MAX1081 [MAXIM]

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference; 高达300ksps / 400ksps ,单电源,低功耗, 8通道,串行10位ADC ,内置电压基准
MAX1081
型号: MAX1081
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference
高达300ksps / 400ksps ,单电源,低功耗, 8通道,串行10位ADC ,内置电压基准

文件: 总24页 (文件大小:550K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1685; Rev 0; 5/00  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
General Description  
Features  
The MAX1080/MAX1081 10-bit analog-to-digital convert-  
ers (ADCs) combine an 8-channel analog-input multiplex-  
er, high-bandwidth track/hold (T/H), and serial interface  
with high conversion speed and low power consumption.  
The MAX1080 operates from a single +4.5V to +5.5V sup-  
ply; the MAX1081 operates from a single +2.7V to +3.6V  
supply. Both devices’ analog inputs are software config-  
urable for unipolar/bipolar and single-ended/pseudo-dif-  
ferential operation.  
o 8-Channel Single-Ended or 4-Channel  
Pseudo-Differential Inputs  
o Internal Multiplexer and Track/Hold  
o Single-Supply Operation  
+4.5V to +5.5V (MAX1080)  
+2.7V to +3.6V (MAX1081)  
o Internal +2.5V Reference  
o 400ksps Sampling Rate (MAX1080)  
o Low Power: 2.5mA (400ksps)  
1.3mA (REDP)  
The 4-wire serial interface connects directly to  
SPI™/QSPI™ and MICROWIRE™ devices without external  
logic. A serial strobe output allows direct connection to  
TMS320-family digital signal processors. The MAX1080/  
MAX1081 use an external serial-interface clock to perform  
successive-approximation analog-to-digital conversions.  
The devices feature an internal +2.5V reference and a ref-  
erence-buffer amplifier with a 1.5ꢀ voltage-adꢁustment  
0.9mA (FASTPD)  
2µA (FULLPD)  
range. An external reference with a 1V to V  
also be used.  
range may  
o SPI/QSPI/MICROWIRE/TMS320-Compatible 4-Wire  
DD1  
Serial Interface  
The MAX1080/MAX1081 provide a hard-wired SHDN pin  
and four software-selectable power modes (normal opera-  
tion, reduced power (REDP), fast power-down (FASTPD),  
and full power-down (FULLPD)). These devices can be  
programmed to automatically shut down at the end of a  
conversion or to operate with reduced power. When using  
the power-down modes, accessing the serial interface  
automatically powers up the devices, and the quick turn-  
on time allows them to be shut down between all conver-  
sions. This technique can cut supply current below 100mA  
at lower sampling rates.  
o Software-Configurable Unipolar or Bipolar Inputs  
o 20-Pin TSSOP Package  
Ordering Information  
TEMP.  
RANGE  
PIN-  
PACKAGE  
INL  
(LSB)  
PART  
MAX1080ACUP  
0°C to +70°C  
0°C to +70°C  
20 TSSOP  
20 TSSOP  
20 TSSOP  
1/2  
1
MAX1080BCUP  
MAX1080AEUP -40°C to +85°C  
1/2  
The MAX1080/MAX1081 are available in a 20-pin TSSOP  
package. These devices are higher-speed versions of the  
MAX148/MAX149. For more information, refer to the  
respective data sheet.  
Ordering Information continued at end of data sheet.  
Pin Configuration  
TOP VIEW  
Applications  
20  
19  
18  
17  
CH0  
CH1  
1
2
V
DD1  
Portable Data Logging  
Data Acquisition  
V
DD2  
SCLK  
CS  
CH2  
3
Medical Instruments  
Battery-Powered Instruments  
Pen Digitizers  
MAX1080  
MAX1081  
CH3  
4
5
CH4  
16 DIN  
CH5  
6
15 SSTRB  
Process Control  
CH6  
14  
13  
12  
11  
DOUT  
7
8
CH7  
GND  
REFADJ  
9
COM  
SHDN  
Typical Operating Circuit appears at end of data sheet.  
REF  
10  
SPI and QSPI are trademarks of Motorola, Inc.  
TSSOP  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
ABSOLUTE MAXIMUM RATINGS  
V
V
to GND .............................................................. -0.3V to 6V  
Continuous Power Dissipation (T = +70°C)  
20-Pin TSSOP (derate 7.0mW/°C above +70°C) ........ 559mW  
Operating Temperature Ranges  
MAX108_ _CUP ................................................. 0°C to +70°C  
MAX108_ _EUP............................................... -40°C to +85°C  
Storage Temperature Range............................ -60°C to +150°C  
Lead Temperature (soldering, 10s) ................................ +300°C  
DD_  
A
to V  
......................................................... -0.3V to 0.3V  
DD1  
DD2  
CH0–CH7, COM to GND.......................... -0.3V to (V  
REF, REFADJ to GND .............................. -0.3V to (V  
Digital Inputs to GND................................................. -0.3V to 6V  
Digital Outputs to GND ............................ -0.3V to (V + 0.3V)  
+ 0.3V)  
+ 0.3V)  
DD1  
DD1  
DD2  
Digital Output Sink Current .................................................25mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX1080  
(V  
= V  
= +4.5V to +5.5V, COM = GND, f  
DD2  
= 6.4MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (400ksps), external  
, unless otherwise noted. Typical values are at T = +25°C.)  
DD1  
SCLK  
+2.5V at REF, REFADJ = V  
, T = T  
DD1  
to T  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (Note 1)  
Resolution  
10  
Bits  
MAX1080A  
MAX1080B  
No missing codes over temperature  
0.5  
1.0  
1.0  
3.0  
3.0  
Relative Accuracy (Note 2)  
INL  
LSB  
Differential Nonlinearity  
Offset Error  
DNL  
LSB  
LSB  
LSB  
Gain Error (Note 3)  
Gain-Error Temperature  
Coefficient  
0.8  
0.1  
ppm/°C  
LSB  
Channel-to-Channel Offset-Error  
Matching  
DYNAMIC SPECIFICATIONS (100kHz sine-wave input, 2.5Vp-p, 400ksps, 6.4MHz clock, bipolar input mode)  
Signal-to-Noise plus Distortion  
Ratio  
SINAD  
60  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
THD  
SFDR  
IMD  
Up to the 5th harmonic  
-70  
70  
76  
dB  
dB  
dB  
f
f
= 99kHz, f  
=102kHz  
IN1  
IN2  
Channel-to-Channel Crosstalk  
(Note 4)  
= 200kHz, V = 2.5Vp-p  
-78  
dB  
IN  
IN  
Full-Power Bandwidth  
Full-Linear Bandwidth  
CONVERSION RATE  
Conversion Time (Note 5)  
Track/Hold Acquisition Time  
Aperture Delay  
-3dB point  
6
MHz  
kHz  
SINAD > 58dB  
350  
t
2.5  
µs  
ns  
CONV  
t
468  
ACQ  
10  
ns  
Aperture Jitter  
<50  
ps  
Serial Clock Frequency  
Duty Cycle  
f
0.5  
40  
6.4  
60  
MHz  
SCLK  
2
_______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1080 (continued)  
(V  
= V  
= +4.5V to +5.5V, COM = GND, f  
DD2  
= 6.4MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (400ksps), external  
, unless otherwise noted. Typical values are at T = +25°C.)  
DD1  
SCLK  
+2.5V at REF, REFADJ = V  
, T = T  
DD1  
to T  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUTS (CH7–CH0, COM)  
Unipolar, V  
= 0  
V
REF  
COM  
Input Voltage Range, Single  
Ended and Differential (Note 6)  
V
CH_  
V
Bipolar, V  
or V  
= V /2, referenced  
REF  
COM  
CH_  
V /2  
REF  
to COM or CH_  
Multiplexer Leakage Current  
Input Capacitance  
On/off leakage current, V  
= 0 or V  
µA  
pF  
0.001  
18  
1
CH_  
DD1  
INTERNAL REFERENCE  
REF Output Voltage  
V
REF  
T
A
= +25°C  
2.480  
2.500 2.520  
30  
V
REF Short-Circuit Current  
mA  
REF Output Temperature  
Coefficient  
TC V  
15  
ppm/°C  
REF  
Load Regulation (Note 7)  
Capacitive Bypass at REF  
Capacitive Bypass at REFADJ  
REFADJ Output Voltage  
REFADJ Input Range  
0 to 1mA output load  
0.1  
2.0  
10  
10  
mV/mA  
µF  
4.7  
0.01  
µF  
1.22  
100  
V
For small adꢁustments, from 1.22V  
To power down the internal reference  
mV  
REFADJ Buffer Disable  
Threshold  
1.4  
1.0  
V
- 1.0  
V
DD1  
Buffer Voltage Gain  
+2.05  
200  
V/V  
EXTERNAL REFERENCE (reference buffer disabled, reference applied to REF)  
V
+
DD1  
50mV  
REF Input Voltage Range  
(Note 8)  
V
V
V
= 2.500V, f  
= 2.500V, f  
= 6.4MHz  
= 0  
350  
320  
5
REF  
SCLK  
REF Input Current  
µA  
REF  
SCLK  
In power-down mode, f  
= 0  
SCLK  
DIGITAL INPUTS (DIN, SCLK, CS, SHDN)  
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
Input Leakage  
V
3.0  
V
V
INH  
V
0.8  
1
INL  
V
HYST  
0.2  
15  
V
I
V
IN  
= 0 or V  
DD2  
µA  
pF  
IN  
Input Capacitance  
C
IN  
DIGITAL OUTPUTS (DOUT, SSTRB)  
Output Voltage Low  
V
I
I
= 5mA  
0.4  
10  
V
V
OL  
SINK  
Output Voltage High  
V
OH  
= 1mA  
SOURCE  
4
Three-State Leakage Current  
I
µA  
pF  
CS = 5V  
CS = 5V  
L
Three-State Output Capacitance  
C
15  
OUT  
_______________________________________________________________________________________  
3
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1080 (continued)  
(V  
= V  
= +4.5V to +5.5V, COM = GND, f  
DD2  
= 6.4MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (400ksps), external  
, unless otherwise noted. Typical values are at T = +25°C.)  
DD1  
SCLK  
+2.5V at REF, REFADJ = V  
, T = T  
DD1  
to T  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
POWER SUPPLY  
Positive Supply Voltage  
(Note 9)  
V
DD1,  
4.5  
5.5  
V
DD2  
Normal operating mode (Note 10)  
Reduced-power mode (Note 11)  
Fast power-down mode (Note 11)  
Full power-down mode (Note 11)  
2.5  
1.3  
0.9  
2
4.0  
2.0  
1.5  
10  
V
V
5.5V  
=
=
DD1  
DD2  
mA  
Supply Current  
I
VDD1+  
I
VDD2  
µA  
Power-Supply Reꢁection  
PSR  
V
DD1  
= V  
= 5V 10ꢀ, midscale input  
0.5  
2.0  
mV  
DD2  
ELECTRICAL CHARACTERISTICS—MAX1081  
(V  
= V  
= +2.7V to +3.6V, COM = GND, f  
DD2  
= 4.8MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (300ksps), external  
, unless otherwise noted. Typical values are at T = +25°C.)  
DD1  
SCLK  
+2.5V at REF, REFADJ = V  
, T = T  
DD1  
to T  
A
MIN  
MAX A  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
10  
Bits  
MAX1081A  
MAX1081B  
No missing codes over temperature  
0.5  
1.0  
1.0  
3.0  
3.0  
Relative Accuracy (Note 2)  
INL  
LSB  
Differential Nonlinearity  
Offset Error  
DNL  
LSB  
LSB  
LSB  
Gain Error (Note 3)  
Gain-Error Temperature  
Coefficient  
1.6  
0.2  
ppm/°C  
LSB  
Channel-to-Channel Offset-Error  
Matching  
DYNAMIC SPECIFICATIONS (75kHz sine-wave input, 2.5Vp-p, 300ksps, 4.8MHz clock, bipolar input mode)  
Signal-to-Noise plus Distortion  
Ratio  
SINAD  
60  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
THD  
SFDR  
IMD  
Up to the 5th harmonic  
-70  
70  
76  
dB  
dB  
dB  
f
f
= 73kHz, f  
= 77kHz  
IN1  
IN2  
Channel-to-Channel Crosstalk  
(Note 4)  
= 150kHz, V = 2.5Vp-p  
-78  
dB  
IN  
IN  
Full-Power Bandwidth  
Full-Linear Bandwidth  
-3dB point  
3
MHz  
kHz  
SINAD > 58dB  
250  
4
_______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1081 (continued)  
(V  
= V  
= +2.7V to +3.6V, COM = GND, f  
DD2  
= 4.8MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (300ksps), external  
, unless otherwise noted. Typical values are at T = +25°C.)  
DD1  
SCLK  
+2.5V at REF, REFADJ = V  
, T = T  
DD1  
to T  
A
MIN  
MAX A  
PARAMETER  
CONVERSION RATE  
Conversion Time (Note 5)  
SYMBOL  
CONDITIONS  
Normal operating mode  
MIN  
TYP  
MAX  
UNITS  
t
3.3  
µs  
ns  
CONV  
Track/Hold Acquisition Time  
Aperture Delay  
t
Normal operating mode  
625  
ACQ  
10  
ns  
Aperture Jitter  
<50  
ps  
Serial Clock Frequency  
Duty Cycle  
f
Normal operating mode  
0.5  
40  
4.8  
60  
MHz  
SCLK  
ANALOG INPUTS (CH7–CH0, COM)  
Unipolar, V  
= 0  
V
REF  
COM  
Input Voltage Range, Single  
Ended and Differential (Note 6)  
V
CH_  
V
Bipolar, V  
or V  
= V /2,  
REF  
COM  
CH_  
V /2  
REF  
referenced to COM or CH_  
Multiplexer Leakage Current  
Input Capacitance  
On/off leakage current, V  
= 0 or V  
µA  
pF  
0.001  
18  
1
CH_  
DD1  
INTERNAL REFERENCE  
REF Output Voltage  
V
REF  
T
A
= +25°C  
2.480  
2.500 2.520  
15  
V
REF Short-Circuit Current  
mA  
REF Output Temperature  
Coefficient  
TC V  
15  
ppm/°C  
REF  
Load Regulation (Note 7)  
Capacitive Bypass at REF  
Capacitive Bypass at REFADJ  
REFADJ Output Voltage  
REFADJ Input Range  
0 to 0.75mA output load  
0.1  
2.0  
10  
10  
mV/mA  
µF  
4.7  
0.01  
µF  
1.22  
100  
V
For small adꢁustments, from 1.22V  
To power down the internal reference  
mV  
REFADJ Buffer Disable  
Threshold  
1.4  
1.0  
V
- 1  
+
V
DD1  
Buffer Voltage Gain  
+2.05  
V/V  
EXTERNALREFERENCE (reference buffer disabled, reference applied to REF)  
V
DD1  
50mV  
REF Input Voltage Range  
(Note 8)  
V
V
V
= 2.500V, f  
= 2.500V, f  
= 4.8MHz  
= 0  
200  
350  
320  
5
REF  
SCLK  
REF Input Current  
µA  
REF  
SCLK  
In power-down mode, f  
= 0  
SCLK  
DIGITAL INPUTS (DIN, SCLK, CS, SHDN)  
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
Input Leakage  
V
2.0  
V
V
INH  
V
0.8  
1
INL  
V
HYST  
0.2  
15  
V
I
V
IN  
= 0 or V  
DD2  
µA  
pF  
IN  
Input Capacitance  
C
IN  
_______________________________________________________________________________________  
5
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1081 (continued)  
(V  
= V  
= +2.7V to +3.6V, COM = GND, f  
DD2  
= 4.8MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (300ksps), external  
, unless otherwise noted. Typical values are at T = +25°C.)  
DD1  
SCLK  
+2.5V at REF, REFADJ = V  
, T = T  
DD1  
to T  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
0.4  
UNITS  
DIGITAL OUTPUTS (DOUT, SSTRB)  
Output Voltage Low  
V
OL  
I
I
= 5mA  
V
V
SINK  
Output Voltage High  
V
OH  
= 0.5mA  
V
- 0.5V  
SOURCE  
DD2  
Three-State Leakage Current  
I
10  
µA  
pF  
CS = 3V  
CS = 3V  
L
Three-State Output Capacitance  
C
15  
OUT  
POWER SUPPLY  
Positive Supply Voltage  
(Note 9)  
V
DD1,  
2.7  
3.6  
V
V
DD2  
Normal operating mode (Note 10)  
Reduced-power mode (Note 11)  
Fast power-down mode (Note 11)  
Full power-down mode (Note 11)  
2.5  
1.3  
0.9  
2
3.5  
2.0  
1.5  
10  
V
V
3.6V  
=
=
DD1  
DD2  
mA  
I
+
VDD2  
VDD1  
I
Supply Current  
µA  
Power-Supply Reꢁection  
PSR  
V
DD1  
= V  
= 2.7V to 3.6V, midscale input  
0.5  
2.0  
mV  
DD2  
TIMING CHARACTERISTICS–MAX1080  
(Figures 1, 2, 6, 7; V  
= V  
= +4.5V to +5.5V, T = T  
A
to T  
, unless otherwise noted.)  
MAX  
DD1  
DD2  
MIN  
PARAMETER  
SCLK Period  
SYMBOL  
CONDITIONS  
MIN  
156  
62  
62  
35  
0
TYP  
MAX  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
CP  
CH  
SCLK Pulse Width High  
SCLK Pulse Width Low  
DIN to SCLK Setup  
DIN to SCLK Hold  
t
t
CL  
DS  
DH  
t
t
t
35  
0
CS Fall to SCLK Rise Setup  
SCLK Rise to CS Rise Hold  
SCLK Rise to CS Fall Ignore  
CS Rise to SCLK Rise Ignore  
SCLK Rise to DOUT Hold  
SCLK Rise to SSTRB Hold  
SCLK Rise to DOUT Valid  
SCLK Rise to SSTRB Valid  
CS Rise to DOUT Disable  
CS Rise to SSTRB Disable  
CS Fall to DOUT Enable  
CS Fall to SSTRB Enable  
CS Pulse Width High  
CSS  
t
CSH  
CSO  
t
35  
35  
10  
10  
t
CS1  
t
t
t
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
20  
20  
DOH  
t
STH  
80  
80  
65  
65  
65  
65  
DOV  
t
STV  
10  
10  
DOD  
t
STD  
t
DOE  
t
STE  
t
100  
CSW  
6
_______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
TIMING CHARACTERISTICS—MAX1081  
(Figures 1, 2, 6, 7; V  
= V  
= +2.7V to +3.6V, T = T  
A
to T  
, unless otherwise noted.)  
MAX  
DD1  
DD2  
MIN  
PARAMETER  
SCLK Period  
SYMBOL  
CONDITIONS  
MIN  
208  
83  
83  
45  
0
TYP  
MAX  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
CP  
CH  
SCLK Pulse Width High  
SCLK Pulse Width Low  
DIN to SCLK Setup  
DIN to SCLK Hold  
t
t
CL  
DS  
DH  
t
t
t
45  
0
CS Fall to SCLK Rise Setup  
SCLK Rise to CS Rise Hold  
SCLK Rise to CS Fall ignore  
CS Rise to SCLK Rise Ignore  
SCLK Rise to DOUT Hold  
SCLK Rise to SSTRB Hold  
SCLK Rise to DOUT Valid  
SCLK Rise to SSTRB Valid  
CS Rise to DOUT Disable  
CS Rise to SSTRB Disable  
CS Fall to DOUT Enable  
CS Fall to SSTRB Enable  
CS Pulse Width High  
CSS  
t
CSH  
CSO  
t
45  
45  
13  
13  
t
CS1  
t
t
t
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
20  
20  
DOH  
t
STH  
100  
100  
85  
DOV  
t
STV  
13  
13  
DOD  
t
85  
STD  
t
85  
DOE  
t
85  
STE  
t
100  
CSW  
Note 1: Tested at V  
= V  
= V  
, COM = GND, unipolar single-ended input mode.  
DD1  
DD2  
DD(MIN)  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 3: Offset nulled.  
Note 4: Ground the “on” channel; sine wave is applied to all “off” channels.  
Note 5: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50ꢀ duty cycle.  
Note 6: The common-mode range for the analog inputs (CH7–CH0 and COM) is from GND to V  
.
DD1  
Note 7: External load should not change during conversion for specified accuracy. Guaranteed specification of 2mV/mA is the  
result of production test limitations.  
Note 8: ADC performance is limited by the converter’s noise floor, typically 300µVp-p.  
Note 9: Electrical characteristics are guaranteed from V  
= V  
to V  
= V  
. For operations beyond  
DD1(MIN)  
DD2(MIN)  
DD1(MAX)  
DD2(MIN)  
this range, see Typical Operating Characteristics. For guaranteed specifications beyond the limits, contact the factory.  
Note 10: AIN= midscale. Unipolar mode. MAX1080 tested with 20pF on DOUT, 20pF on SSTRB, and f = 6.4MHz, 0 to 5V.  
SCLK  
MAX1081 tested with same loads, f  
= 4.8MHz, 0 to 3V.  
SCLK  
Note 11: SCLK = DIN = GND, CS = V  
.
DD1  
_______________________________________________________________________________________  
7
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
Typical Operating Characteristics  
(MAX1080: V  
= V  
= 5.0V, f  
= 6.4MHz; MAX1081: V  
= V  
= 3.0V, f  
= 4.8MHz; C  
= 20pF, 4.7µF capacitor  
DD1  
DD2  
SCLK  
DD1  
DD2  
SCLK  
1200  
5.5  
LOAD  
at REF, 0.01µF capacitor at REFADJ, T = +25°C, unless otherwise noted.)  
A
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
SUPPLY CURRENT vs. SUPPLY  
VOLTAGE (CONVERTING)  
0.12  
0.08  
0.04  
0
0.15  
0.10  
0.05  
0
3.5  
3.0  
2.5  
2.0  
-0.05  
-0.10  
-0.15  
-0.04  
-0.08  
1.5  
2.5  
200  
400  
600  
800 1000 1200  
200  
600  
DIGITAL OUTPUT CODE  
1000  
0
0
400  
800  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
DIGITAL OUTPUT CODE  
SUPPLY VOLTAGE (V)  
SUPPLY CURRENT vs. SUPPLY  
VOLTAGE (STATIC)  
SUPPLY CURRENT vs. TEMPERATURE  
(STATIC)  
SUPPLY CURRENT vs. TEMPERATURE  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
MAX1080 (PD1 = 1, PD0 = 1)  
MAX1081 (PD1 = 1, PD0 = 1)  
MAX1080 (PD1 = 1, PD0 = 0)  
MAX1081 (PD1 = 1, PD0 = 0)  
NORMAL OPERATION (PD1 = PD0 = 1)  
REDP (PD1 = 1, PD0 = 0)  
MAX1080  
FASTPD (PD1 = 0, PD0 = 1)  
MAX1081  
MAX1080 (PD1 = 0, PD0 = 1)  
MAX1081 (PD1 = 0, PD0 = 1)  
-40 -20  
0
20  
40  
60  
80 100  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
-40 -20  
0
20  
40  
60  
80 100  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5005  
2.5003  
2.5001  
2.4999  
2.4997  
2.4995  
2.5  
2.0  
1.5  
1.0  
0.5  
0
(PD1 = PD0 = 0)  
(PD1 = PD0 = 0)  
MAX1080  
MAX1081  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40 -20  
0
20  
40  
60  
80 100  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
Typical Operating Characteristics (continued)  
(MAX1080: V  
= V  
= 5.0V, f  
= 6.4MHz; MAX1081: V  
= V  
= 3.0V, f  
= 4.8MHz; C  
= 20pF, 4.7µF capacitor  
DD1  
DD2  
SCLK  
DD1  
DD2  
SCLK  
LOAD  
at REF, 0.01µF capacitor at REFADJ, T = +25°C, unless otherwise noted.)  
A
REFERENCE VOLTAGE vs. TEMPERATURE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
OFFSET ERROR vs. TEMPERATURE  
2.5002  
2.5000  
2.4998  
2.4996  
2.4994  
2.4992  
2.4990  
2.4988  
0
-0.25  
-0.50  
0
-0.25  
-0.50  
MAX1080  
MAX1081  
-40 -20  
0
20  
40  
60  
80 100  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
V
(V)  
TEMPERATURE (°C)  
DD  
MAX1081  
GAIN ERROR vs. TEMPERATURE  
GAIN ERROR vs. SUPPLY VOLTAGE  
0.25  
0
0
-0.25  
-0.50  
-0.25  
-0.50  
-0.75  
-40  
-15  
10  
35  
60  
85  
2.7  
3.0  
3.3  
3.6  
TEMPERATURE (°C)  
V
(V)  
DD  
_______________________________________________________________________________________  
9
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
Pin Description  
PIN  
NAME  
FUNCTION  
1–8  
CH0–CH7  
Sampling Analog Inputs  
Ground Reference for Analog Inputs. COM sets zero-code voltage in single-ended mode. Must be  
stable to 0.5LSB.  
9
COM  
Active-Low Shutdown Input. Pulling SHDN low shuts down the device, reducing supply current to 2µA  
(typ).  
10  
SHDN  
Reference-Buffer Output/ADC Reference Input. Reference voltage for analog-to-digital conversion.  
In internal reference mode, the reference buffer provides a 2.500V nominal output, externally  
adꢁustable at REFADJ. In external reference mode, disable the internal buffer by pulling REFADJ to  
11  
REF  
V
.
DD1  
Input to the Reference-Buffer Amplifier. To disable the reference-buffer amplifier, connect REFADJ to  
12  
REFADJ  
V
DD1  
.
13  
14  
GND  
Analog and Digital Ground  
DOUT  
Serial Data Output. Data is clocked out at SCLK’s rising edge. High impedance when CS is high.  
Serial Strobe Output. SSTRB pulses high for one clock period before the MSB decision. High imped-  
ance when CS is high.  
15  
16  
17  
SSTRB  
DIN  
Serial Data Input. Data is clocked in at SCLK’s rising edge.  
Active-Low Chip Select. Data will not be clocked into DIN unless CS is low. When CS is high, DOUT  
and SSTRB are high impedance.  
CS  
Serial Clock Input. Clocks data in and out of serial interface and sets the conversion speed. (Duty  
cycle must be 40ꢀ to 60ꢀ.)  
18  
SCLK  
19  
20  
V
V
Positive Supply Voltage  
Positive Supply Voltage  
DD2  
DD1  
V
DD2  
V
DD2  
6k  
6k  
C
DOUT  
DOUT  
DOUT  
DOUT  
C
C
LOAD  
20pF  
C
LOAD  
20pF  
LOAD  
20pF  
LOAD  
20pF  
6k  
6k  
GND  
GND  
GND  
a) High-Z to V and V to V  
OH  
GND  
b) High-Z to V and V to V  
OL  
OH  
OL  
OL  
OH  
a) V to High-Z  
OH  
b) V to High-Z  
OL  
Figure 1. Load Circuits for Enable Time  
10 ______________________________________________________________________________________  
Figure 2. Load Circuits for Disable Time  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
sinusoidal signal at IN-, the input voltage is determined  
Detailed Description  
by:  
The MAX1080/MAX1081 ADCs use a successive-  
approximation conversion technique and input T/H cir-  
ν
= V  
sin(2πft)  
(
)
IN−  
IN−  
cuitry to convert an analog signal to a 10-bit digital out-  
put. A flexible serial interface provides easy interface to  
microprocessors (µPs). Figure 3 shows a functional dia-  
gram of the MAX1080/MAX1081.  
The maximum voltage variation is determined by:  
dν  
dt  
1LSB  
t
CONV  
V
REF  
IN−  
max  
= V  
2πf ≤  
=
(
)
IN−  
10  
2
t
CONV  
Pseudo-Differential Input  
The equivalent circuit of Figure 4 shows the MAX1080/  
MAX1081s’ input architecture, which is composed of a  
T/H, input multiplexer, input comparator, switched-  
capacitor DAC, and reference.  
A 2.6Vp-p, 60Hz signal at IN- will generate a 0.5LSB  
error when using a +2.5V reference voltage and a  
2.5µs conversion time (15 / f  
). When a DC refer-  
SCLK  
ence voltage is used at IN-, connect a 0.1µF capacitor  
to GND to minimize noise at the input.  
In single-ended mode, the positive input (IN+) is con-  
nected to the selected input channel and the negative  
input (IN-) is set to COM. In differential mode, IN+ and  
IN- are selected from the following pairs: CH0/CH1,  
CH2/CH3, CH4/CH5, and CH6/CH7. Configure the  
channels according to Tables 1 and 2.  
During the acquisition interval, the channel selected as  
the positive input (IN+) charges capacitor C  
. The  
HOLD  
acquisition interval spans three SCLK cycles and ends  
on the falling SCLK edge after the input control word’s  
last bit has been entered. At the end of the acquisition  
interval, the T/H switch opens, retaining charge on  
The MAX1080/MAX1081 input configuration is pseudo-  
differential because only the signal at IN+ is sampled.  
The return side (IN-) is connected to the sampling  
capacitor while converting and must remain stable  
within 0.5LSB ( 0.1LSB for best results) with respect  
to GND during a conversion.  
C
as a sample of the signal at IN+. The conver-  
HOLD  
sion interval begins with the input multiplexer switching  
from IN+ to IN-. This unbalances node ZERO at  
C
HOLD  
the comparator’s input. The capacitive DAC adꢁusts  
during the remainder of the conversion cycle to restore  
If a varying signal is applied to the selected IN-, its  
amplitude and frequency must be limited to maintain  
accuracy. The following equations express the relation-  
ship between the maximum signal amplitude and its  
frequency to maintain 0.5LSB accuracy. Assuming a  
node ZERO to V  
/2 within the limits of 10-bit resolu-  
DD1  
tion. This action is equivalent to transferring a  
12pF [(V + - V -)] charge from C  
to the binary-  
IN  
IN  
HOLD  
weighted capacitive DAC, which in turn forms a digital  
representation of the analog input signal.  
GND  
17  
18  
CS  
SCLK  
CAPACITIVE  
DAC  
REF  
INPUT  
MUX  
INPUT  
SHIFT  
REGISTER  
INT  
CLOCK  
16  
10  
DIN  
C
HOLD  
12pF  
CONTROL  
LOGIC  
CH0  
CH1  
SHDN  
COMPARATOR  
ZERO  
1
2
3
4
5
6
7
8
CH2  
CH3  
CH4  
CH5  
14  
15  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
OUTPUT  
SHIFT  
DOUT  
C
*
SWITCH  
R
IN  
800Ω  
REGISTER  
SSTRB  
6pF  
ANALOG  
INPUT  
MUX  
T/H  
TRACK  
HOLD  
CLOCK  
CH6  
CH7  
AT THE SAMPLING INSTANT,  
IN  
10 + 2-BIT  
SAR ADC  
THE MUX INPUT SWITCHES FROM  
THE SELECTED IN+ CHANNEL TO  
THE SELECTED IN- CHANNEL.  
CH6  
CH7  
COM  
OUT  
20  
19  
REF  
V
V
DD1  
9
COM  
V
/2  
DD1  
A
2.05  
DD2  
+1.22V  
REFERENCE  
17k  
SINGLE-ENDED MODE: IN+ = CH0–CH7, IN- = COM.  
PSEUDO-DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM  
PAIRS OF CH0/CH1, CH2/CH3, CH4/CH5, AND CH6/CH7.  
13  
GND  
12  
11  
REFADJ  
REF  
MAX1080  
MAX1081  
+2.500V  
*INCLUDES ALL INPUT PARASITICS  
Figure 3. Functional Diagram  
Figure 4. Equivalent Input Circuit  
______________________________________________________________________________________ 11  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
input signal, and t  
is never less than 468ns  
Track/Hold  
The T/H enters its tracking mode on the falling clock  
edge after the fifth bit of the 8-bit control word has been  
shifted in. It enters its hold mode on the falling clock  
edge after the eighth bit of the control word has been  
shifted in. If the converter is set up for single-ended  
inputs, IN- is connected to COM and the converter con-  
verts the “+” input. If the converter is set up for differen-  
tial inputs, the difference of IN+) - (IN-) is converted.  
ACQ  
(MAX1080) or 625ns (MAX1081). Note that source  
impedances below 4kdo not significantly affect the  
ADC’s AC performance.  
Input Bandwidth  
The ADC’s input tracking circuitry has a 6MHz  
(MAX1080) or 3MHz (MAX1081) small-signal band-  
width, so it is possible to digitize high-speed transient  
events and measure periodic signals with bandwidths  
exceeding the ADC’s sampling rate by using under-  
sampling techniques. To avoid high-frequency signals  
being aliased into the frequency band of interest, anti-  
alias filtering is recommended.  
[(  
]
At the end of the conversion, the positive input con-  
nects back to IN+ and C  
nal.  
charges to the input sig-  
HOLD  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens, and more time must be  
allowed between conversions. The acquisition time,  
Analog Input Protection  
Internal protection diodes, which clamp the analog input  
to V  
and GND, allow the channel input pins to swing  
DD1  
t
, is the maximum time the device takes to acquire  
from GND - 0.3V to V  
+ 0.3V without damage.  
ACQ  
DD1  
the signal and the minimum time needed for the signal  
to be acquired. It is calculated by the following equa-  
tion:  
However, for accurate conversions near full scale, the  
inputs must not exceed V  
lower than GND by 50mV.  
by more than 50mV or be  
DD1  
t
= 7 (R + R ) 12pF  
S IN  
If the analog input exceeds 50mV beyond the sup-  
plies, do not allow the input current to exceed 2mA.  
ACQ  
where R = 800, R = the source impedance of the  
IN  
S
Table 1. Channel Selection in Single-Ended Mode (SGL/DIF = 1)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
0
0
0
+
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
+
+
+
+
+
+
+
Table 2. Channel Selection in Pseudo-Differential Mode (SGL/DIF = 0)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+
+
+
+
+
+
+
+
12 ______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
OSCILLOSCOPE  
V
+3V OR +5V  
DD1  
MAX1080  
MAX1081  
SCLK  
0.1µF  
10µF  
V
DD2  
0 TO  
+2.500V  
ANALOG  
INPUT  
GND  
COM  
SSTRB  
CH7  
0.01µF  
0.01µF  
CS  
SCLK  
DIN  
REFADJ  
REF  
V
DD2  
EXTERNAL CLOCK  
DOUT*  
DOUT  
SSTRB  
2.5V  
CH1  
CH2  
CH3  
CH4  
SHDN  
V
4.7µF  
DD2  
*FULL-SCALE ANALOG INPUT, CONVERSION RESULT = $3FF (HEX)  
Figure 5. Quick-Look Circuit  
transfers to perform a conversion (one 8-bit transfer to  
configure the ADC, and two more 8-bit transfers to clock  
out the conversion result). See Figure 17 for MAX1080/  
MAX1081 QSPI connections.  
Quick Look  
To quickly evaluate the MAX1080/MAX1081s’ analog per-  
formance, use the circuit of Figure 5. The devices require  
a control byte to be written to DIN before each conver-  
sion. Connecting DIN to V  
feeds in control bytes of  
DD2  
Simple Software Interface  
Make sure the CPU’s serial interface runs in master  
mode so the CPU generates the serial clock. Choose a  
clock frequency from 500kHz to 6.4MHz (MAX1080) or  
4.8MHz (MAX1081):  
$FF (HEX), which trigger single-ended unipolar conver-  
sions on CH7 without powering down between conver-  
sions. The SSTRB output pulses high for one clock  
period before the MSB of the conversion result is shift-  
ed out of DOUT. Varying the analog input to CH7 will  
alter the sequence of bits from DOUT. A total of 16  
clock cycles is required per conversion. All transitions  
of the SSTRB and DOUT outputs typically occur 20ns  
after the rising edge of SCLK.  
1) Set up the control byte and call it TB1. TB1 should  
be of the format: 1XXXXXXX binary, where the Xs  
denote the particular channel, selected conversion  
mode, and power mode.  
2) Use a general-purpose I/O line on the CPU to pull  
Starting a Conversion  
Start a conversion by clocking a control byte into DIN.  
With CS low, each rising edge on SCLK clocks a bit from  
DIN into the MAX1080/MAX1081s’ internal shift register.  
After CS falls, the first arriving logic “1” bit defines the  
control byte’s MSB. Until this first “start” bit arrives, any  
number of logic “0” bits can be clocked into DIN with no  
effect. Table 3 shows the control-byte format.  
CS low.  
3) Transmit TB1 and simultaneously receive a byte  
and call it RB1. Ignore RB1.  
4) Transmit a byte of all zeros ($00 hex) and simulta-  
neously receive byte RB2.  
5) Transmit a byte of all zeros ($00 hex) and simulta-  
neously receive byte RB3.  
The MAX1080/MAX1081 are compatible with SPI/  
QSPI and MICROWIRE devices. For SPI, select the cor-  
rect clock polarity and sampling edge in the SPI control  
registers: set CPOL = 0 and CPHA = 0. MICROWIRE,  
SPI, and QSPI all transmit a byte and receive a byte at  
the same time. Using the Typical Operating Circuit, the  
simplest software interface requires only three 8-bit  
6) Pull CS high.  
______________________________________________________________________________________ 13  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
Table 3. Control-Byte Format  
BIT 7  
(MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
(LSB)  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP  
SGL/DIF  
PD1  
PD0  
BIT  
NAME  
DESCRIPTION  
7(MSB)  
START  
The first logic “1” bit after CS goes low defines the beginning of the control byte.  
6
5
4
SEL2  
SEL1  
SEL0  
These three bits select which of the eight channels are used for the conversion (Tables 1 and 2).  
3
UNI/BIP  
1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode. In unipolar mode, an  
analog input signal from 0 to V  
can be converted; in bipolar mode, the differential signal can  
REF  
range from -V  
/2 to +V  
REF  
/2.  
REF  
2
SGL/DIF  
1 = single ended, 0 = pseudo-differential. Selects single-ended or pseudo-differential conver-  
sions. In single-ended mode, input signal voltages are referred to COM. In pseudo-differential  
mode, the voltage difference between two channels is measured (Tables 1 and 2).  
1
PD1  
PD0  
Select operating mode.  
0(LSB)  
PD1  
PD0  
Mode  
0
0
1
1
0
1
0
1
Full power-down  
Fast power-down  
Reduced power  
Normal operation  
Figure 6 shows the timing for this sequence. Bytes RB2  
and RB3 contain the result of the conversion, padded  
with three leading zeros, two sub-LSB bits, and one  
trailing zero. The total conversion time is a function of  
the serial-clock frequency and the amount of idle time  
between 8-bit transfers. To avoid excessive T/H droop,  
make sure the total conversion time does not exceed  
120µs.  
The conversion must complete in 120µs or less, or  
droop on the sample-and-hold capacitors may degrade  
conversion results.  
Data Framing  
The falling edge of CS does not start a conversion.  
The first logic high clocked into DIN is interpreted as a  
start bit and defines the first bit of the control byte. A  
conversion starts on SCLK’s falling edge, after the eighth  
bit of the control byte (the PD0 bit) is clocked into DIN.  
The start bit is defined as follows:  
Digital Output  
In unipolar input mode, the output is straight binary  
(Figure 14). For bipolar input mode, the output is two’s  
complement (Figure 15). Data is clocked out on the ris-  
ing edge of SCLK in MSB-first format.  
The first high bit clocked into DIN with CS low any  
time the converter is idle, e.g., after V  
are applied.  
and V  
DD2  
DD1  
OR  
Serial Clock  
The external clock not only shifts data in and out but  
also drives the analog-to-digital conversion steps.  
SSTRB pulses high for one clock period after the last bit  
of the control byte. Successive-approximation bit deci-  
sions are made and appear at DOUT on each of the  
next 12 SCLK rising edges (Figure 6). SSTRB and  
DOUT go into a high-impedance state when CS goes  
high; after the next CS falling edge, SSTRB outputs a  
logic low. Figure 7 shows the detailed serial-interface  
timings.  
The first high bit clocked into DIN after bit 4 of a con-  
version in progress is clocked onto the DOUT pin.  
Once a start bit has been recognized, the current conver-  
sion may only be terminated by pulling SHDN low.  
The fastest the MAX1080/MAX1081 can run with CS held  
low between conversions is 16 clocks per conversion.  
Figure 8 shows the serial-interface timing necessary to  
perform a conversion every 16 SCLK cycles. If CS is tied  
low and SCLK is continuous, guarantee a start bit by first  
clocking in 16 zeros.  
14 ______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
CS  
t
ACQ  
SCLK  
DIN  
1
4
8
9
12  
16  
20  
24  
UNI/ SGL/  
BIP DIF  
SEL SEL SEL  
PD1 PD0  
2
1
0
START  
HIGH-Z  
SSTRB  
HIGH-Z  
HIGH-Z  
RB1  
RB2  
B9 B8 B7 B6 B5  
CONVERSION  
RB3  
B3 B2 B1 B0 S1 S0  
IDLE  
HIGH-Z  
DOUT  
B4  
IDLE  
ACQUISITION  
Figure 6. Single-Conversion Timing  
The power-up delay is dependent on the power-down  
state. Software low-power modes will be able to start  
conversion immediately when running at decreased  
clock rates (see Power-Down Sequencing). During  
power-on reset, when exiting software full power-down  
mode, or when exiting hardware shutdown, the device  
goes immediately into full-power mode and is ready to  
convert after 2µs when using an external reference.  
When using the internal reference, wait for the typical  
power-up delay from a full power-down (software or  
hardware) as shown in Figure 9.  
___________Applications Information  
Power-On Reset  
When power is first applied, and if SHDN is not pulled  
low, internal power-on reset circuitry activates the  
MAX1080/MAX1081 in normal operating mode, ready to  
convert with SSTRB = low. The MAX1080/MAX1081  
require 10µs to reset after the power supplies stabilize;  
no conversions should be initiated during this time. If  
CS is low, the first logical 1 on DIN is interpreted as a  
start bit. Until a conversion takes place, DOUT shifts out  
zeros. Additionally, wait for the reference to stabilize  
when using the internal reference.  
Software Power-Down  
Software power-down is activated using bits PD1 and  
PD0 of the control byte. When software power-down is  
asserted, the ADC completes the conversion in  
progress and powers down into the specified low-qui-  
escent-current state (2µA, 0.9mA, or 1.3mA).  
Power Modes  
You can save power by placing the converter in one of  
two low-current operating modes or in full power-down  
between conversions. Select the power mode through  
bit 1 and bit 0 of the DIN control byte (Tables 3 and 4),  
or force the converter into hardware shutdown by dri-  
ving SHDN to GND.  
The first logic 1 on DIN is interpreted as a start bit and  
puts the MAX1080/MAX1081 into its full-power mode.  
Following the start bit, the data input word or control  
byte also determines the next power-down state. For  
example, if the DIN word contains PD1 = 0 and PD0 = 1,  
a 0.9mA power-down resumes after one conversion.  
Table 4 details the four power modes with the corre-  
sponding supply current and operating sections. For  
data rates achievable in software power-down modes,  
see Power-Down Sequencing.  
The software power-down modes take effect after the  
conversion is completed; SHDN overrides any software  
power mode and immediately stops any conversion in  
progress. In software power-down mode, the serial  
interface remains active while waiting for a new control  
byte to start conversion and switch to full-power mode.  
Once the conversion is completed, the device goes into  
the programmed power mode until a new control byte  
is written.  
______________________________________________________________________________________ 15  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
CS  
t
CSW  
t
t
CP  
t
CSH  
CSS  
t
CH  
t
t
CS1  
t
CL  
CSO  
SCLK  
t
DS  
t
DH  
t
DOH  
DIN  
t
t
DOV  
DOD  
t
DOE  
DOUT  
t
STH  
t
t
STD  
STV  
t
STE  
SSTRB  
Figure 7. Detailed Serial-Interface Timing  
Table 4. Software-Controlled Power Modes  
TOTAL SUPPLY CURRENT  
CIRCUIT SECTIONS*  
PD1/PD0  
MODE  
CONVERTING  
AFTER  
INPUT COMPARATOR  
REFERENCE  
(mA)  
CONVERSION  
Full Power-Down  
(FULLPD)  
00  
01  
2.5  
2µA  
Off  
Off  
Fast Power-Down  
(FASTPD)  
2.5  
0.9mA  
Reduced Power  
On  
Reduced-Power  
Mode (REDP)  
10  
11  
2.5  
2.5  
1.3mA  
2.0mA  
Reduced Power  
Full Power  
On  
On  
Normal Operating  
*Circuit operation between conversions; during conversion all circuits are fully powered up.  
Hardware Power-Down  
Pulling SHDN low places the converter in hardware  
power-down. Unlike software power-down mode, the  
conversion is terminated immediately. When returning  
to normal operation from SHDN with an external refer-  
ence, the MAX1080/MAX1081 can be considered fully  
powered up within 2µs of actively pulling SHDN high.  
When using the internal reference, the conversion  
should be initiated only after the reference has settled;  
its recovery time is dependent on the external bypass  
capacitors and shutdown duration.  
the average supply current as a function of the sam-  
pling rate.  
Using Full Power-Down Mode  
Full power-down mode (FULLPD) achieves the lowest  
power consumption, up to 1000 conversions per chan-  
nel per second. Figure 10a shows the MAX1081’s  
power consumption for one- or eight-channel conver-  
sions utilizing full power-down mode (PD1 = PD0 = 0),  
with the internal reference and the maximum clock  
speed. A 0.01µF bypass capacitor at REFADJ forms an  
RC filter with the internal 17kreference resistor, with a  
200µs time constant. To achieve full 10-bit accuracy,  
seven time constants or 1.4ms are required after  
power-up if the bypass capacitor is fully discharged  
between conversions. Waiting this 1.4ms duration in  
Power-Down Sequencing  
The MAX1080/MAX1081 automatic power-down modes  
can save considerable power when operating at less  
than maximum sample rates. Figures 10 and 11 show  
16 ______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
CS  
DIN  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
S
CONTROL BYTE 2  
S
ETC.  
1
8
12  
B9  
16 1  
5
8
12  
16 1  
5
8
12  
16 1  
5
SCLK  
HIGH-Z  
DOUT  
B4  
CONVERSION RESULT 0  
S0  
B9  
B4  
S0  
B9  
B4  
CONVERSION RESULT 1  
HIGH-Z  
SSTRB  
Figure 8. Continuous 16-Clock/Conversion Timing  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
10,000  
1000  
100  
10  
MAX1081, V = V = 3.0V  
LOAD  
CODE = 1010100000  
DD1  
= 20pF  
DD2  
C
8 CHANNELS  
1 CHANNEL  
1
0.0001 0.001  
0.01  
0.1  
1
10  
1
10  
100  
1k  
10k  
100k  
TIME IN SHUTDOWN (s)  
SAMPLING RATE (sps)  
Figure 9. Reference Power-Up Delay vs. Time in Shutdown  
Figure 10b. Average Supply Current vs. Sampling Rate (sps)  
Using FULLPD and External Reference  
1000  
2.5  
MAX1081, V = V = 3.0V  
LOAD  
CODE = 1010100000  
DD1  
= 20pF  
DD2  
NORMAL OPERATION  
C
2.0  
REDP  
FASTPD  
100  
1.5  
1.0  
8 CHANNELS  
10  
1
1 CHANNEL  
MAX1081, V = V = 3.0V  
LOAD  
CODE = 1010100000  
DD1 DD2  
= 20pF  
C
0.5  
50  
200  
SAMPLING RATE (sps)  
0.1  
1
10  
100  
1k  
10k  
0
100 150  
250 300 350  
SAMPLING RATE (sps)  
Figure 10a. Average Supply Current vs. Sampling Rate (sps)  
Using FULLPD and Internal Reference  
Figure 11. Average Supply Current vs. Sampling Rate (sps) Using  
FASTPD, REDP, Normal Operation, and Internal Reference  
______________________________________________________________________________________ 17  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
fast power-down (FASTPD) or reduced-power (REDP)  
mode instead of in full power-up can further reduce  
power consumption. This is achieved by using the  
sequence shown in Figure 12a.  
trolled at the maximum clock speed. The clock speed  
in FASTPD or REDP should be limited to 4.8MHz for the  
MAX1080/MAX1081. FULLPD mode may provide  
increased power savings in applications where the  
MAX1080/MAX1081 are inactive for long periods of  
time, but intermittent bursts of high-speed conversions  
are required. Figure 12b shows FASTPD and REDP tim-  
ing.  
Figure 10b shows the MAX1081’s power consumption  
for one- or eight-channel conversions utilizing FULLPD  
mode (PD1 = PD0 = 0), an external reference, and the  
maximum clock speed. One dummy conversion to  
power up the device is needed, but no wait time is nec-  
essary to start the second conversion, thereby achiev-  
ing lower power consumption at up to half the full  
sampling rate.  
Internal and External References  
The MAX1080/MAX1081 can be used with an internal  
or external reference. An external reference can be  
connected directly at REF or at the REFADJ pin.  
Using Fast Power-Down and Reduced Power Modes  
FASTPD and REDP modes achieve the lowest power  
consumption at speeds close to the maximum sam-  
pling rate. Figure 11 shows the MAX1081’s power con-  
sumption in FASTPD mode (PD1 = 0, PD0 = 1), REDP  
mode (PD1 = 1, PD0 = 0), and for comparison, normal  
operating mode (PD1 = 1, PD0 = 1). The figure shows  
power consumption using the specified power-down  
mode, with the internal reference and conversion con-  
An internal buffer is designed to provide 2.5V at  
REF for the MAX1080/MAX1081. The internally trimmed  
1.22V reference is buffered with a 2.05V/V gain.  
Internal Reference  
The MAX1080/MAX1081s’ full-scale range with the inter-  
nal reference is 2.5V with unipolar inputs and 1.25V  
with bipolar inputs. The internal reference voltage is  
adꢁustable by 100mV with the circuit in Figure 13.  
WAIT 1.4ms (7 x RC)  
0
0
1
0
0
0
1
1
1
1
DIN  
FULLPD  
REDP  
FULLPD  
1.22V  
DUMMY CONVERSION  
1.22V  
2.5V  
REFADJ  
0V  
0V  
γ = RC = 17kx 0.01µF  
2.5V  
REF  
2.5mA  
2.5mA  
2.5mA  
I
+ I  
VDD1 VDD2  
1.3mA OR 0.9mA  
0mA  
0V  
Figure 12a. Full Power-Down Timing  
1
0
1
0
0
1
1
1
1
DIN  
REDP  
REDP  
FASTPD  
2.5mA  
2.5V (ALWAYS ON)  
2.5mA  
REF  
2.5mA  
1.3mA  
0.9mA  
0.9mA  
I
+ I  
VDD1 VDD2  
Figure 12b. FASTPD and REDP Timing  
18 ______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
+3.3V  
OUTPUT CODE  
24k  
V
REF  
2
FS  
=
+ V  
COM  
011 . . . 111  
011 . . . 110  
MAX1081  
REFADJ  
510k  
ZS = V  
-FS =  
COM  
100k  
12  
-V  
REF  
2
+ V  
COM  
000 . . . 010  
000 . . . 001  
000 . . . 000  
V
REF  
0.01µF  
1LSB =  
1024  
111 . . . 111  
111 . . . 110  
111 . . . 101  
Figure 13. MAX1081 Reference-Adjust Circuit  
OUTPUT CODE  
FULL-SCALE  
100 . . . 001  
100 . . . 000  
TRANSITION  
11 . . . 111  
COM*  
INPUT VOLTAGE (LSB)  
- FS  
+FS - 1LSB  
11 . . . 110  
11 . . . 101  
*V  
V
/ 2  
COM  
REF  
Figure 15. Bipolar Transfer Function, Full Scale (FS) =  
FS = V + V  
REF  
COM  
V
REF  
/ 2 + V  
, Zero Scale (ZS) = V  
COM COM  
ZS = V  
1LSB =  
COM  
Transfer Function  
V
REF  
Table 5 shows the full-scale voltage ranges for unipolar  
and bipolar modes. Figure 14 depicts the nominal,  
unipolar input/output (I/O) transfer function, and Figure  
15 shows the bipolar I/O transfer function. Code transi-  
tions occur halfway between successive-integer LSB  
values. Output coding is binary, with 1LSB = 2.44mV  
for unipolar and bipolar operation.  
1024  
00 . . . 011  
00 . . . 010  
00 . . . 001  
00 . . . 000  
0
1
2
3
FS  
(COM)  
FS - 3/2LSB  
INPUT VOLTAGE (LSB)  
Layout, Grounding, and Bypassing  
For best performance, use PC boards; wire-wrap boards  
are not recommended. Board layout should ensure that  
digital and analog signal lines are separated from each  
other. Do not run analog and digital (especially clock)  
lines parallel to one another, or digital lines underneath  
the ADC package.  
Figure 14. Unipolar Transfer Function, Full Scale (FS) = V  
REF  
+ V  
, Zero Scale (ZS) = V  
COM  
COM  
External Reference  
An external reference can be placed at the input  
(REFADJ) or the output (REF) of the internal reference-  
buffer amplifier. The REFADJ input impedance is typi-  
cally 17k. At REF, the DC input resistance is a  
minimum of 18k. During conversion, an external refer-  
ence at REF must deliver up to 350µA DC load current  
and have 10or less output impedance. If the refer-  
ence has a higher output impedance or is noisy, bypass  
it close to the REF pin with a 4.7µF capacitor.  
Figure 16 shows the recommended system ground  
connections. Establish a single-point analog ground  
(star ground point) at GND. Connect all other analog  
grounds to the star ground. Connect the digital system  
ground to this ground only at this point. For lowest-  
noise operation, the ground return to the star ground’s  
power supply should be low impedance and as short  
as possible.  
Using the REFADJ input makes buffering the external  
reference unnecessary. To use the direct REF input,  
disable the internal buffer by connecting REFADJ to  
High-frequency noise in the V  
power supply may  
DD1  
affect the high-speed comparator in the ADC. Bypass  
the supply to the star ground with 0.1µF and 10µF  
capacitors close to pin 20 of the MAX1080/MAX1081.  
V
.
DD1  
______________________________________________________________________________________ 19  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
Table 5. Full Scale and Zero Scale  
UNIPOLAR MODE  
BIPOLAR MODE  
Positive  
Full Scale  
Zero  
Scale  
Negative  
Full Scale  
Full Scale  
+ V  
Zero Scale  
V
REF  
/ 2  
-V  
REF  
/ 2  
V
V
COM  
V
COM  
REF  
COM  
+ V  
+ V  
COM  
COM  
mit clock) as an active-high output clock and CLKR  
(TMS320 receive clock) as an active-high input  
clock. CLKX and CLKR on the TMS320 are connect-  
ed to the MAX1080/MAX1081’s SCLK input.  
SUPPLIES  
2) The MAX1080/MAX1081’s CS pin is driven low by  
the TMS320’s XF_ I/O port to enable data to be  
clocked into the MAX1080/MAX1081s’ DIN pin.  
V
V
DD2  
GND  
DD1  
3) An 8-bit word (1XXXXX11) should be written to the  
MAX1080/MAX1081 to initiate a conversion and  
place the device into normal operating mode. See  
Table 3 to select the proper XXXXX bit values for your  
specific application.  
*R = 10Ω  
4) The MAX1080/MAX1081s’ SSTRB output is moni-  
tored through the TMS320’s FSR input. A falling  
edge on the SSTRB output indicates that the con-  
version is in progress and data is ready to be  
received from the device.  
V
GND  
V
COM  
DD2  
V
DD  
DGND  
DD1  
DIGITAL  
CIRCUITRY  
MAX1080  
MAX1081  
5) The TMS320 reads in 1 data bit on each of the next  
16 rising edges of SCLK. These data bits represent  
the 10 + 2-bit conversion result followed by 4 trailing  
bits, which should be ignored.  
*OPTIONAL  
Figure 16. Power-Supply Grounding Connection  
6) Pull CS high to disable the MAX1080/MAX1081 until  
Minimize capacitor lead lengths for best supply-noise  
reꢁection. If the power supply is very noisy, a 10resis-  
tor can be connected as a lowpass filter (Figure 16).  
the next conversion is initiated.  
Definitions  
High-Speed Digital Interfacing with QSPI  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
from a straight line on an actual transfer function. This  
straight line can be a best-straight-line fit or a line  
drawn between the endpoints of the transfer function,  
once offset and gain errors have been nullified. The  
static linearity parameters for the MAX1080/MAX1081  
are measured using the best-straight-line fit method.  
The MAX1080/MAX1081 can interface with QSPI using  
the circuit in Figure 17 (f  
= 4.0MHz, CPOL = 0,  
SCLK  
CPHA = 0). This QSPI circuit can be programmed to do a  
conversion on each of the eight channels. The result is  
stored in memory without taxing the CPU, since QSPI  
incorporates its own microsequencer.  
TMS320LC3x Interface  
Figure 18 shows an application circuit to interface the  
MAX1080/MAX1081 to the TMS320 in external clock  
mode. Figure 19 shows the timing diagram for this inter-  
face circuit.  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1LSB. A  
DNL error specification of less than 1LSB guarantees  
no missing codes and a monotonic transfer function.  
Use the following steps to initiate a conversion in the  
MAX1080/MAX1081 and to read the results:  
1) The TMS320 should be configured with CLKX (trans-  
20 ______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
+5V +5V  
OR OR  
+3V +3V  
V
V
DD1  
1
2
20  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
SHDN  
0.1µF  
10µF  
(POWER SUPPLIES)  
DD2 19  
SCLK  
CS  
SCK  
18  
17  
16  
15  
14  
13  
3
4
PCS0  
ANALOG  
INPUTS  
MAX1080  
MAX1081  
DIN  
MC683XX  
5
6
MOSI  
SSTRB  
DOUT  
7
MISO  
8
GND  
9
REFADJ 12  
11  
V
DD1  
10  
REF  
4.7µF  
0.01µF  
(GND)  
Figure 17. QSPI Connections  
Aperture Jitter  
Aperture ꢁitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
XF  
CS  
rising edge of the sampling clock and the instant when  
an actual sample is taken.  
CLKX  
SCLK  
TMS320LC3x  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the SNR is the ratio of the full-scale analog  
input (RMS value) to the RMS quantization error (resid-  
ual error). The ideal, theoretical minimum analog-to-dig-  
ital noise is caused only by quantization error and  
results directly from the ADC’s resolution (N bits):  
MAX1080  
MAX1081  
CLKR  
DX  
DR  
DIN  
DOUT  
SSTRB  
FSR  
SNR = (6.02 N + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise, including thermal noise, reference noise,  
clock ꢁitter, etc. Therefore, SNR is calculated by taking  
the ratio of the RMS signal to the RMS noise, which  
includes all spectral components minus the fundamen-  
tal, the first five harmonics, and the DC offset.  
Figure 18. MAX1080/MAX1081-to-TMS320 Serial Interface  
Aperture Width  
Aperture width (t ) is the time the T/H circuit requires  
AW  
to disconnect the hold capacitor from the input circuit  
(for instance, to turn off the sampling bridge and put  
the T/H unit in hold mode).  
______________________________________________________________________________________ 21  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
CS  
SCLK  
START  
SEL2  
SEL1  
SEL0 UNI/BIP SGI/DIF PD1  
PD0  
DIN  
SSTRB  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
DOUT  
B8  
S1  
MSB  
S0  
Figure 19. MAX1080/MAX1081-to-TMS320 Serial Interface  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is the ratio of the fundamental input frequency’s  
RMS amplitude to RMS equivalent of all other ADC out-  
put signals:  
Ordering Information (continued)  
TEMP.  
PIN-  
INL  
PART  
RANGE  
PACKAGE  
(LSB)  
MAX1080BEUP -40°C to +85°C  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
1
1/2  
1
SINAD (dB) = 20 log (Signal  
/ Noise  
)
RMS  
RMS  
MAX1081ACUP  
0°C to +70°C  
0°C to +70°C  
MAX1081BCUP  
Effective Number of Bits (ENOB)  
ENOB indicates the global accuracy of an ADC at a  
specific input frequency and sampling rate. An ideal  
ADC’s error consists only of quantization noise. With an  
input range equal to the ADC’s full-scale range, calcu-  
late ENOB as follows:  
MAX1081AEUP -40°C to +85°C  
MAX1081BEUP -40°C to +85°C  
1/2  
1
Typical Operating Circuit  
ENOB = (SINAD - 1.76) / 6.02  
+5V OR  
+3V  
Total Harmonic Distortion (THD)  
THD is the ratio of the RMS sum of the input signal’s  
first five harmonics to the fundamental itself. This is  
expressed as:  
V
V
V
CH0  
DD  
DD1  
0.1µF  
0 TO  
+2.5V  
ANALOG  
INPUTS  
DD2  
MAX1080  
MAX1081  
CH7  
GND  
COM  
CPU  
2
2
2
2
2
V
+ V + V + V + V  
3 4 4 5  
2
I/O  
THD = 20 × log  
REF  
CS  
V
4.7µF  
1
SCLK  
SCK (SK)  
MOSI (SO)  
MISO (SI)  
DIN  
where V is the fundamental amplitude, and V through  
V are the amplitudes of the 2nd- through 5th-order  
1
2
5
DOUT  
REFADJ  
harmonics.  
0.01µF  
SSTRB  
SHDN  
V
SS  
V
DD2  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the RMS amplitude of the funda-  
mental (maximum signal component) to the RMS value  
of the next-largest distortion component.  
Chip Information  
TRANSISTOR COUNT: 4286  
PROCESS: BiCMOS  
22 ______________________________________________________________________________________  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
________________________________________________________Package Information  
Note: The MAX1080/MAX1081 do not have an exposed die pad.  
______________________________________________________________________________________ 23  
300ksps/400ksps, Single-Supply, Low-Power,  
8-Channel, Serial 10-Bit ADCs with Internal Reference  
NOTES  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1081ACUP

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference
MAXIM

MAX1081ACUP+

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, BICMOS, PDSO20, 4.40 MM, 0.65 MM PITCH, MO-153AD, TSSOP-20
MAXIM

MAX1081ACUP+T

暂无描述
MAXIM

MAX1081AEUP

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference
MAXIM

MAX1081AEUP+

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, BICMOS, PDSO20, 4.40 MM, 0.65 MM PITCH, MO-153AD, TSSOP-20
MAXIM

MAX1081AEUP-T

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, BICMOS, PDSO20, 4.40 MM, 0.65 MM PITCH, MO-153AD, TSSOP-20
MAXIM

MAX1081BCUP

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference
MAXIM

MAX1081BCUP+

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, BICMOS, PDSO20, 4.40 MM, 0.65 MM PITCH, MO-153AD, TSSOP-20
MAXIM

MAX1081BCUP+T

暂无描述
MAXIM

MAX1081BEUP

300ksps/400ksps, Single-Supply, Low-Power, 8-Channel, Serial 10-Bit ADCs with Internal Reference
MAXIM

MAX1081BEUP+

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, BICMOS, PDSO20, 4.40 MM, 0.65 MM PITCH, MO-153AD, TSSOP-20
MAXIM

MAX1081BEUP+T

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, BICMOS, PDSO20, 4.40 MM, 0.65 MM PITCH, MO-153AD, TSSOP-20
MAXIM