MAX1044C [MAXIM]

Switched-Capacitor Voltage Converters;
MAX1044C
型号: MAX1044C
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switched-Capacitor Voltage Converters

文件: 总12页 (文件大小:118K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4667; Rev 1; 7/94  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
MAX14/ICL760  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Miniature µMAX Package  
The MAX1044 a nd ICL7660 a re monolithic , CMOS  
switched-capacitor voltage converters that invert, dou-  
ble, divide, or multiply a positive input voltage. They are  
pin compatible with the industry-standard ICL7660 and  
LTC1044. Operation is guaranteed from 1.5V to 10V with  
no external diode over the full temperature range. They  
deliver 10mA with a 0.5V output drop. The MAX1044  
has a BOOST pin that raises the oscillator frequency  
above the audio band and reduces external capacitor  
size requirements.  
1.5V to 10.0V Operating Supply Voltage Range  
98% Typical Power-Conversion Efficiency  
Invert, Double, Divide, or Multiply Input Voltages  
BOOST Pin Increases Switching Frequencies  
(MAX1044)  
No-Load Supply Current: 200µA Max at 5V  
No External Diode Required for Higher-Voltage  
The MAX1044/ICL7660 combine low quiescent current  
and high efficiency. Oscillator control circuitry and four  
p owe r MOSFET s witc he s a re inc lud e d on-c hip .  
Applications include generating a -5V supply from a  
+5V logic supply to power analog circuitry. For applica-  
tions requiring more power, the MAX660 delivers up to  
100mA with a voltage drop of less than 0.65V.  
Operation  
______________Ord e rin g In fo rm a t io n  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
8 Plastic DIP  
8 SO  
MAX1044CPA  
MAX1044CSA  
MAX1044C/D  
MAX1044EPA  
Dice*  
________________________Ap p lic a t io n s  
-5V Supply from +5V Logic Supply  
Personal Communications Equipment  
Portable Telephones  
8 Plastic DIP  
Ordering Information continued at end of data sheet.  
* Contact factory for dice specifications.  
_________________P in Co n fig u ra t io n s  
Op-Amp Power Supplies  
EIA/TIA-232E and EIA/TIA-562 Power Supplies  
Data-Acquisition Systems  
TOP VIEW  
Hand-Held Instruments  
(N.C.) BOOST  
CAP+  
1
2
3
4
8
7
6
5
V+  
Panel Meters  
OSC  
LV  
MAX1044  
ICL7660  
GND  
__________Typ ic a l Op e ra t in g Circ u it  
CAP-  
V
OUT  
DIP/SO/µMAX  
INPUT  
SUPPLY  
V+ AND CASE  
V+  
CAP+  
VOLTAGE  
8
N.C.  
2
OSC  
1
7
MAX1044  
ICL7660  
LV  
CAP+  
6
ICL7660  
CAP-  
GND  
NEGATIVE  
OUTPUT  
VOLTAGE  
V
OUT  
V
GND  
OUT  
5
3
4
CAP-  
NEGATIVE VOLTAGE CONVERTER  
( ) ARE FOR ICL7660  
TO-99  
________________________________________________________________ Maxim Integrated Products  
1
Ca ll t o ll fre e 1 -8 0 0 -9 9 8 -8 8 0 0 fo r fre e s a m p le s o r lit e ra t u re .  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage (V+ to GND, or GND to VOUT)....................10.5V  
Input Voltage on Pins 1, 6, and 7 .........-0.3V VIN (V+ + 0.3V)  
LV Input Current ..................................................................20µA  
Output Short-Circuit Duration (V+ 5.5V)..................Continuous  
Continuous Power Dissipation (TA = +70°C)  
CERDIP (derate 8.00mW/°C above +70°C).................640mW  
TO-99 (derate 6.67mW/°C above +70°C)....................533mW  
Operating Temperature Ranges  
MAX1044C_ _ /ICL7660C_ _ ..............................0°C to +70°C  
MAX1044E_ _ /ICL7660E_ _ ............................-40°C to +85°C  
MAX1044M_ _ /ICL7660M_ _ ........................-55°C to +125°C  
Storage Temperature Range ............................-65°C to + 150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
Plastic DIP (derate 9.09mW/°C above +70°C) ............727mW  
SO (derate 5.88mW/°C above +70°C).........................471mW  
µMAX (derate 4.1mW/°C above +70°C) ......................330mW  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(Circuit of Figure 1, V+ = 5.0V, LV pin = 0V, BOOST pin = open, ILOAD = 0mA, TA = TMIN to TMAX, unless otherwise noted.)  
MAX1044  
MIN TYP MAX  
ICL7660  
MIN TYP MAX  
PARAMETER  
CONDITIONS  
UNITS  
µA  
MAX14/ICL760  
T
A
= +25°C  
30 200  
200  
80 175  
225  
R
= ,  
L
T
= 0°C to +70°C  
= -40°C to +85°C  
= -55°C to +125°C  
A
pins 1 and 7  
no connection,  
LV open  
Supply Current  
T
A
200  
250  
T
A
200  
250  
R
R
R
= , pins 1 and 7 = V+ = 3V  
10  
L
L
L
= 10k, LV open  
3.0  
1.5  
10.0  
3.5  
Supply Voltage  
Range (Note 1)  
V
= 10k, LV to GND  
1.5  
10  
65 100  
130  
T
= +25°C  
55 100  
120  
A
I
= 20mA,  
= 5kHz,  
L
T
A
= 0°C to +70°C  
= -40°C to +85°C  
= -55°C to +125°C  
= +25°C  
f
OSC  
T
A
130  
140  
LV open  
T
A
150  
150  
Output Resistance  
T
A
325  
250  
f
= 2.7kHz (ICL7660),  
= 1kHz (MAX1044),  
OSC  
T
A
= 0°C to +70°C  
= -40°C to +85°C  
= -55°C to +125°C  
325  
300  
f
OSC  
V+ = 2V, IL = 3mA,  
LV to GND  
T
A
325  
300  
T
A
400  
400  
V+ = 5V  
V+ = 2V  
5
1
10  
C
= 1pF,  
OSC  
Oscillator Frequency  
kHz  
LV to GND (Note 2)  
Power Efficiency  
R
R
= 5k, T = +25°C, f  
5kHz, LV open  
95 98  
95 98  
%
%
L
L
A
OSC  
Voltage Conversion Efficiency  
= , T = +25°C, LV open  
97.0 99.9  
99.0 99.9  
A
Pin 1 = 0V  
Pin 1 = V+  
V+ = 2V  
3
Oscillator Sink or  
Source Current  
V
= 0V or V+, LV open  
µA  
OSC  
20  
1.0  
1.0  
MΩ  
kΩ  
Oscillator Impedance  
T = +25°C  
A
V+ = 5V  
100  
100  
Note 1: The Maxim ICL7660 and MAX1044 can operate without an external output diode over the full temperature and voltage  
ranges. The Maxim ICL7660 can also be used with an external output diode in series with pin 5 (cathode at V ) when  
OUT  
replacing the Intersil ICL7660. Tests are performed without diode in circuit.  
Note 2: f is tested with C = 100pF to minimize the effects of test fixture capacitance loading. The 1pF frequency is correlat-  
OSC  
OSC  
ed to this 100pF test point, and is intended to simulate pin 7s capacitance when the device is plugged into a test socket  
with no external capacitor. For this test, the LV pin is connected to GND for comparison to the original manufacturers  
device, which automatically connects this pin to GND for (V+ > 3V).  
2
_______________________________________________________________________________________  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
MAX14/ICL760  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V+ = 5V; C  
= 0.1µF; C1 = C2 = 10µF; LV = open; OSC = open; T = +25°C; unless otherwise noted.)  
A
BYPASS  
OUTPUT VOLTAGE and OUTPUT RIPPLE  
vs. LOAD CURRENT  
OUTPUT VOLTAGE and OUTPUT RIPPLE  
vs. LOAD CURRENT  
OUTPUT VOLTAGE and OUTPUT RIPPLE  
vs. LOAD CURRENT  
-2.0  
-1.5  
400  
800  
720  
-10  
-9  
700  
630  
560  
490  
-5.0  
-4.5  
-4.0  
A
OUTPUT VOLTAGE  
A
OUTPUT  
VOLTAGE  
OUTPUT  
B
350  
300  
250  
VOLTAGE  
C
-8  
640  
560  
480  
400  
320  
240  
160  
80  
A: MAX1044 with  
B
A: MAX1044 with  
BOOST = V+  
B: ICL7660  
C: MAX1044 with  
BOOST = OPEN  
A: MAX1044 with  
BOOST = V+  
B: ICL7660  
-7  
-6  
-5  
-4  
-3  
-2  
-1  
-3.5  
-3.0  
-2.5  
-2.0  
-1.5  
-1.0  
-0.5  
BOOST = V+  
B: ICL7660  
420  
350  
280  
C: MAX1044 with  
BOOST = OPEN  
-1.0 C: MAX1044 with  
BOOST = OPEN  
200  
150  
C
C
B
OUTPUT  
RIPPLE  
C
C
V+ = 10V  
LV = OPEN  
V+ = 5V  
LV = OPEN  
210  
140  
V+ = 2V  
LV = GND  
-0.5  
100  
B
B
A
50  
0
70  
0
A
A
OUTPUT RIPPLE  
OUTPUT RIPPLE  
0
0
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
5
10 15 20 25 30 35 40  
LOAD CURRENT (mA)  
0
5
10 15 20 25 30 35 40  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
EFFICIENCY and SUPPLY CURRENT  
vs. LOAD CURRENT  
EFFICIENCY and SUPPLY CURRENT  
vs. LOAD CURRENT  
EFFICIENCY and SUPPLY CURRENT  
vs. LOAD CURRENT  
10  
9
100  
90  
50  
45  
40  
35  
50  
45  
40  
35  
100  
90  
100  
90  
B, C  
A
A
EFFICIENCY  
EFFICIENCY  
EFFICIENCY  
B
8
80  
80  
80  
A: MAX1044 with  
C
A: MAX1044 with  
BOOST = V+  
B: ICL7660  
C: MAX1044 with  
BOOST = OPEN  
7
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
70  
60  
50  
40  
30  
20  
10  
BOOST = V+  
B: ICL7660  
C: MAX1044 with  
BOOST = OPEN  
6
5
30  
25  
30  
25  
SUPPLY CURRENT  
4
3
2
1
SUPPLY CURRENT 20  
SUPPLY CURRENT  
20  
15  
10  
5
15  
10  
5
V+ = 5V  
LV = OPEN  
V+ = 2V  
LV = GND  
V+ = 10V  
LV = OPEN  
0
0
0
0
0
0
0
1
2
3
4
5
6
7
8
9
10  
0
5
10 15 20 25 30 35 40  
LOAD CURRENT (mA)  
0
5
10 15 20 25 30 35 40  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
EFFICIENCY  
vs. OSCILLATOR FREQUENCY  
OSCILLATOR FREQUENCY  
vs. EXTERNAL CAPACITANCE  
OSCILLATOR FREQUENCY  
vs. SUPPLY VOLTAGE  
100  
100,000  
100,000  
10,000  
1000  
MAX1044 with  
BOOST -V+  
90  
80  
70  
60  
50  
40  
30  
10,000  
1000  
ICL7660 and  
MAX1044 with  
BOOST = OPEN  
100  
10  
1
FROM TOP TO BOTTOM AT 5V  
MAX1044, BOOST = V+, LV = GND  
MAX1044, BOOST = V+, LV = OPEN  
ICL7660, LV = GND  
ICL7660, LV = OPEN  
MAX1044, BOOST = OPEN, LV = GND  
MAX1044, BOOST = OPEN, LV = OPEN  
EXTERNAL  
HCMOS  
OSCILLATOR  
0.1  
100  
1
2
3
4
5
5
6x10  
10  
10  
10  
10  
10  
1
10  
100  
C
1000 10,000 100,000  
(pF)  
1
2
3
4
5
6
7
8
9
10  
OSCILLATOR FREQUENCY (Hz)  
SUPPLY VOLTAGE (V)  
OSC  
_______________________________________________________________________________________  
3
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V+ = 5V; C  
= 0.1µF; C1 = C2 = 10µF; LV = open; OSC = open; T = +25°C; unless otherwise noted.)  
A
BYPASS  
OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
QUIESCENT CURRENT  
vs. OSCILLATOR FREQUENCY  
100  
80  
10,000  
A: MAX1044 with  
BOOST = V+  
B: ICL7600  
C: MAX1044 with  
BOOST = OPEN  
1000  
100  
10  
A
60  
40  
USING  
EXTERNAL  
CAPACITOR  
USING  
20  
EXTERNAL  
HCMOS  
OSCILLATOR  
B
C
MAX14/ICL760  
0
-50  
1
10  
0
1
2
3
4
5
10 5x10  
5
-25  
0
25  
50 75 100 125  
10  
10  
10  
10  
TEMPERATURE (°C)  
OSCILLATOR FREQUENCY (Hz)  
QUIESCENT CURRENT  
vs. TEMPERATURE  
QUIESCENT CURRENT  
vs. SUPPLY VOLTAGE  
500  
400  
2000  
1000  
A
B
MAX1044 with  
BOOST = V+  
300  
200  
100  
10  
C
D
A: MAX1044, BOOST = V+, LV = GND  
B: MAX1044, BOOST = V+, LV = OPEN  
C: ICL7660 and MAX1044 with  
BOOST = OPEN, LV = GND;  
ABOVE 5V, MAX1044 ONLY  
D: ICL7660 and MAX1044 with  
BOOST = OPEN, LV = OPEN  
100  
0
1
ICL7660, MAX1044 with BOOST = OPEN  
0.1  
-50 -25  
0
25  
50  
75 100 125  
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
OUTPUT RESISTANCE  
vs. SUPPLY VOLTAGE  
OUTPUT RESISTANCE  
vs. OSCILLATOR FREQUENCY  
OUTPUT RESISTANCE  
vs. TEMPERATURE  
200  
1000  
80  
70  
EXTERNAL  
HCMOS  
OSCILLATOR  
180  
160  
140  
900  
800  
700  
ICL7660,  
MAX1044 with  
BOOST = OPEN  
60  
50  
40  
120  
100  
80  
600  
500  
400  
300  
200  
100  
60  
40  
MAX1044 with  
BOOST = V+  
30  
20  
20  
0
0
10  
1
2
3
4
5
10  
1
2
3
4
5
6
7
8
9
10  
10  
10  
FREQUENCY (Hz)  
10  
-60 -40 -20  
0
20 40 60 80 100 120 140  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
MAX14/ICL760  
_____________________________________________________________ P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
BOOST  
(MAX1044)  
Frequency Boost. Connecting BOOST to V+ increases the oscillator frequency by a factor of six. When the  
oscillator is driven externally, BOOST has no effect and should be left open.  
1
N.C.  
(ICL7660)  
No Connection  
2
3
4
CAP+  
GND  
CAP-  
Connection to positive terminal of Charge-Pump Capacitor  
Ground. For most applications, the positive terminal of the reservoir capacitor is connected to this pin.  
Connection to negative terminal of Charge-Pump Capacitor  
Negative Voltage Output. For most applications, the negative terminal of the reservoir capacitor is  
connected to this pin.  
5
6
V
OUT  
Low-Voltage Operation. Connect to ground for supply voltages below 3.5V.  
ICL7660: Leave open for supply voltages above 5V.  
LV  
Oscillator Control Input. Connecting an external capacitor reduces the oscillator frequency. Minimize stray  
capacitance at this pin.  
7
8
OSC  
V+  
Power-Supply Positive Voltage Input. (1.5V to 10V). V+ is also the substrate connection.  
During the first half of each cycle, switches S1 & S3  
close and switches S2 & S4 open, which connects the  
V+  
b uc ke t c a p a c itor C1 a c ros s V+ a nd c ha rg e s C1.  
C
BYPASS  
During the second half of each cycle, switches S2 & S4  
close and switches S1 & S3 open, which connects the  
positive terminal of C1 to ground and shifts the nega-  
BOOST  
V+  
= 0.1µF  
EXTERNAL  
OSCILLATOR  
MAX1044  
CAP+ ICL7660 OSC  
tive terminal to V  
. This connects C1 in parallel with  
OUT  
the reservoir capacitor C2. If the voltage across C2 is  
smaller than the voltage across C1, then charge flows  
from C1 to C2 until the voltages across them are equal.  
During successive cycles, C1 will continue pouring  
charge into C2 until the voltage across C2 reaches  
- (V+). In an actual voltage inverter, the output is less  
than - (V+) since the switches S1–S4 have resistance  
and the load drains charge from C2.  
R
L
C
C1  
10µF  
OSC  
GND  
CAP-  
LV  
V
V
OUT  
OUT  
C2  
10µF  
Additional qualities of the MAX1044/ICL7660 can be  
und e rs tood b y us ing a s witc he d -c a p a c itor c irc uit  
model. Switching the bucket capacitor, C1, between  
the input and output of the circuit synthesizes a resis-  
tance (Figures 3a and 3b.)  
Figure 1. Maxim MAX1044/ICL7660 Test Circuit  
_______________De t a ile d De s c rip t io n  
When the switch in Figure 3a is in the left position,  
capacitor C1 charges to V+. When the switch moves to  
The MAX1044/ICL7660 are charge-pump voltage con-  
verters. They work by first accumulating charge in a  
bucket capacitor and then transfer it into a reservoir  
capacitor. The ideal voltage inverter circuit in Figure 2  
illustrates this operation.  
the rig ht p os ition, C1 is d is c ha rg e d to V  
. The  
OUT  
charge transferred per cycle is: Q = C1(V+ - V  
). If  
OUT  
the switch is cycled at frequency f, then the resulting  
_______________________________________________________________________________________  
5
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
current is: I = f x Q = f x C1(V+ - V  
). Rewriting this  
OUT  
equation in Ohms law form defines an equivalent resis-  
tance synthesized by the switched-capacitor circuit  
where:  
S1  
S3  
S2  
V+  
(V+ - V  
)
OUT  
I =  
C1  
1 / (f x C1)  
and  
1
C2  
R
=
S4  
EQUIV  
f x C1  
V
OUT  
= -(V+)  
where f is one-half the oscillator frequency. This resis-  
tance is a major component of the output impedance of  
switched-capacitor circuits like the MAX1044/ICL7660.  
As shown in Figure 4, the MAX1044/ICL7660 contain  
MOSFET switches, the necessary transistor drive cir-  
cuitry, and a timing oscillator.  
MAX14/ICL760  
Figure 2. Ideal Voltage Inverter  
________________De s ig n In fo rm a t io n  
The MAX1044/ICL7660 a re d e s ig ne d to p rovid e a  
simple, compact, low-cost solution where negative or  
doubled supply voltages are needed for a few low-  
power components. Figure 5 shows the basic negative  
voltage converter circuit. For many applications, only  
two e xte rna l c a p a c itors a re ne e d e d . The typ e of  
capacitor used is not critical.  
f
V+  
V
OUT  
P ro p e r Us e o f t h e Lo w -Vo lt a g e (LV) P in  
Figure 4 shows an internal voltage regulator inside the  
MAX1044/ICL7660. Us e the LV p in to b yp a s s this  
regulator, in order to improve low-voltage performance  
C1  
C2  
R
LOAD  
Figure 3a. Switched Capacitor Model  
V+  
pin 8  
CAP+  
pin 2  
S2  
S1  
1M  
BOOST  
R
EQUIV  
V+  
V
OUT  
Q
Q
pin 1  
1
÷ 2  
R
=
EQUIV  
f × C1  
OSC  
pin 7  
C2  
R
LOAD  
S3  
S4  
V
OUT  
pin 5  
GND  
pin 3  
CAP-  
pin 4  
LV  
pin 6  
Figure 4. MAX1044 and ICL7660 Functional Diagram  
Figure 3b. Equivalent Circuit  
6
_______________________________________________________________________________________  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
MAX14/ICL760  
CONNECTION  
FROM V+  
TO BOOST  
V+  
1
2
3
4
8
7
6
5
V
OUT  
= -(V+)  
V+  
1
2
3
4
8
7
6
5
C
BYPASS  
MAX1044  
ICL7660  
C1  
10µF  
C2  
10µF  
MAX1044  
10µF  
C
OSC  
*
V
OUT  
= -(V+)  
10µF  
*REQUIRED FOR V+ < 3.5V  
Figure 5. Basic Negative Voltage Converter  
Figure 6. Negative Voltage Converter with COSC and BOOST  
a nd a llow op e ra tion d own to 1.5V. For low-volta g e  
operation and compatibility with the industry-standard  
LTC1044 and ICL7660, the LV pin should be connect-  
ed to ground for supply voltages below 3.5V and left  
open for supply voltages above 3.5V.  
Figure 6 shows this connection. Higher frequency oper-  
ation lowers output impedance, reduces output ripple,  
allows the use of smaller capacitors, and shifts switch-  
ing noise out of the audio band. When the oscillator is  
driven externally, BOOST has no effect and should be  
left open. The BOOST pin should also be left open for  
normal operation.  
The MAX1044s LV pin can be grounded for all operat-  
ing conditions. The advantage is improved low-voltage  
performance and increased oscillator frequency. The  
d is a d va nta g e is inc re a s e d q uie s c e nt c urre nt a nd  
re d uc e d e ffic ie nc y a t hig he r s up p ly volta g e s . For  
Maxims ICL7660, the LV pin must be left open for  
supply voltages above 5V.  
Reducing the Oscillator Frequency Using C  
OSC  
An external capacitor can be connected to the OSC pin  
to lowe r the os c illa tor fre q ue nc y (Fig ure 6). Lowe r  
frequency operation improves efficiency at low load  
currents by reducing the ICs quiescent supply current.  
It also increases output ripple and output impedance.  
This can be offset by using larger values for C1 and C2.  
When operating at low supply voltages with LV open,  
connections to the LV, BOOST, and OSC pins should  
b e s hort or s hie ld e d to p re ve nt EMI from c a us ing  
oscillator jitter.  
Connections to the OSC pin should be short to prevent  
stray capacitance from reducing the oscillator frequency.  
Os c illa t o r Fre q u e n c y Co n s id e ra t io n s  
For normal operation, leave the BOOST and OSC pins  
of the MAX1044/ICL7660 open and use the nominal  
oscillator frequency. Increasing the frequency reduces  
audio interference, output resistance, voltage ripple,  
and required capacitor sizes. Decreasing frequency  
reduces quiescent current and improves efficiency.  
Overdriving the OSC Pin with an External Oscillator  
Driving OSC with an external oscillator is useful when  
the frequency must be synchronized, or when higher  
frequencies are required to reduce audio interference.  
The MAX1044/ICL7660 can be driven up to 400kHz.  
The pump and output ripple frequencies are one-half  
the e xte rna l c loc k fre q ue nc y. Driving the  
MAX1044/ICL7660 at a higher frequency increases the  
rip p le fre q ue nc y a nd a llows the us e of s ma lle r  
capacitors. It also increases the quiescent current.  
Oscillator Frequency Specifications  
The MAX1044/ICL7660 do not have a precise oscillator  
frequency. Only minimum values of 1kHz and 5kHz for  
the MAX1044 a nd a typ ic a l va lue of 10kHz for the  
ICL7660 are specified. If a specific oscillator frequency  
is required, use an external oscillator to drive the OSC  
pin.  
The OSC input threshold is V+ - 2.5V when V+ 5V,  
and is V+ / 2 for V+ < 5V. If the external clock does not  
swing all the way to V+, use a 10kpull-up resistor  
(Figure 7).  
Increasing Oscillator Frequency  
Using the BOOST Pin  
For the MAX1044, connecting the BOOST pin to the V+  
Ou t p u t Vo lt a g e Co n s id e ra t io n s  
The MAX1044/ICL7660 output voltage is not regulated.  
The output voltages will vary under load according to  
the output resistance. The output resistance is primarily  
pin raises the oscillator frequency by a factor of about 6.  
_______________________________________________________________________________________  
7
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
switching noise and EMI may be generated. To reduce  
these effects:  
10kΩ  
REQUIRED  
FOR TTL  
V+  
1) Power the MAX1044/ICL7600 from a low-impedance  
source.  
2) Ad d a p owe r-s up p ly b yp a s s c a p a c itor with low  
effective series resistance (ESR) close to the IC  
between the V+ and ground pins.  
CMOS or  
TTL GATE  
1
2
3
4
8
7
6
5
V+  
MAX1044  
ICL7660  
3) Shorten traces between the IC and the charge-pump  
capacitors.  
10µF  
4) Arrange the components to keep the ground pins of  
the capacitors and the IC as close as possible.  
V
= -(V+)  
OUT  
10µF  
5) Leave extra copper on the board around the voltage  
c onve rte r a s p owe r a nd g round p la ne s . This is  
easily done on a double-sided PC board.  
Figure 7. External Clocking  
Effic ie n c y, Ou t p u t Rip p le ,  
a n d Ou t p u t Im p e d a n c e  
The power efficiency of a switched-capacitor voltage  
converter is affected by the internal losses in the con-  
verter IC, resistive losses of the pump capacitors, and  
conversion losses during charge transfer between the  
capacitors. The total power loss is:  
MAX14/ICL760  
a function of oscillator frequency and the capacitor  
value. Oscillator frequency, in turn, is influenced by  
temperature and supply voltage. For example, with a  
5V input voltage and 10µF charge-pump capacitors,  
the output resistance is typically 50. Thus, the output  
voltage is about -5V under light loads, and decreases  
to about -4.5V with a 10mA load current.  
P  
= PINTERNAL +P  
+P  
PUMP  
+P  
CONVERSION  
LOSSES  
LOSS  
SWITCH  
LOSSES  
Minor supply voltage variations that are inconsequential  
to d ig ita l c irc uits c a n a ffe c t s ome a na log c irc uits .  
The re fore , whe n us ing the MAX1044/ICL7660 for  
powering sensitive analog circuits, the power-supply  
rejection ratio of those circuits must be considered.  
The outp ut rip p le a nd outp ut d rop inc re a s e und e r  
heavy loads. If necessary, the MAX1044/ICL7660 out-  
put impedance can be reduced by paralleling devices,  
increasing the capacitance of C1 and C2, or connect-  
ing the MAX1044s BOOST pin to V+ to increase the  
oscillator frequency.  
LOSSES  
CAPACITOR  
LOSSES  
The internal losses are associated with the ICs internal  
functions such as driving the switches, oscillator, etc.  
These losses are affected by operating conditions such  
as input voltage, temperature, frequency, and connec-  
tions to the LV, BOOST, and OSC pins.  
The next two losses are associated with the output  
resistance of the voltage converter circuit. Switch losses  
occur because of the on-resistances of the MOSFET  
s witc he s in the IC. Cha rg e -p ump c a p a c itor los s e s  
occur because of their ESR. The relationship between  
these losses and the output resistance is as follows:  
In ru s h Cu rre n t a n d EMI Co n s id e ra t io n s  
During start-up, pump capacitors C1 and C2 must be  
charged. Consequently, the MAX1044/ICL7660 devel-  
op inrush currents during start-up. While operating,  
short bursts of current are drawn from the supply to C1,  
and then from C1 to C2 to replenish the charge drawn  
by the load during each charge-pump cycle. If the  
volta g e c onve rte rs a re b e ing p owe re d b y a hig h-  
impedance source, the supply voltage may drop too  
low during the current bursts for them to function prop-  
erly. Furthermore, if the supply or ground impedance is  
too high, or if the traces between the converter IC and  
charge-pump capacitors are long or have large loops,  
2
PPUMP  
CAPACITOR  
LOSSES  
+ PSWITCH = I  
LOSSES  
x R  
OUT  
OUT  
where:  
1
R
+
OUT  
(f  
/ 2) x C1  
OSC  
4 2R  
(
+ ESR  
+ ESR  
)
C1 C2  
SWITCHES  
and f  
is the oscillator frequency.  
OSC  
8
_______________________________________________________________________________________  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
MAX14/ICL760  
The firs t te rm is the e ffe c tive re s is ta nc e from the  
switched-capacitor circuit.  
oscillator to 400Hz by connecting a 100pF capacitor to  
OSC reduces the quiescent current to about 15µA.  
Maintaining 20mA output current capability requires  
inc re a s ing the b uc ke t a nd re s e rvoir c a p a c itors to  
100µF.  
Conversion losses occur during the transfer of charge  
between capacitors C1 and C2 when there is a voltage  
difference between them. The power loss is:  
Note that lower capacitor values can be used for lower  
output currents. For example, setting the oscillator to  
40Hz by connecting a 1000pF capacitor to OSC pro-  
vides the highest efficiency possible. Leaving the bucket  
and reservoir capacitors at 100µF gives a maximum  
1
2
2
2
P
=
C1 (V+) V  
+
CONV.LOSS  
OUT  
1
2
2
C2  
V
2V  
V
x f  
/ 2  
RIPPLE  
OUT RIPPLE  
OSC  
I
of 2mA, a no-load quiescent current of 10µA, and  
OUT  
a power conversion efficiency of 98%.  
Increasing Efficiency  
Efficiency can be improved by lowering output voltage  
ripple and output impedance. Both output voltage rip-  
ple and output impedance can be reduced by using  
large capacitors with low ESR.  
Ge n e ra l P re c a u t io n s  
1) Connecting any input terminal to voltages greater  
than V+ or less than ground may cause latchup. Do  
not apply any input sources operating from external  
supplies before device power-up.  
The output voltage ripple can be calculated by noting  
that the output current is supplied solely from capacitor  
C2 during one-half of the charge-pump cycle.  
2) Never exceed maximum supply voltage ratings.  
3) Do not connect C1 and C2 with the wrong polarity.  
1
4) Do not short V+ to ground for extended periods with  
supply voltages above 5.5V present on other pins.  
V
+ 2 x ESR  
I
OUT  
RIPPLE  
C2  
2 x f  
x C2  
OSC  
5) Ensure that V  
(pin 5) does not go more positive  
OUT  
Slowing the oscillator frequency reduces quiescent cur-  
rent. The oscillator frequency can be reduced by con-  
necting a capacitor to the OSC pin.  
than GND (pin 3). Adding a diode in parallel with  
C2, with the anode connected to V and cathode  
to LV, will prevent this condition.  
OUT  
Reducing the oscillator frequency increases the ripple  
volta g e in the MAX1044/ICL7660. Comp e nsa te b y  
inc re a s ing the va lue s of the b uc ke t a nd re s e rvoir  
capacitors. For example, in a negative voltage converter,  
the pump frequency is around 4kHz or 5kHz. With the  
recommended 10µF bucket and reservoir capacitors,  
the circuit consumes about 70µA of quiescent current  
while providing 20mA of output current. Setting the  
________________Ap p lic a t io n Circ u it s  
Ne g a t ive Vo lt a g e Co n ve rt e r  
Figure 8 shows a negative voltage converter, the most  
popular application of the MAX1044/ICL7660. Only two  
external capacitors are needed. A third power-supply  
bypass capacitor is recommended (0.1µF to 10µF)  
V+  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V+  
BOOST  
MAX1044  
ICL7660  
C
BYPASS  
0.1µF  
V
= 2(V+) - 2V  
D
OUT  
MAX1044  
ICL7660  
C1  
10µF  
C1  
C2  
LV  
V
OUT  
= -(V+)  
C2  
10µF  
Figure 9. Voltage Doubler  
Figure 8. Negative Voltage Converter with BOOST and LV  
Connections  
_______________________________________________________________________________________  
9
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
V+  
V+  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
= -(V+)  
OUT  
MAX1044  
ICL7660  
MAX1044  
ICL7660  
C3  
C1  
10µF  
LV  
C1  
LV  
V
OUT  
= 2(V+) - 2V  
D
1
2
V
OUT  
=
V+  
C2  
10µF  
C2  
C4  
Figure 10. Voltage Divider  
Figure 11. Combined Positive and Negative Converter  
MAX14/ICL760  
capacitors for the doubled positive voltage. This circuit  
has higher output impedances resulting from the use of  
a common charge-pump driver.  
P o s it ive Vo lt a g e Do u b le r  
Figure 9 illustrates the recommended voltage doubler  
circuit for the MAX1044/ICL7660. To reduce the voltage  
drops contributed by the diodes (V ), use Schottky  
diodes. For true voltage doubling or higher output cur-  
rents, use the MAX660.  
D
Ca s c a d in g De vic e s  
Larger negative multiples of the supply voltage can be  
ob ta ine d b y c a s c a d ing MAX1044/ICL7660 d e vic e s  
(Figure 12). The output voltage is nominally V  
= -n(V+)  
Vo lt a g e Divid e r  
The voltage divider shown in Figure 10 splits the power  
supply in half. A third capacitor can be added between  
OUT  
where n is the number of devices cascaded. The out-  
put voltage is reduced slightly by the output resistance  
of the first device, multiplied by the quiescent current of  
the second, etc. Three or more devices can be cascaded  
in this way, but output impedance rises dramatically.  
For example, the output resistance of two cascaded  
MAX1044s is approximately five times the output resis-  
tance of a single voltage converter. A better solution  
may be an inductive switching regulator, such as the  
MAX755, MAX759, MAX764, or MAX774.  
V+ and V  
.
OUT  
Co m b in e d P o s it ive Mu lt ip lic a t io n a n d  
Ne g a t ive Vo lt a g e Co n ve rs io n  
Fig ure 11 illus tra te s this d ua l-func tion c irc uit.  
Capacitors C1 and C3 perform the bucket and reser-  
voir func tions for g e ne ra ting the ne g a tive volta g e .  
Capacitors C2 and C4 are the bucket and reservoir  
1
2
3
4
8
7
6
5
V+  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
MAX1044  
ICL7660  
MAX1044  
ICL7660  
MAX1044  
ICL7660  
10µF  
10µF  
10µF  
V
= -n(V+)  
OUT  
1
2
3
10µF  
10µF  
10µF  
Figure 12. Cascading MAX1044/ICL7660 for Increased Output Voltage  
10 ______________________________________________________________________________________  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
MAX14/ICL760  
P a ra lle lin g De vic e s  
Paralleling multiple MAX1044/ICL7660s reduces output  
resistance and increases current capability. As illus-  
trated in Figure 13, each device requires its own pump  
capacitor C1, but the reservoir capacitor C2 serves all  
devices. The equation for calculating output resistance is:  
1
2
3
4
8
7
6
5
V+  
MAX1044  
ICL7660  
C1  
R
(of MAX1044 or ICL7660)  
OUT  
n (number of devices)  
R
=
OUT  
1
S h u t d o w n S c h e m e s  
Figures 14a–14c illustrate three ways of adding shut-  
down capability to the MAX1044/ICL7660. When using  
these circuits, be aware that the additional capacitive  
loading on the OSC pin will reduce the oscillator fre-  
quency. The first circuit has the least loading on the  
OSC pin and has the added advantage of controlling  
shutdown with a high or low logic level, depending on  
the orientation of the switching diode.  
1
2
3
4
8
7
6
5
MAX1044  
ICL7660  
V
= -(V+)  
OUT  
C1  
C2  
n
Figure 13. Paralleling MAX1044/ICL7660 to Reduce Output  
Resistance  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
V+  
10kREQUIRED FOR TTL  
PART  
TEMP. RANGE  
-40°C to +85°C  
-55°C to +125°C  
0°C to +70°C  
PIN-PACKAGE  
8 SO  
V+  
CMOS or  
TTL GATE  
1
2
3
4
8
7
6
5
MAX1044ESA  
MAX1044MJA  
ICL7660CPA  
ICL7660CSA  
ICL7660CUA  
ICL7660C/D  
ICL7660EPA  
ICL7660ESA  
1N4148  
8 CERDIP**  
8 Plastic DIP  
8 SO  
MAX1044  
ICL7660  
10µF  
0°C to +70°C  
0°C to +70°C  
8 µMAX  
0°C to +70°C  
Dice*  
V
OUT  
= -(V+)  
-40°C to +85°C  
-40°C to +85°C  
-55°C to +125°C  
-55°C to +125°C  
8 Plastic DIP  
8 SO  
10µF  
a)  
ICL7660AMJA  
8 CERDIP**  
8 TO-99**  
V+  
ICL7660AMTV  
74HC03  
OPEN-DRAIN OR  
74LS03  
OPEN-COLLECTOR  
NAND GATES  
* Contact factory for dice specifications.  
MAX1044  
ICL7660  
7
** Contact factory for availability.  
The Maxim ICL7660 meets or exceeds all “A” and S”  
specifications.  
b)  
c)  
V+  
OUTPUT  
ENABLE  
74HC126 OR  
74LS126  
TRI-STATE BUFFER  
MAX1044  
ICL7660  
7
Figure 14a-14c. Shutdown Schemes for MAX1044/ICL7660  
______________________________________________________________________________________ 11  
S w it c h e d -Ca p a c it o r Vo lt a g e Co n ve rt e rs  
__________________________________________________________Ch ip To p o g ra p h ie s  
MAX1044  
CAP+  
ICL7660  
GND  
BOOST  
V+  
0. 084"  
CAP+  
GND  
(2. 1mm)  
0. 076"  
(1. 930mm)  
OSC  
CAP-  
CAP-  
V+  
LV  
V
OUT  
V
OUT  
MAX14/ICL760  
LV  
OSC  
0. 060"  
0. 076"  
(1. 930mm)  
(1. 5mm)  
TRANSISTOR COUNT: 72  
SUBSTRATE CONNECTED TO V+  
TRANSISTOR COUNT: 71  
SUBSTRATE CONNECTED TO V+  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
DIM  
MIN  
0.036  
MAX  
0.044  
0.008  
0.014  
0.007  
0.120  
0.120  
MIN  
0.91  
0.10  
0.25  
0.13  
2.95  
2.95  
MAX  
1.11  
0.20  
0.36  
0.18  
3.05  
3.05  
A
A1 0.004  
B
C
D
E
e
0.010  
0.005  
0.116  
0.116  
E
H
0.0256  
0.65  
H
L
0.188  
0.016  
0°  
0.198  
0.026  
6°  
4.78  
0.41  
0°  
5.03  
0.66  
6°  
α
21-0036  
D
C
α
A
8-PIN µMAX  
0.127mm  
0.004 in  
PACKAGE  
e
B
A1  
L
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1994 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1044C/D

Switched-Capacitor Voltage Converters
MAXIM

MAX1044CPA

Switched-Capacitor Voltage Converters
MAXIM

MAX1044CPA

SWITCHED CAPACITOR CONVERTER, 10 kHz SWITCHING FREQ-MAX, PDIP8, PLASTIC, DIP-8
ROCHESTER

MAX1044CPA+

Switched Capacitor Converter, 0.1A, 10kHz Switching Freq-Max, CMOS, PDIP8, LEAD FREE, PLASTIC, DIP-8
MAXIM

MAX1044CSA

Switched-Capacitor Voltage Converters
MAXIM

MAX1044CSA+T

Switched Capacitor Converter, 0.1A, 10kHz Switching Freq-Max, CMOS, PDSO8, LEAD FREE, SOIC-8
MAXIM

MAX1044CTV

DC-to-DC Voltage Converter
MAXIM

MAX1044D

Switched-Capacitor Voltage Converters
MAXIM

MAX1044EPA

Switched-Capacitor Voltage Converters
MAXIM

MAX1044ESA

Switched-Capacitor Voltage Converters
MAXIM

MAX1044ESA+

Switched Capacitor Converter, 0.1A, 10kHz Switching Freq-Max, CMOS, PDSO8, LEAD FREE, SOIC-8
MAXIM

MAX1044ESA+T

暂无描述
MAXIM