MAX1071CTC+ [MAXIM]

暂无描述;
MAX1071CTC+
型号: MAX1071CTC+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

文件: 总18页 (文件大小:514K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3292; Rev 1; 4/09  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
/MAX071  
General Description  
Features  
The MAX1070/MAX1071 low-power, high-speed, serial-  
output, 10-bit, analog-to-digital converters (ADCs) oper-  
ate at up to 1.5Msps. These devices feature true-differen-  
tial inputs, offering better noise immunity, distortion  
improvements, and a wider dynamic range over single-  
ended inputs. A standard SPI™/QSPI™/MICROWIRE™  
interface provides the clock necessary for conversion.  
These devices easily interface with standard digital signal  
processor (DSP) synchronous serial interfaces.  
o 1.5Msps Sampling Rate  
o Only 18mW (typ) Power Dissipation  
o Only 1µA (max) Shutdown Current  
o High-Speed, SPI-Compatible, 3-Wire Serial Interface  
o 61dB S/(N + D) at 525kHz Input Frequency  
o Internal True-Differential Track/Hold (T/H)  
o External Reference  
The MAX1070/MAX1071 operate from a single +2.7V to  
+3.6V supply voltage and require an external reference.  
The MAX1070 has a unipolar analog input, while the  
MAX1071 has a bipolar analog input. These devices fea-  
ture a partial power-down mode and a full power-down  
mode for use between conversions, which lower the sup-  
ply current to 1mA (typ) and 1µA (max), respectively. Also  
o No Pipeline Delays  
o Small 12-Pin TQFN Package  
featured is a separate power-supply input (V ), which  
L
allows direct interfacing to +1.8V to V  
digital logic. The  
DD  
fast conversion speed, low-power dissipation, excellent  
AC performance, and DC accuracy ( 0.5 LSꢀ IꢁL) make  
the MAX1070/MAX1071 ideal for industrial process con-  
trol, motor control, and base-station applications.  
The MAX1070/MAX1071 come in a 12-pin TQFꢁ pack-  
age, and are available in the extended (-40°C to +85°C)  
temperature range.  
Ordering Information  
Applications  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
INPUT  
Data Acquisition  
ꢀill Validation  
MAX1070ETC+T  
MAX1071ETC+T  
-40°C to +85°C 12 TQFꢁ  
-40°C to +85°C 12 TQFꢁ  
Unipolar  
ꢀipolar  
Motor Control  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
Communications  
Portable Instruments  
Typical Operating Circuit  
Pin Configuration  
TOP VIEW  
AIN+  
12  
N.C.  
11  
SCLK  
10  
+1.8V TO V  
DD  
+2.7V TO +3.6V  
0.01μF  
0.01μF  
10μF  
10μF  
AIN-  
REF  
1
2
3
9
8
7
CNVST  
DOUT  
V
V
L
DD  
DIFFERENTIAL  
INPUT  
+
-
DOUT  
AIN+  
AIN-  
MAX1070  
MAX1071  
VOLTAGE  
μC/DSP  
RGND  
V
L
MAX1070  
MAX1071  
CNVST  
SCLK  
REF  
4.7μF  
REF  
4
5
6
0.01μF  
V
N.C.  
GND  
RGND  
GND  
DD  
TQFN  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of ꢁational Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GꢁD..............................................................-0.3V to +6V  
Maximum Current into Any Pin............................................50mA  
V to GꢁD ................-0.3V to the lower of (V  
Digital Inputs  
to GꢁD .................-0.3V to the lower of (V  
Digital Output  
to GꢁD....................-0.3V to the lower of (V + 0.3V) and +6V  
Analog Inputs and  
REF to GꢁD..........-0.3V to the lower of (V  
+ 0.3V) and +6V  
Continuous Power Dissipation (T = +70°C)  
12-Pin TQFꢁ (derate 16.9mW/°C above +70°C) ......1349mW  
Operating Temperature Range  
MAX107_ ETC.................................................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
L
DD  
A
+ 0.3V) and +6V  
DD  
L
+ 0.3V) and +6V  
DD  
RGꢁD to GꢁD .......................................................-0.3V to +0.3V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.7V to +3.6V, V = V , V  
= 2.048V, f  
= 24.0MHz, 50% duty cycle, T = -40°C to +85°C, unless otherwise noted.  
SCLK A  
DD  
L
DD REF  
Typical values are at V  
= 3V and T = +25°C.)  
DD  
A
/MAX071  
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
10  
ꢀits  
LSꢀ  
LSꢀ  
LSꢀ  
Relative Accuracy  
Differential ꢁonlinearity  
Offset Error  
IꢁL  
(ꢁote 1)  
(ꢁote 2)  
0.5  
0.5  
2
DꢁL  
Offset-Error Temperature  
Coefficient  
1
2
ppm/°C  
Gain Error  
Offset nulled  
2
LSꢀ  
Gain Temperature Coefficient  
DYNAMIC SPECIFICATIONS (f = 525kHz sine wave, V = V , unless otherwise noted.)  
REF  
ppm/°C  
IN  
IN  
SIꢁAD  
THD  
60  
61  
-80  
-80  
-78  
15  
2
dꢀ  
dꢀ  
Signal-to-ꢁoise Plus Distortion  
Total Harmonic Distortion  
Up to the 5th harmonic  
-74  
-74  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Power ꢀandwidth  
SFDR  
IMD  
dꢀ  
f
= 250kHz, f  
= 300kHz  
Iꢁ2  
dꢀ  
Iꢁ1  
-3dꢀ point  
MHz  
MHz  
Full-Linear ꢀandwidth  
S/(ꢁ + D) > 56dꢀ, single ended  
CONVERSION RATE  
Minimum Conversion Time  
Maximum Throughput Rate  
Minimum Throughput Rate  
t
(ꢁote 3)  
0.667  
µs  
Msps  
ksps  
ns  
COꢁV  
1.5  
10  
(ꢁote 4)  
(ꢁote 5)  
Track-and-Hold Acquisition Time  
Aperture Delay  
t
125  
5
ACQ  
ns  
Aperture Jitter  
(ꢁote 6)  
(ꢁote 7)  
30  
ps  
External Clock Frequency  
f
24.0  
MHz  
SCLK  
2
_______________________________________________________________________________________  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
/MAX071  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.7V to +3.6V, V = V , V  
= 2.048V, f  
= 24.0MHz, 50% duty cycle, T = -40°C to +85°C, unless otherwise noted.  
SCLK A  
DD  
L
DD REF  
Typical values are at V  
= 3V and T = +25°C.)  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUTS (AIN+, AIN-)  
AIꢁ+ - AIꢁ-, MAX1070  
AIꢁ+ - AIꢁ-, MAX1071  
0
V
REF  
Differential Input Voltage Range  
V
V
Iꢁ  
-V  
/ 2  
+V  
/ 2  
REF  
REF  
Absolute Input Voltage Range  
DC Leakage Current  
0
V
V
DD  
1
µA  
pF  
µA  
Input Capacitance  
Per input pin  
16  
50  
Input Current (Average)  
REFERENCE INPUT (REF)  
Time averaged at maximum throughput rate  
V
+
DD  
REF Input Voltage Range  
V
1.0  
V
REF  
50mV  
Input Capacitance  
20  
pF  
µA  
µA  
DC Leakage Current  
1
Input Current (Average)  
DIGITAL INPUTS (SCLK, CNVST)  
Input-Voltage Low  
Time averaged at maximum throughput rate  
200  
VIL  
0.3 x V  
10  
V
V
L
Input-Voltage High  
VIH  
0.7 x V  
L
Input Leakage Current  
DIGITAL OUTPUT (DOUT)  
Output Load Capacitance  
Output-Voltage Low  
I
0.05  
0.2  
µA  
IL  
C
For stated timing performance  
30  
pF  
V
OUT  
V
I
I
= 5mA, V 1.8V  
0.4  
OL  
OH  
OL  
SIꢁK  
L
Output-Voltage High  
V
= 1mA, V 1.8V  
V - 0.5V  
L
V
SOURCE  
L
Output Leakage Current  
POWER REQUIREMENTS  
Analog Supply Voltage  
Digital Supply Voltage  
I
Output high impedance  
10  
µA  
V
I
2.7  
1.8  
3.6  
V
V
DD  
V
V
L
DD  
7
5
4
Static, f  
= 24.0  
SCLK  
Analog Supply Current,  
ꢁormal Mode  
mA  
Static, no SCLK  
5
8
DD  
Operational, 1.5Msps  
6
f
= 24.0MHz  
1
Analog Supply Current,  
Partial Power-Down Mode  
SCLK  
I
I
mA  
µA  
DD  
ꢁo SCLK  
= 24.0MHz  
1
f
1
Analog Supply Current,  
Full Power-Down Mode  
SCLK  
DD  
ꢁo SCLK  
1
1
0.3  
0.3  
0.15  
Operational, full-scale input at 1.5Msps  
Static, f  
= 24.0MHz  
0.5  
SCLK  
mA  
Digital Supply Current (ꢁote 8)  
Positive-Supply Rejection  
Partial/full power-down mode,  
= 24.0MHz  
0.1  
0.3  
f
SCLK  
Static, no SCLK (all modes)  
1
0.1  
0.2  
µA  
PSR  
Full-scale input, 3V +20%, -10%  
3.0  
mV  
_______________________________________________________________________________________  
3
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
TIMING CHARACTERISTICS  
(V  
= +2.7V to +3.6V, V = V , V  
= 2.048V, f = 24.0MHz, 50% duty cycle, T = -40°C to +85°C, unless otherwise noted.  
SCLK A  
DD  
L
DD REF  
Typical values are at V  
= 3V and T = +25°C.)  
DD  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V = 2.7V to V  
18.7  
L
DD  
SCLK Pulse-Width High  
t
ns  
CH  
V = 1.8V to V , minimum recommended  
(ꢁote 7)  
L
DD  
22.5  
V = 2.7V to V  
18.7  
L
DD  
SCLK Pulse-Width Low  
t
ns  
ns  
CL  
V = 1.8V to V , minimum recommended  
(ꢁote 7)  
L
DD  
22.5  
C = 30pF, V = 2.7V to V  
17  
24  
L
L
DD  
SCLK Rise to DOUT Transition  
t
DOUT  
C = 30pF, V = 1.8V to V  
L
L
DD  
DOUT Remains Valid After SCLK  
CꢁVST Fall to SCLK Fall  
t
V = 1.8V to V  
4
ns  
ns  
DHOLD  
L
DD  
DD  
DD  
t
V = 1.8V to V  
L
10  
20  
SETUP  
CꢁVST Pulse Width  
t
V = 1.8V to V  
L
ns  
CSW  
/MAX071  
Power-Up Time; Full Power-Down  
Restart Time; Partial Power-Down  
t
2
ms  
PWR-UP  
t
16  
Cycles  
RCV  
Note 1: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the gain error and the offset  
error have been nulled.  
Note 2: ꢁo missing codes over temperature.  
Note 3: Conversion time is defined as the number of clock cycles (16) multiplied by the clock period.  
Note 4: At sample rates below 10ksps, the input full-linear bandwidth is reduced to 5kHz.  
Note 5: The listed value of three SCLK cycles is given for full-speed continuous conversions. Acquisition time begins on the 14th ris-  
ing edge of SCLK and terminates on the next falling edge of CꢁST. The IC idles in acquisition mode between conversions.  
Note 6: Undersampling at the maximum signal bandwidth requires the minimum jitter spec for SIꢁAD performance.  
Note 7: 1.5Msps operation guaranteed for V > 2.7V. See the Typical Operating Characteristics section for recommended sampling  
L
speeds for V < 2.7V.  
L
Note 8: Digital supply current is measured with the V level equal to V , and the V level equal to GꢁD.  
IH  
L
IL  
V
L
CNVST  
SCLK  
t
CSW  
6kΩ  
t
CL  
t
SETUP  
t
CH  
DOUT  
DOUT  
6kΩ  
C
L
C
L
t
DHOLD  
t
DOUT  
DOUT  
GND  
b) HIGH-Z TO V , V TO V ,  
OL  
GND  
a) HIGH-Z TO V , V TO V  
,
OH OL  
OH  
OL OH  
AND V TO HIGH-Z  
OH  
AND V TO HIGH-Z  
OL  
Figure 1. Detailed Serial-Interface Timing  
Figure 2. Load Circuits for Enable/Disable Times  
4
_______________________________________________________________________________________  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
/MAX071  
Typical Operating Characteristics  
(V  
DD  
= +3V, V = V , V  
= 2.048V, f  
= 24MHz, f  
= 1.5Msps, T = -40°C to +85°C, unless otherwise noted. Typical val-  
L
DD REF  
SCLK  
SAMPLE A  
ues are at T = +25°C.)  
A
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE (MAX1070)  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE (MAX1071)  
MAXIMUM RECOMMENDED f  
vs. V  
L
SCLK  
25  
23  
21  
19  
17  
0.2  
0.1  
0
0.2  
0.1  
0
-0.1  
-0.2  
-0.1  
-0.2  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
0
256  
512  
768  
1024  
-512  
-256  
0
256  
512  
V (V)  
L
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE (MAX1070)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE (MAX1071)  
OFFSET ERROR  
vs. TEMPERATURE (MAX1070)  
0.2  
0.1  
0
0.2  
0.1  
0
1.00  
0.75  
0.50  
0.25  
0
-0.25  
-0.50  
-0.75  
-1.00  
-0.1  
-0.2  
-0.1  
-0.2  
0
256  
512  
768  
1024  
-512  
-256  
0
256  
512  
-40  
-15  
10  
35  
60  
85  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
TEMPERATURE (°C)  
GAIN ERROR  
vs. TEMPERATURE (MAX1070)  
GAIN ERROR  
vs. TEMPERATURE (MAX1071)  
OFFSET ERROR  
vs. TEMPERATURE (MAX1071)  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
Typical Operating Characteristics (continued)  
(V  
DD  
= +3V, V = V , V  
= 2.048V, f  
= 24MHz, f  
= 1.5Msps, T = -40°C to +85°C, unless otherwise noted. Typical val-  
L
DD REF  
SCLK  
SAMPLE A  
ues are at T = +25°C.)  
A
DYNAMIC PERFORMANCE  
vs. INPUT FREQUENCY (MAX1071)  
DYNAMIC PERFORMANCE  
vs. INPUT FREQUENCY (MAX1070)  
THD vs. INPUT FREQUENCY  
-82  
-84  
-86  
-88  
-90  
-92  
61.5  
61.4  
61.3  
61.2  
61.1  
61.0  
61.5  
61.4  
61.3  
61.2  
61.1  
61.0  
MAX1070  
SNR  
SNR  
MAX1071  
SINAD  
SINAD  
100  
200  
300  
400  
500  
100  
200  
300  
400  
500  
100  
200  
300  
400  
500  
/MAX071  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
SFDR vs. INPUT FREQUENCY  
FFT PLOT (MAX1070)  
FFT PLOT (MAX1071)  
90  
88  
86  
84  
82  
80  
0
-20  
0
-20  
f
= 500kHz  
f = 500kHz  
IN  
IN  
SINAD = 61.2dB  
SNR = 61.2dB  
THD = -83.5dB  
SFDR = 83.8dB  
SINAD = 61.3dB  
SNR = 61.3dB  
THD = -90dB  
-40  
-40  
SFDR = 85.4dB  
MAX1070  
MAX1071  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
100  
200  
300  
400  
500  
0
125  
250  
375  
500  
625  
750  
0
125  
250  
375  
500  
625  
750  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
TOTAL HARMONIC DISTORTION  
vs. SOURCE IMPEDANCE  
TWO-TONE IMD PLOT (MAX1071)  
TWO-TONE IMD PLOT (MAX1070)  
0
0
-20  
-50  
-60  
f
f
= 250.102kHz  
= 299.966kHz  
f
f
= 250.102kHz  
= 299.966kHz  
IN1  
IN2  
IN1  
IN2  
-20  
-40  
IMD = -83.4dB  
IMD = -86.6dB  
-40  
f
= 500kHz  
IN  
f
f
IN1  
IN2  
f
IN2  
f
IN1  
-70  
-60  
-60  
-80  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
f
= 100kHz  
IN  
-90  
-100  
0
125  
250  
375  
500  
625  
750  
0
125  
250  
375  
500  
625  
750  
10  
100  
SOURCE IMPEDANCE (Ω)  
1000  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
/MAX071  
Typical Operating Characteristics (continued)  
(V  
DD  
= +3V, V = V , V  
= 2.048V, f  
= 24MHz, f  
= 1.5Msps, T = -40°C to +85°C, unless otherwise noted. Typical val-  
L
DD REF  
SCLK  
SAMPLE A  
ues are at T = +25°C.)  
A
V PARTIAL/FULL POWER-DOWN  
L
V
DD  
/V FULL POWER-DOWN  
L
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
V
DD  
SUPPLY CURRENT vs. TEMPERATURE  
100  
75  
50  
25  
0
9
6
3
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
CONVERSION  
V = 3V, f  
= 24MHz  
SCLK  
V
, f  
= 24MHz  
L
DD SCLK  
V = 1.8V, f  
L
= 24MHz  
SCLK  
PARTIAL POWER-DOWN  
V , NO SCLK  
L
V
, NO SCLK  
60  
DD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V SUPPLY CURRENT  
vs. CONVERSION RATE  
L
V
SUPPLY CURRENT  
DD  
V SUPPLY CURRENT vs. TEMPERATURE  
L
vs. CONVERSION RATE  
250  
200  
150  
100  
50  
0.5  
0.4  
0.3  
0.2  
0.1  
0
9
6
3
0
CONVERSION, V = 3V  
L
V = 3V  
L
CONVERSION, V = 1.8V  
L
V = 1.8V  
L
0
0
250  
500  
750  
100 1250 1500  
-40  
-15  
10  
35  
60  
85  
0
250  
500  
750 1000 1250 1500  
(kHz)  
f
(kHz)  
TEMPERATURE (°C)  
SAMPLE  
f
SAMPLE  
_______________________________________________________________________________________  
7
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
Pin Description  
PIN  
NAME  
FUNCTION  
1
AIꢁ-  
ꢁegative Analog Input  
External Reference Voltage Input. V  
capacitor and a 4.7µF capacitor to RGꢁD.  
sets the analog input range. ꢀypass REF with a 0.01µF  
REF  
2
3
4
REF  
RGꢁD  
Reference Ground. Connect RGꢁD to GꢁD.  
Positive Analog Supply Voltage (+2.7V to 3.6V). ꢀypass V  
capacitor to GꢁD.  
with a 0.01µF capacitor and a 10µF  
DD  
V
DD  
5, 11  
6
ꢁ.C.  
ꢁo Connection  
GꢁD  
Ground. GꢁD is internally connected to EP.  
Positive Logic Supply Voltage (1.8V to V ). ꢀypass V with a 0.01µF capacitor and a 10µF capacitor  
to GꢁD.  
DD  
L
7
8
9
V
L
DOUT  
Serial Data Output. Data is clocked out on the rising edge of SCLK.  
Convert Start. Forcing CꢁVST high prepares the part for a conversion. Conversion begins on the  
falling edge of CꢁVST. The sampling instant is defined by the falling edge of CꢁVST.  
CꢁVST  
/MAX071  
10  
12  
SCLK  
AIꢁ+  
EP  
Serial Clock Input. Clocks data out of the serial interface. SCLK also sets the conversion speed.  
Positive Analog Input  
Exposed Paddle. EP is internally connected to GꢁD.  
time needed for the signal to be acquired. It is calculated  
by the following equation:  
Detailed Description  
The MAX1070/MAX1071 use an input T/H and succes-  
sive-approximation register (SAR) circuitry to convert  
an analog input signal to a digital 10-bit output. The  
serial interface requires only three digital lines (SCLK,  
CꢁVST, and DOUT) and provides easy interfacing to  
microprocessors (µPs) and DSPs. Figure 3 shows the  
simplified internal structure for the MAX1070/MAX1071.  
t
8 x (RS + R ) x 16pF  
Iꢁ  
ACQ  
where R = 200Ω, and RS is the source impedance of  
the input signal.  
Iꢁ  
Note: t  
is never less than 125ns, and any source  
ACQ  
impedance below 12Ω does not significantly affect the  
ADC’s AC performance.  
True-Differential Analog Input T/H  
The equivalent circuit of Figure 4 shows the input archi-  
tecture of the MAX1070/MAX1071, which is composed of  
a T/H, a comparator, and a switched-capacitor digital-to-  
analog converter (DAC). The T/H enters its tracking mode  
on the 14th SCLK rising edge of the previous conversion.  
Upon power-up, the T/H enters its tracking mode immedi-  
ately. The positive input capacitor is connected to AIꢁ+.  
The negative input capacitor is connected to AIꢁ-. The  
T/H enters its hold mode on the falling edge of CꢁVST  
and the difference between the sampled positive and  
negative input voltages is converted. The time required  
for the T/H to acquire an input signal is determined by  
how quickly its input capacitance is charged. If the input  
signal’s source impedance is high, the acquisition time  
Input Bandwidth  
The ADC’s input-tracking circuitry has a 15MHz small-  
signal bandwidth, making it possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. To avoid high-fre-  
quency signals being aliased into the frequency band  
of interest, anti-alias filtering is recommended.  
Analog Input Protection  
Internal protection diodes that clamp the analog input  
to V  
and GꢁD allow the analog input pins to swing  
DD  
from GꢁD - 0.3V to V  
+ 0.3V without damage. ꢀoth  
DD  
inputs must not exceed V  
accurate conversions.  
or be lower than GꢁD for  
DD  
lengthens. The acquisition time, t  
, is the minimum  
ACQ  
8
_______________________________________________________________________________________  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
/MAX071  
V
L
V
DD  
CAPACITIVE  
DAC  
C
IN+  
R
IN+  
REF  
AIN+  
AIN+  
10-BIT  
SAR  
OUTPUT  
BUFFER  
T/H  
DOUT  
CONTROL  
LOGIC  
V
COMP  
AZ  
ADC  
AIN-  
AIN-  
AIN+  
CNVST  
SCLK  
CONTROL  
LOGIC AND  
TIMING  
R
IN-  
C
IN-  
ACQUISITION MODE  
MAX1070  
MAX1071  
CAPACITIVE  
DAC  
C
IN+  
R
IN+  
RGND  
GND  
Figure 3. Functional Diagram  
CONTROL  
LOGIC  
V
COMP  
AZ  
Serial Interface  
Initialization After Power-Up  
and Starting a Conversion  
AIN-  
R
Upon initial power-up, the MAX1070/MAX1071 require a  
complete conversion cycle to initialize the internal cali-  
bration. Following this initial conversion, the part is ready  
for normal operation. This initialization is only required  
after a hardware power-up sequence and is not required  
after exiting partial or full power-down mode.  
IN-  
C
IN-  
HOLD CONVERSION MODE  
Figure 4. Equivalent Input Circuit  
leading zeros, at least 16 rising clock edges are need-  
ed to shift out these bits. For continuous operation, pull  
CꢁVST high between the 14th and the 16th SCLK ris-  
ing edges. If CꢁVST stays low after the falling edge of  
the 16th SCLK cycle, the DOUT line goes to a high-  
impedance state on either CꢁVST’s rising edge or the  
next SCLK’s rising edge.  
To start a conversion, pull CꢁVST low. At CꢁVST’s  
falling edge, the T/H enters its hold mode and a con-  
version is initiated. SCLK runs the conversion and the  
data can then be shifted out serially on DOUT.  
Timing and Control  
Conversion-start and data-read operations are con-  
trolled by the CꢁVST and SCLK digital inputs. Figures  
1 and 5 show timing diagrams, which outline the serial-  
interface operation.  
Partial Power-Down and  
Full Power-Down Modes  
Power consumption can be reduced significantly by  
placing the MAX1070/MAX1071 in either partial power-  
down mode or full power-down mode. Partial power-  
down mode is ideal for infrequent data sampling and  
fast wake-up time applications. Pull CꢁVST high after  
the 3rd SCLK rising edge and before the 14th SCLK  
rising edge to enter and stay in partial power-down  
mode (see Figure 6). This reduces the supply current  
to 1mA. Drive CꢁVST low and allow at least 14 SCLK  
cycles to elapse before driving CꢁVST high to exit par-  
tial power-down mode.  
A CꢁVST falling edge initiates a conversion sequence:  
the T/H stage holds the input voltage, the ADC begins  
to convert, and DOUT changes from high impedance  
to logic low. SCLK is used to drive the conversion  
process, and it shifts data out as each bit of the con-  
version is determined.  
SCLK begins shifting out the data after the 4th rising  
edge of SCLK. DOUT transitions t  
after each  
DOUT  
SCLK’s rising edge and remains valid 4ns (t  
)
DHOLD  
Full power-down mode is ideal for infrequent data sam-  
pling and very low supply-current applications. The  
MAX1070/MAX1071 have to be in partial power-down  
mode in order to enter full power-down mode. Perform the  
SCLK/CꢁVST sequence described above to enter partial  
after the next rising edge. The 4th rising clock edge  
produces the MSꢀ of the conversion at DOUT, and the  
MSꢀ remains valid 4ns after the 5th rising edge. Since  
there are 10 data bits, 2 sub-bits (S1 and S0), and 3  
_______________________________________________________________________________________  
9
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
CNVST  
t
SETUP  
t
POWER-MODE SELECTION WINDOW  
8
ACQUIRE  
CONTINUOUS-CONVERSION  
SELECTION WINDOW  
1
2
3
4
14  
16  
SCLK  
HIGH IMPEDANCE  
DOUT  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S1  
S0  
Figure 5. Interface-Timing Sequence  
CNVST MUST GO HIGH AFTER THE 3RD BUT BEFORE THE 14TH SCLK RISING EDGE  
DOUT GOES HIGH IMPEDANCE ONCE CNVST GOES HIGH  
CNVST  
SCLK  
ONE 8-BIT TRANSFER  
/MAX071  
1ST SCLK RISING EDGE  
DOUT  
MODE  
0
0
0
D9  
D8  
D7  
D6  
D5  
NORMAL  
PPD  
Figure 6. SPI Interface—Partial Power-Down Mode  
EXECUTE PARTIAL POWER-DOWN TWICE  
SECOND 8-BIT TRANSFER  
CNVST  
FIRST 8-BIT TRANSFER  
SCLK  
DOUT ENTERS TRI-STATE ONCE CNVST GOES HIGH  
1ST SCLK RISING EDGE  
1ST SCLK RISING EDGE  
D6 D5  
DOUT  
0
0
0
D9  
D8  
D7  
0
0
0
0
0
0
0
0
MODE  
NORMAL  
PPD  
RECOVERY  
FPD  
Figure 7. SPI Interface—Full Power-Down Mode  
power-down mode. Then repeat the same sequence to  
enter full power-down mode (see Figure 7). Drive CꢁVST  
low, and allow at least 14 SCLK cycles to elapse before  
driving CꢁVST high to exit full power-down mode. In par-  
tial/full power-down mode, maintain a logic low or a logic  
high on SCLK to minimize power consumption.  
Transfer Function  
Figure 8 shows the unipolar transfer function for the  
MAX1070. Figure 9 shows the bipolar transfer function for  
the MAX1071. The MAX1070 output is straight binary,  
while the MAX1071 output is two’s complement.  
10 ______________________________________________________________________________________  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
/MAX071  
Applications Information  
OUTPUT CODE  
External Reference  
An external reference is required for the MAX1070/  
MAX1071. Use a 4.7µF and 0.01µF bypass capacitor on  
the REF pin for best performance. The reference input  
FULL-SCALE  
TRANSITION  
111...111  
111...110  
111...101  
structure allows a voltage range of +1V to V  
.
DD  
How to Start a Conversion  
An analog-to-digital conversion is initiated by CꢁVST  
and clocked by SCLK, and the resulting data is clocked  
out on DOUT by SCLK. With SCLK idling high or low, a  
falling edge on CꢁVST begins a conversion. This causes  
the analog input stage to transition from track to hold  
mode, and DOUT to transition from high impedance to  
being actively driven low. A total of 16 SCLK cycles are  
required to complete a normal conversion. If CꢁVST is  
low during the 16th falling SCLK edge, DOUT returns to  
high impedance on the next rising edge of CꢁVST or  
SCLK, enabling the serial interface to be shared by multi-  
ple devices. If CꢁVST returns high after the 14th, but  
before the 16th SCLK rising edge, DOUT remains active  
so continuous conversions can be sustained. The high-  
est throughput is achieved when performing continuous  
conversions. Figure 10 illustrates a conversion using a  
typical serial interface.  
FS = V  
REF  
REF  
ZS = 0  
V
1 LSB =  
1024  
000...011  
000...010  
000...001  
000...000  
0
1
2
3
FS  
FS - 3/2 LSB  
DIFFERENTIAL INPUT  
VOLTAGE (LSB)  
Figure 8. Unipolar Transfer Function (MAX1070 Only)  
Connection to  
Standard Interfaces  
OUTPUT CODE  
The MAX1070/MAX1071 serial interface is fully compati-  
ble with SPI/QSPI and MICROWIRE (see Figure 11). If a  
serial interface is available, set the CPU’s serial interface  
in master mode so the CPU generates the serial clock.  
Choose a clock frequency up to 28.8MHz.  
V
FULL-SCALE  
TRANSITION  
REF  
2
FS =  
ZS = 0  
-V  
011...111  
011...110  
REF  
- FS =  
2
V
1024  
REF  
SPI and MICROWIRE  
When using SPI or MICROWIRE, the MAX1070/MAX1071  
are compatible with all four modes programmed with the  
CPHA and CPOL bits in the SPI or MICROWIRE control  
register. Conversion begins with a CꢁVST falling edge.  
DOUT goes low, indicating a conversion is in progress.  
Two consecutive 1-byte reads are required to get the full  
10 bits from the ADC. DOUT transitions on SCLK rising  
1 LSB =  
000...010  
000...001  
000...000  
111...111  
111...110  
111...101  
edges. DOUT is guaranteed to be valid t  
later and  
DOUT  
remains valid until t  
after the following SCLK rising  
DHOLD  
100...001  
100...000  
edge. When using CPOL = 0 and CPHA = 0 or CPOL = 1  
and CPHA = 1, the data is clocked into the µP on the  
following rising edge. When using CPOL = 0 and CPHA  
= 1 or CPOL = 1 and CPHA = 0, the data is clocked  
into the µP on the next falling edge. See Figure 11 for  
connections and Figures 12 and 13 for timing. See the  
Timing Characteristics section to determine the best  
mode to use.  
-FS  
0
FS  
FS - 3/2 LSB  
DIFFERENTIAL INPUT  
VOLTAGE (LSB)  
Figure 9. ꢀipolar Transfer Function (MAX1071 Only)  
______________________________________________________________________________________ 11  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
CNVST  
SCLK  
1
14  
16  
1
DOUT  
0
0
0
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S1  
S0  
0
0
Figure 10. Continuous Conversion with ꢀurst/Continuous Clock  
I/O  
CNVST  
SCLK  
SCK  
MISO  
DOUT  
+3V TO +5V  
/MAX071  
MAX1070  
MAX1071  
SS  
A) SPI  
CS  
CNVST  
SCLK  
SCK  
MISO  
DOUT  
+3V TO +5V  
MAX1070  
MAX1071  
SS  
B) QSPI  
I/O  
SK  
SI  
CNVST  
SCLK  
DOUT  
MAX1070  
MAX1071  
C) MICROWIRE  
Figure 11. Common Serial-Interface Connections to the MAX1070/MAX1071  
12 ______________________________________________________________________________________  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
/MAX071  
CNVST  
8
9
16  
1
SCLK  
DOUT  
HIGH-Z  
HIGH-Z  
D9  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S1  
S0  
D8  
D7  
Figure 12. SPI/MICROWIRE Serial-Interface Timing—Single Conversion (CPOL = CPHA = 0), (CPOL = CPHA = 1)  
CNVST  
SCLK  
DOUT  
14  
16  
1
1
0
0
0
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S1  
S0  
0
0
Figure 13. SPI/MICROWIRE Serial-Interface Timing—Continuous Conversion (CPOL = CPHA = 0), (CPOL = CPHA = 1)  
CNVST  
2
16  
SCLK  
DOUT  
HIGH-Z  
HIGH-Z  
S1  
D9  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S0  
D8  
D7  
Figure 14. QSPI Serial-Interface Timing—Single Conversion (CPOL = 1, CPHA = 1)  
QSPI  
DSP Interface to the TMS320C54_  
Unlike SPI, which requires two 1-byte reads to acquire  
the 10 bits of data from the ADC, QSPI allows the mini-  
mum number of clock cycles necessary to clock in the  
data. The MAX1070/MAX1071 require 16 clock cycles  
from the µP to clock out the 10 bits of data. Figure 14  
shows a transfer using CPOL = 1 and CPHA = 1. The  
conversion result contains three zeros, followed by the  
10 data bits, 2 sub-bits, and a trailing zero with the data  
in MSꢀ-first format.  
The MAX1070/MAX1071 can be directly connected  
to the TMS320C54_ family of DSPs from Texas  
Instruments, Inc. Set the DSP to generate its own  
clocks or use external clock signals. Use either the  
standard or buffered serial port. Figure 15 shows the  
simplest interface between the MAX1070/MAX1071 and  
the TMS320C54_, where the transmit serial clock  
(CLKX) drives the receive serial clock (CLKR) and  
SCLK, and the transmit frame sync (FSX) drives the  
receive frame sync (FSR) and CꢁVST.  
______________________________________________________________________________________ 13  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
V
L
DV  
DD  
MAX1070  
MAX1071  
TMS320C54_  
V
L
DV  
DD  
SCLK  
CNVST  
DOUT  
CLKR  
FSR  
DR  
MAX1070  
MAX1071  
TMS320C54_  
SCLK  
CNVST  
DOUT  
CLKX  
CLKR  
FSX  
FSR  
DR  
CLOCK  
CONVERT  
Figure 16. Interfacing to the TMS320C54_ External Clocks  
Figure 15. Interfacing to the TMS320C54_ Internal Clocks  
This setup allows continuous conversion, provided that  
the DRR is serviced before the next conversion.  
Alternatively, autobuffering can be enabled when using  
the buffered serial port to read the data without CPU  
For continuous conversion, set the serial port to trans-  
mit a clock, and pulse the frame sync signal for a clock  
period before data transmission. The serial-port config-  
uration (SPC) register should be set up with internal  
frame sync (TXM = 1), CLKX driven by an on-chip clock  
source (MCM = 1), burst mode (FSM = 1), and 16-bit  
word length (FO = 0).  
/MAX071  
intervention. Connect the V pin to the TMS320C54_  
L
supply voltage when the MAX1070/MAX1071 are oper-  
ating with an analog supply voltage higher than the  
DSP supply voltage.  
This setup allows continuous conversions provided that  
the data-transmit register (DXR) and the data-receive  
register (DRR) are serviced before the next conversion.  
Alternatively, autobuffering can be enabled when using  
the buffered serial port to execute conversions and  
The MAX1070/MAX1071 can also be connected to the  
TMS320C54_ by using the data transmit (DX) pin to  
drive CꢁVST and the CLKX generated internally to  
drive SCLK. A pullup resistor is required on the CꢁVST  
signal to keep it high when DX goes high impedance  
and 0001hex should be written to the DXR continuously  
for continuous conversions. The power-down modes  
may be entered by writing 00FFhex to the DXR (see  
Figures 17 and 18).  
read the data without CPU intervention. Connect the V  
L
pin to the TMS320C54_ supply voltage when the  
MAX1070/MAX1071 are operating with an analog sup-  
ply voltage higher than the DSP supply voltage. The  
word length can be set to 8 bits with FO = 1 to imple-  
ment the power-down modes. The CꢁVST pin must idle  
high to remain in either power-down state.  
DSP Interface to the ADSP21_ _ _  
The MAX1070/MAX1071 can be directly connected to  
the ADSP21_ _ _ family of DSPs from Analog Devices,  
Inc. Figure 19 shows the direct connection of the  
MAX1070/MAX1071 to the ADSP21_ _ _. There are two  
modes of operation that can be programmed to interface  
with the MAX1070/MAX1071. For continuous conver-  
sions, idle CꢁVST low and pulse it high for one clock  
cycle during the LSꢀ of the previous transmitted word.  
The ADSP21_ _ _ STCTL and SRCTL registers should be  
configured for early framing (LAFR = 0) and for an  
active-high frame (LTFS = 0, LRFS = 0) signal. In this  
mode, the data-independent frame-sync bit (DITFS = 1)  
can be selected to eliminate the need for writing to the  
transmit-data register more than once. For single conver-  
sions, idle CꢁVST high and pulse it low for the entire  
conversion. The ADSP21_ _ _ STCTL and SRCTL  
Another method of connecting the MAX1070/MAX1071  
to the TMS320C54_ is to generate the clock signals  
external to either device. This connection is shown in  
Figure 16 where serial clock (CLOCK) drives the CLKR  
and SCLK and the convert signal (COꢁVERT) drives  
the FSR and CꢁVST.  
The serial port must be set up to accept an external  
receive-clock and external receive-frame sync.  
The SPC register should be written as follows:  
TXM = 0, external frame sync  
MCM = 0, CLKX is taken from the CLKX pin  
FSM = 1, burst mode  
FO = 0, data transmitted/received as 16-bit words  
14 ______________________________________________________________________________________  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
/MAX071  
CNVST  
SCLK  
1
1
S0  
0
0
0
0
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S1  
S0  
0
0
DOUT  
Figure 17. DSP Interface—Continuous Conversion  
CNVST  
SCLK  
DOUT  
1
1
0
0
0
D9 D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
S1 S0  
0
0
0
Figure 18. DSP Interface—Single-Conversion, Continuous/ꢀurst Clock  
registers should be configured for late framing (LAFR =  
1) and for an active-low frame (LTFS = 1, LRFS = 1) sig-  
nal. This is also the best way to enter the power-down  
modes by setting the word length to 8 bits (SLEꢁ =  
supply to the single-point analog ground with 0.01µF  
and 10µF bypass capacitors. Minimize capacitor lead  
lengths for best supply-noise rejection.  
Definitions  
1001). Connect the V pin to the ADSP21_ _ _ supply  
L
voltage when the MAX1070/MAX1071 are operating with  
a supply voltage higher than the DSP supply voltage  
(see Figures 17 and 18).  
Integral Nonlinearity  
Integral nonlinearity (IꢁL) is the deviation of the values on  
an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. The static  
linearity parameters for the MAX1070/MAX1071 are mea-  
sured using the end-points method.  
Layout, Grounding, and Bypassing  
For best performance, use PC boards. Wire-wrap  
boards are not recommended. ꢀoard layout should  
ensure that digital and analog signal lines are separat-  
ed from each other. Do not run analog and digital  
(especially clock) lines parallel to one another, or digital  
lines underneath the ADC package.  
Differential Nonlinearity  
Differential nonlinearity (DꢁL) is the difference between  
an actual step width and the ideal value of 1 LSꢀ. A DꢁL  
error specification of 1 LSꢀ or less guarantees no missing  
codes and a monotonic transfer function.  
Figure 20 shows the recommended system ground  
connections. Establish a single-point analog ground  
(star ground point) at GꢁD, separate from the logic  
ground. Connect all other analog grounds and DGꢁD  
to this star ground point for further noise reduction. The  
ground return to the power supply for this ground  
should be low impedance and as short as possible for  
noise-free operation.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
falling edge of CꢁVST and the instant when an actual  
sample is taken.  
High-frequency noise in the V  
power supply can  
DD  
affect the ADC’s high-speed comparator. ꢀypass this  
______________________________________________________________________________________ 15  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
V
L
VDDINT  
TCLK  
RCLK  
TFS  
SUPPLIES  
GND  
MAX1070  
MAX1071  
SCLK  
CNVST  
DOUT  
ADSP21_ _ _  
V
DD  
V
L
10μF  
RFS  
10μF  
DR  
0.1μF  
0.1μF  
Figure 19. Interfacing to the ADSP21_ _ _  
V
DD  
V
L
GND RGND  
DGND  
V
L
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital sam-  
ples, signal-to-noise ratio (SꢁR) is the ratio of full-scale  
analog input (RMS value) to the RMS quantization error  
(residual error). The theoretical minimum analog-to-digital  
noise is caused by quantization error, and results directly  
from the ADC’s resolution (ꢁ bits):  
DIGITAL  
CIRCUITRY  
MAX1070  
MAX1071  
/MAX071  
Figure 20. Power-Supply Grounding Condition  
SꢁR = (6.02 x ꢁ + 1.76)dꢀ  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
In reality, there are other noise sources besides quantiza-  
tion noise, including thermal noise, reference noise, clock  
jitter, etc. Therefore, SꢁR is computed by taking the ratio  
of the RMS signal to the RMS noise, which includes all  
spectral components minus the fundamental, the first five  
harmonics, and the DC offset.  
2
2
2
2
V
+ V + V + V  
3 4 5  
2
THD = 20 x log  
V
1
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SIꢁAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all other ADC output signals:  
where V is the fundamental amplitude, and V through  
1
2
V
are the amplitudes of the 2nd- through 5th-order  
harmonics.  
5
SIꢁAD(dꢀ) = 20 x log (Signal  
/ ꢁoise  
)
RMS  
RMS  
Effective Number of Bits  
Effective number of bits (EꢁOꢀ) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quantiza-  
tion noise only. With an input range equal to the full-scale  
range of the ADC, calculate the EꢁOꢀ as follows:  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest distor-  
tion component.  
Full-Power Bandwidth  
Full-power bandwidth is the frequency at which the input  
signal amplitude attenuates by 3dꢀ for a full-scale input.  
(SIꢁAD 1.76)  
EꢁOꢀ =  
6.02  
16 ______________________________________________________________________________________  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
/MAX071  
The intermodulation products are as follows:  
Full-Linear Bandwidth  
Full-linear bandwidth is the frequency at which the sig-  
nal-to-noise plus distortion (SIꢁAD) is equal to 56dꢀ.  
• 2nd-order intermodulation products (IM2): f + f ,  
1
2
f - f  
2
1
Intermodulation Distortion  
Any device with nonlinearities creates distortion prod-  
ucts when two sine waves at two different frequencies  
(f1 and f2) are input into the device. Intermodulation  
distortion (IMD) is the total power of the IM2 to IM5  
intermodulation products to the ꢁyquist frequency rela-  
tive to the total input power of the two input tones, f1  
and f2. The individual input tone levels are at -7dꢀFS.  
• 3rd-order intermodulation products (IM3): 2f - f ,  
1
2
2f - f , 2f + f , 2f + f  
1
2
1
1
2
2
• 4th-order intermodulation products (IM4): 3f - f ,  
1
2
3f - f , 3f + f , 3f + f  
1
2
1
1
2
2
• 5th-order intermodulation products (IM5): 3f - 2f ,  
1
2
3f - 2f , 3f + 2f , 3f + 2f  
1
2
1
1
2
2
Package Information  
Chip Information  
TRAꢁSISTOR COUꢁT: 13,016  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages.  
PROCESS: ꢀiCMOS  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
12 TQFꢁ  
T1244+3  
21-0139  
______________________________________________________________________________________ 17  
1.5Msps, Single-Supply, Low-Power,  
True-Differential, 10-Bit ADCs  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
5/04  
4/09  
Initial release  
Removed commercial temperature grade parts from data sheet  
1–7  
/MAX071  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. ꢁo circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1071CTC-T

1.5Msps, Single-Supply, Low-Power, True-Differential, 10-Bit ADCs
MAXIM

MAX1071ETC+T

1.5Msps, Single-Supply, Low-Power, True-Differential, 10-Bit ADCs
MAXIM

MAX1071ETC-T

1.5Msps, Single-Supply, Low-Power, True-Differential, 10-Bit ADCs
MAXIM

MAX1072

1.8Msps, Single-Supply, Low-Power, True-Differential, 10-Bit ADCs
MAXIM

MAX1072CTC

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, TQFN-12
MAXIM

MAX1072CTC-T

1.8Msps, Single-Supply, Low-Power, True-Differential, 10-Bit ADCs
MAXIM

MAX1072ETC

A/D Converter, 10-Bit, 1 Func, BICMOS, PQCC12
MAXIM

MAX1072ETC+

ADC, Successive Approximation, 10-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, 4 X 4 MM, 0.80 MM, MO-220, TQFN-12
MAXIM

MAX1072ETC+T

1.8Msps, Single-Supply, Low-Power, True-Differential, 10-Bit ADCs
MAXIM

MAX1072ETC-T

1.8Msps, Single-Supply, Low-Power, True-Differential, 10-Bit ADCs
MAXIM

MAX1072_09

1.8Msps, Single-Supply, Low-Power, True-Differential, 10-Bit ADCs
MAXIM

MAX1072|MAX1075

1.8Msps. Single-Supply. Low-Power. True-Differential. 10-Bit ADCs
MAXIM