MAX1035EUP+T [MAXIM]

8-/4-CHANNEL, 1VREF MULTIRANGE INPUTS, SERIAL 14-BIT ADCS;
MAX1035EUP+T
型号: MAX1035EUP+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

8-/4-CHANNEL, 1VREF MULTIRANGE INPUTS, SERIAL 14-BIT ADCS

DCS 分布式控制系统 输入元件 转换器
文件: 总31页 (文件大小:417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3574; Rev 2; 3/12  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
General Description  
Features  
o Software-Programmable Input Range for Each  
The MAX1034/MAX1035 multirange, low-power, 14-bit,  
successive-approximation, analog-to-digital converters  
(ADCs) operate from a single +5V supply and achieve  
throughput rates up to 115ksps. A separate digital sup-  
ply allows digital interfacing with 2.7V to 5.25V systems  
Channel  
o Single-Ended Input Ranges  
0V to +V  
/2, -V  
/2 to 0V, 0V to +V  
,
REF  
REF  
REF  
-V  
REF  
to 0V, V /4, V  
REF  
/2, and V  
®
REF REF  
using the SPI-/QSPI™-/MICROWIRE -compatible serial  
interface. Partial power-down mode reduces the supply  
current to 1.3mA (typ). Full power-down mode reduces  
the power-supply current to 1µA (typ).  
o Differential Input Ranges  
/2, V , and 2 x V  
REF  
V
REF  
REF  
o Eight Single-Ended or Four Differential Analog  
The MAX1034 provides eight (single-ended) or four (true  
differential) analog input channels. The MAX1035 pro-  
vides four (single-ended) or two (true differential) analog  
input channels. Each analog input channel is indepen-  
dently software programmable for seven single-ended  
Inputs (MAX1034)  
o Four Single-Ended or Two Differential Analog  
Inputs (MAX1035)  
6V Overvoltage Tolerant Inputs  
o
input ranges (0V to +V  
/2, -V  
/2 to 0V, 0V to +V  
,
REF  
V
REF  
/2, and  
REF  
), and three  
o Internal or External Reference  
o 115ksps Maximum Sample Rate  
o Single +5V Power Supply  
-V  
to 0V,  
V
/4,  
V
REF  
REF  
REF  
REF  
, 2 x V  
differential input ranges ( V  
/2, V  
).  
REF  
REF  
REF  
An on-chip +4.096V reference offers a small convenient  
ADC solution. The MAX1034/MAX1035 also accept an  
external reference voltage between 3.800V and 4.136V.  
o 20-/24-Pin TSSOP Package  
The MAX1034 is available in a 24-pin TSSOP package  
and the MAX1035 is available in a 20-pin TSSOP pack-  
age. Each device is specified for operation from -40°C  
to +85°C.  
Ordering Information  
PART  
MAX1034EUG+  
MAX1035EUP+  
PIN-PACKAGE  
24 TSSOP  
CHANNELS  
8
4
Applications  
20 TSSOP  
Note: All devices are specified over the -40°C to +85°C opera-  
ting temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Industrial Control Systems  
Data-Acquisition Systems  
Avionics  
Pin Configurations  
Robotics  
TOP VIEW  
+
AVDD1  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
1
2
3
4
5
6
7
8
9
24 AGND1  
23 AGND2  
22 AVDD2  
21 AGND3  
20 REF  
MAX1034  
19 REFCAP  
18 DVDD  
17 DVDDO  
16 DGND  
15 DGNDO  
14 DOUT  
13 SCLK  
CS 10  
DIN 11  
SSTRB 12  
QSPI is a trademark of Motorola, Inc.  
MICROWIRE is a registered trademark of National  
Semiconductor Corp.  
TSSOP  
Pin Configurations continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
ABSOLUTE MAXIMUM RATINGS  
AVDD1 to AGND1 ....................................................-0.3V to +6V  
AVDD2 to AGND2 ....................................................-0.3V to +6V  
DVDD to DGND........................................................-0.3V to +6V  
DVDDO to DGNDO ..................................................-0.3V to +6V  
DVDD to DVDDO......................................................-0.3V to +6V  
DVDD, DVDDO to AVDD1........................................-0.3V to +6V  
AVDD1, DVDD, DVDDO to AVDD2 ..........................-0.3V to +6V  
DGND, DGNDO, AGND3, AGND2 to AGND1 ......-0.3V to +0.3V  
CS, SCLK, DIN, DOUT, SSTRB to  
CH0–CH7 to AGND1...................................................-6V to +6V  
REF, REFCAP to AGND1 ....................-0.3V to (V + 0.3V)  
AVDD1  
Continuous Current (any pin) ........................................... 50mA  
Continuous Power Dissipation (Multilayer board, T = +70°C)  
A
20-Pin TSSOP (derate 13.6mW/°C above +70°C).........1084mW  
24-Pin TSSOP (derate 13.9mW/°C above +70°C)......1111.1mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
DGNDO..........................................-0.3V to (V  
+ 0.3V)  
DVDDO  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V = 0V, f  
= 3.5MHz (50% duty cycle),  
CLK  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
AVDD1  
AVDD2  
DVDD  
DVDDO  
0
external clock mode, V = 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input range ( V ),  
REF REF  
C
DOUT  
= 50pF, C = 50pF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
SSTRB A A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (Notes 1, 2)  
Resolution  
14  
Bits  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
INL  
0.25  
1
1
DNL  
No missing codes  
External or internal reference  
0.5  
2
Transition Noise  
LSB  
RMS  
Unipolar  
0
7.5  
7.5  
Single-ended inputs  
Bipolar  
-1.0  
Offset Error  
mV  
Differential inputs  
(Note 3)  
Bipolar  
-2  
10  
Channel-to-Channel Gain  
Matching  
Unipolar or bipolar  
Unipolar or bipolar  
0.025  
%FSR  
mV  
Channel-to-Channel Offset Error  
Matching  
1.0  
Unipolar  
Bipolar  
3
1
2
Offset Temperature Coefficient  
µV/°C  
Fully differential  
Unipolar  
0.5  
0.8  
Gain Error  
Bipolar  
%FSR  
Fully differential  
Unipolar  
1
1.5  
1.0  
Gain Temperature Coefficient  
ppm/°C  
Bipolar  
2
_______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD1  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V = 0V, f  
= 3.5MHz (50% duty cycle),  
CLK  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
AVDD2  
DVDD  
DVDDO  
external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input range ( V ),  
REF  
REF  
C
DOUT  
= 50pF, C = 50pF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
SSTRB A A  
PARAMETER  
SYMBOL  
CONDITIONS MIN  
= 5kHz, V = FSR - 0.05dB, f = 130ksps (Notes 1, 2)  
SAMPLE  
TYP  
MAX  
UNITS  
DYNAMIC SPECIFICATIONS f  
IN(SINE-WAVE)  
IN  
Differential inputs, FSR = 2 x V  
84.5  
REF  
REF  
Single-ended inputs, FSR = V  
Single-ended inputs, FSR = V  
Single-ended inputs, FSR = V  
84  
Signal-to-Noise Plus Distortion  
SINAD  
dB  
/2  
82.5  
80.5  
84.5  
84  
REF  
REF  
/4  
79  
Differential inputs, FSR = 2 x V  
REF  
Single-ended inputs, FSR = V  
Single-ended inputs, FSR = V  
Single-ended inputs, FSR = V  
REF  
REF  
REF  
Signal-to-Noise Ratio  
SNR  
dB  
dB  
/2  
/4  
82.5  
80.5  
Total Harmonic Distortion  
(Up to the 5th Harmonic)  
THD  
-98  
Spurious-Free Dynamic Range  
Aperture Delay  
SFDR  
92  
99  
15  
dB  
ns  
t
Figure 21  
Figure 21  
AD  
Aperture Jitter  
t
AJ  
100  
105  
ps  
dB  
Channel-to-Channel Isolation  
CONVERSION RATE  
External clock mode, Figure 2  
114  
84  
Byte-Wide Throughput Rate  
f
External acquisition mode, Figure 3  
Internal clock mode, Figure 4  
ksps  
SAMPLE  
106  
ANALOG INPUTS (CH0–CH3 MAX1035, CH0–CH7 MAX1034, AGND1)  
Small-Signal Bandwidth  
Full-Power Bandwidth  
All input ranges, V = 100mV  
(Note 2)  
2
MHz  
kHz  
IN  
P-P  
All input ranges, V = 4V  
IN  
(Note 2)  
700  
P-P  
R[2:1] = 001  
R[2:1] = 010  
R[2:1] = 011  
R[2:1] = 100  
R[2:1] = 101  
R[2:1] = 110  
R[2:1] = 111  
-V  
-V  
/4  
/2  
+V  
/4  
REF  
REF  
0
REF  
0
+V  
+V  
/2  
/2  
REF  
REF  
0
Input Voltage Range (Table 6)  
V
-V  
REF  
/2  
V
CH_  
-V  
REF  
0
+V  
REF  
-V  
+V  
REF  
REF  
True-Differential Analog  
Common-Mode Voltage Range  
V
DIF/SGL = 1 (Note 4)  
-4.75  
+5.50  
V
CMDR  
Common-Mode Rejection Ratio  
Input Current  
CMRR  
DIF/SGL = 1, input voltage range =  
-V < V < +V  
V
/4  
75  
dB  
µA  
pF  
k  
REF  
I
-1500  
+650  
CH_  
REF  
CH_  
REF  
Input Capacitance  
Input Resistance  
C
R
5
6
CH_  
CH_  
_______________________________________________________________________________________  
3
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD1  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V = 0V, f  
= 3.5MHz (50% duty cycle),  
CLK  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
AVDD2  
DVDD  
DVDDO  
external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input range ( V ),  
REF  
REF  
C
DOUT  
= 50pF, C = 50pF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
SSTRB A A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INTERNAL REFERENCE (Bypass REFCAP with 0.1µF to AGND1 and REF with 1.0µF to AGND1)  
Reference Output Voltage  
V
4.056  
4.096  
30  
4.136  
V
REF  
Reference Temperature  
Coefficient  
TC  
ppm/°C  
REF  
REF shorted to AGND1  
REF shorted to AVDD  
10  
-1  
Reference Short-Circuit Current  
Reference Load Regulation  
I
mA  
mV  
REFSC  
I
= 0 to 0.5mA  
0.1  
10  
REF  
EXTERNAL REFERENCE (REFCAP = AVDD)  
Reference Input Voltage Range  
V
3.800  
4.136  
V
V
REF  
REFCAP Buffer Disable  
Threshold  
V
V
AVDD1  
- 0.4  
AVDD1  
- 0.1  
V
(Note 5)  
= +4.096V, external clock mode,  
RCTH  
4/MAX1035  
V
REF  
external acquisition mode, internal clock  
mode, or partial power-down mode  
90  
0.1  
45  
40  
200  
10  
Reference Input Current  
I
µA  
REF  
V
= +4.096V, full power-down mode  
REF  
External clock mode, external acquisition  
mode, internal clock mode, or partial  
power-down mode  
20  
Reference Input Resistance  
R
kΩ  
REF  
Full power-down mode  
DIGITAL INPUTS (DIN, SCLK, CS)  
0.7 x  
DVDDO  
Input High Voltage  
V
V
V
IH  
V
0.3 x  
DVDDO  
Input Low Voltage  
V
IL  
V
Input Hysteresis  
V
0.2  
10  
V
HYST  
Input Leakage Current  
Input Capacitance  
I
V
= 0V to V  
DVDDO  
-10  
+10  
µA  
pF  
IN  
IN  
C
IN  
DIGITAL OUTPUTS (DOUT, SSTRB)  
V
V
= 4.75V, I  
= 10mA  
0.4  
0.4  
DVDDO  
DVDDO  
SINK  
Output Low Voltage  
V
V
OL  
= 2.7V, I  
= 5mA  
SINK  
V
DVDDO  
- 0.4  
Output High Voltage  
V
I
= 0.5mA  
V
OH  
SOURCE  
DOUT Tri-State Leakage Current  
I
CS = DVDDO  
-10  
+10  
µA  
DDO  
POWER REQUIREMENTS (AVDD1 and AGND1, AVDD2 and AGND2, DVDD and DGND, DVDDO and DGNDO)  
Analog Supply Voltage  
Digital Supply Voltage  
V
4.75  
4.75  
5.25  
5.25  
V
V
AVDD1  
V
DVDD  
4
_______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD1  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V = 0V, f  
= 3.5MHz (50% duty cycle),  
CLK  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
AVDD2  
DVDD  
DVDDO  
external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input range ( V ),  
REF  
REF  
C
DOUT  
= 50pF, C = 50pF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
SSTRB A A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.25  
5.25  
UNITS  
Preamplifier Supply Voltage  
Digital I/O Supply Voltage  
V
4.75  
2.70  
V
V
AVDD2  
DVDDO  
V
External clock mode,  
Internal reference  
External reference  
3
3.5  
3
external acquisition  
mode, or internal  
clock mode  
AVDD1 Supply Current  
I
mA  
AVDD1  
2.5  
0.9  
12  
External clock mode, external acquisition  
mode, or internal clock mode  
DVDD Supply Current  
AVDD2 Supply Current  
DVDDO Supply Current  
I
2
mA  
mA  
mA  
DVDD  
External clock mode, external acquisition  
mode, or internal clock mode  
I
20  
1
AVDD2  
External clock mode, external acquisition  
mode, or internal clock mode  
I
0.2  
DVDDO  
PSRR  
Partial power-down mode  
Full power-down mode  
All analog input ranges  
1.3  
2
mA  
µA  
Total Supply Current  
Power-Supply Rejection Ratio  
0.125  
LSB  
TIMING CHARACTERISTICS (Figures 15 and 16)  
External clock mode  
External acquisition mode  
Internal clock mode  
0.272  
0.288  
0.1  
109  
92  
62  
62  
SCLK Period  
t
µs  
ns  
ns  
CP  
External clock mode  
External acquisition mode  
Internal clock mode  
SCLK High Pulse Width (Note 6)  
SCLK Low Pulse Width (Note 6)  
t
CH  
40  
External clock mode  
External acquisition mode  
Internal clock mode  
109  
92  
t
t
CL  
40  
DIN to SCLK Setup  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DS  
DH  
DO  
DIN to SCLK Hold  
t
0
SCLK Fall to DOUT Valid  
CS Fall to DOUT Enable  
CS Rise to DOUT Disable  
CS Fall to SCLK Rise Setup  
CS High Minimum Pulse Width  
SCLK Fall to CS Rise Hold  
SSTRB Rise to CS Fall Setup  
DOUT Rise/Fall Time  
t
40  
40  
40  
t
DV  
t
TR  
t
40  
40  
0
CSS  
t
CSPW  
t
CSH  
(Note 4)  
40  
C = 50pF  
L
10  
10  
SSTRB Rise/Fall Time  
C = 50pF  
L
_______________________________________________________________________________________  
5
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
AVDD1  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V = 0V, f  
= 3.5MHz (50% duty cycle),  
CLK  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
AVDD2  
DVDD  
DVDDO  
external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input range ( V ),  
REF  
REF  
C
DOUT  
= 50pF, C  
= 50pF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
SSTRB  
A
A
Note 1: Parameter tested at V  
= V  
= V  
= V  
= 5V.  
DVDDO  
AVDD1  
AVDD2  
DVDD  
Note 2: See definitions in the Parameter Definitions section at the end of the data sheet.  
Note 3: Guaranteed by correlation with single-ended measurements.  
Note 4: Not production tested. Guaranteed by design.  
Note 5: To ensure external reference operation, V  
must exceed (V  
- 0.1V). To ensure internal reference operation, V  
REFCAP  
AVDD1 REFCAP  
must be below (V  
- 0.4V). Bypassing REFCAP with a 0.1µF or larger capacitor to AGND1 sets V  
4.096V. The tran-  
AVDD1  
REFCAP  
sition point between internal reference mode and external reference mode lies between the REFCAP buffer disable threshold  
minimum and maximum values (Figures 17 and 18).  
Note 6: The SCLK duty cycle can vary between 40% and 60%, as long as the t and t  
timing requirements are met.  
CL  
CH  
0
Typical Operating Characteristics  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V = 0V, f  
AGND3  
= 3.5MHz (50% duty  
CLK  
AGND1  
DGND  
DGNDO  
AGND2  
AVDD1  
AVDD2  
DVDD  
DVDDO  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range ( V  
), C  
= 50pF, C  
= 50pF, unless otherwise noted.)  
REF  
DOUT  
SSTRB  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
PREAMPLIFIER SUPPLY CURRENT  
vs. PREAMPLIFIER SUPPLY VOLTAGE  
DIGITAL SUPPLY CURRENT  
vs. DIGITAL SUPPLY VOLTAGE  
2.60  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
EXTERNAL CLOCK MODE  
EXTERNAL CLOCK MODE  
EXTERNAL CLOCK MODE  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
T
T
= +85°C  
A
A
T
T
= +85°C  
A
A
T
= +85°C  
A
T = +25 C  
A
°
= +25°C  
= -40°C  
= +25°C  
= -40°C  
T
= -40°C  
A
T
A
T
A
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
AVDD1  
AVDD2  
DVDD  
6
_______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V = 0V, f  
AGND3  
= 3.5MHz (50% duty  
CLK  
AGND1  
DGND  
DGNDO  
AGND2  
AVDD1  
AVDD2  
DVDD  
DVDDO  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range ( V  
), C  
= 50pF, C  
= 50pF, unless otherwise noted.)  
REF  
DOUT  
SSTRB  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
DIGITAL I/O SUPPLY CURRENT  
vs. DIGITAL I/O SUPPLY VOLTAGE  
0.55  
0.53  
0.51  
0.49  
0.47  
0.45  
0.28  
0.26  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
PARTIAL POWER-DOWN MODE  
EXTERNAL CLOCK MODE  
T
= +85°C  
= +25°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
A
T
= -40°C  
T
= -40°C  
A
A
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
V
AVDD1  
DVDDO  
PREAMPLIFIER SUPPLY CURRENT  
vs. PREAMPLIFIER SUPPLY VOLTAGE  
DIGITAL SUPPLY CURRENT  
vs. DIGITAL SUPPLY VOLTAGE  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.136  
0.134  
0.132  
0.130  
0.128  
0.126  
0.124  
0.122  
0.120  
PARTIAL POWER-DOWN MODE  
PARTIAL POWER-DOWN MODE  
= +85°C  
T
= +85°C  
A
T
A
T
= +25°C  
A
T
= -40°C  
A
T
= -40°C  
A
T
= +25°C  
A
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
V
V
DVDD  
AVDD2  
_______________________________________________________________________________________  
7
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V = 0V, f  
AGND3  
= 3.5MHz (50% duty  
CLK  
AGND1  
DGND  
DGNDO  
AGND2  
AVDD1  
AVDD2  
DVDD  
DVDDO  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range ( V  
), C  
= 50pF, C  
= 50pF, unless otherwise noted.)  
REF  
DOUT  
SSTRB  
PREAMPLIFIER SUPPLY CURRENT  
vs. CONVERSION RATE  
ANALOG SUPPLY CURRENT  
vs. CONVERSION RATE  
25  
20  
15  
10  
5
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
f
= 7.5MHz (NOTE 6)  
CLK  
EXTERNAL CLOCK MODE  
EXTERNAL CLOCK MODE  
FULL POWER-DOWN MODE,  
PARTIAL POWER-DOWN MODE  
PARTIAL  
POWER-DOWN MODE  
FULL  
POWER-DOWN MODE  
0
4/MAX1035  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
CONVERSION RATE (ksps)  
CONVERSION RATE (ksps)  
DIGITAL SUPPLY CURRENT  
vs. CONVERSION RATE  
DIGITAL I/O SUPPLY CURRENT  
vs. CONVERSION RATE  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
f
= 7.5MHz (NOTE 6)  
f
= 7.5MHz (NOTE 6)  
CLK  
CLK  
EXTERNAL CLOCK MODE  
EXTERNAL CLOCK MODE,  
PARTIAL POWER-DOWN MODE  
FULL POWER-DOWN MODE  
FULL POWER-DOWN MODE,  
PARTIAL POWER-DOWN MODE  
0
50  
100  
150  
200  
0
50  
100  
150  
200  
CONVERSION RATE (ksps)  
CONVERSION RATE (ksps)  
Note 6: For partial power-down and full power-down modes, external clock mode was used for a burst of continuous samples.  
Partial power-down or full power-down modes were entered thereafter. By using this method, the conversion rate was found  
by averaging the number of conversions over the time starting from the first conversion to the end of the partial power-down  
or full power-down modes.  
8
_______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V = 0V, f  
AGND3  
= 3.5MHz (50% duty  
CLK  
AGND1  
DGND  
DGNDO  
AGND2  
AVDD1  
AVDD2  
DVDD  
DVDDO  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range ( V  
), C  
= 50pF, C = 50pF, unless otherwise noted.)  
REF  
EXTERNAL REFERENCE INPUT CURRENT  
vs. EXTERNAL REFERENCE INPUT VOLTAGE  
DOUT  
SSTRB  
GAIN DRIFT  
OFFSET DRIFT  
vs. TEMPERATURE  
vs. TEMPERATURE  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.0  
0.8  
0.16  
ALL MODES  
V
BIPOLAR RANGE  
REF  
0.6  
+V /4 BIPOLAR RANGE  
REF  
0.15  
0.14  
0.13  
0.12  
0.4  
+V /2 BIPOLAR  
REF  
0.2  
0
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
V
REF  
/4 BIPOLAR  
V
BIPOLAR  
REF  
3.80 3.85 3.90 3.95 4.00 4.05 4.10 4.15  
EXTERNAL REFERENCE VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
CHANNEL-TO-CHANNEL ISOLATION  
vs. INPUT FREQUENCY  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
1.0  
0.5  
0
0
-20  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
= 115ksps  
BIPOLAR RANGE  
f
= 115ksps  
BIPOLAR RANGE  
SAMPLE  
SAMPLE  
f
= 115ksps  
BIPOLAR RANGE  
SAMPLE  
V
V
REF  
REF  
V
REF  
CH0 TO CH2  
-40  
-60  
-80  
-0.5  
-1.0  
-100  
-120  
0
4096  
8192  
12,288  
16,383  
1
10  
100  
1000  
10,000  
1
10  
100  
FREQUENCY (kHz)  
1000  
10,000  
DIGITAL OUTPUT CODE  
FREQUENCY (kHz)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
FFT AT 5kHz  
1.0  
0.5  
0
0
-20  
f
f
= 115ksps  
f
= 115ksps  
BIPOLAR RANGE  
SAMPLE  
SAMPLE  
= 5kHz  
V
IN(SINE WAVE)  
REF  
V
BIPOLAR RANGE  
REF  
-40  
-60  
-80  
-100  
-120  
-140  
-0.5  
-1.0  
0
4096  
8192  
12,288  
16,383  
0
10  
20  
30  
40  
50  
DIGITAL OUTPUT CODE  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
9
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V = 0V, f  
AGND3  
= 3.5MHz (50% duty  
CLK  
AGND1  
DGND  
DGNDO  
AGND2  
AVDD1  
AVDD2  
DVDD  
DVDDO  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range ( V  
), C  
= 50pF, C  
= 50pF, unless otherwise noted.)  
REF  
DOUT  
SSTRB  
SNR, SINAD, ENOB  
vs. SAMPLE RATE  
SNR, SINAD, ENOB  
vs. ANALOG INPUT FREQUENCY  
MAX1034/35 toc21  
MAX1034/35 toc20  
16  
15  
14  
13  
12  
11  
10  
9
100  
80  
60  
40  
20  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
14  
13  
ENOB  
SNR, SINAD  
SNR  
12  
11  
SINAD  
ENOB  
8
10  
9
f
= 5kHz  
IN(SINE WAVE)  
V BIPOLAR RANGE  
REF  
f
= 115ksps  
BIPOLAR RANGE  
SAMPLE  
7
V
REF  
6
4/MAX1035  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
SAMPLE RATE (ksps)  
FREQUENCY (kHz)  
-SFDR, THD  
vs. ANALOG INPUT FREQUENCY  
-SFDR, THD  
vs. SAMPLE RATE  
0
-20  
0
-20  
f
= 5kHz  
BIPOLAR RANGE  
IN(SINE WAVE)  
f
= 5kHz  
BIPOLAR RANGE  
IN(SINE WAVE)  
V
REF  
V
REF  
-40  
-40  
-60  
-60  
-80  
-80  
THD  
THD  
-100  
-120  
-100  
-120  
SFDR  
-SFDR  
1
10  
100  
1000  
0.1  
1
10  
SAMPLE RATE (ksps)  
100  
1000  
FREQUENCY (kHz)  
ANALOG INPUT CURRENT  
vs. ANALOG INPUT VOLTAGE  
1.5  
1.0  
0.5  
0
ALL MODES  
-0.5  
-1.0  
-1.5  
-6  
-4  
-2  
0
2
4
6
ANALOG INPUT VOLTAGE (V)  
10 ______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V = 0V, f  
AGND3  
= 3.5MHz (50% duty  
CLK  
AGND1  
DGND  
DGNDO  
AGND2  
AVDD1  
AVDD2  
DVDD  
DVDDO  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range ( V  
), C  
= 50pF, C  
= 50pF, unless otherwise noted.)  
REF  
DOUT  
SSTRB  
REFERENCE VOLTAGE vs. TIME  
FULL-POWER BANDWIDTH  
SMALL-SIGNAL BANDWIDTH  
MAX1034/35 toc27  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
-5  
-10  
-15  
-20  
-25  
1V/div  
0V  
-30  
1
1
10  
100  
1000  
10,000  
10  
100  
1000  
10,000  
4ms/div  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
NOISE HISTOGRAM  
(CODE EDGE)  
NOISE HISTOGRAM  
(CODE CENTER)  
40,000  
70,000  
60,000  
65,534 SAMPLES  
65,534 SAMPLES  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5000  
50,000  
40,000  
30,000  
20,000  
10,000  
0
0
8190 8191 8192 8193 8194 8195  
CODE  
8190  
8191  
8192  
8193  
8194  
CODE  
______________________________________________________________________________________ 11  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX1034 MAX1035  
Analog Supply Voltage 1. Connect AVDD1 to a +4.75V to +5.25V power-supply voltage.  
Bypass AVDD1 to AGND1 with a 0.1µF capacitor.  
1
2
AVDD1  
2
3
4
5
6
7
8
9
3
4
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
Analog Input Channel 0  
Analog Input Channel 1  
Analog Input Channel 2  
Analog Input Channel 3  
Analog Input Channel 4  
Analog Input Channel 5  
Analog Input Channel 6  
Analog Input Channel 7  
5
6
Active-Low Chip-Select Input. When CS is low, data is clocked into the device from DIN on  
the rising edge of SCLK. With CS low, data is clocked out of DOUT on the falling edge of  
SCLK. When CS is high, activity on SCLK and DIN is ignored and DOUT is high impedance.  
4/MAX1035  
10  
11  
7
8
CS  
Serial Data Input. When CS is low, data is clocked in on the rising edge of SCLK. When CS is  
high, transitions on DIN are ignored.  
DIN  
Serial-Strobe Output. When using the internal clock, SSTRB rising edge transitions indicate  
that data is ready to be read from the device. When operating in external clock mode, SSTRB  
is always low. SSTRB does not tri-state, regardless of the state of CS, and therefore requires  
a dedicated I/O line.  
12  
9
SSTRB  
Serial Clock Input. When CS is low, transitions on SCLK clock data into DIN and out of DOUT.  
When CS is high, transitions on SCLK are ignored.  
13  
14  
10  
11  
SCLK  
DOUT  
Serial Data Output. When CS is low, data is clocked out of DOUT with each falling SCLK  
transition. When CS is high, DOUT is high impedance.  
15  
16  
12  
13  
DGNDO  
DGND  
Digital I/O Ground. DGND, DGNDO, AGND3, AGND2, and AGND1 must be connected together.  
Digital Ground. DGND, DGNDO, AGND3, AGND2, and AGND1 must be connected together.  
Digital I/O Supply Voltage Input. Connect DVDDO to a +2.7V to +5.25V power-supply voltage.  
Bypass DVDDO to DGNDO with a 0.1µF capacitor.  
17  
18  
14  
15  
DVDDO  
DVDD  
Digital-Supply Voltage Input. Connect DVDD to a +4.75V to +5.25V power-supply voltage.  
Bypass DVDD to DGND with a 0.1µF capacitor.  
Bandgap-Voltage Bypass Node. For external reference operation, connect REFCAP to AVDD  
or internal reference operation, bypass REFCAP with a 0.01µF capacitor to AGND1 (V  
REFCAP  
4.096V).  
19  
20  
16  
17  
REFCAP  
REF  
Reference-Buffer Output/ADC Reference Input. For external reference operation, apply an  
external reference voltage from 3.800V to 4.136V to REF. For internal reference operation,  
bypassing REF with a 1µF capacitor to AGND1 sets V  
= 4.096V 1%.  
REF  
12 ______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
Pin Description (continued)  
PIN  
NAME  
AGND3  
AVDD2  
FUNCTION  
MAX1034 MAX1035  
Analog Signal Ground 3. AGND3 is the ADC negative reference potential. Connect AGND3 to  
AGND1. DGND, DGNDO, AGND3, AGND2, and AGND1 must be connected together.  
21  
22  
18  
19  
Analog Supply Voltage 2. Connect AVDD2 to a +4.75V to +5.25V power-supply voltage.  
Bypass AVDD2 to AGND2 with a 0.1µF capacitor.  
Analog Ground 2. This ground carries approximately five times more current than AGND1.  
DGND, DGNDO, AGND3, AGND2, and AGND1 must be connected together.  
23  
24  
20  
1
AGND2  
AGND1  
Analog Ground 1. DGND, DGNDO, AGND3, AGND2, and AGND1 must be connected together.  
5.0V  
5.0V  
5.0V  
0.1µF  
0.1µF  
0.1µF  
AVDD2  
CHO  
AVDD1  
DVDD  
3.3V  
CH1  
DVDDO  
V
DD  
4–20mA  
PLC  
CH2  
0.1µF  
MC68HCXX  
CH3  
ACCELERATION  
PRESSURE  
µC  
CH4  
CH5  
SCLK  
CS  
SCK  
I/O  
TEMPERATURE  
WHEATESTONE  
WHEATESTONE  
MAX1034  
CH6  
CH7  
DIN  
MOSI  
I/O  
REF  
SSTRB  
DOUT  
AGND1  
REFCAP  
AGND2  
MISO  
1µF  
V
SS  
AGND3 DGND DGNDO  
0.1µF  
Figure 1. Typical Application Circuit  
single-ended conversions, the valid analog input voltage  
range spans from -V below ground to +V above  
Detailed Description  
REF  
REF  
The MAX1034/MAX1035 multirange, low-power, 14-bit  
successive-approximation ADCs operate from a single  
+5V supply and have a separate digital supply allowing  
digital interface with 2.7V to 5.25V systems. These 14-bit  
ADCs have internal track-and-hold (T/H) circuitry that  
supports single-ended and fully differential inputs. For  
ground. The maximum allowable differential input volt-  
age spans from -2 x V to +2 x V . Data can be  
REF  
REF  
converted in a variety of software-programmable chan-  
nel and data-acquisition configurations. Microprocessor  
(µP) control is made easy through an SPI-/QSPI-/  
MICROWIRE-compatible serial interface.  
______________________________________________________________________________________ 13  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
The MAX1034 has eight single-ended analog input  
channels or four differential channels (see the Block  
Diagram at the end of the data sheet). The MAX1035  
has four single-ended analog input channels or two dif-  
ferential channels. Each analog input channel is inde-  
pendently software programmable for seven  
AGND3, DGND, and DGNDO together as close to the  
device as possible. Bypass each supply to the corre-  
sponding ground using a 0.1µF capacitor (Table 1). If  
significant low-frequency noise is present, add a 10µF  
capacitor in parallel with the 0.1µF bypass capacitor.  
Converter Operation  
The MAX1034/MAX1035 ADCs feature a fully differen-  
tial, successive-approximation register (SAR) conver-  
sion technique and an on-chip T/H block to convert  
voltage signals into a 14-bit digital result. Both single-  
ended and differential configurations are supported  
with programmable unipolar and bipolar signal ranges.  
single-ended input ranges (0 to +V  
/2,  
REF  
-V  
/2 to 0, 0 to +V  
REF  
, -V  
to 0,  
V /4,  
REF  
V
/2,  
/2,  
REF  
and V  
REF  
REF  
REF  
) and three differential input ranges ( V  
REF  
V
, and 2 x V  
). Additionally, all analog input  
REF  
REF  
channels are fault tolerant to 6V. A fault condition on  
an idle channel does not affect the conversion result of  
other channels.  
Track-and-Hold Circuitry  
The MAX1034/MAX1035 feature a switched-capacitor  
T/H architecture that allows the analog input signal to be  
stored as charge on sampling capacitors. See Figures 2,  
3, and 4 for T/H timing and the sampling instants for  
each operating mode. The MAX1034/MAX1035 analog  
input circuitry buffers the input signal from the sampling  
capacitors, resulting in a constant analog input current  
with varying input voltage (Figure 5).  
Power Supplies  
To maintain a low-noise environment, the MAX1034 and  
MAX1035 provide separate power supplies for each  
section of circuitry. Table 1 shows the four separate  
power supplies. Achieve optimal performance using  
separate AVDD1, AVDD2, DVDD, and DVDDO supplies.  
Alternatively, connect AVDD1, AVDD2, and DVDD  
together as close to the device as possible for a conve-  
nient power connection. Connect AGND1, AGND2,  
4/MAX1035  
Table 1. MAX1034/MAX1035 Power Supplies and Bypassing  
POWER  
SUPPLY/GROUND  
SUPPLY VOLTAGE  
RANGE (V)  
TYPICAL SUPPLY  
CURRENT (mA)  
CIRCUIT SECTION  
BYPASSING  
DVDDO/DGNDO  
AVDD2/AGND2  
AVDD1/AGND1  
2.7 to 5.25  
4.75 to 5.25  
4.75 to 5.25  
0.2  
17.5  
3.0  
Digital I/O  
0.1µF to DGNDO  
0.1µF to AGND2  
0.1µF to AGND1  
Analog Circuitry  
Analog Circuitry  
Digital Control Logic and  
Memory  
DVDD/DGND  
4.75 to 5.25  
0.9  
0.1µF to DGND  
Table 2. Analog Input Configuration Byte  
BIT  
NAME  
DESCRIPTION  
NUMBER  
7
6
5
4
START  
C2  
Start Bit. The first logic 1 after CS goes low defines the beginning of the analog input configuration byte.  
Channel-Select Bits. SEL[2:0] select the analog input channel to be configured (Tables 4 and 5).  
C1  
C0  
Differential or Single-Ended Configuration Bit. DIF/SGL = 0 configures the selected analog input channel  
for single-ended operation. DIF/SGL = 1 configures the channel for differential operation. In single-ended  
3
DIF/SGL mode, input voltages are measured between the selected input channel and AGND1, as shown in  
Table 4. In differential mode, the input voltages are measured between two input channels, as shown in  
Table 5. Be aware that changing DIF/SGL adjusts the FSR, as shown in Table 6.  
2
1
0
R2  
Input-Range-Select Bits. R[2:0] select the input voltage range, as shown in Table 6 and Figure 7.  
R1  
R0  
14 ______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
CS  
SCLK  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
SSTRB  
DIN  
S
C2 C1 C0  
0
0
0
0
f
f / 32  
SAMPLE SCLK  
SAMPLING INSTANT  
t
ACQ  
ANALOG INPUT  
TRACK AND HOLD*  
HOLD  
TRACK  
HOLD  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
X
X
DOUT  
*TRACK AND HOLD TIMING IS CONTROLLED BY SCLK.  
Figure 2. External Clock-Mode Conversion (Mode 0)  
the analog configuration byte for the positive channel.  
For example, to configure CH2 and CH3 for a dif-  
ferential conversion, set the CH2 analog configuration  
byte for a differential conversion with the range  
(1010 1100). To initiate a conversion for the CH2 and  
CH3 differential pair, issue the command 1010 0000.  
Analog Input Circuitry  
The analog inputs can be individually configured for  
either differential or single-ended conversions by writing  
the associated analog input configuration byte (Table 2).  
The analog input signal source must be capable of dri-  
ving the ADC’s 6kinput resistance (Figure 6).  
V
REF  
V
REF  
Figure 6 shows the simplified analog input circuit. The  
analog inputs are 6V fault tolerant and are protected  
by back-to-back diodes. The summing junction voltage,  
SJ  
voltage:  
Analog Input Bandwidth  
The MAX1034/MAX1035 input-tracking circuitry has a  
1.5MHz small-signal bandwidth. The 1.5MHz input  
bandwidth makes it possible to digitize high-speed  
transient events. Harmonic distortion increases when  
digitizing signal frequencies above 15kHz as shown in  
the -SFDR, THD vs. Analog Input Frequency plot in the  
Typical Operating Characteristics.  
V
, is a function of the channel’s input common-mode  
R1  
R1 + R2  
R1  
R1 + R2  
V
=
× 2.375V + 1+  
× V  
CM  
SJ  
Analog Input Range and Fault Tolerance  
Figure 7 illustrates the software-selectable single-  
ended analog input voltage range that produces a valid  
digital output. Each analog input channel can be inde-  
pendently programmed to one of seven single-ended  
input ranges by setting the R[2:0] control bits with  
DIF/SGL = 0.  
As a result, the analog input impedance is relatively  
constant over the input voltage as shown in Figure 5.  
Single-ended conversions are internally referenced to  
AGND1 (Tables 3 and 4). In differential mode, IN+ and  
IN- are selected according to Tables 3 and 5. When con-  
figuring differential channels, the differential pair follows  
______________________________________________________________________________________ 15  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
CS  
SSTRB  
SCLK  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
DIN  
S
C2 C1 C0  
0
0
0
0
HIGH  
IMPEDANCE  
B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
X
X
DOUT  
f
f  
/ 32 + f  
/ 17  
SAMPLE SCLK  
INTCLK  
4/MAX1035  
SAMPLING INSTANT  
t
ACQ  
ANALOG INPUT  
TRACK AND HOLD*  
HOLD  
TRACK  
HOLD  
100ns to 400ns  
INTCLK**  
f
4.5MHz  
INTCLK  
*TRACK AND HOLD TIMING IS CONTROLLED BY SCLK.  
**INTCLK IS AN INTERNAL SIGNAL AND IS NOT ACCESSIBLE TO THE USER.  
Figure 3. External Acquisition-Mode Conversion (Mode 1)  
Figure 8 illustrates the software-selectable differential  
analog input voltage range that produces a valid digital  
output. Each analog input differential pair can be inde-  
pendently programmed to one of three differential input  
ranges by setting the R[2:0] control bits with DIF/SGL = 1.  
Any voltage beyond FSR, but within the 6V fault-  
tolerant range, applied to an analog input results in a  
full-scale output voltage for that channel.  
Clamping diodes with breakdown thresholds in excess  
of 6V protect the MAX1034/MAX1035 analog inputs  
during ESD and other transient events (Figure 6). The  
clamping diodes do not conduct during normal device  
operation, nor do they limit the current during such  
transients. When operating in an environment with the  
potential for high-energy voltage and/or current tran-  
sients, protect the MAX1034/MAX1035 externally.  
Regardless of the specified input voltage range and  
whether the channel is selected, each analog input is  
6V fault tolerant. The analog input fault protection is  
active whether the device is unpowered or powered.  
16 ______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
CS  
SSTRB  
SCLK  
BYTE 1  
BYTE 2  
BYTE 3  
DIN  
S
C2 C1 C0  
0
0
0
0
HIGH IMPEDANCE  
B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
X
X
DOUT  
f
f  
SAMPLE SCLK  
/ 24 + f / 28  
INTCLK  
SAMPLING INSTANT  
t
ACQ  
ANALOG INPUT  
TRACK AND HOLD*  
HOLD  
TRACK  
HOLD  
100ns to 400ns  
INTCLK**  
f
4.5MHz  
INTCLK  
*TRACK AND HOLD TIMING IS CONTROLLED BY INTCLK, AND IS NOT ACCESSIBLE TO THE USER.  
**INTCLK IS AN INTERNAL SIGNAL AND IS NOT ACCESSIBLE TO THE USER.  
Figure 4. Internal Clock-Mode Conversion (Mode 2)  
R2  
MAX1034  
MAX1035  
R1  
1.5  
1.0  
0.5  
0
*R  
SOURCE  
IN_+  
ANALOG  
SIGNAL  
SOURCE  
V
SJ  
R2  
-0.5  
-1.0  
-1.5  
*R  
R1  
V
SOURCE  
IN_+  
ANALOG  
SIGNAL  
SOURCE  
SJ  
-6  
-4  
-2  
0
2
4
6
ANALOG INPUT VOLTAGE (V)  
*MINIMIZE R  
TO AVOID GAIN ERROR AND DISTORTION.  
SOURCE  
Figure 5. Analog Input Current vs. Input Voltage  
Figure 6. Simplified Analog Input Circuit  
______________________________________________________________________________________ 17  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
Table 3. Input Data Word Formats  
DATA BIT  
OPERATION  
D7  
(START)  
D6  
C2  
C2  
M2  
D5  
C1  
C1  
M1  
D4  
C0  
C0  
M0  
D3  
D2  
0
D1  
0
D0  
0
Conversion-Start Byte  
(Tables 4 and 5)  
1
1
1
0
DIF/SGL  
1
Analog-Input Configuration Byte  
R2  
0
R1  
0
R0  
0
(Table 2)  
Mode-Control Byte  
(Table 7)  
Table 4. Channel Selection in Single-Ended Mode (DIF/SGL = 0)  
CHANNEL-SELECT BIT  
CHANNEL  
CH4  
C2  
0
C1  
0
C0  
0
CH0  
CH1  
CH2  
CH3  
CH5  
CH6  
CH7  
AGND1  
+
-
-
-
-
-
-
-
-
4/MAX1035  
0
0
1
+
0
1
0
+
0
1
1
+
1
0
0
+
1
0
1
+
1
1
0
+
1
1
1
+
Table 5. Channel Selection in True-Differential Mode (DIF/SGL = 1)  
CHANNEL-SELECT BIT  
CHANNEL  
CH4  
C2  
0
C1  
0
C0  
0
CH0  
CH1  
CH2  
CH3  
CH5  
CH6  
CH7  
AGND1  
+
-
0
0
1
RESERVED  
0
1
0
+
-
0
1
1
RESERVED  
+
1
0
0
-
1
0
1
RESERVED  
1
1
0
+
-
1
1
1
RESERVED  
tions, each individual analog input must be limited to  
6V with respect to AGND1.  
Differential Common-Mode Range  
The MAX1034/MAX1035 differential common-mode  
range (V ) must remain within -4.75V to +5.5V to  
obtain valid conversion results. The differential com-  
mon-mode range is defined as:  
CMDR  
The range-select bits R[2:0] in the analog input configu-  
ration bytes determine the full-scale range for the corre-  
sponding channel (Tables 2 and 6). Figures 9, 10, and  
11 show the valid analog input voltage ranges for  
the MAX1034/MAX1035 when operating with FSR =  
CH_+ + CH_−  
(
)
(
)
V
=
CMDR  
V
/ 2, FSR = V  
, and FSR = 2 x V  
, respectively.  
2
REF  
REF  
REF  
The shaded area contains the valid common-mode  
voltage ranges that support the entire FSR.  
In addition to the common-mode input voltage limita-  
18 ______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
+V  
+V  
REF  
REF  
REF  
+3/4 V  
+3/2 V  
REF  
+V /2  
REF  
+V  
REF  
+V /4  
REF  
+V /2  
REF  
0
0
-V /4  
REF  
-V /2  
REF  
-V /2  
REF  
-V  
REF  
-3/4 V  
REF  
-3/2 V  
REF  
-V  
-2 x V  
REF  
REF  
INPUT RANGE SELECTION BITS, R[2:0]  
EACH INPUT IS FAULT TOLERANT TO 6V.  
INPUT RANGE SELECTION BITS, R[2:0]  
EACH INPUT IS FAULT TOLERANT TO 6V.  
Figure 7. Single-Ended Input Voltage Ranges  
Figure 8. Differential Input Voltage Ranges  
Digital Interface  
Chip Select (CS)  
The MAX1034/MAX1035 feature a serial interface that is  
compatible with SPI/QSPI and MICROWIRE devices.  
DIN, DOUT, SCLK, CS, and SSTRB facilitate bidirection-  
al communication between the MAX1034/MAX1035 and  
the master at SCLK rates up to 10MHz (internal clock  
mode, mode 2), 3.67MHz (external clock mode, mode  
0), or 4.39MHz (external acquisition mode, mode 1).  
The master, typically a microcontroller, should use the  
CPOL = 0, CPHA = 0, SPI transfer format, as shown in  
the timing diagrams of Figures 2, 3, and 4.  
CS enables communication with the MAX1034/MAX1035.  
When CS is low, data is clocked into the device from DIN  
on the rising edge of SCLK and data is clocked out of  
DOUT on the falling edge of SCLK. When CS is high,  
activity on SCLK and DIN is ignored and DOUT is high  
impedance allowing DOUT to be shared with other  
peripherals. SSTRB is never high impedance and there-  
fore cannot be shared with other peripherals.  
Serial-Strobe Output (SSTRB)  
As shown in Figures 3 and 4, the SSTRB transitions high  
to indicate that the ADC has completed a conversion  
and results are ready to be read by the master. SSTRB  
remains low in the external clock mode (Figure 2) and  
consequently may be left unconnected. SSTRB is driven  
high or low regardless of the state of CS, therefore  
SSTRB cannot be shared with other peripherals.  
The digital interface is used to:  
• Select single-ended or true-differential input channel  
configurations  
• Select the unipolar or bipolar input range  
• Select the mode of operation:  
External clock (mode 0)  
External acquisition (mode 1)  
Internal clock (mode 2)  
Reset (mode 4)  
Partial power-down (mode 6)  
Full power-down (mode 7)  
• Initiate conversions and read results  
______________________________________________________________________________________ 19  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
Table 6. Range-Select Bits  
DIF/SGL  
R2  
R1  
R0  
MODE  
No Range Change*  
TRANSFER FUNCTION  
0
0
0
0
Single-Ended  
Bipolar - V  
REF  
Full-Scale Range (FSR) = V  
/4 to +V  
/4  
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
Figure 12  
Figure 13  
Figure 14  
Figure 12  
Figure 13  
Figure 14  
REF  
/ 2  
REF  
Single-Ended  
Unipolar -V  
/2 to 0  
REF  
FSR = V  
/ 2  
REF  
Single-Ended  
Unipolar 0 to +V  
/2  
REF  
FSR = V  
/ 2  
REF  
Single-Ended  
Bipolar -V  
REF  
/2 to +V  
/2  
REF  
FSR = V  
REF  
4/MAX1035  
Single-Ended  
Unipolar -V  
to 0  
REF  
REF  
FSR = V  
Single-Ended  
Unipolar 0 to +V  
REF  
FSR = V  
REF  
DEFAULT SETTING  
Single-Ended  
0
1
1
1
Figure 12  
Bipolar -V  
to +V  
REF  
REF  
FSR = 2 x V  
REF  
1
1
0
0
0
0
0
1
No Range Change**  
Differential  
Bipolar -V  
/2 to +V  
/2  
Figure 12  
REF  
REF  
FSR = V  
REF  
1
1
0
0
1
1
0
1
Reserved  
Reserved  
Differential  
Bipolar -V  
1
1
0
0
to +V  
Figure 12  
REF  
REF  
FSR = 2 x V  
REF  
1
1
1
1
0
1
1
0
Reserved  
Reserved  
Differential  
Bipolar -2 x V  
to +2 x V  
REF  
1
1
1
1
Figure 12  
REF  
FSR = 4 x V  
REF  
*Conversion-Start Byte (see Table 3).  
**Mode-Control Byte (see Table 3).  
20 ______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
INPUT COMMON-MODE VOLTAGE RANGE  
vs. OUTPUT VOLTAGE (FSR = V  
INPUT COMMON-MODE VOLTAGE RANGE  
vs. OUTPUT VOLTAGE (FSR = 2 x V  
)
)
REF  
REF  
6
4
6
4
2
2
0
0
-2  
-4  
-6  
-2  
-4  
-6  
V
= 4.096V  
6
V
= 4.096V  
6
REF  
4
REF  
4
-8 -6 -4 -2  
0
2
8
-8 -6 -4 -2  
0
2
8
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 9. Common-Mode Voltage vs. Input Voltage (FSR = V  
)
REF  
Figure 10. Common-Mode Voltage vs. Input Voltage (FSR = 2 x  
V
REF  
)
INPUT COMMON-MODE VOLTAGE RANGE  
Output Data Format  
vs. OUTPUT VOLTAGE (FSR = 4 x V  
)
REF  
Output data is clocked out of DOUT in offset binary for-  
mat on the falling edge of SCLK, MSB first (B13). For  
output binary codes, see the Transfer Function section  
and Figures 12, 13, and 14.  
6
4
2
Configuring Analog Inputs  
Each analog input has two configurable parameters:  
0
• Single-ended or true-differential input  
• Input voltage range  
-2  
-4  
-6  
These parameters are configured using the analog input  
configuration byte as shown in Table 2. Each analog  
input has a dedicated register to store its input configura-  
tion information. The timing diagram of Figure 15 shows  
how to write to the analog input configuration registers.  
Figure 16 shows DOUT and SSTRB timing.  
V
= 4.096V  
6
REF  
-8 -6 -4 -2  
0
2
4
8
INPUT VOLTAGE (V)  
Figure 11. Common-Mode Voltage vs. Input Voltage (FSR = 4 x  
V
REF  
)
Start Bit  
Transfer Function  
An ADC’s transfer function defines the relationship  
between the analog input voltage and the digital output  
code. Figures 12, 13, and 14 show the MAX1034/  
MAX1035 transfer functions. The transfer function is  
determined by the following characteristics:  
Communication with the MAX1034/MAX1035 is accom-  
plished using the three input data word formats shown  
in Table 3. Each input data word begins with a start bit.  
The start bit is defined as the first high bit clocked into  
DIN with CS low when any of the following are true:  
• Data conversion is not in process and all data from  
the previous conversion has clocked out of DOUT.  
• Analog input voltage range  
• Single-ended or differential configuration  
• Reference voltage  
• The device is configured for operation in external  
clock mode (mode 0) and previous conversion-result  
bits B13–B1 have clocked out of DOUT.  
The axes of an ADC transfer function are typically in least  
significant bits (LSBs). For the MAX1034/MAX1035, an  
LSB is calculated using the following equation:  
• The device is configured for operation in external  
acquisition mode (mode 1) and previous conversion-  
result bits B13–B5 have clocked out of DOUT.  
FSR × V  
REF  
1 LSB =  
N
• The device is configured for operation in internal  
clock mode (mode 2) and previous conversion-  
result bits B13–B2 have clocked out of DOUT.  
2
× 4.096V  
where N is the number of bits (N = 14) and FSR is the  
full-scale range (see Figures 7 and 8).  
______________________________________________________________________________________ 21  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
FSR  
FSR  
3FFF  
3FFE  
3FFD  
3FFF  
3FFE  
3FFD  
2001  
2000  
1FFF  
2001  
2000  
1FFF  
0003  
0003  
FSR x V  
REF  
16,384 x 4.096V  
0002  
1 LSB =  
0002  
0001  
0000  
FSR x V  
REF  
16,384 x 4.096V  
1 LSB =  
0001  
0000  
0
1
2
3
8,192  
INPUT VOLTAGE (LSB [DECIMAL])  
16,381 16,383  
(AGND1)  
-8,192 -8,190  
-1  
0
+1  
+8,189 +8,191  
AGND1 (DIF/SGL = 0)  
0V (DIF/SGL = 1)  
4/MAX1035  
Figure 13. Ideal Unipolar Transfer Function, Single-Ended  
Input, -FSR to 0  
INPUT VOLTAGE (LSB [DECIMAL])  
Figure 12. Ideal Bipolar Transfer Function, Single-Ended or  
Differential Input  
Selecting the Conversion Method  
The conversion method is selected using the mode-  
control byte (see the Mode Control section), and the con-  
version is initiated using a conversion-start command  
(Table 3, and Figures 2, 3, and 4). The MAX1034/  
MAX1035 convert analog signals to digital data using one  
of three methods:  
FSR  
3FFF  
3FFE  
3FFD  
External Clock Mode, Mode 0 (Figure 2)  
• Highest maximum throughput (see the Electrical  
Characteristics table)  
2001  
2000  
1FFF  
• User controls the sample instant  
CS remains low during the conversion  
• User supplies SCLK throughout the ADC con-  
version and reads data at DOUT  
0003  
FSR x V  
REF  
16,384 x 4.096V  
0002  
0001  
0000  
1 LSB =  
External Acquisition Mode, Mode 1 (Figure 3)  
• Lowest maximum throughput (see the Electrical  
Characteristics table)  
0
1
2
3
8,192  
INPUT VOLTAGE (LSB [DECIMAL])  
16,381 16,383  
• User controls the sample instant  
(AGND1)  
• User supplies two bytes of SCLK, then drives  
CS high to relieve processor load while the  
ADC converts  
Figure 14. Ideal Unipolar Transfer Function, Single-Ended  
Input, 0 to +FSR  
• After SSTRB transitions high, the user supplies  
two bytes of SCLK and reads data at DOUT  
Mode Control  
The MAX1034/MAX1035 contain one byte-wide mode-  
control register. The timing diagram of Figure 15 shows  
how to use the mode-control byte, and the mode-con-  
trol byte format is shown in Table 7. The mode-control  
byte is used to select the conversion method and to  
control the power modes of the MAX1034/MAX1035.  
Internal Clock Mode, Mode 2 (Figure 4)  
• High maximum throughput (see the Electrical  
Characteristics table)  
• The internal clock controls the sampling instant  
22 ______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
t
CSPW  
t
CSS  
CS  
t
t
t
CSH  
CL  
CH  
SCLK  
DIN  
1
8
1
8
t
CP  
t
DS  
t
DH  
START  
SEL2  
SEL1  
SEL0  
DIF/SGL  
R2  
R1  
R0  
START  
M2  
M1  
M0  
1
0
0
0
ANALOG INPUT CONFIGURATION BYTE  
MODE CONTROL BYTE  
t
t
TR  
DV  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
DOUT  
Figure 15. Analog Input Configuration Byte and Mode-Control Byte Timing  
• User supplies one byte of SCLK, then drives CS  
high to relieve processor load while the ADC  
converts  
SSTRB  
t
SSCS  
• After SSTRB transitions high, the user supplies  
two bytes of SCLK and reads data at DOUT  
CS  
SCLK  
DOUT  
External Clock Mode (Mode 0)  
The MAX1034/MAX1035’s fastest maximum throughput  
rate is achieved operating in external clock mode.  
SCLK controls both the acquisition and conversion of  
the analog signal, facilitating precise control over when  
the analog signal is captured. The analog input sam-  
pling instant is at the falling edge of the 14th SCLK  
(Figure 2).  
t
CSS  
t
DO  
HIGH  
IMPEDANCE  
MSB  
NOTE: SSTRB AND CS REMAIN LOW IN EXTERNAL CLOCK MODE (MODE 0).  
Since SCLK drives the conversion in external clock  
Figure 16. DOUT and SSTRB Timing  
mode, the SCLK frequency should remain constant  
while the conversion is clocked. The minimum SCLK  
frequency prevents droop in the internal sampling  
capacitor voltages during conversion.  
External Acquisition Mode (Mode 1)  
The slowest maximum throughput rate is achieved with  
the external acquisition method. SCLK controls the acqui-  
sition of the analog signal in external acquisition mode,  
facilitating precise control over when the analog signal is  
captured. The internal clock controls the conversion of  
the analog input voltage. The analog input sampling  
instant is at the falling edge of the 16th SCLK (Figure 3).  
SSTRB remains low in the external clock mode, and as a  
result may be left unconnected if the MAX1034/  
MAX1035 will always be used in the external clock mode.  
Table 7. Mode-Control Byte  
BIT NUMBER  
BIT NAME  
DESCRIPTION  
7
6
5
4
3
2
1
0
START  
Start Bit. The first logic 1 after CS goes low defines the beginning of the mode-control byte.  
M2  
M1  
M0  
1
Mode-Control Bits. M[2:0] select the mode of operation as shown in Table 8.  
Bit 3 must be a logic 1 for the mode-control byte.  
Bit 2 must be a logic 0 for the mode-control byte.  
Bit 1 must be a logic 0 for the mode-control byte.  
Bit 0 must be a logic 0 for the mode-control byte.  
0
0
0
______________________________________________________________________________________ 23  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
Table 8. Mode-Control Bits M[2:0]  
M2  
0
M1  
0
M0  
0
MODE  
External Clock (DEFAULT)  
External Acquisition  
Internal Clock  
0
0
1
0
1
0
0
1
1
Reserved  
1
0
0
Reset  
1
0
1
Reserved  
1
1
0
Partial Power-Down  
Full Power-Down  
1
1
1
Partial Power-Down Mode (Mode 6)  
For the external acquisition mode, CS must remain low  
for the first 15 clock cycles and then rise on or after the  
falling edge of the 16th clock cycle as shown in Figure 3.  
For optimal performance, idle DIN and SCLK during the  
conversion. With careful board layout, transitions at DIN  
and SCLK during the conversion have a minimal impact  
on the conversion result.  
As shown in Table 8, when M[2:0] = 110, the device  
enters partial power-down mode. In partial power-  
down, all analog portions of the device are powered  
down except for the reference voltage generator and  
bias supplies.  
4/MAX1035  
To exit partial power-down, change the mode by issu-  
ing one of the following mode-control bytes (see the  
Mode Control section):  
After the conversion is complete, SSTRB asserts high  
and CS can be brought low to read the conversion  
result. SSTRB returns low on the rising SCLK edge of  
the subsequent start bit.  
• External-Clock-Mode Control Byte  
• External-Acquisition-Mode Control Byte  
• Internal-Clock-Mode Control Byte  
• Reset Byte  
Internal Clock Mode (Mode 2)  
In internal clock mode, the internal clock controls both  
acquisition and conversion of the analog signal. The inter-  
nal clock starts approximately 100ns to 400ns after the  
falling edge of the eighth SCLK and has a rate of about  
4.5MHz. The analog input sampling instant occurs at the  
falling edge of the 11th internal clock signal (Figure 4).  
• Full Power-Down-Mode Control Byte  
This prevents the MAX1034/MAX1035 from inadvertent-  
ly exiting partial power-down mode because of a CS  
glitch in a noisy digital environment.  
For the internal clock mode, CS must remain low for the  
first seven SCLK cycles and then rise on or after the  
falling edge of the eighth SCLK cycle. After the conver-  
sion is complete, SSTRB asserts high and CS can be  
brought low to read the conversion result. SSTRB returns  
low on the rising SCLK edge of the subsequent start bit.  
Full Power-Down Mode (Mode 7)  
When M[2:0] = 111, the device enters full power-down  
mode and the total supply current falls to 1µA (typ). In  
full power-down, all analog portions of the device are  
powered down. When using the internal reference,  
upon exiting full power-down mode, allow 10ms for the  
internal reference voltage to stabilize prior to initiating a  
conversion.  
Reset (Mode 4)  
As shown in Table 8, set M[2:0] = 100 to reset the  
MAX1034/MAX1035 to its default conditions. The  
default conditions are full power operation with each  
To exit full power-down, change the mode by issuing  
one of the following mode-control bytes (see the Mode  
Control section):  
channel configured for  
V
, bipolar, single-ended  
REF  
conversions using external clock mode (mode 0).  
• External-Clock-Mode Control Byte  
• External-Acquisition-Mode Control Byte  
24 ______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
• Internal-Clock-Mode Control Byte  
Internal Reference  
The MAX1034/MAX1035 contain an internal 4.096V  
bandgap reference. This bandgap reference is connect-  
ed to REFCAP through a nominal 5kresistor (Figure 17).  
The voltage at REFCAP is buffered creating 4.096V at  
REF. When using the internal reference, bypass  
REFCAP with a 0.1µF or greater capacitor to AGND1 and  
bypass REF with a 1.0µF or greater capacitor to AGND1.  
• Reset Byte  
• Partial Power-Down-Mode-Control Byte  
This prevents the MAX1034/MAX1035 from inadvertent-  
ly exiting full power-down mode because of a CS glitch  
in a noisy digital environment.  
Power-On Reset  
The MAX1034/MAX1035 power up in normal operation  
configured for external clock mode with all circuitry  
active (Tables 7 and 8). Each analog input channel  
(CH0–CH7) is set for single-ended conversions with a  
External Reference  
For external reference operation, disable the internal  
reference and reference buffer by connecting REFCAP  
to AVDD1. With AVDD1 connected to REFCAP, REF  
becomes a high-impedance input and accepts an  
external reference voltage. The MAX1034/MAX1035  
external reference current varies depending on the  
applied reference voltage and the operating mode (see  
the External Reference Input Current vs. External  
Reference Input Voltage in the Typical Operating  
Characteristics).  
V
REF  
bipolar input range (Table 6).  
Allow the power supplies to stabilize after power-up. Do  
not initiate any conversions until the power supplies  
have stabilized. Additionally, allow 10ms for the internal  
reference to stabilize when C  
= 1.0µF and C  
REFCAP  
REF  
= 0.1µF. Larger reference capacitors require longer  
stabilization times.  
Applications Information  
Internal or External Reference  
The MAX1034/MAX1035 operate with either an internal or  
external reference. The reference voltage impacts the  
ADC’s FSR (Figures 12, 13, and 14). An external refer-  
ence is recommended if more accuracy is required than  
the internal reference provides, and/or multiple converters  
require the same reference voltage.  
Noise Reduction  
Additional samples can be taken and averaged (over-  
sampling) to remove the effect of transition noise on  
conversion results. The square root of the number of  
samples determines the improvement in performance.  
For example, with 2/3 LSB  
(4 LSB ) transition  
P-P  
RMS  
noise, 16 (42 = 16) samples must be taken to reduce  
the noise to 1 LSB  
.
P-P  
Interface with 4–20mA Signals  
Figure 19 illustrates a simple interface between the  
MAX1034/MAX1035 and a 4–20mA signal. 4–20mA sig-  
naling can be used as a binary switch (4mA represents  
a logic-low signal, 20mA represents a logic-high sig-  
nal), or for precision communication where currents  
between 4mA and 20mA represent intermediate analog  
data. For binary switch applications, connect the  
4–20mA signal to the MAX1034/MAX1035 with a resis-  
tor to ground. For example, a 200resistor converts  
the 4–20mA signal to a 0.8V to 4V signal. Adjust the  
resistor value so the parallel combination of the resistor  
and the MAX1034/MAX1035 source impedance is  
200. In this application, select the single-ended 0 to  
4.096V  
REF  
SAR  
ADC  
REF  
1.0µF  
0.1µF  
1x  
REFCAP  
MAX1034  
MAX1035  
5kΩ  
4.096V  
V
RCTH  
BANDGAP  
REFERENCE  
AGND1  
V
range (R[2:0] = 011, Table 6). For applications  
REF  
that require precision measurements of continuous  
analog currents between 4mA and 20mA, use a buffer  
to prevent the MAX1034/MAX1035 input from diverting  
current from the 4–20mA signal.  
Figure 17. Internal Reference Operation  
______________________________________________________________________________________ 25  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
V+  
1.0µF  
IN  
4.096V  
REF  
SAR  
ADC  
OUT  
REF  
1.0µF  
MAX6341  
GND  
AVDD1  
1x  
REFCAP  
MAX1034  
MAX1035  
5kΩ  
4.096V  
V
RCTH  
BANDGAP  
REFERENCE  
AGND1  
4/MAX1035  
Figure 18. External Reference Operation  
Bridge Application  
Layout, Grounding, and Bypassing  
The MAX1034/MAX1035 convert 1kHz signals more  
accurately than a similar sigma-delta converter that  
might be considered in bridge applications. The input  
impedance of the MAX1034, in combination with the cur-  
rent-limiting resistors, can affect the gain of the  
MAX1034. In many applications this error is acceptable,  
but for applications that cannot tolerate this error, the  
MAX1034 inputs can be buffered (Figure 20). Connect  
the bridge to a low-offset differential amplifier and then  
the true-differential inputs of the MAX1034/MAX1035.  
Larger excitation voltages take advantage of more of the  
Careful PCB layout is essential for best system perfor-  
mance. Boards should have separate analog and digital  
ground planes and ensure that digital and analog signals  
are separated from each other. Do not run analog and  
digital (especially clock) lines parallel to one another, or  
digital lines underneath the device package.  
Figure 1 shows the recommended system ground con-  
nections. Establish an analog ground point at AGND1  
and a digital ground point at DGND. Connect all analog  
grounds to the star analog ground. Connect the digital  
grounds to the star digital ground. Connect the digital  
ground plane to the analog ground plane at one point.  
For lowest noise operation, make the ground return to  
the star ground’s power-supply low impedance and as  
short as possible.  
V
REF  
/2 differential input voltage range. Select an input  
voltage range that matches the amplifier output. Be  
aware of the amplifier offset and offset-drift errors when  
selecting an appropriate amplifier.  
Dynamically Adjusting the Input Range  
Software control of each channel’s analog input range  
and the unipolar endpoint overlap specification make it  
possible for the user to change the input range for a  
channel dynamically and improve performance in some  
applications. Changing the input range results in a  
small LSB step-size over a wider output voltage range.  
High-frequency noise in the AVDD1 power supply  
degrades the ADC’s high-speed comparator perfor-  
mance. Bypass AVDD1 to AGND1 with a 0.1µF ceramic  
surface-mount capacitor. Make bypass capacitor con-  
nections as short as possible.  
Parameter Definitions  
For example, by switching between a -V  
/2 to 0  
REF  
Integral Nonlinearity (INL)  
INL is the deviation of the values on an actual transfer  
function from a straight line. This straight line is either a  
best straight-line fit or a line drawn between the end-  
points of the transfer function once offset and gain  
errors have been nullified. The MAX1034/MAX1035 INL  
is measured using the endpoint method.  
range and a 0 to V  
/2 range, an LSB is:  
REF  
V
2 × V  
REF  
REF  
16,384 × 4.096  
but the input voltage range effectively spans from  
-V /2 to +V /2 (FSR = V ).  
REF  
REF  
REF  
26 ______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
4–20mA INPUT  
CH0  
µC  
200Ω  
MAX1034  
4–20mA INPUT  
CH8  
200Ω  
Figure 19. 4–20mA Application  
LOW-OFFSET  
DIFFERENTIAL  
AMPLIFIER  
CH0  
CH1  
µP  
MAX1034  
MAX1035  
REF  
BRIDGE  
Figure 20. Bridge Application  
Differential Nonlinearity (DNL)  
DNL is the difference between an actual step width and  
the ideal value of 1 LSB. A DNL error specification of  
greater than -1 LSB guarantees no missing codes and  
a monotonic transfer function.  
Channel-to-Channel Isolation  
Channel-to-channel isolation indicates how well each  
analog input is isolated from the others. The channel-to-  
channel isolation for these devices is measured by  
applying a near full-scale magnitude 5kHz sine wave to  
the selected analog input channel while applying an  
equal magnitude sine wave of a different frequency to  
all unselected channels. An FFT of the selected chan-  
nel output is used to determine the ratio of the magni-  
tudes of the signal applied to the unselected channels  
and the 5kHz signal applied to the selected analog  
input channel. This ratio is reported, in dB, as channel-  
to-channel isolation.  
Transition Noise  
Transition noise is the amount of noise that appears at a  
code transition on the ADC transfer function. Conversions  
performed with the analog input right at the code transi-  
tion can result in code flickering in the LSBs.  
______________________________________________________________________________________ 27  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
Full-Power Bandwidth  
Unipolar Offset Error  
A 95% of full-scale sine wave is applied to the ADC,  
and the input frequency is then swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by -3dB.  
-FSR to 0V  
When a zero-scale analog input voltage is applied to  
the converter inputs, the digital output is all ones  
(0x3FFF). Ideally, the transition from 0x3FFF to 0x3FFE  
occurs at AGND1 - 0.5 LSB. Unipolar offset error is the  
amount of deviation between the measured zero-scale  
transition point and the ideal zero-scale transition point,  
with all untested channels grounded.  
Common-Mode Rejection Ratio (CMRR)  
CMRR is the ability of a device to reject a signal that is  
“common” to or applied to both input terminals. The  
common-mode signal can be either an AC or a DC sig-  
nal or a combination of the two. CMR is expressed in  
decibels. Common-mode rejection ratio is the ratio of  
the differential signal gain to the common-mode signal  
gain. CMRR applies only to differential operation.  
0V to +FSR  
When a zero-scale analog input voltage is applied to  
the converter inputs, the digital output is all zeros  
(0x0000). Ideally, the transition from 0x0000 to 0x0001  
occurs at AGND1 + 0.5 LSB. Unipolar offset error is the  
amount of deviation between the measured zero-scale  
transition point and the ideal zero-scale transition point,  
with all untested channels grounded.  
Power-Supply Rejection Ratio (PSRR)  
PSRR is the ratio of the output-voltage shift to the  
power-supply-voltage shift for a fixed input voltage. For  
the MAX1034/MAX1035, AVDD1 can vary from 4.75V to  
5.25V. PSRR is expressed in decibels and is calculated  
using the following equation:  
4/MAX1035  
Bipolar Offset Error  
When a zero-scale analog input voltage is applied to  
the converter inputs, the digital output is a one followed  
by all zeros (0x2000). Ideally, the transition from  
0x1FFF to 0x2000 occurs at (2N-1 - 0.5) LSB. Bipolar off-  
set error is the amount of deviation between the mea-  
sured midscale transition point and the ideal midscale  
transition point, with untested channels grounded.  
5.25V 4.75V  
PSRR[dB] = 20 × log  
V
(5.25V) V  
(4.75V)  
OUT  
OUT  
For the MAX1034/MAX1035, PSRR is tested in bipolar  
operation with the analog inputs grounded.  
Gain Error  
When a positive full-scale voltage is applied to the con-  
verter inputs, the digital output is all ones (0x3FFF). The  
transition from 0x3FFE to 0x3FFF occurs at 1.5 LSB  
below full scale. Gain error is the amount of deviation  
between the measured full-scale transition point and  
the ideal full-scale transition point with the offset error  
removed and all untested channels grounded.  
Aperture Jitter  
Aperture jitter, t , is the statistical distribution of the  
AJ  
variation in the sampling instant (Figure 21).  
Aperture Delay  
Aperture delay, t , is the time from the falling edge of  
AD  
SCLK to the sampling instant (Figure 21).  
Signal-to-Noise Ratio (SNR)  
SNR is computed by taking the ratio of the RMS signal  
to the RMS noise. RMS noise includes all spectral com-  
ponents to the Nyquist frequency excluding the funda-  
mental, the first five harmonics, and the DC offset.  
Unipolar Endpoint Overlap  
Unipolar endpoint overlap is the change in offset when  
switching between complementary input voltage  
ranges. For example, the difference between the volt-  
age that results in a 0x3FFF output in the -V  
/2 to 0V  
REF  
input voltage range and the voltage that results in a  
0x0000 output in the 0 to +V /2 input voltage range  
is the unipolar endpoint overlap. The unipolar endpoint  
overlap is positive for the MAX1034/MAX1035, prevent-  
ing loss of signal or a dead zone when switching  
between adjacent analog input voltage ranges.  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to the RMS noise plus distortion. RMS noise plus  
distortion includes all spectral components to the  
Nyquist frequency excluding the fundamental and the  
DC offset.  
REF  
Small-Signal Bandwidth  
Signal  
Noise  
A 100mV  
sine wave is applied to the ADC, and the  
RMS  
P-P  
SINAD(dB) = 20 × log  
input frequency is then swept up to the point where the  
amplitude of the digitized conversion result has  
decreased by -3dB.  
RMS  
28 ______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
Effective Number of Bits (ENOB)  
SCLK  
(MODE 0)  
ENOB indicates the global accuracy of an ADC at a  
14  
15  
13  
specific input frequency and sampling rate. With an  
input range equal to the ADC’s full-scale range, calcu-  
late the ENOB as follows:  
SCLK  
(MODE 1)  
16  
11  
15  
10  
SINAD 1.76  
ENOB =  
INTCLK  
(MODE 2)  
6.02  
12  
Total Harmonic Distortion (THD)  
For the MAX1034/MAX1035, THD is the ratio of the  
RMS sum of the input signal’s first four harmonic com-  
ponents to the fundamental itself. This is expressed as:  
t
AJ  
t
AD  
SAMPLE INSTANT  
HOLD  
ANALOG INPUT  
TRACK AND HOLD  
TRACK  
2
2
2
2
V
+ V  
+ V  
+ V  
5
2
3
4
THD = 20 × log  
V
Figure 21. Aperture Diagram  
1
where V is the fundamental amplitude, and V through  
1
2
V
are the amplitudes of the 2nd- through 5th-order  
harmonic components.  
5
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of RMS amplitude of the fundamental  
(maximum signal component) to the RMS value of the  
next-largest spectral component.  
______________________________________________________________________________________ 29  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
Block Diagram  
DVDDO  
CS  
DIN  
CONTROL LOGIC AND REGISTERS  
AVDD2  
SERIAL I/O  
SSTRB  
DOUT  
SCLK  
DGNDO  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
AGND1  
CLOCK  
DVDD  
ANALOG  
INPUT MUX  
AND  
MULTIRANGE  
CIRCUITRY  
SAR  
ADC  
IN  
OUT  
FIFO  
PGA  
DGND  
AVDD1  
AGND3  
REF  
AGND2  
5k  
4.096V  
BANDGAP  
REFERENCE  
1x  
AVDD2  
AGND2  
MAX1034  
4/MAX1035  
REFCAP  
REF  
Pin Configurations (continued)  
Chip Information  
PROCESS: BiCMOS  
TOP VIEW  
+
AGND1  
AVDD1  
CH0  
1
2
3
4
5
6
7
8
9
20 AGND2  
19 AVDD2  
18 AGND3  
17 REF  
CH1  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
MAX1035  
CH2  
16 REFCAP  
15 DVDD  
CH3  
CS  
14  
DVDDO  
DIN  
13 DGND  
12 DGNDO  
11 DOUT  
LAND  
PACKAGE  
TYPE  
20 TSSOP  
PACKAGE  
CODE  
U20+2  
OUTLINE NO.  
SSTRB  
PATTERN NO.  
SCLK 10  
90-0116  
90-0118  
21-0066  
21-0066  
24 TSSOP  
U24+1  
TSSOP  
30 ______________________________________________________________________________________  
8-/4-Channel, ±± Multirange Inputs,  
REF  
Serial 14-Bit ADCs  
4/MAX1035  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
5/05  
Initial release  
12/06  
Revised Electrical Characteristics and added note.  
1, 3–6, 30, 31  
Released the MAX1034 and revised the Electrical Characteristics and the  
Typical Operating Characteristics.  
2
3/12  
1–4, 10  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in  
the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
31 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2012 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1036

2.7V to 5.5V, Low-Power, 4-/12-Channel 2-Wire Serial 8-Bit ADCs
MAXIM

MAX1036-MAX1039

2.7V to 5.5V, Low-Power, 4-/12-Channel 2-Wire Serial 8-Bit ADCs
MAXIM

MAX1036EKA

ADC, Successive Approximation, 8-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO8, MO-178, SOT-23, 8 PIN
MAXIM

MAX1036EKA+

ADC, Successive Approximation, 8-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO8, LEAD FREE, MO-178, SOT-23, 8 PIN
MAXIM

MAX1036EKA+T

2.7V to 3.6V and 4.5V to 5.5V, Low-Power, 4-/12-Channel 2-Wire Serial 8-Bit ADCs
MAXIM

MAX1036EKA-

2.7V to 5.5V, Low-Power, 4-/12-Channel 2-Wire Serial 8-Bit ADCs
MAXIM

MAX1036EKA-T

ADC, Successive Approximation, 8-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO8, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX1036EVKIT

Evaluation Kit for the MAX1036
MAXIM

MAX1036KEKA

ADC, Successive Approximation, 8-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO8, MO-178, SOT-23, 8 PIN
MAXIM

MAX1036KEKA-T

ADC, Successive Approximation, 8-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO8, MO-178BA, SOT-23, 8 PIN
MAXIM

MAX1036LEKA

4-CH 8-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO8, MO-178, SOT-23, 8 PIN
ROCHESTER

MAX1036LEKA

ADC, Successive Approximation, 8-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO8, MO-178, SOT-23, 8 PIN
MAXIM