MAX1069 [MAXIM]

58.6ksps, 14-Bit, 2-Wire Serial ADC; 58.6ksps , 14位, 2线串行ADC
MAX1069
型号: MAX1069
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

58.6ksps, 14-Bit, 2-Wire Serial ADC
58.6ksps , 14位, 2线串行ADC

文件: 总20页 (文件大小:442K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2652; Rev 0; 10/02  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
General Description  
Features  
The MAX1069 is a low-power, 14-bit successive-  
approximation analog-to-digital converter (ADC). The  
device features automatic power-down, an on-chip  
4MHz clock, a +4.096V internal reference, and an  
I2C™-compatible 2-wire serial interface capable of both  
fast and high-speed modes.  
o High-Speed I2C-Compatible Serial Interface  
400kHz Fast Mode  
1.7MHz High-Speed Mode  
o +4.75V to +5.25V Single Supply  
o +2.7V to +5.5V Adjustable Logic Level  
o Internal +4.096V Reference  
The MAX1069 operates from a single supply and con-  
sumes 5mW at the maximum conversion rate of  
58.6ksps. AutoShutdown™ powers down the device  
between conversions, reducing supply current to less  
than 50µA at a 1ksps throughput rate. The option of a  
separate digital supply voltage allows direct interfacing  
with +2.7V to +5.5V digital logic.  
o External Reference: 1V to AV  
DD  
o Internal 4MHz Conversion Clock  
o 58.6ksps Sampling Rate  
o AutoShutdown Between Conversions  
The MAX1069 performs a unipolar conversion on its  
single analog input using its internal 4MHz clock. The  
full-scale analog input range is determined by the inter-  
nal reference or by an externally applied reference volt-  
o Low Power  
5.0mW at 58.6ksps  
4.2mW at 50ksps  
2.0mW at 10ksps  
0.23mW at 1ksps  
3µW in Shutdown  
age ranging from 1V to AV  
.
DD  
The four address select inputs (ADD0–ADD3) allow up  
to sixteen MAX1069 devices on the same bus.  
The MAX1069 is packaged in a 14-pin TSSOP and  
offers both commercial and extended temperature  
ranges. Refer to the MAX1169 for a 16-bit device in a  
pin-compatible package.  
o Small 14-Pin TSSOP Package  
Ordering Information  
Applications  
Hand-Held Portable Applications  
Medical Instruments  
PIN-  
PACKAGE  
INL  
(LSB)  
PART  
TEMP RANGE  
MAX1069ACUD  
MAX1069BCUD  
MAX1069CCUD  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
14 TSSOP  
14 TSSOP  
14 TSSOP  
14 TSSOP  
14 TSSOP  
14 TSSOP  
1
2
3
1
2
3
Battery-Powered Test Equipment  
Solar-Powered Remote Systems  
Receive Signal Strength Indicators  
System Supervision  
MAX1069AEUD* -40°C to +85°C  
MAX1069BEUD* -40°C to +85°C  
MAX1069CEUD* -40°C to +85°C  
*Future product—contact factory for availability.  
Pin Configuration  
TOP VIEW  
DGND  
SCL  
1
2
3
4
5
6
7
14 ADD3  
13 REF  
SDA  
12 REFADJ  
2
I C is a trademark of Philips Corp.  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
ADD2  
ADD1  
ADD0  
11 AGNDS  
10 AIN  
MAX1069  
9
8
AGND  
AV  
DV  
DD  
DD  
TSSOP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
ABSOLUTE MAXIMUM RATINGS  
AV to AGND .........................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
DD  
A
DV to DGND.........................................................-0.3V to +6V  
AGND to DGND.....................................................-0.3V to +0.3V  
AGNDS to AGND...................................................-0.3V to +0.3V  
14-Pin TSSOP (derate 9.1mW/°C above +70°C) .........727mW  
Operating Temperature Ranges:  
MAX1069_CUD ..................................................0°C to +70°C  
MAX1069_EUD................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
AIN, REF, REFADJ to AGND....................-0.3V to (AV  
+ 0.3V)  
DD  
SCL, SDA, ADD_ to DGND.......................................-0.3V to +6V  
Maximum Current into Any Pin............................................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV = +4.75V to +5.25V, DV = +2.7V to +5.5V, f  
= 1.7MHz (33% duty cycle), f  
= 58.6ksps, V  
= +4.096V, external ref-  
DD  
DD  
SCL  
SAMPLE  
REF  
erence applied to REF, REFADJ = AV , C  
= 10µF, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD REF  
A
MIN  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
14  
MAX1069A  
MAX1069B  
MAX1069C  
1
2
3
1
1
1
5
Relative Accuracy  
(Note 2)  
INL  
LSB  
MAX1069A, no missing codes  
MAX1069B, no missing codes  
MAX1069C, no missing codes  
Differential Nonlinearity  
Offset Error  
DNL  
LSB  
2
mV  
Offset-Error Temperature  
Coefficient  
1.0  
ppm/°C  
Gain Error  
(Note 3)  
0.25  
0.1  
0.5  
-86  
%FSR  
Gain Temperature Coefficient  
DYNAMIC PERFORMANCE (f  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Signal-to-Noise Ratio  
ppm/°C  
= 1kHz, V = V  
, f  
= 58.6ksps)  
IN(sine wave)  
IN  
REF(P-P) SAMPLE  
SINAD  
THD  
81  
84  
-99  
102  
84  
4
dB  
dB  
Up to the 5th harmonic  
SFDR  
SNR  
87  
82  
dB  
dB  
Full-Power Bandwidth  
FPBW  
-3dB point  
MHz  
kHz  
Full-Linear Bandwidth  
SINAD > 81dB  
20  
CONVERSION RATE (Figure 11)  
Fast mode  
7.1  
5.8  
7.5  
6
Conversion Time  
(SCL Stretched Low)  
t
µs  
CONV  
High-speed mode  
Fast mode  
19  
Throughput Rate (Note 4)  
f
ksps  
SAMPLE  
High-speed mode  
58.6  
Internal Clock Frequency  
f
4
MHz  
ns  
CLK  
Track/Hold Acquisition Time  
t
(Note 5)  
1100  
ACQ  
2
_______________________________________________________________________________________  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
ELECTRICAL CHARACTERISTICS (continued)  
(AV = +4.75V to +5.25V, DV = +2.7V to +5.5V, f  
= 1.7MHz (33% duty cycle), f  
= 58.6ksps, V  
= +4.096V, external ref-  
DD  
DD  
SCL  
SAMPLE  
REF  
erence applied to REF, REFADJ = AV , C  
= 10µF, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD REF  
A
MIN  
PARAMETER  
Aperture Delay  
SYMBOL  
CONDITIONS  
MIN  
TYP  
50  
MAX  
UNITS  
Fast mode  
t
ns  
AD  
(Figure 11c) (Note 6)  
High-speed mode  
Fast mode  
30  
100  
100  
Aperture Jitter  
(Figure 11c)  
t
ps  
AJ  
High-speed mode  
ANALOG INPUT (AIN)  
Input Voltage Range  
V
0
V
V
AIN  
REF  
10  
On/off-leakage current, V  
= 0V or AV  
,
DD  
AIN  
Input Leakage Current  
0.01  
35  
µA  
pF  
no clock, f  
= 0  
SCL  
Input Capacitance  
C
IN  
INTERNAL REFERENCE (Bypass REFADJ with 0.1µF to AGND and REF with 10µF to AGND)  
REF Output Voltage  
V
4.056  
4.096  
20  
4.136  
V
REF  
T
T
= 0°C to +70°C  
A
A
Reference Temperature  
Coefficient  
TC  
ppm/°C  
REF  
REFSC  
= -40°C to +85°C  
35  
Reference Short-Circuit Current  
REFADJ Output Voltage  
REFADJ Input Range  
I
10  
4.136  
4.000  
mA  
V
4.056  
4.096  
60  
For small adjustments, from 4.096V  
mV  
EXTERNAL REFERENCE (REFADJ = AV  
)
DD  
Pull REFADJ high to disable the internal  
bandgap reference and reference buffer  
REFADJ Buffer Disable Voltage  
AV  
- 0.1  
V
DD  
REFADJ Buffer Enable Voltage  
Reference Input Voltage Range  
AV - 0.4  
V
V
DD  
(Note 7)  
1.0  
AV  
DD  
V
f
= +4.096V, V = V  
IN  
REF  
REF(P-P)  
27  
= 1kHz, f  
= 62.1ksps  
REF Input Current  
I
µA  
IN(sine wave)  
SAMPLE  
REF  
V
= +4.096V, shutdown  
0.1  
REF  
DIGITAL INPUTS/OUTPUTS (SCL, SDA)  
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
Input Current  
V
0.7 × DV  
V
V
IH  
DD  
V
0.3 × DV  
DD  
IL  
V
0.1 × DV  
V
HYST  
DD  
I
10  
µA  
pF  
V
IN  
Input Capacitance  
Output Low Voltage  
C
15  
IN  
V
I
= 3mA  
0.4  
OL  
SINK  
ADDRESS SELECT INPUTS (ADD3, ADD2, ADD1, ADD0)  
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
Input Current  
0.7 × DV  
V
V
DD  
0.3 × DV  
DD  
0.1 × DV  
V
DD  
10  
µA  
pF  
Input Capacitance  
15  
_______________________________________________________________________________________  
3
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
ELECTRICAL CHARACTERISTICS (continued)  
(AV = +4.75V to +5.25V, DV = +2.7V to +5.5V, f  
= 1.7MHz (33% duty cycle), f  
= 58.6ksps, V  
= +4.096V, external ref-  
DD  
DD  
SCL  
SAMPLE  
REF  
erence applied to REF, REFADJ = AV , C  
= 10µF, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD REF  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS (AV , AGND, DV , DGND)  
DD  
DD  
Analog Supply Voltage  
Digital Supply Voltage  
AV  
DV  
4.75  
2.7  
5.25  
5.5  
V
V
DD  
DD  
f
f
f
= 58.6ksps  
= 10ksps  
= 1ksps  
1.8  
0.7  
40  
2.5  
SAMPLE  
SAMPLE  
SAMPLE  
Internal reference  
(powered down  
between conversions,  
R/W = 0)  
mA  
µA  
Shutdown  
0.4  
1.8  
1.4  
1.1  
0.4  
0.90  
0.36  
40  
5.0  
2.5  
f
f
f
= 58.6ksps  
= 10ksps  
= 1ksps  
SAMPLE  
SAMPLE  
SAMPLE  
mA  
Internal reference  
(always on, R/W = 1)  
Analog Supply Current  
I
AVDD  
mA  
µA  
Shutdown  
5
f
f
f
= 58.6ksps  
= 10ksps  
= 1ksps  
1.8  
SAMPLE  
SAMPLE  
SAMPLE  
mA  
µA  
External reference  
(REFADJ = AV  
)
DD  
Shutdown  
0.4  
260  
65  
5
f
f
f
= 58.6ksps  
= 10ksps  
= 1ksps  
400  
SAMPLE  
SAMPLE  
SAMPLE  
Digital Supply Current  
I
µA  
DVDD  
6
Shutdown  
AV = 5V 5%, full-scale input (Note 8)  
0.2  
2
5
6
Power-Supply Rejection Ratio  
PSRR  
LSB/V  
DD  
TIMING CHARACTERISTICS FOR 2-WIRE FAST MODE (Figure 1a and Figure 2)  
Serial Clock Frequency  
f
400  
kHz  
µs  
SCL  
Bus Free Time Between a STOP  
and a START Condition  
t
1.3  
BUF  
Hold Time for Start Condition  
Low Period of the SCL Clock  
High Period of the SCL Clock  
t
t
0.6  
1.3  
0.6  
µs  
µs  
µs  
HD,STA  
t
LOW  
t
HIGH  
Setup Time for a Repeated  
START Condition (Sr)  
0.6  
µs  
SU,STA  
Data Hold Time  
Data Setup Time  
t
(Note 9)  
0
900  
ns  
ns  
HD,DAT  
t
100  
SU,DAT  
Rise Time of Both SDA and SCL  
Signals, Receiving  
20 +  
t
(Note 10)  
(Note 10)  
300  
300  
ns  
ns  
R
0.1C  
B
20 +  
Fall Time of SDA Transmitting  
t
F
0.1C  
B
Setup Time for STOP Condition  
Capacitive Load for Each Bus Line  
Pulse Width of Spike Suppressed  
t
0.6  
µs  
pF  
ns  
SU,STO  
C
400  
50  
B
t
SP  
4
_______________________________________________________________________________________  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
ELECTRICAL CHARACTERISTICS (continued)  
(AV = +4.75V to +5.25V, DV = +2.7V to +5.5V, f  
= 1.7MHz (33% duty cycle), f  
= 58.6ksps, V  
= +4.096V, external ref-  
DD  
DD  
SCL  
SAMPLE  
REF  
erence applied to REF, REFADJ = AV , C  
= 10µF, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD REF  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS FOR 2-WIRE HIGH-SPEED MODE (Figure 1b and Figure 2)  
Serial Clock Frequency  
f
(Note 11)  
1.7  
MHz  
ns  
SCLH  
Hold Time, (Repeated) Start  
Condition  
t
160  
HD,STA  
Low Period of the SCL Clock  
High Period of the SCL Clock  
t
320  
120  
ns  
ns  
LOW  
t
HIGH  
Setup Time for a Repeated  
START Condition  
t
160  
ns  
SU,STA  
Data Hold Time  
Data Setup Time  
t
(Note 9)  
0
150  
ns  
ns  
HD,DAT  
t
10  
SU,DAT  
Rise Time of SCL Signal  
(Current Source Enabled)  
t
(Note 10)  
(Note 10)  
10  
20  
80  
ns  
ns  
RCL  
Rise Time of SCL Signal After  
Acknowledge Bit  
t
160  
RCL1  
Fall Time of SCL Signal  
t
(Note 10)  
(Note 10)  
(Note 10)  
20  
20  
80  
ns  
ns  
ns  
ns  
pF  
ns  
FCL  
Rise Time of SDA Signal  
t
160  
160  
RDA  
Fall Time of SDA Signal  
t
20  
FDA  
Setup Time for STOP Condition  
Capacitive Load for Each Bus Line  
Pulse Width of Spike Suppressed  
t
160  
SU,STO  
C
400  
10  
B
t
SP  
Note 1: DC accuracy is tested at AV  
= +5.0V and DV  
= +3.0V. Performance at power-supply tolerance limits is guaranteed  
DD  
DD  
by power-supply rejection test.  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range and  
offset have been calibrated.  
Note 3: Offset nullified.  
Note 4: One sample is achieved every 18 clocks in continuous conversion mode.  
-1  
18 clocks  
f
=
+ t  
CONV  
SAMPLE  
f
SCL  
Note 5: The track/hold acquisition time is two SCL cycles as illustrated in Figure 11.  
1
t
= 2 ×  
ACQ  
f
SCL  
Note 6: A filter on SDA and SCL delays the sampling instant and suppresses noise spikes less than 10ns in high-speed mode and  
50ns in fast mode.  
Note 7: ADC performance is limited by the converters noise floor, typically 480µV  
.
P-P  
Note 8:  
N
2
V
(5.25V)- V (4.75V) ×  
[
]
FS  
FS  
V
REF  
PSRR =  
where N is the number of bits (14).  
5.25V - 4.75V  
_______________________________________________________________________________________  
5
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
ELECTRICAL CHARACTERISTICS (continued)  
(AV = +4.75V to +5.25V, DV = +2.7V to +5.5V, f  
= 1.7MHz (33% duty cycle), f  
= 58.6ksps, V  
= +4.096V, external ref-  
DD  
DD  
SCL  
SAMPLE  
REF  
erence applied to REF, REFADJ = AV , C  
= 10µF, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
DD REF  
A
MIN  
Note 9: A master device must provide a data hold time for SDA (referred to V of SCL) in order to bridge the undefined region of  
IL  
SCLs falling edge (see Figure 1).  
Note 10: C = total capacitance of one bus line in pF. t and t measured between 0.3 DV  
and 0.7 DV  
.
B
R
F
DD  
DD  
Note 11: f  
must meet the minimum clock low time plus the rise/fall times.  
SCL  
2
A. F/S-MODE I C SERIAL INTERFACE TIMING  
t
t
R
F
SDA  
t
BUF  
t
t
HD,DAT  
SU,DAT  
t
HD,STA  
t
SU,STA  
t
t
LOW  
SU,STO  
SCL  
t
HIGH  
t
HD,STA  
t
t
F
R
S
Sr  
A
P
S
2
B. HS-MODE I C SERIAL INTERFACE TIMING  
t
t
FDA  
RDA  
SDA  
t
BUF  
t
t
t
HD,DAT  
HD,STA  
SU,DAT  
t
t
SU,STO  
SU,STA  
t
LOW  
SCL  
t
HIGH  
t
HD,STA  
t
t
FCL  
t
RCL  
RCL1  
P
S
Sr  
A
S
F/S-MODE  
HS-MODE  
PARAMETERS ARE MEASURED FROM 30% TO 70%.  
Figure 1. I2C Serial Interface Timing  
V
DD  
I
= 3mA  
OL  
DIGITAL  
I/O  
V
OUT  
400pF  
I
= 0mA  
OH  
Figure 2. Load Circuit  
6
_______________________________________________________________________________________  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
Typical Operating Characteristics  
(DV  
= +3.0V, AV  
= +5.0V, f  
= 1.7MHz (33% duty cycle), f  
= 58.6ksps, V = +4.096V, external reference applied to  
REF  
DD  
DD  
SCL  
SAMPLE  
REF, REFADJ = AV , C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD REF  
A
ANALOG SUPPLY CURRENT vs. ANALOG  
SUPPLY VOLTAGE (EXTERNAL REFERENCE)  
ANALOG SHUTDOWN CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
700  
ANALOG SUPPLY CURRENT vs. ANALOG  
SUPPLY VOLTAGE (INTERNAL REFERENCE)  
830  
820  
810  
800  
790  
780  
770  
760  
1.75  
1.73  
1.71  
1.69  
1.67  
1.65  
1.63  
DV = 3V  
DD  
DV = 3V  
DD  
DV = 3V  
DD  
f
= 0  
SAMPLE  
R/W = 0  
600  
500  
400  
300  
T
T
T
T
T
= +85°C  
= +70°C  
= +25°C  
= 0°C  
T
T
T
T
T
= +85°C  
= +70°C  
= +25°C  
= 0°C  
A
A
A
A
A
A
T
T
T
T
T
= +85°C  
= +70°C  
= +25°C  
= 0°C  
A
A
A
200  
100  
0
A
A
A
A
A
A
= -40°C  
= -40°C  
= -40°C  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
AV (V)  
DD  
AV (V)  
DD  
AV (V)  
DD  
DIGITAL SUPPLY CURRENT  
vs. DIGITAL SUPPLY VOLTAGE  
DIGITAL SHUTDOWN CURRENT  
vs. DIGITAL SUPPLY VOLTAGE  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
350  
AV = 5V  
AV = 5V  
DD  
DD  
SAMPLE  
R/W = 0  
f
= 0  
300  
250  
T
= -40°C  
A
T
= +85°C  
A
T
= 0°C  
A
200  
150  
T
= +25°C  
A
T
= +70°C  
A
T
= -40°C  
A
100  
50  
0
T
= +85°C  
A
2.7 3.1 3.5  
3.9 4.3 4.7 5.1  
5.5  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
DV (V)  
DD  
DV (V)  
DD  
GAIN ERROR  
vs. TEMPERATURE  
OFFSET ERROR  
vs. TEMPERATURE  
0.008  
0.006  
0.004  
0.002  
0
800  
600  
400  
200  
0
-0.002  
-0.004  
-0.006  
-0.008  
-200  
-400  
-600  
-800  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
Typical Operating Characteristics (continued)  
(DV  
= +3.0V, AV  
= +5.0V, f  
= 1.7MHz (33% duty cycle), f  
= 58.6ksps, V  
= +4.096V, external reference applied to  
DD  
DD  
SCL  
SAMPLE  
REF  
REF, REFADJ = AV , C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD REF  
A
SUPPLY CURRENT vs. CONVERSION RATE  
(HIGH-SPEED MODE, EXTERNAL REFERENCE)  
SUPPLY CURRENT vs. CONVERSION RATE  
(HIGH-SPEED MODE, INTERNAL REFERENCE)  
900  
2000  
EXTERNAL REFERENCE, f = 1.7MHz  
INTERNAL REFERENCE, f = 1.7MHz  
SCL  
SCL  
1800  
1600  
1400  
1200  
1000  
800  
800  
700  
600  
500  
400  
300  
200  
100  
0
I
, R/W = 1  
AVDD  
I
, R/W = 1 OR 0  
AVDD  
I
, R/W = 0  
AVDD  
600  
I
, R/W = 1 OR 0  
DVDD  
I
, R/W = 1 OR 0  
DVDD  
400  
200  
0
0
10  
20  
30  
40  
50  
60  
70  
0
10  
20  
30  
40  
50  
60  
70  
CONVERSION RATE (ksps)  
CONVERSION RATE (ksps)  
SUPPLY CURRENT vs. CONVERSION RATE  
(FAST MODE, EXTERNAL REFERENCE)  
SUPPLY CURRENT vs. CONVERSION RATE  
(FAST MODE, INTERNAL REFERENCE)  
600  
1800  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
EXTERNAL REFERENCE, f = 400kHz  
SCL  
INTERNAL REFERENCE, f = 400kHz  
SCL  
500  
400  
300  
200  
100  
0
I
, R/W = 1  
AVDD  
I
, R/W = 1 OR 0  
AVDD  
I
, R/W = 0  
AVDD  
I
, R/W = 1 OR 0  
DVDD  
I
, R/W = 1 OR 0  
15  
DVDD  
0
5
10  
15  
20  
25  
0
5
10  
20  
25  
CONVERSION RATE (ksps)  
CONVERSION RATE (ksps)  
8
_______________________________________________________________________________________  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
Typical Operating Characteristics (continued)  
(DV  
= +3.0V, AV  
= +5.0V, f  
= 1.7MHz (33% duty cycle), f  
= 58.6ksps, V  
= +4.096V, external reference applied to  
DD  
DD  
SCL  
SAMPLE  
REF  
REF, REFADJ = AV , C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD REF  
A
INTERNAL +4.096V REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. REF LOAD  
4.100  
4.095  
4.090  
4.085  
4.080  
4.075  
4.20  
4.15  
4.10  
4.05  
4.00  
3.95  
3.90  
f
= 0  
DV = 3V  
DD  
SCL  
INTERNAL REFERENCE MODE  
LOAD APPLIED TO REF  
T
= +85°C  
A
T
T
= +70°C  
= +25°C  
A
A
T
= 0°C  
A
T
= -40°C  
A
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
0
1
2
3
4
5
6
AV (V)  
DD  
I
(mA)  
REF  
EXTERNAL REFERENCE CURRENT AND  
EXTERNAL REFERENCE CURRENT  
vs. EXTERNAL REFERENCE VOLTAGE  
REFERENCE VOLTAGE vs. V  
REFADJ  
MAX1069 toc15  
35  
30  
25  
20  
15  
10  
5
30  
20  
4.25  
4.20  
4.15  
4.10  
4.05  
4.00  
3.95  
AIN = AGNDS  
AIN = AGNDS  
58.6ksps  
= 1.7MHz  
10  
I
REFADJ  
f
SCL  
0
19ksps  
= 400kHz  
f
SCL  
-10  
-20  
-30  
V
REF  
0
0
1
2
3
4
5
6
3.95 4.00 4.05 4.10 4.15 4.20 4.25  
(V)  
V
(V)  
V
REF  
REFADJ  
_______________________________________________________________________________________  
9
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
Typical Operating Characteristics (continued)  
(DV  
= +3.0V, AV  
= +5.0V, f  
= 1.7MHz (33% duty cycle), f  
= 58.6ksps, V = +4.096V, external reference applied to  
REF  
DD  
DD  
SCL  
SAMPLE  
REF, REFADJ = AV , C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD REF  
A
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
SIGNAL-TO-NOISE RATIO  
vs. FREQUENCY  
SPURIOUS-FREE DYNAMIC RANGE  
vs. FREQUENCY  
1.0  
120  
110  
120  
110  
0.8  
0.6  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
4096  
8192  
12288  
16384  
1
10  
100  
1
10  
100  
DIGITAL OUTPUT CODE  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
SINAD vs. FREQUENCY  
0
-10  
1.0  
0.8  
120  
110  
-20  
-30  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0.6  
0.4  
-40  
0.2  
-50  
-60  
0
-70  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-80  
-90  
-100  
-110  
-120  
1
10  
100  
1
10  
100  
0
4096  
8192  
12288  
16384  
FREQUENCY (kHz)  
DIGITAL OUTPUT CODE  
FREQUENCY (kHz)  
FFT  
0
f
= 58.6ksps  
SAMPLE  
f
= 1kHz  
IN(SINE WAVE)  
-20  
-40  
V
= V  
IN  
REF(P-P)  
-60  
-80  
-100  
-120  
-140  
0
5.86  
11.72  
17.56  
23.44  
29.30  
FREQUENCY (kHz)  
10 ______________________________________________________________________________________  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
Pin Description  
PIN  
1
NAME  
DGND  
SCL  
FUNCTION  
Digital Ground  
2
Clock Input  
3
SDA  
Data Input/Output  
4
ADD2  
ADD1  
ADD0  
Address Select Input 2  
5
Address Select Input 1  
6
Address Select Input 0  
7
DV  
AV  
Digital Power Input. Bypass to DGND with a 0.1µF capacitor.  
Analog Power Input. Bypass to AGND with a 0.1µF capacitor.  
Analog Ground  
DD  
DD  
8
9
AGND  
AIN  
10  
11  
Analog Input  
AGNDS  
Analog Signal Ground. Negative reference for analog input. Connect to AGND.  
Internal Reference Output and Reference Buffer Input. Bypass to AGND with a 0.1µF capacitor.  
12  
REFADJ  
Connect REFADJ to AV  
to disable the internal bandgap reference and reference-buffer amplifier.  
DD  
Reference Buffer Output and External Reference Input. Bypass to AGND with a 10µF capacitor  
when using the internal reference.  
13  
14  
REF  
ADD3  
Address Select Input 3  
from +2.7V to +5.5V to ensure compatibility with low-  
Detailed Description  
voltage ASICs. The MAX1069 wakes up in shutdown  
The MAX1069 analog-to-digital converter (ADC) uses  
successive-approximation conversion (SAR) tech-  
niques and on-chip track-and-hold (T/H) circuitry to  
capture and convert an analog signal to a serial 14-bit  
digital output.  
mode when power is applied irrespective of the AV  
DD  
and DV  
sequence.  
DD  
Analog Input and Track/Hold  
The MAX1069 analog input contains a track-and-hold  
(T/H) capacitor, T/H switches, comparator, and a  
switched capacitor digital-to-analog converter (DAC)  
(Figure 5).  
The MAX1069 performs a unipolar conversion on its  
single analog input using its internal 4MHz clock. The  
full-scale analog input range is determined by the inter-  
nal reference or by an externally applied reference volt-  
As shown in Figure 11c, the MAX1069 acquisition peri-  
od is the two clock cycles prior to the conversion peri-  
od. The T/H switches are normally in the hold position.  
During the acquisition period the T/H switches are in  
age ranging from 1V to AV  
.
DD  
The flexible 2-wire serial interface provides easy con-  
nection to microcontrollers (µCs) and supports data  
rates up to 1.7MHz. Figure 3 shows the simplified func-  
tional diagram for the MAX1069 and Figure 4 shows the  
typical application circuit.  
the track position and C  
charges to the analog input  
T/H  
signal. Before a conversion begins, the T/H switches  
move to the hold position retaining the charge on C  
as a sample of the analog input signal.  
T/H  
Power Supply  
To maintain a low-noise environment, the MAX1069  
provides separate analog and digital power-supply  
inputs. The analog circuitry requires a +5V supply and  
consumes only 900µA at sampling rates up to  
58.6ksps. The digital supply voltage accepts voltages  
During the conversion interval, the switched capacitive  
DAC adjusts to restore the comparator input voltage to  
zero within the limits of 14-bit resolution. This is equiva-  
lent to transferring a charge of 35pF × (V  
- V  
)
AGNDS  
AIN  
from C  
to the binary-weighted capacitive DAC,  
T/H  
______________________________________________________________________________________ 11  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
6
5
ADD0  
ADD1  
ADD2  
ADD3  
SDA  
4
CONTROL  
LOGIC  
14  
3
2
SCL  
8
9
7
1
4MHz  
INTERNAL  
OSCILLATOR  
AV  
DV  
DD  
DD  
DGND  
AGND  
CLOCK  
10  
11  
AIN  
OUTPUT SHIFT  
REGISTER  
SAR  
OUT  
ADC  
T/H  
IN  
A
AGNDS  
REF  
= 1.0  
V
5kΩ  
+4.096V  
REFERENCE  
MAX1069  
12  
13  
REFADJ  
REF  
Figure 3. MAX1069 Simplified Functional Diagram  
5.0V  
8
µC  
3.0V  
MAX1069  
AV  
7
DD  
DV  
V
DD  
DD  
6
5
4
0.1µF  
ADD0  
ADD1  
0.1µF  
R
P
R
P
13  
12  
ADD2  
REF  
3
2
10µF  
SDA  
SCL  
SDA  
SCL  
REFADJ  
0.1µF  
10  
11  
ANALOG  
SOURCE  
AIN  
14  
AGNDS  
ADD3  
V
SS  
AGND DGND  
9
1
2
I C ADDRESS IS 0110111  
Figure 4. Typical Application Circuit  
forming a digital representation of the analog input sig-  
nal. During the conversion period, the MAX1069 holds  
SCL low (clock stretching).  
acquisition time by reducing f  
. The MAX1069 pro-  
SCL  
vides two SCL cycles (t  
), in which the track-and-  
ACQ  
hold capacitance must acquire a charge representing  
the input signal. Minimize the input source impedance  
The time required for the T/H to acquire an input signal  
is a function of the analog input source impedance. If  
the input signal source impedance is high, lengthen the  
(R  
) to allow the track-and-hold capacitance to  
SOURCE  
charge within the allotted time. R  
should be  
SOURCE  
less than 12.9kfor f  
= 400kHz and less than 2.4kΩ  
SCL  
12 ______________________________________________________________________________________  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
for f  
= 1.7MHz. R  
is calculated with the fol-  
Internal Clock  
The MAX1069 contains an internal 4MHz oscillator that  
drives the SAR conversion clock. During conversion, SCL  
is held low (clock stretching). An internal register stores  
data when the conversion is in progress. When the  
MAX1069 releases SCL, the master reads the conversion  
results at any clock rate up to 1.7MHz (Figure 11).  
SCL  
SOURCE  
lowing equation:  
2
R
R  
IN  
SOURCE  
N
( )  
× In 2×2 ×C  
IN  
f
SCL  
where R  
is the analog input source impedance,  
SOURCE  
f
is the maximum system SCL frequency, N is 14  
SCL  
Digital Interface  
The MAX1069 features an I2C-compatible, 2-wire serial  
interface consisting of a bidirectional serial data line  
(SDA) and a serial clock line (SCL). SDA and SCL facili-  
tate bidirectional communication between the  
MAX1069 and the master at rates up to 1.7MHz. The  
master (typically a microcontroller) initiates data trans-  
fer on the bus and generates SCL.  
(the number of bits of resolution), C is 35pF (the sum  
IN  
of C  
and input stray capacitance), and R is 800Ω  
T/H  
IN  
(the T/H switch resistances).  
To improve the input-signal bandwidth under AC  
conditions, drive AIN with a wideband buffer  
(>4MHz) that can drive the ADC’s input capacitance  
and settle quickly (see the Input Buffer section).  
SDA and SCL require pullup resistors (500or greater,  
Figure 4). Optional resistors (24) in series with SDA  
and SCL protect the device inputs from high-voltage  
spikes on the bus lines. Series resistors also minimize  
crosstalk and undershoot of the bus signals.  
An RC filter at AIN reduces the input track-and-hold  
switching transient by providing charge for C  
.
T/H  
Analog Input Bandwidth  
The MAX1069 features input-tracking circuitry with a  
4MHz small-signal bandwidth. The 4MHz input band-  
width makes it possible to digitize high-speed transient  
events and measure periodic signals with bandwidths  
exceeding the ADCs sampling rate by using under-  
sampling techniques. Use anti-alias filtering to avoid  
high-frequency signals being aliased into the frequency  
band of interest.  
Bit Transfer  
One data bit is transferred during each SCL clock  
cycle. Nine clock cycles are required to transfer the  
data into or out of the MAX1069. The data on SDA must  
remain stable during the high period of the SCL clock  
pulse as changes in SDA while SCL is high are control  
signals (see the START and STOP Conditions section).  
Both SDA and SCL idle high.  
Analog Input Range and Protection  
Internal ESD (electrostatic discharge) protection diodes  
START and STOP Conditions  
The master initiates a transmission with a START condi-  
tion (S), a high-to-low transition on SDA with SCL high.  
The master terminates a transmission with a STOP con-  
dition (P), a low-to-high transition on SDA while SCL is  
high (Figure 7). The STOP condition frees the bus and  
places all devices in F/S mode (see the Bus Timing  
section). Use a repeated START condition (Sr) in place  
clamp AIN, REF, and REFADJ to AV  
and  
DD  
AGNDS/AGND (Figure 6). These diodes allow the ana-  
log inputs to swing from (AGND - 0.3V) to (AV  
+
DD  
0.3V) without causing damage to the device. For accu-  
rate conversions, the inputs must not go more than  
50mV beyond their rails.  
If the analog inputs exceed 300mV beyond their  
rails, limit the current to 2mA.  
HOLD  
AV  
REF  
DD  
*R  
SOURCE  
AIN  
C
T/H  
MAX1069  
CAPACITIVE  
DAC  
AIN  
REF  
TRACK  
MAX1069  
ANALOG  
SIGNAL  
SOURCE  
AGNDS  
REFADJ  
AGNDS  
AGND  
*MINIMIZE R  
TO ALLOW THE TRACK-AND-HOLD CAPACITANCE (C ) TO  
T/H  
SOURCE  
CHARGE TO THE ANALOG SIGNAL SOURCE VOLTAGE WITHIN THE ALLOTTED TIME (t ).  
ACQ  
Figure 6. Internal Protection Diodes  
Figure 5. Equivalent Input Circuit  
______________________________________________________________________________________ 13  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
S
Sr  
P
SDA  
SCL  
Figure 7. START and STOP Conditions  
S
NOT ACKNOWLEDGE  
SDA  
ACKNOWLEDGE  
8
1
2
9
SCL  
Figure 8. Acknowledge Bits  
of a STOP condition to leave the bus active and in its  
first three bits (MSBs) of the slave address have been  
current timing mode (see the HS-Mode section).  
factory programmed and are always 011. Connecting  
ADD3ADD0 to DV  
or DGND, programs the last four  
DD  
Acknowledge Bits  
Successful data transfers are acknowledged with an  
acknowledge bit (A) or a not-acknowledge bit (A). Both  
the master and the MAX1069 (slave) generate acknowl-  
edge bits. To generate an acknowledge, the receiving  
device must pull SDA low before the rising edge of the  
acknowledge-related clock pulse (ninth pulse) and  
keep it low during the high period of the clock pulse  
(Figure 8). To generate a not acknowledge, the receiver  
allows SDA to be pulled high before the rising edge of  
the acknowledge-related clock pulse and leaves it high  
during the high period of the clock pulse.  
bits (LSBs) of the slave address high or low.  
Since the MAX1069 does not require setup or configu-  
ration, the least significant bit (LSB) of the address byte  
(R/W) controls power-down. In external reference mode  
(REFADJ = AV ), R/W is a dont care. In internal refer-  
DD  
ence mode, setting R/W = 1 places the device in nor-  
mal operation and setting R/W = 0 powers down the  
internal reference following the conversion (see the  
Internal Reference Shutdown section).  
After receiving the address, the MAX1069 (slave)  
issues an acknowledge by pulling SDA low for one  
clock cycle.  
Monitoring the acknowledge bits allows for detection of  
unsuccessful data transfers. An unsuccessful data  
transfer happens if a receiving device is busy or if a  
system fault has occurred. In the event of an unsuc-  
cessful data transfer, the master should reattempt com-  
munication at a later time.  
Bus Timing  
At power-up, the MAX1069 bus timing defaults to fast  
mode (F/S-mode), allowing conversion rates up to  
19ksps. The MAX1069 must operate in high-speed  
mode (HS-mode) to achieve conversion rates up to  
58.6ksps. Figure 1 shows the bus timing for the  
MAX1069 2-wire interface.  
Slave Address  
A master initiates communication with a slave device by  
issuing a START condition followed by a slave address  
byte. As shown in Figure 9, the slave address byte con-  
sists of 7 address bits and a read/write bit (R/W). When  
idle, the MAX1069 continuously waits for a START con-  
dition followed by its slave address. When the  
MAX1069 recognizes its slave address, it acquires the  
analog input signal and prepares for conversion. The  
HS-Mode  
At power-up, the MAX1069 bus timing is set for F/S-  
mode. The master selects HS-mode by addressing all  
devices on the bus with the HS-mode master code 0000  
1XXX (X = dont care). After successfully receiving the  
HS-mode master code, the MAX1069 issues a not  
acknowledge allowing SDA to be pulled high for one  
14 ______________________________________________________________________________________  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
S
ADD3  
4
ADD2  
5
ADD1  
6
ADD0  
7
R/W  
0
1
1
A
9
SDA  
SCL  
ACKNOWLEDGE  
8
1
2
3
Figure 9. MAX1069 Slave Address Byte  
S
Sr  
0
1
0
2
0
3
0
4
1
5
X
6
X
7
X
8
A
SDA  
9
HS-MODE  
F/S-MODE  
Figure 10. F/S-Mode to HS-Mode Transfer  
clock cycle (Figure 10). After the not acknowledge, the  
MAX1069 is in HS-mode. The master must then send a  
repeated START followed by a slave address to initiate  
HS-mode communication. If the master generates a  
STOP condition, the MAX1069 returns to F/S-mode.  
Applications Information  
Power-On Reset  
When power is first applied, internal power-on reset cir-  
cuitry activates the MAX1069 in shutdown. When the  
internal reference is used, allow 12ms for the reference  
Data Byte (Read Cycle)  
Initiate a read cycle to begin a conversion. A read  
cycle begins with the master issuing a START condition  
followed by seven address bits and a read bit (R/W).  
The standard I2C-compatible interface requires that  
R/W = 1 to read from a device, however, since the  
MAX1069 does not require setup or configuration, the  
read mode is inherent and R/W controls power-down  
(see the Internal Reference Shutdown section). If the  
address byte is successfully received, the MAX1069  
(slave) issues an acknowledge and begins conversion.  
to settle when C  
= 10µF and C  
= 0.1µF.  
REF  
REFADJ  
Automatic Shutdown  
The MAX1069 automatic shutdown reduces the supply  
current to less than 0.6µA between conversions. The  
MAX1069 I2C-compatible interface is always active.  
When the MAX1069 receives a valid slave address the  
device powers up. The device is then powered down  
again when the conversion is complete. The automatic  
shutdown function does not change with internal or  
external reference. When the internal reference is cho-  
sen, the internal reference remains active between con-  
versions unless internal reference shutdown is requested  
(see the Internal Reference Shutdown section).  
As seen in Figure 11, the MAX1069 holds SCL low dur-  
ing conversion. When the conversion is complete, SCL  
is released and the master can clock data out of the  
device. The most significant byte of the conversion is  
available first and contains D13 to D6. The least signifi-  
cant byte contains D5 to D0 plus two trailing sub bits  
S1 and S0. Data can be continuously converted as long  
as the master acknowledges the conversion results.  
Issuing a not acknowledge frees the bus allowing the  
master to generate a STOP or repeated START.  
Internal Reference Shutdown  
The R/W bit of the slave address controls the MAX1069  
internal reference shutdown. In external reference  
mode (REFADJ = AV ), R/W is a dont care. In internal  
DD  
reference mode, setting R/W = 1 places the device in  
normal operation and setting R/W = 0 prepares the  
internal reference for shutdown.  
______________________________________________________________________________________ 15  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
MASTER TO SLAVE  
SLAVE TO MASTER  
A. SINGLE CONVERSION  
NUMBER OF BITS  
1
7
1
1
8
1
8
1
1
CLOCK STRETCH  
S
SLAVE ADDRESS  
R
A
RESULT  
A
RESULT  
A
P OR Sr  
(MOST SIGNIFICANT BYTE) (LEAST SIGNIFICANT BYTE)  
t
t
CONV  
ACQ  
B. CONTINUOUS CONVERSIONS  
NUMBER OF BITS  
8
1
8
1
8
1
1
7
1
1
CLOCK STRETCH  
RESULT #1  
A
RESULT #1  
A
RESULT #2  
A
CLOCK STRETCH  
S
SLAVE ADDRESS  
R
A
(MOST SIGNIFICANT BYTE) (LEAST SIGNIFICANT BYTE)  
(MOST SIGNIFICANT BYTE)  
t
t
t
t
CONV  
ACQ  
CONV  
ACQ  
NUMBER OF BITS  
8
1
8
1
1
8
1
CLOCK STRETCH  
RESULT #N  
A
RESULT #N  
A
P OR Sr  
RESULT #2  
A
(MOST SIGNIFICANT BYTE) (LEAST SIGNIFICANT BYTE)  
(LEAST SIGNIFICANT BYTE)  
t
t
CONV  
ACQ  
C. ACQUISITION DETAIL  
SDA  
BIT3  
5
BIT2  
6
BIT1  
7
BIT0  
A
D13  
1
D12  
2
D11  
3
D10  
4
SCL  
8
9
CLOCK STRETCH  
t
AJ  
t
AD  
t
t
ACQ  
CONV  
ANALOG INPUT  
TRACK AND HOLD  
HOLD  
TRACK  
HOLD  
Figure 11. Read Cycle  
valid address byte. Allow 12ms for the internal refer-  
ence to settle before obtaining valid conversion results.  
If the internal reference is used and R/W = 0, shutdown  
occurs when the master issues a not-acknowledge bit  
while reading the conversion results. The internal refer-  
ence and internal reference buffer are disabled during  
shutdown, reducing the analog supply current to less  
than 1µA.  
Reference Voltage  
The MAX1069 provides an internal or accepts an exter-  
nal reference voltage. The ADC input range is from  
V
to V  
(see the Transfer Function section).  
REF  
AGNDS  
A dummy conversion is required to power up the inter-  
nal reference. The MAX1069 internal reference begins  
powering up from shutdown on the 9th falling edge of a  
16 ______________________________________________________________________________________  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
Internal Reference  
The MAX1069 contains an internal 4.096V bandgap ref-  
erence. This bandgap reference is connected to  
REFADJ through a 5kresistor. Bypass REFADJ with a  
0.1µF capacitor to AGND. The MAX1069 reference  
buffer has a unity gain to provide +4.096V at REF.  
Bypass REF with a 10µF capacitor to AGND when the  
internal reference is used (Figure 12).  
4.096V  
= 1.0  
REF 13  
SAR  
ADC  
REF  
10µF  
A
V
REFADJ  
12  
MAX1069  
The internal reference is adjustable to 1.5% using the  
Figure 13 circuit.  
0.1µF  
5kΩ  
4.096V  
External Reference  
BANDGAP  
REFERENCE  
For external reference operation, disable the internal  
reference by connecting REFADJ to AV . During con-  
DD  
DGND  
1
AGND  
9
version, an external reference at REF must deliver up to  
100µA of DC load current and have an output imped-  
ance of less than 10.  
For optimal performance, buffer the reference through  
an op amp and bypass REF with a 10µF capacitor.  
Consider the MAX1069s equivalent input noise  
Figure 12. Internal Reference  
(80µV  
) when choosing a reference.  
RMS  
LSB values. Figure 14 shows the MAX1069 input/output  
(I/O) transfer function.  
Transfer Function  
The MAX1069 has a standard unipolar transfer function  
with a valid analog input voltage range from V to  
Input Buffer  
Most applications require an input buffer amplifier to  
achieve 14-bit accuracy. If the input signal is multi-  
plexed, the input channel should be switched immedi-  
ately after acquisition, rather than near the end of or  
AGNDS  
V
. Output data coding is binary with 1LSB =  
REF  
(V  
/2N) where Nis the number of bits (14). Code  
REF  
transitions occur halfway between successive-integer  
5.0V  
8
AV  
DD  
MAX1069  
0.1µF  
4.096V  
= 1.0  
REF 13  
SAR  
REF  
ADC  
10µF  
A
V
68kΩ  
REFADJ  
12  
100kΩ  
POTENTIOMETER  
0.1µF  
5kΩ  
4.096V  
150kΩ  
BANDGAP  
REFERENCE  
DGND  
1
AGND  
9
Figure 13. Adjusting the Internal Reference  
______________________________________________________________________________________ 17  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
grounds to the star analog ground. Connect the digital  
V
REF  
grounds to the star digital ground. Connect the digital  
ground plane to the analog ground plane at one point.  
For lowest-noise operation, make the ground return to  
the star grounds power-supply low impedance and  
make it as short as possible.  
1LSB =  
16384  
V
REF  
1...111  
1...110  
1...101  
1...100  
High-frequency noise in the AV  
power supply  
DD  
degrades the ADCs high-speed comparator perfor-  
mance. Bypass AV to AGND with a 0.1µF ceramic  
DD  
surface-mount capacitor. Make bypass capacitor con-  
nections as short as possible. If the power supply is  
very noisy, connect a 10resistor in series with AV  
DD  
0...011  
0...010  
0...001  
0...000  
and a 4.7µF capacitor from AV  
lowpass RC filter.  
to AGND to create a  
DD  
0
1
2
3
16381 16383  
Definitions  
INPUT VOLTAGE (LSB)  
AGNDS  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function  
once offset and gain errors have been nullified. The  
MAX1069 INL is measured using the endpoint method.  
Figure 14. Unipolar Transfer Function  
after a conversion. This allows more time for the input  
buffer amplifier to respond to a large step-change in  
input signal. The input amplifier must have a high  
enough slew rate to complete the required output volt-  
age change before the beginning of the acquisition  
time. At the beginning of acquisition, the internal sam-  
pling capacitor array connects to AIN (the amplifier out-  
put), causing some output disturbance.  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1LSB. A  
DNL error specification of less than 1LSB guarantees  
no missing codes and a monotonic transfer function.  
Ensure that the sampled voltage has settled to within  
the required limits before the end of the acquisition  
time. If the frequency of interest is low, AIN can be  
bypassed with a large enough capacitor to charge the  
internal sampling capacitor with very little ripple.  
However, for AC use, AIN must be driven by a wide-  
band buffer (at least 4MHz), which must be stable with  
the ADCs capacitive load (in parallel with any AIN  
bypass capacitor used) and also settle quickly. Refer to  
Maxims website at www.maxim-ic.com for application  
notes on how to choose the optimum buffer amplifier for  
your ADC application.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples (Figure 11).  
Aperture Delay  
Aperture delay (t ) is the time from the falling edge of  
AD  
SCL to the instant when an actual sample is taken  
(Figure 11).  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital sam-  
ples, signal-to-noise ratio (SNR) is the ratio of full-scale  
analog input (RMS value) to the RMS quantization error  
(residual error). The ideal, theoretical minimum analog-  
to-digital noise is caused by quantization error only and  
results directly from the ADCs resolution (N bits):  
Layout, Grounding, and Bypassing  
Careful printed circuit (PC) layout is essential for the  
best system performance. Boards should have sepa-  
rate analog and digital ground planes and ensure that  
digital and analog signals are separated from each  
other. Do not run analog and digital (especially clock)  
lines parallel to one another, or digital lines underneath  
the device package.  
SNR = ((6.02 N) + 1.76)dB  
In reality, noise sources besides quantization noise  
exist, including thermal noise, reference noise, clock jit-  
ter, etc. Therefore, SNR is computed by taking the ratio  
of the RMS signal to the RMS noise, which includes all  
spectral components minus the fundamental, the first  
five harmonics, and the DC offset.  
Figure 4 shows the recommended system ground con-  
nections. Establish an analog ground point at AGND  
and a digital ground point at DGND. Connect all analog  
18 ______________________________________________________________________________________  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
Signal-to-Noise Plus Distortion  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest distortion  
component.  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequencys RMS amplitude to RMS  
equivalent of all other ADC output signals.  
Signal  
Noise  
RMS  
=
SINAD(db) 20 × log  
RMS  
Chip Information  
TRANSISTOR COUNT: 18,269  
PROCESS: BiCMOS  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADCs error consists of quanti-  
zation noise only. With an input range equal to the  
ADCs full-scale range, calculate the ENOB as follows:  
SINAD - 1.76  
6.02  
=
ENOB  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the RMS sum ratio of  
the input signals first five harmonics to the fundamental  
itself, expressed as:  
2
2
2
2
V
+ V + V + V  
3 4 5  
2
=
THD 20 × log  
V
1
where V1 is the fundamental amplitude, and V2 through  
V5 are the amplitudes of the 2nd- through 5th-order  
harmonics.  
______________________________________________________________________________________ 19  
58.6ksps, 14-Bit, 2-Wire Serial ADC  
in a 14-Pin TSSOP  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1069ACUD

58.6ksps, 14-Bit, 2-Wire Serial ADC
MAXIM

MAX1069AEUD

58.6ksps, 14-Bit, 2-Wire Serial ADC in a 14-Pin TSSOP
MAXIM

MAX1069AEUD+

ADC, Successive Approximation, 14-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO14, 4.40 MM, TSSOP-14
MAXIM

MAX1069AEUD+T

ADC, Successive Approximation, 14-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO14, 4.40 MM, TSSOP-14
MAXIM

MAX1069AEUD-T

暂无描述
MAXIM

MAX1069BCUD

58.6ksps, 14-Bit, 2-Wire Serial ADC
MAXIM

MAX1069BCUD+

ADC, Successive Approximation, 14-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO14, 4.40 MM, TSSOP-14
MAXIM

MAX1069BCUD+T

ADC, Successive Approximation, 14-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO14, 4.40 MM, TSSOP-14
MAXIM

MAX1069BCUD-T

ADC, Successive Approximation, 14-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO14, TSSOP-14
MAXIM

MAX1069BEUD

ADC, Successive Approximation, 14-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO14, TSSOP-14
MAXIM

MAX1069BEUD+T

ADC, Successive Approximation, 14-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO14, 4.40 MM, TSSOP-14
MAXIM

MAX1069BEUD-T

暂无描述
MAXIM