST and perꢁormed automatically using  
CNVST  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
CS  
SCLK  
DOUT  
EOC  
LSB1  
MSB2  
MSB1  
SET CNVST LOW FOR AT LEAST 40ns TO BEGIN A CONVERSION. X = DON'T CARE.  
Figure 4. Clock Mode 00  
______________________________________________________________________________________ 17  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
CNVST  
(CONVERSION2)  
(ACQUISITION1)  
(ACQUISITION2)  
CS  
(CONVERSION1)  
SCLK  
DOUT  
EOC  
LSB1  
MSB1  
MSB2  
REQUEST MULTIPLE CONVERSIONS BY SETTING CNVST LOW FOR EACH CONVERSION. X = DON'T CARE.  
Figure 5. Clock Mode 01  
(CONVERSION BYTE)  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
DIN  
CS  
SCLK  
DOUT  
EOC  
MSB1  
LSB1  
MSB2  
THE CONVERSION BYTE BEGINS THE ACQUISITION. CNVST IS NOT REQUIRED. X = DON'T CARE.  
Figure 6. Clock Mode 10  
Initiate a scan by writing a byte to the conversion regis-  
ter. The MAX1026/MAX1028/MAX1030 then power up%  
scan all requested channels% store the results in the  
FIFO% and shut down. Aꢁter the scan is complete% EOC  
is pulled low and the results are available in the FIFO. Iꢁ  
a temperature measurement is requested% the tempera-  
ture result precedes all other FIFO results. EOC stays  
low until CS is pulled low again.  
Internally Timed Acquisitions and  
Conversions Using the Serial Interface  
Performing Conversions in Clock Mode 10  
In clock mode 10% the wake-up% acquisition% conversion%  
and shutdown sequences are initiated by writing an  
input data byte to the conversion register% and are per-  
ꢁormed automatically using the internal oscillator. This  
is the deꢁault clock mode upon power-up. See Figure 6  
ꢁor clock mode 10 timing.  
18 ______________________________________________________________________________________  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
(CONVERSION BYTE)  
DIN  
(ACQUISITION2)  
(ACQUISITION1)  
(CONVERSION1)  
CS  
SCLK  
DOUT  
EOC  
MSB1  
LSB1  
MSB2  
EXTERNALLY TIMED ACQUISITION, SAMPLING AND CONVERSION WITHOUT CNVST. X = DON'T CARE.  
Figure 7. Clock Mode 11  
is uncorrupted and can be read out normally aꢁter tak-  
ing CS low again% as long as the 4 leading bits (normal-  
ly zeros) are ignored. Internal registers that are written  
partially through the SPI contain new values% starting at  
the MSB up to the point that the partial write is stopped.  
The part oꢁ the register that is not written contains previ-  
ously written values. Iꢁ CS is pulled low beꢁore EOC  
goes low% a conversion cannot be completed and the  
FIFO is corrupted.  
Externally Clocked Acquisitions and  
Conversions Using the Serial Interface  
Performing Conversions in Clock Mode 11  
In clock mode 11% acquisitions and conversions are ini-  
tiated by writing to the conversion register and are per-  
ꢁormed one at a time using the SCLK as the conversion  
clock. Scanning and averaging are disabled% and the  
conversion result is available at DOUT during the con-  
version. See Figure 7 ꢁor clock mode 11 timing.  
Transfer Function  
Figure 8 shows the unipolar transꢁer ꢁunction ꢁor single-  
ended or diꢁꢁerential inputs. Figure 9 shows the bipolar  
transꢁer ꢁunction ꢁor diꢁꢁerential inputs. Code transitions  
occur halꢁway between successive-integer LSB values.  
Initiate a conversion by writing a byte to the conversion  
register ꢁollowed by 16 SCLK cycles. Iꢁ CS is pulsed  
high between the eighth and ninth cycles% the pulse  
width must be less than 100µs. To continuously convert  
at 16 cycles per conversion% alternate 1 byte oꢁ zeros  
between each conversion byte.  
Output coding is binary% with 1 LSB = V  
/ 1024V ꢁor  
REF  
unipolar and bipolar operation% and 1 LSB = 0.125°C  
ꢁor temperature measurements.  
Iꢁ reꢁerence mode 00 is requested% or iꢁ an external reꢁer-  
ence is selected but a temperature measurement is  
being requested% wait 65µs with CS high aꢁter writing the  
conversion byte to extend the acquisition and allow the  
internal reꢁerence to power up. To perꢁorm a temperature  
measurement% write 24 bytes (192 cycles) oꢁ zeros aꢁter  
the conversion byte. The temperature result appears on  
DOUT during the last 2 bytes oꢁ the 192 cycles.  
Layout, Grounding, and Bypassing  
For best perꢁormance% use PC boards. Do not use wire-  
wrap boards. For the QFN package% connect its  
exposed pad to GND. Board layout should ensure that  
digital and analog signal lines are separated ꢁrom each  
other. Do not run analog and digital (especially clock)  
signals parallel to one another or run digital lines under-  
neath the MAX1026/MAX1028/MAX1030 package. High-  
Partial Reads and Partial Writes  
Iꢁ the ꢁirst byte oꢁ an entry in the FIFO is partially read  
(CS is pulled high aꢁter ꢁewer than eight SCLK cycles)%  
the second byte oꢁ data that is read out contains the  
next 8 bits (not b7b0). The remaining bits are lost ꢁor  
that entry. Iꢁ the ꢁirst byte oꢁ an entry in the FIFO is read  
out ꢁully% but the second byte is read out partially% the  
rest oꢁ the entry is lost. The remaining data in the FIFO  
ꢁrequency noise in the V  
power supply can aꢁꢁect  
DD  
perꢁormance. Bypass the V  
supply with a 0.1µF  
DD  
capacitor to GND% close to the V  
pin. Minimize  
DD  
capacitor lead lengths ꢁor best supply-noise rejection. Iꢁ  
the power supply is very noisy% connect a 10resistor in  
series with the supply to improve power-supply ꢁiltering.  
______________________________________________________________________________________ 19  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
OUTPUT CODE  
OUTPUT CODE  
V
REF  
2
FS  
+ V  
COM  
=
FULL-SCALE  
TRANSITION  
011 . . . 111  
011 . . . 110  
11 . . . 111  
11 . . . 110  
ZS = COM  
-V  
2
REF  
-FS =  
11 . . . 101  
000 . . . 010  
000 . . . 001  
000 . . . 000  
V
1024  
REF  
1 LSB =  
FS = V + V  
REF  
COM  
111 . . . 111  
111 . . . 110  
111 . . . 101  
ZS = V  
COM  
V
1024  
REF  
1 LSB =  
00 . . . 011  
00 . . . 010  
100 . . . 001  
100 . . . 000  
00 . . . 001  
00 . . . 000  
COM*  
0
- FS  
+FS - 1 LSB  
1
2
3
FS  
(COM)  
INPUT VOLTAGE (LSB)  
FS - 3/2 LSB  
INPUT VOLTAGE (LSB)  
*V  
COM  
V / 2  
REF  
Figure 8. Unipolar Transfer Function, Full Scale (FSꢀ = ꢁ  
Figure 9. Bipolar Transfer Function, Full Scale ( FSꢀ =  
REF  
/ 2  
REF  
zation error (residual error). The ideal% theoretical mini-  
mum analog-to-digital noise is caused by quantization  
error only and results directly ꢁrom the ADCs resolution  
(N bits):  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation oꢁ the values  
on an actual transꢁer ꢁunction ꢁrom a straight line. This  
straight line can be either a best-straight-line ꢁit or a line  
drawn between the end points oꢁ the transꢁer ꢁunction%  
once oꢁꢁset and gain errors have been nulliꢁied. INL ꢁor  
the MAX1026/MAX1028/MAX1030 is measured using  
the end-point method.  
SNR = (6.02 x N + 1.76)dB  
In reality% there are other noise sources besides quanti-  
zation noise% including thermal noise% reꢁerence noise%  
clock jitter% etc. Thereꢁore% SNR is calculated by taking  
the ratio oꢁ the RMS signal to the RMS noise% which  
includes all spectral components minus the ꢁundamen-  
tal% the ꢁirst ꢁive harmonics% and the DC oꢁꢁset.  
Differential Nonlinearity  
Diꢁꢁerential nonlinearity (DNL) is the diꢁꢁerence between  
an actual step width and the ideal value oꢁ 1 LSB. A  
DNL error speciꢁication oꢁ less than 1 LSB guarantees  
no missing codes and a monotonic transꢁer ꢁunction.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio oꢁ the  
ꢁundamental input ꢁrequencys RMS amplitude to the  
RMS equivalent oꢁ all other ADC output signals:  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
SINAD (dB) = 20 x log (Signal  
/ Noise  
)
RMS  
RMS  
the time between the samples.  
Effective Number of Bits  
Eꢁꢁective number oꢁ bits (ENOB) indicates the global  
accuracy oꢁ an ADC at a speciꢁic input ꢁrequency and  
sampling rate. An ideal ADC error consists oꢁ quantiza-  
tion noise only. With an input range equal to the ꢁull-  
scale range oꢁ the ADC% calculate the eꢁꢁective number  
oꢁ bits as ꢁollows:  
Aperture Delay  
Aperture delay (t ) is the time between the rising  
AD  
edge oꢁ the sampling clock and the instant when an  
actual sample is taken.  
Signal-to-Noise Ratio  
For a waveꢁorm perꢁectly reconstructed ꢁrom digital  
samples% signal-to-noise ratio (SNR) is the ratio oꢁ the  
ꢁull-scale analog input (RMS value) to the RMS quanti-  
ENOB = (SINAD - 1.76) / 6.02  
20 ______________________________________________________________________________________  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
Total Harmonic Distortion  
Ordering Information (continued)  
Total harmonic distortion (THD) is the ratio oꢁ the RMS  
sum oꢁ the ꢁirst ꢁive harmonics oꢁ the input signal to the  
ꢁundamental itselꢁ. This is expressed as:  
PART  
TEMP RANGE  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
16 QSOP  
MAX1026BCEE-T  
MAX1026BEEE-T  
MAX1028ACEP-T*  
MAX1028AEEP-T*  
MAX1028BCEP-T  
MAX1028BEEP-T  
MAX1030ACEG-T*  
MAX1030AEEG-T*  
MAX1030BCEG-T  
MAX1030BEEG-T  
MAX1030BCGI-T*  
MAX1030BEGI-T*  
16 QSOP  
2
2
2
2
THD = 20 x log  
V
+ V3 + V4 + V5 / V  
20 QSOP  
(
)
2
1  
20 QSOP  
20 QSOP  
where V1 is the ꢁundamental amplitude% and V2V5 are  
the amplitudes oꢁ the ꢁirst ꢁive harmonics.  
20 QSOP  
24 QSOP  
Spurious-Free Dynamic Range  
Spurious-ꢁree dynamic range (SFDR) is the ratio oꢁ the  
RMS amplitude oꢁ the ꢁundamental (maximum signal  
component) to the RMS value oꢁ the next-largest distor-  
tion component.  
24 QSOP  
24 QSOP  
24 QSOP  
28 QFN-EP**  
28 QFN-EP**  
*Future product—contact factory for availability.  
**EP = Exposed paddle (connect to GNDꢀ.  
Chip Information  
TRANSISTOR COUNT: 30%889  
PROCESS: BiCMOS  
Pin Configurations (continued)  
TOP VIEW  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
1
2
3
4
5
6
7
8
9
24 EOC  
23 DOUT  
22 DIN  
21 CS  
N.C.  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
1
2
3
4
5
6
7
21 CS  
20 SCLK  
19 N.C.  
MAX1030  
20 SCLK  
19  
V
DD  
MAX1030  
18  
V
DD  
18 GND  
17 N.C.  
16 GND  
15 REF+  
17 REF+  
16 CNVST/AIN15  
15 REF-/AIN14  
14 AIN13  
AIN9 10  
AIN10 11  
AIN11 12  
13 AIN12  
QSOP  
QFN  
______________________________________________________________________________________ 21  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
Package Information  
(The package drawing(s) in this data sheet may not reꢁlect the most current speciꢁications. For the latest package outline inꢁormation  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, QSOP .150", .025" LEAD PITCH  
1
21-0055  
E
1
22 ______________________________________________________________________________________  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reꢁlect the most current speciꢁications. For the latest package outline inꢁormation  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 16,20,28,32L QFN,  
5x5x0.90 MM  
1
21-0091  
I
2
______________________________________________________________________________________ 23  
10-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reꢁlect the most current speciꢁications. For the latest package outline inꢁormation  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 16,20,28,32L QFN,  
5x5x0.90 MM  
2
21-0091  
I
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark oꢁ Maxim Integrated Products.  

相关型号:

MAX1030BEEG-T

10-Bit 300ksps ADCs with FIFO, Temp Sensor, Internal Reference
MAXIM

MAX1030BEGI-T

10-Bit 300ksps ADCs with FIFO, Temp Sensor, Internal Reference
MAXIM

MAX1030BETI

A/D Converter, 10-Bit, 1 Func, 16 Channel, Serial Access, BICMOS, 5 X 5 MM, TQFN-28
MAXIM

MAX1030BETI+

A/D Converter, 10-Bit, 1 Func, 16 Channel, Serial Access, BICMOS, 5 X 5 MM, ROHS COMPLIANT, TQFN-28
MAXIM

MAX1031

10-Bit 300ksps ADCs with FIFO, Temp Sensor, Internal Reference
MAXIM

MAX1031ACEG-

10-Bit 300ksps ADCs with FIFO,Temp Sensor, Internal Reference
MAXIM

MAX1031ACEG-T

10-Bit 300ksps ADCs with FIFO, Temp Sensor, Internal Reference
MAXIM

MAX1031AEEG-T

10-Bit 300ksps ADCs with FIFO,Temp Sensor, Internal Reference
MAXIM

MAX1031BCEG

IC,A/D CONVERTER,SINGLE,10-BIT,BICMOS,SSOP,24PIN
ROCHESTER

MAX1031BCEG

A/D Converter, 10-Bit, 1 Func, 16 Channel, Serial Access, BICMOS, PDSO24, QSOP-24
MAXIM

MAX1031BCEG+

ADC, Successive Approximation, 10-Bit, 1 Func, 16 Channel, Serial Access, BICMOS, PDSO24, QSOP-24
MAXIM

MAX1031BCEG-T

10-Bit 300ksps ADCs with FIFO,Temp Sensor, Internal Reference
MAXIM