MAX108EVKIT [MAXIM]

Evaluation Kits for the MAX104/MAX106/MAX108 ; 评估套件为MAX104 / MAX106 / MAX108\n
MAX108EVKIT
型号: MAX108EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Evaluation Kits for the MAX104/MAX106/MAX108
评估套件为MAX104 / MAX106 / MAX108\n

文件: 总20页 (文件大小:782K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1503; Rev 0; 6/99  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Evluate:46/MAX108  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX104/MAX106/MAX108 evaluation kits (EV kits)  
are designed to simplify evaluation of the devices’ ana-  
log-to-digital converters (ADCs). Each EV kit contains  
all circuitry necessary to evaluate the dynamic perfor-  
mance of these ultra-high-speed converters, including  
the power-supply generation for the PECL termination  
50Clock and Analog Inputs Through SMA  
Coaxial Connectors  
±250mV Input Signal Range  
Demultiplexed Differential PECL Outputs  
On-Board Generation of PECL Termination  
voltage (PECLV ). Since the design combines high-  
TT  
speed analog and digital circuitry, the board layout  
calls for special precautions and design features.  
Voltage (PECLV  
)
TT  
On-Board Generation of ECL Termination Voltage  
(ECLV  
Connectors for the power supplies (V A/V I, V D,  
CC  
CC  
CC  
)
TT  
V
CC  
O, V ), SMA connectors for analog and clock  
EE  
Separate Analog and Digital Power and Ground  
inputs (VIN+, VIN-, CLK+, CLK-), and all digital PECL  
outputs simplify connection to the EV kit. The four-layer  
board layout (GETek™ material) is optimized for best  
dynamic performance of the MAX104 family.  
Connections with Optimized Four-Layer PCB  
Square-Pin Headers for Easy Connection of Logic  
Analyzer to Digital Outputs  
The EV kits come with a MAX104/MAX106/MAX108  
installed on the board with a heatsink attached for oper-  
ation over the full commercial temperature range.  
Fully Assembled and Tested  
Ord e rin g In fo rm a t io n  
TEMP.  
RANGE  
PIN-  
PACKAGE  
SAMPLING  
RATE  
PART  
MAX104EVKIT  
MAX106EVKIT  
0°C to +70°C 192 ESBGA  
0°C to +70°C 192 ESBGA  
1Gsps  
600Msps  
1.5Gsps  
MAX108EVKIT* 0°C to +70°C 192 ESBGA  
*Future product—contact factory for availability.  
Co m p o n e n t Lis t  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
R5–R38,  
38  
C1, C13, C20, C31,  
C40, C46, C48  
10µF ±10%, 16V tantalum caps  
AVX TAJD106D016  
49.9±1% resistors (0603)  
7
R44–R47  
C2, C7–C12, C14,  
C17, C18, C19,  
C21, C26–C30,  
C32, C41, C47,  
C49, C51–C59  
R51, R53  
R52, R54  
2
2
243±1% resistors (0603)  
158±1% resistors (0603)  
SMA connectors (edge mounted)  
3-pin headers  
0.01µF ±10% ceramic capacitors  
(0603)  
30  
J1–J10  
10  
5
JU3, JU6–JU9  
C3–C6, C15, C16,  
C22–C25,  
C33–C37,  
C42–C45, C50  
47pF ±10% ceramic capacitors  
(0402)  
20  
JU2, JU4, JU5,  
JUA0- to JUA7-,  
JUA0+ to JUA7+,  
JUP0- to JUP7-,  
JUP0+ to JUP7+,  
JUOR+, JUOR-,  
JUDR-, JUDR+,  
JURO-, JURO+  
D1  
R2  
1
1
1N5819 Schottky diode  
41  
2-pin headers  
10kpotentiometer  
Not populated; see text for descrip-  
tion of reset input operation.  
R3, R4  
2
GETek is trademark of GE Electromaterials.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
3) Connect a +5V power supply capable of providing  
Co m p o n e n t Lis t (c o n t in u e d )  
250mA to the V D p a d . Conne c t the s up p ly’s  
CC  
DESIGNATION QTY  
DESCRIPTION  
ground to the GNDD pad.  
None  
O, V D,  
4
Protective feet  
4) Connect a +3.3V or +5V power supply capable of  
V
CC  
CC  
providing approximately 600mA to the V O pad.  
CC  
GNDD, PECLV  
,
TT  
Connect the supply’s ground to the GNDD pad.  
5) Connect GNDI to GNDD at the power supplies.  
GNDA, V A,  
I, GNDI, V ,  
EE  
24  
Test points  
Shunts  
CC  
V
CC  
ECLV  
TT  
6) Connect an RF source with low phase jitter, such as  
an HP8662A (up to 1.28GHz) or an HP8663A (up to  
2.56GHz), to clock inputs CLK- and CLK+. For sin-  
g le -e nd e d c loc k inp uts , fe e d a +4d Bm (500mV  
amplitude) power level from the signal generator  
into the CLK+ input and terminate the unused CLK-  
input with 50to GNDI.  
None  
7
1
Heatsink  
International Electronic Research  
Corp. BDN09-3CB/A01  
None  
MAX104CHC, MAX106CHC, or  
MAX108CHC (192-contact ESBGA™)  
U1  
1
7) Connect a ±225mV (approximately -1dB below FS)  
sine -wa ve te st signa l to the a na log inputs. Use  
VIN+ and VIN- through a balun if the test signal is  
differential, or either VIN+ or VIN- if the signal is sin-  
gle-ended (see the sections Single-Ended Analog  
Inputs and Differential Analog Inputs in the devices’  
data sheets). For best results, use a narrow band-  
pass filter designed for the frequency of interest to  
reduce the harmonic distortion from the signal gen-  
erator.  
LM2991S, low-dropout adjustable  
linear regulator  
U3, U4  
None  
2
1
1
MAX104EVKIT circuit board  
MAX104, MAX106, or MAX108 data  
sheet  
None  
_________________________Qu ic k S t a rt  
The EV kit is delivered fully assembled, tested, and  
sealed in an antistatic bag. To ensure proper operation,  
open the antistatic bag only at a static-safe work area  
and follow the instructions below. Do not turn on the  
power supplies until all power connections to the  
EV kit are established. Figure 1 shows a typical evalu-  
ation setup with differential analog inputs and single-  
ended sine -wave (CLK- is 50reverse-terminated to  
GNDI) clock drive. Figure 2 shows a typical evaluation  
setup with single-ended analog inputs (VIN- is 50Ω  
reverse-terminated to GNDI) and a single-ended sine-  
wave clock drive.  
8) Connect a logic analyzer, such as an HP16500C  
with an HP16517A plug-in card for monitoring all 16  
outp ut c ha nne ls (8 c ha nne ls for p rima ry a nd 8  
channels for auxiliary outputs) of the device.  
9) Connect the logic analyzer clock to the DREADY+  
output on the EV kit, and set the logic analyzer to  
trigger on the falling edge of the acquisition clock.  
Set the logic analyzers threshold voltage to the  
V
CC  
O supply voltage -1.3V. For example, if V O =  
CC  
Evluate:46/MAX108  
+ 3.3V, the thre s hold volta g e s hould b e s e t to  
+2.0V.  
1) Connect a -5V power supply capable of providing  
10) Turn on the supplies and signal sources. Capture  
the digitized outputs from the ADC with the logic  
analyzer and transfer the digital record to a PC for  
data analysis.  
-250mA to the pad marked V . Connect the sup-  
EE  
ply’s ground to the GNDI pad. Set the current limit  
to 500mA or less.  
2) Connect a +5V power supply capable of providing  
600mA to the V I p a d . Conne c t the s up p ly’s  
CC  
ground to the GNDI pad.  
ESBGA is a trademark of Amkor/Anam.  
2
_______________________________________________________________________________________  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Evluate:46/MAX108  
HP8662/3A  
SINE-WAVE SOURCE  
BALUN  
BPF  
PHASE  
LOCKED  
VIN-  
VIN+  
+5V ANALOG  
f
, + 4dBm  
CLK+  
CLK-  
SAMPLE  
HP8662/3A  
SINE-WAVE SOURCE  
-5V ANALOG  
+5V DIGITAL  
+3.3V DIGITAL  
MAX104  
MAX106  
MAX108  
EV KIT  
EXTERNAL 50  
TERMINATION TO GNDI  
PC  
16 DATA  
DREADY+  
GNDD  
GNDI  
HP16500C  
DATA ANALYSIS  
SYSTEM  
GPIB  
POWER  
SUPPLIES  
Figure 1. Typical Evaluation Setup with Differential Analog Inputs and Single-Ended Clock Drive  
HP8662/3A  
SINE-WAVE SOURCE  
BPF  
EXTERNAL 50Ω  
TERMINATION  
TO GNDI  
PHASE  
LOCKED  
VIN-  
VIN+  
+5V ANALOG  
f
, + 4dBm  
CLK+  
SAMPLE  
HP8662/3A  
SINE-WAVE SOURCE  
-5V ANALOG  
+5V DIGITAL  
MAX104  
MAX106  
MAX108  
EV KIT  
EXTERNAL 50Ω  
TERMINATION TO GNDI  
+3.3V DIGITAL  
CLK-  
PC  
16 DATA  
DREADY+  
GNDD  
GNDI  
HP16500C  
DATA ANALYSIS  
SYSTEM  
GPIB  
POWER  
SUPPLIES  
Figure 2. Typical Evaluation Setup with Single-Ended Analog Inputs and Single-Ended Clock Drive  
_______________________________________________________________________________________  
3
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Single-Ended Clock Inputs  
_______________De t a ile d De s c rip t io n  
(Sine-Wave Drive)  
To obtain the lowest jitter clock drive, AC- or DC-couple  
a low-phase-noise sine-wave source into a single clock  
input. Clock amplitudes of up to 1V (2Vp-p or +10dBm)  
can be accommodated with CLKCOM connected to  
GNDI.  
Clo c k In p u t Re q u ire m e n t s  
The MAX104/MAX106/MAX108 feature clock inputs  
designed for either single-ended or differential opera-  
tion with very flexible input drive requirements. Each  
clock input is terminated with an on-chip, laser-trimmed  
50resistor to CLKCOM (clock termination return). The  
traces from the SMA inputs to the high-speed data con-  
verter are 50microstrip transmission lines.  
The d yna mic p e rforma nc e of the d a ta c onve rte r is  
essentially unaffected by clock-drive power levels from  
-10dBm to +10dBm (100mV to 1V clock signal ampli-  
tude). The dynamic performance specifications are  
measured with a single-ended clock drive of +4dBm  
(500mV clock signal amplitude). To avoid saturation of  
the input amplifier stage, limit the clock power level to a  
maximum of +10dBm.  
The CLKCOM termination voltage may be connected  
anywhere between ground and -2V for compatibility  
with standard ECL drive levels. The side-launched SMA  
connectors for the clock signals are located at the  
lower left corner of the EV board and are labeled J3  
(CLK+) and J4 (CLK-).  
Differential Clock Inputs (ECL Drive)  
The MAX104/MAX106/MAX108 clock inputs may also  
be driven with standard ground-referenced ECL logic  
An on-board bias generator, located between the ana-  
log and clock inputs, creates a -2V termination voltage  
(ECLV ) for operation with ECL clock sources. The  
TT  
levels by using the on-board ECLV -2V bias genera-  
TT  
voltage is generated by an LM2991 voltage regulator  
tor as described above. It is also possible to drive the  
clock inputs with positive supply referenced (PECL)  
levels if the clock inputs are AC-coupled. With AC-cou-  
pled clock inputs, the CLKCOM termination voltage  
should be grounded. Single-ended DC-coupled ECL  
drive is possible as well, if the undriven clock input is  
operated from the boards -5V V power supply. To  
EE  
enable this ECLV bias generator, first remove short-  
TT  
ing jumper JU2, then move jumper JU3 into its ON  
position.  
The volta g e re g ula tor ha s a s hutd own c ontrol tha t  
requires a TTL logic-high level to enter the shutdown  
state. This logic level is derived from the +5V analog  
tied to the ECL V voltage (-1.3V nominal).  
BB  
An a lo g In p u t Re q u ire m e n t s  
s up p ly (V I). The EV kits a re d e live re d with the  
CC  
The analog inputs to the ADC on the EV board are pro-  
vided by two side-launch SMA connectors located on  
the middle left side of the EV kit. They are labeled J1  
(VIN+) and J2 (VIN-). The analog inputs are terminated  
on-chip with precision laser-trimmed 50NiCr resistors  
to GNDI. Although the analog (and clock) inputs are  
ESD protected, good ESD practices should always be  
observed. The traces from the SMA inputs to the device  
a re 50mic ros trip tra ns mis s ion line s . The a na log  
inputs can be driven either single-ended or differential.  
Optimal performance is obtained with differential input  
drive due to reduction of even-order harmonic distor-  
tion. Table 1 represents single-ended input drive, and  
Table 2 displays differential input drive.  
ECLV bias generator turned off and CLKCOM tied to  
GNDI (JU2 installed).  
TT  
NOTE: If the regulator’s shutdown logic level is not  
present (V I on first) before the V  
supply is  
CC  
EE  
turned on, the regulator will momentarily turn on  
until the V I supply is energized. If JU2 is installed,  
CC  
Evluate:46/MAX108  
this will momentarily short the regulator’s output to  
ground. The regulator is short-circuit protected so  
no damage will result. The regulator is further pro-  
tected by limiting the V supply current to 500mA.  
EE  
Table 1. Input Setup and Output Code Results for Single-Ended Analog Inputs  
VIN+  
VIN-  
0V  
OVERRANGE BIT  
OUTPUT CODE  
11111111 (full scale)  
11111111  
+250mV  
1
0
+250mV - 1LSB  
0V  
01111111  
toggles 10000000  
0V  
0V  
0
-250mV + 1LSB  
-250mV  
0V  
0V  
0
0
00000001  
00000000 (zero scale)  
4
_______________________________________________________________________________________  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Evluate:46/MAX108  
Table 2. Input Setup and Output Code Results for Differential Analog Inputs  
VIN+  
VIN-  
OVERRANGE BIT  
OUTPUT CODE  
11111111 (full scale)  
11111111  
+125mV  
-125mV  
1
0
+125mV - 0.5LSB  
-125mV + 0.5LSB  
01111111  
toggles 10000000  
0V  
0V  
0
-125mV + 0.5LSB  
-125mV  
+125mV - 0.5LSB  
+125mV  
0
0
00000001  
00000000 (zero scale)  
The PECL outputs are standard open-emitter types and  
re q uire e xte rna l 50te rmina tion re s is tors to the  
In t e rn a l Re fe re n c e  
The MAX104 family features an on-chip +2.5V precision  
bandgap reference, which can be used by shorting  
jump e r J U5 to c onne c t REFOUT with REFIN. If  
required, REFOUT can also source up to 2.5mA to sup-  
ply other peripheral circuitry.  
PECLV voltage for proper biasing. The termination  
TT  
re s is tors a re loc a te d a t the fa r e nd of e a c h 50 Ω  
microstrip transmission line, very close to the square  
pin headers for the logic analyzer interface. Every EV  
board is delivered with the PECL termination resistors  
installed on the back side of the board. Each output  
links to a 0.100 inch square 2-pin header to ease the  
connection to a high-speed logic analyzer such as  
Hewlett Packards HP16500C.  
To us e a n e xte rna l re fe re nc e , re move the s horting  
jumper on JU5 and connect the new reference voltage  
source to the REFIN side of JU5. Leave the REFOUT  
side of JU5 floating. Connect the ground of the external  
reference to GNDI on the EV kit. REFIN accepts an  
input voltage range of +2.3V to +2.7V.  
To capture the digital data from the device in demulti-  
plexed 1:2 format, each of the 16 channels from the  
logic analyzer is connected to the eight primary (P0 to  
P7) and eight auxiliary (A0 to A7) outputs. The ADC  
provides differential PECL outputs, but most logic ana-  
lyze rs (s uc h a s the HP16500C) ha ve s ing le -e nd e d  
acquisition pods. Connect all single-ended logic ana-  
lyzer pods to the same phase (either +” or -”) of the  
PECL outputs.  
CAUTION: With an external reference connected,  
JU5 must not be installed at any time to avoid dam-  
aging the internal reference with the external refer-  
ence supply.  
Offs e t Ad ju s t  
The devices also provide a control input (VOSADJ) to  
eliminate any offset from additional preamplifiers dri-  
ving the ADC. The VOSADJ c ontrol inp ut is a se lf-  
biased voltage divider from the internal +2.5V precision  
reference. Under normal-use conditions, the control  
input is left floating.  
Da t a Re a d y (DREADY) Ou t p u t  
The clock pod from the logic analyzer should be con-  
nected to the DREADY+ output at JUDR+ on the EV  
kits . Sinc e b oth the p rima ry a nd a uxilia ry outp uts  
change on the rising edge of DREADY+, set the logic  
analyzer to trigger on the falling edge. The DREADY  
and data outputs are internally time-aligned, which  
places the falling edge of DREADY+ in the approximate  
center of the valid data window, resulting in the maxi-  
mum setup and hold time for the logic analyzer. Set the  
The EV kits include a 10kpotentiometer that is biased  
from the ADCs +2.5V re fe re nc e . The wip e r of the  
potentiometer connects to the VOSADJ control input  
through JU4. To enable the offset-adjust function, install  
a shorting jumper on JU4 and adjust potentiometer R2  
while observing the resulting offset in the reconstructed  
digital outputs. The offset-adjust potentiometer offers  
about ±5.5LSB of adjustment range. The EV kits are  
shipped from the factory without a shorting jumper  
installed on JU4.  
logic analyzers threshold voltage to V O - 1.3V. For  
CC  
e xa mp le , if V O is + 3.3V, the thre s hold volta g e  
CC  
s hould b e s e t to +2.0V. The s a mp le offs e t (trig g e r  
delay) of the logic analyzer should be set to 0ps under  
these conditions.  
P rim a ry a n d Au x ilia ry  
P ECL Ou t p u t s  
All PECL outputs on the EV kits are powered from the  
It is also possible to use the DREADY- output for the  
acquisition clock. Under this condition, set the logic  
analyzer to trigger on the rising edge of the clock.  
Table 3 summarizes the digital outputs and their func-  
tions.  
V
CC  
O power supply, which may be operated from any  
voltage between +3.0V to +5.0V for flexible interfacing  
with either +3.3V or +5V systems. The nominal V  
O
CC  
supply voltage is +3.3V.  
_______________________________________________________________________________________  
5
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Table 3. PECL Outputs and Functions  
EV KIT JUMPER  
LOCATION  
PECL OUTPUT  
SIGNALS  
FUNCTION  
Primary Port Differential Outputs from LSB to  
MSB. A “+indicates the true value; a -”  
denotes the complementary outputs.  
P0+ to P7+,  
P0- to P7-  
JUP0+ to JUP7+,  
J UP0- to J UP7-  
Auxiliary Port Differential Outputs from LSB to  
MSB. A “+indicates the true value; a -”  
denotes the complementary outputs.  
A0+ to A7+,  
A0- to A7-  
JUA0+ to JUA7+,  
J UA0- to J UA7-  
OR+, OR-  
JUOR+, JUOR-  
JUDR+, JUDR-  
Overranges True and Complementary Outputs.  
Data-Ready PECL Output Latch Clock. Output  
data changes on the rising edge of DREADY+.  
DREADY+, DREADY-  
Demux Reset Input Signals. Resets the internal  
demux when asserted.  
RSTIN+, RSTIN-  
J5, J6 (SMA connectors)  
JURO+, JURO-  
Reset Outputs—for resetting additional external  
demux devices.  
RSTOUT+, RSTOUT-  
Non-Demultiplexed DIV1 Mode  
De m u lt ip le x e r S e t t in g s  
It is also possible to operate the ADC in a non-demulti-  
plexed mode. In this mode, the internal demultiplexer is  
disabled and the sampled data is presented to the pri-  
mary output port only. To consume less power, the aux-  
iliary port can be shut down by two separate inputs  
(AUXEN1 and AUXEN2). To enter this mode, place  
jumpers JU7 (DEMUXEN), JU8 (AUXEN2), and JU9  
(AUXEN1) in the OFF position. The position of the DIVS-  
ELECT (JU6) jumper is a dont care. To save additional  
power, remove all the 50pull-down resistors (R5–R20)  
on the a uxilia ry outp ut p ort. It is not ne c e s s a ry to  
remove the resistors; however, both the true and com-  
Demultiplexed DIV2 Mode  
This mode reduces the output data rate to one-half the  
sample clock rate. The demultiplexed outputs are pre-  
sented in dual 8-bit format with two consecutive sam-  
ples in the primary and auxiliary output ports on the ris-  
ing e d g e of the d a ta re a d y c loc k. To a c tiva te this  
mode, jumpers JU7 (DEMUXEN), JU8 (AUXEN2), and  
J U9 (AUXEN1) ha ve to b e in the ON p os ition, a nd  
DIVSELECT (JU6) must be set to position 2.  
NOTE: Each EV kit is shipped with jumpers JU7,  
JU8, and JU9 installed in the ON position and JU6  
set to 2.  
plementary PECL outputs will pull up to the V level.  
OH  
Evluate:46/MAX108  
DEMUXEN (JU7)  
DEMUXEN (JU7)  
OFF  
ON  
ON  
ON  
OFF  
ON  
AUXEN2 (JU8)  
AUXEN2 (JU8)  
OFF  
OFF  
ON  
AUXEN1 (JU9)  
AUXEN1 (JU9)  
OFF  
OFF  
ON  
DIVSELECT (JU6)  
X
DIVSELECT (JU6)  
X
X
2
4
2
4
X = Leave open or dont care  
6
_______________________________________________________________________________________  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Evluate:46/MAX108  
Decimation DIV4 Mode  
In this special decimated, demultiplexed output mode,  
Table 4. Selection Table for  
Demultiplexer Operation  
the ADC discards every other input sample and outputs  
data at one-quarter the input sampling rate. This mode  
is useful for system debugging at the resulting slower  
output data rates, and may be required to capture data  
successfully when testing the MAX108. To activate the  
EV boards DIV4 mode, jumpers JU7 (DEMUXEN), JU8  
(AUXEN2), and JU9 (AUXEN1) have to be in the ON  
position, and DIVSEL has to be in position 4. Since  
every other sample at the input is discarded, the con-  
DEMUX  
DEMUXEN DIVSELECT  
MODE  
OVERRANGE BIT  
OUTPUT MODE  
Only primary port  
active (auxiliary port  
off)  
OFF  
ON  
X
DIV1  
Primary OR auxiliary  
port  
2
4
DIV2  
DIV4  
verters effective sample rate will be f /2.  
SAMPLE  
Primary OR auxiliary  
port  
ON  
DEMUXEN  
X = Dont care  
The signals associated with the demultiplexer reset  
operation and the control of this section are listed in  
Table 5. Consult the data sheet for a more detailed  
description of the demultiplexer reset function, includ-  
ing timing diagrams.  
OFF  
ON  
AUXEN2  
OFF  
ON  
Reset Inputs  
AUXEN1  
The reset circuitry accepts differential PECL inputs ref-  
erenced to the same V O power supply that powers  
CC  
OFF  
ON  
the ADCs PECL outputs. The reset input side-launched  
SMA connectors are located at the lower left side of the  
EV kits and are labeled RSTIN+ and RSTIN-.  
DIVSELECT  
For applications that do not require a synchronizing  
reset, the reset inputs must be left open and resistors  
R3 and R4 removed. In this case, they will self-bias to a  
proper level with internal 50kresistors and a 20µA  
current source. This combination creates a -1V voltage  
difference between RSTIN+ and RSTIN- to disable the  
internal reset circuitry. When driven with PECL logic  
2
4
Ove rra n g e Op e ra t io n  
A single differential PECL overrange output bit (OR+,  
OR-) is provided for both primary and auxiliary demulti-  
plexed outputs. The operation of the overrange bit  
depends on the status of the internal demultiplexer. In  
demultiplexed DIV2 mode and decimation DIV4 mode,  
the OR bit will flag an overrange condition if either the  
primary or auxiliary port contains an overranged sam-  
ple (Table 4). In non-demultiplexed DIV1 mode, the OR  
port will flag an overrange condition only when the pri-  
mary output port contains an overranged sample.  
levels terminated with 50to V O - 2V, the internal  
CC  
biasing network can easily be overdriven. The EV kits  
are shipped with these resistor positions open to allow  
the internal self-bias circuitry to disable the reset con-  
trol input.  
NOTE: Do not install the 50RSTIN termination  
resistors R3 and R4 unless the RSTIN input is dri-  
ven with valid PECL logic levels. If the RSTIN inputs  
are open circuited with the 50resistors installed,  
intermittent resetting of the internal demultiplexer  
will occur and unpredictable operation will result.  
Re s e t Op e ra t io n Re q u ire m e n t s  
A detailed description of the reset circuitry and its oper-  
ation is located in each devices data sheet. To use the  
reset input function, install two 50pull-down resistors  
at positions R3 and R4 on the back side of the EV  
board. These resistors are connected to the on-board  
PECLV termination generator. The RSTIN logic levels  
TT  
are compatible with standard PECL levels referenced  
from the V O power supply.  
CC  
_______________________________________________________________________________________  
7
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Table 5. Demultiplexer Operation and Reset Control Signals  
EV KIT JUMPER  
LOCATION  
SIGNAL NAME  
CLK+, CLK-  
FUNCTION  
J3, J4  
Master ADC Timing Signal. The ADC samples on the rising edge of CLK+.  
Data-Ready PECL Output. Output data changes on the rising edge of  
DREADY+.  
DREADY+, DREADY-  
JUDR+, JUDR-  
RSTIN+, RSTIN-  
J5, J6  
Demux Reset Input Signal. Resets the internal demux when asserted.  
Reset Output—for resetting additional external demux devices.  
RSTOUT+, RSTOUT-  
JURO+, JURO-  
Table 6. Power-Supply and Ground Requirements and Location  
EV KIT JUMPER  
LOCATION  
GROUND  
REFERENCE  
EV KIT JUMPER  
LOCATION  
POWER SUPPLY  
= -5V  
V
EE  
J17  
J13, J15  
J11  
GNDI  
GNDA/GNDI  
GNDD  
J16  
J14, J16  
J12  
V
CC  
A = V I = +5V  
CC  
V
CC  
D = +5V  
V
CC  
O = +3.0V to +5V  
J18  
GNDD  
J12  
Reset Outputs  
The EV kits are tested with the V A and V I supplies  
CC CC  
With a single device, no synchronizing reset is required  
since the order of the samples in the output ports is  
unchanged regardless of the phase of the DREADY  
(DREADY+, DREADY-) clock (as described in the data  
s he e ts ). DREADY+ (jump e r J UDR+) a nd DREADY-  
(jumper JUDR-) can be found in the middle of the PECL  
output arc in the right center of the EV board.  
shorted by SP1 and SP2. There is no measurable differ-  
ence in the parts dynamic performance with the sup-  
plies separated, therefore Maxim recommends leaving  
the supplies connected together.  
CAUTION: There are no connections between  
GNDA/GNDI and GNDD on the EV kits. These  
grounds must be referenced together at the power  
supply to the board, or damage to the device may  
result!  
On the EV kits , the re s e t outp ut 2-p in he a d e rs for  
RSTOUT+ (jump e r J URO+) a nd RSTOUT- (jump e r  
JURO-) are located above the reset input SMA connec-  
tors on the lower left side of the board.  
Referencing analog (GNDA/GNDI) and digital (GNDD)  
grounds together at a single point avoids ground loops  
and reduces noise pickup from the digital signals or  
power lines.  
Evluate:46/MAX108  
P o w e r S u p p lie s  
The EV kits feature separate analog and digital power  
supplies and grounds for best dynamic performance. The  
power-supply connectors are located at the top of the  
board and require the power supplies listed in Table 6.  
To avoid a possible latchup condition when disassem-  
bling an application, a high-speed Schottky diode (D1,  
1N5819) wa s a d d e d b e twe e n V a nd GNDI. This  
EE  
diode prevents the substrate (which is connected to  
To simplify use of the EV kits and reduce the number of  
V
EE  
) from forwa rd b ia s ing a nd p os s ib ly c a us ing a  
power sources required to drive the EV board, V  
A
CC  
latchup condition when the V connector is opened.  
EE  
and V I, as well as GNDA and GNDI, are connected  
CC  
together by shorting straps SP1 and SP2. To separate  
the supplies, cut the traces at SP1 and SP2. Be sure to  
observe the absolute maximum voltage difference of  
±0.3V between the supplies if separate supplies are  
used. This may require back-to-back Schottky diodes  
Bo a rd La yo u t  
Each EV kit is a four-layer board design, optimized for  
high-speed signals. The board is constructed from low-  
loss GETek core material, which has a relative dielec-  
tric constant of 3.9 (ε = 3.9). The GETek material used  
r
between V A and V I to prevent violation of the  
CC  
CC  
for the EV board offers improved high-frequency and  
thermal properties over standard FR4 board material.  
All high-speed signals are routed with 50microstrip  
absolute maximum ratings during power-up/down.  
8
_______________________________________________________________________________________  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Evluate:46/MAX108  
Table 7. EV Kit PCB Layers  
LAYER  
DESCRIPTION  
Components, jumpers, connectors, test pads, V O, GNDD, GNDI, analog 50Ω  
microstrip lines, de-embedding fixtures  
CC  
Layer I, top layer  
Layer II, ground plane  
Layer III, power plane  
Layer IV, bottom layer  
Ground for analog 50microstrips, GNDA, GNDD, GNDI, V  
D
CC  
V , PECLV (V O - 2V), GNDD  
EE TT CC  
V
CC  
A, V O, GNDI, digital 50microstrip lines, 50termination resistors  
CC  
transmission lines. The line width for 50microstrip is  
18 mils with a ground plane height of 10 mils, which is  
a standard GETek core thickness. Figure 3 shows a  
cross-section of the EV kit layer profile.  
Special Layout Considerations  
A special effort was made in the board layout to sepa-  
rate the analog and digital portions of the circuit. 50Ω  
microstrip transmission lines are used for the analog  
and clock inputs as well as for the high-speed PECL  
digital outputs. The analog and clock transmission lines  
are formed on the top side of the board, while the digi-  
tal transmission lines are located on the back side of  
the board. This reduces coupling of the high-speed  
digital outputs to the analog inputs. The analog and  
clock inputs provide on-chip, laser-trimmed 50termi-  
nation resistors for the best VSWR performance.  
The board also features a de-embedding fixture formed  
from two lengths of microstrip transmission line con-  
ne c te d b e twe e n SMA c onne c tors J 9-10 a nd J 7-8,  
located on the right edge of the board. The 1.50-inch  
line length difference between the two paths exactly  
matches the line length of the microstrip connecting the  
analog inputs. By measuring the power-loss difference  
between the two paths at the frequency of interest, it is  
p os s ib le to e s tima te the a tte nua tion of the a na log  
inputs caused by PCB losses. Figure 4 shows the mea-  
sured attenuation vs. frequency for the microstrip lines  
connecting the analog inputs.  
Wherever large ground or power planes are used, care  
was taken to ensure that the analog planes were not  
overlapping with any digital planes. This eliminates the  
possibility of capacitively coupling digital noise through  
the circuit board to sensitive analog areas.  
BOARD LOSS vs. INPUT FREQUENCY  
0
18 MILS  
50Ω  
1 oz. Cu  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.30  
LAYER #1 (TOP)  
10 MIL GETek CORE  
LAYER #2  
GETek PREPREG AS NEEDED  
LAYER #3  
-0.35  
-0.40  
-0.45  
-0.50  
10 MIL GETek CORE  
LAYER #4 (BOTTOM)  
18 MILS  
50Ω  
1
500  
1500 2500  
ANALOG INPUT FREQUENCY (MHz)  
Figure 3. EV Kit Layer Profile for 50Microstrip Design  
Figure 4. Analog Input Attenuation from PCB Losses  
_______________________________________________________________________________________  
9
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Figure 5a. BGA PCB Pad Designs (SMD Pad)  
Figure 5b. BGA PCB Pad Designs (Non-SMD Pad)  
All differential digital outputs are properly terminated  
with 50termination resistors on both phases of the  
output, even though most logic analyzers are single  
ended. By terminating both sides of the differential out-  
copper etch quality control. The SMD pad (Figure 5a)  
has a solder-mask opening that is smaller than the cop-  
per land area. This means that the solder-mask align-  
ment and etch quality will control the pad dimensions.  
puts, the AC current in the V O and GNDD supplies is  
CC  
Since the edges of the copper do not need to extend  
under the solder mask as with the SMD pad, the pad  
can either be made larger or can provide more line  
routing space between adjacent pads. There is room to  
route a s ing le 50mic ros trip tra c e (18 mils wid e )  
between the BGA mounting pads on the EV kits. The  
copper land diameter is 25 mils, while the solder mask  
opening is 30 mils.  
reduced. This also reduces coupling of the ADC out-  
p uts b a c k to the a na log inp uts a nd p re s e rve s the  
excellent SNR performance of the converter.  
The PECL digital outputs are arranged in an arc to match  
the line lengths between the ADC outputs and the logic  
analyzer connectors. The lengths of the 50microstrip  
lines are matched to within 0.050 inch to minimize layout-  
dependent data skew between the bits. The propagation  
delay on the EV board is about 134ps per inch.  
Die Te m p e ra t u re Me a s u re m e n t  
It is possible to determine the die temperature of the  
ADC under normal operating conditions by observing  
ESBGA Device Pad Design  
An excellent reference on the assembly and design of  
PCBs with BGA d e vic e s is “Ap p lic a tion Note s on  
Surfa c e Mount As s e mb ly of Amkor/Ana m BGA  
Pa c ka g e s .” This p ub lic a tion is a va ila b le from  
Amkor/Anam, 1900 S. Price Road, Chandler AZ, 85248,  
phone: (602) 821-5000.  
the currents I  
and I . These are two nominally  
PTAT  
CONST  
Evluate:46/MAX108  
100µA currents designed to be equal at 27°C. The cur-  
rents are derived from the internal precision +2.5V  
bandgap reference of the ADC. Their test pads (J21  
and J22) are labeled ICONST and IPTAT and are locat-  
ed just above the analog inputs.  
As described in the above applications note, there are  
two possibilities for defining PCB pads for mounting  
BGA devices: solder mask defined (SMD) and nonsol-  
der mask defined (non-SMD, copper defined). The EV  
kits’ design employs nonsolder mask defined pads.  
Figure 5 shows the layout of each of these pad types.  
The simplest method of determining die temperature is  
to measure each current with an ammeter referenced to  
GNDI, as described in the data sheets. The die temper-  
ature in °C is then calculated by the expression:  
I
PTAT  
T
= 300  
273  
DIE  
I
The non-SMD (Figure 5b) pad has a solder-mask open-  
ing that is larger than the copper land area. This means  
that the size of the mounting pad is controlled by the  
CONST  
10 ______________________________________________________________________________________  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Evluate:46/MAX108  
D 1  
Figure 6. MAX104/MAX106/MAX108 EV Kits Schematic  
______________________________________________________________________________________ 11  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
J7  
J9  
J8  
V
TT  
V O  
CC  
V
TT  
V O  
CC  
C51  
0.01µF  
C12  
0.01µF  
C53  
0.01µF  
C18  
0.01µF  
J10  
GNDD  
GNDD  
NOTE: THESE JUMPERS FORM  
THE DE-EMBEDDING FIXTURE.  
V
TT  
V O  
CC  
V
TT  
V O  
CC  
C58  
0.01µF  
C29  
0.01µF  
C52  
0.01µF  
C17  
0.01µF  
TERMINATION  
JUMPER  
RESISTOR TO V  
TT  
GNDD  
GNDD  
JUOR+  
JUOR-  
JUP7+  
JUP7-  
JUP6+  
JUP6-  
JUP5+  
JUP5-  
JUP4+  
JUP4-  
JUP3+  
JUP3-  
JUP2+  
JUP2-  
JUP1+  
JUP1-  
JUP0+  
JUP0-  
JUA7+  
JUA7-  
JUA6+  
JUA6-  
JUA5+  
JUA5-  
JUA4+  
JUA4-  
JUA3+  
JUA3-  
JUA2+  
JUA2-  
JUA1+  
JUA1-  
JUA0+  
JUA0-  
JUDR-  
JUDR+  
JURO-  
JURO+  
R28  
R29  
R30  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R31  
R27  
R26  
R25  
R24  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
V
V O  
CC  
TT  
C59  
0.01µF  
C30  
0.01µF  
GNDD  
EXAMPLE FOR PECL OUTPUT  
JUMPER AND TERMINATION.  
(EACH OUTPUT ON THE EV KIT  
IS TERMINATED LIKE THIS.)  
V
TT  
V O  
CC  
C57  
0.01µF  
C28  
0.01µF  
JUOR+  
GNDD  
JUOR+  
V
TT  
V O  
CC  
R28  
49.9Ω  
C58  
0.01µF  
C27  
0.01µF  
GNDD  
PECLV  
TT  
GNDD  
Evluate:46/MAX108  
V
TT  
V O  
CC  
C55  
0.01µF  
C26  
0.01µF  
GNDD  
R8  
V
TT  
V O  
CC  
R7  
C54  
C19  
0.01µF  
R6  
0.01µF  
R5  
R44  
R45  
R46  
R47  
GNDD  
Figure 6. MAX104/MAX106/MAX108 EV Kits Schematic (continued)  
12 ______________________________________________________________________________________  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Evluate:46/MAX108  
V
D
CC  
JU7  
GNDD  
V
D
CC  
GNDD  
JU5  
GNDD  
GNDI  
P2  
D17  
E18  
V12  
U12  
V14  
U14  
V16  
U16  
N18  
N17  
L18  
L17  
H18  
H17  
F18  
F17  
B14  
C14  
B12  
C12  
V13  
U13  
V15  
U15  
P18  
P17  
M18  
M17  
J18  
REFOUT  
DIVSEL  
DEMUXEN  
OR+  
OR-  
T.P.  
1
3
2
F1  
VOSADJ  
R2  
10k  
JUOR+  
JUOR-  
JUP7+  
JUP7-  
JUP6+  
JUP6-  
JUP5+  
JUP5-  
JUP4+  
JUP4-  
JUP3+  
JUP3-  
JUP2+  
JUP2-  
JUP1+  
JUP1-  
JUP0+  
JUP0-  
JUA7+  
JUA7-  
JUA6+  
JUA6-  
JUA5+  
JUA5-  
JUA4+  
JUA4-  
JUA3+  
JUA3-  
JUA2+  
JUA2-  
JUA1+  
JUA1-  
JUA0+  
JUA0-  
JU4  
ICONST  
J21  
IPTAT  
E1  
E2  
L1  
J1  
T1  
P1  
R1  
V10  
U10  
ICONST  
IPTAT  
VIN+  
VIN-  
CLK+  
P7+  
P7-  
P6+  
P6-  
P5+  
P5-  
P4+  
P4-  
P3+  
P3-  
P2+  
P2-  
P1+  
P1-  
P0+  
P0-  
A7+  
A7-  
A6+  
A6-  
A5+  
A5-  
A4+  
A4-  
A3+  
A3-  
A2+  
A2-  
A1+  
A1-  
A0+  
A0-  
GNDI  
J22  
J1  
J2  
CLK-  
V
CLKCOM  
CLKCOM  
RSTIN+  
RSTIN-  
J3  
GNDI  
J4  
GNDI  
JU2  
A9  
B5  
B10  
R19  
D18  
A12  
GNDI  
V
V
V
A
I
D
CC  
CC  
CC  
GNDI  
GNDI  
AUXEN1  
AUXEN2  
V
V
TT  
U1  
O
R3*  
CC  
49.9Ω  
J5  
MAX104  
MAX106  
MAX108  
J6  
GNDI  
R4*  
49.9Ω  
GNDI  
V
TT  
J17  
G18  
G17  
B15  
C15  
B13  
C13  
V
A
CC  
SP1  
V
I
CC  
V
D
CC  
JUDR-  
JUDR+  
JURO-  
JURO+  
SP2  
OFF  
3
ON  
2
JU9  
1
V
EE  
OFF  
3
ON  
GNDI  
JU5  
2
1
JU8  
GNDI  
GNDD  
GNDD  
GNDA  
REFOUT  
GNDD  
V
O
CC  
*NOT INSTALLED  
Figure 6. MAX104/MAX106/MAX108 EV Kits Schematic (continued)  
______________________________________________________________________________________ 13  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Evluate:46/MAX108  
1.0"  
Figure 7. MAX104/MAX106/MAX108 EV Kits Component Placement GuideComponent Side (Layer I)  
14 ______________________________________________________________________________________  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Evluate:46/MAX108  
1.0"  
Figure 8. MAX104/MAX106/MAX108 EV Kits Component Placement GuideSolder Side (Layer IV)  
______________________________________________________________________________________ 15  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Evluate:46/MAX108  
1.0"  
Figure 9. MAX104/MAX106/MAX108 EV Kits PC Board Layout—Component Side (Layer I)  
16 ______________________________________________________________________________________  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Evluate:46/MAX108  
1.0"  
Figure 10. MAX104/MAX106/MAX108 EV Kits PC Board Layout—GND Plane (Layer II)  
______________________________________________________________________________________ 17  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Evluate:46/MAX108  
1.0"  
Figure 11. MAX104/MAX106/MAX108 EV Kits PC Board Layout—Power Plane (Layer III)  
18 ______________________________________________________________________________________  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
Evluate:46/MAX108  
1.0"  
Figure 12. MAX104/MAX106/MAX108 EV Kits PC Board Layout—Solder Side (Layer IV)  
______________________________________________________________________________________ 19  
MAX1 0 4 /MAX1 0 6 /MAX1 0 8 Eva lu a t io n Kit s  
NOTES  
Evluates:46/MAX108  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX108K00B

MAX108K00B 5 PPM
VISHAY

MAX109

8-Bit, 2.2Gsps ADC with Track/Hold Amplifier and 1:4 Demultiplexed LVDS Outputs
MAXIM

MAX1090

400ksps, +5V, 8-/4-Channel, 10-Bit ADCs with +2.5V Reference and Parallel Interface
MAXIM

MAX1090ACEI

400ksps, +5V, 8-/4-Channel, 10-Bit ADCs with +2.5V Reference and Parallel Interface
MAXIM

MAX1090ACEI+

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDSO28, LEAD FREE, QSOP-28
MAXIM

MAX1090ACEI+T

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDSO28, LEAD FREE, QSOP-28
MAXIM

MAX1090ACEI-T

暂无描述
MAXIM

MAX1090AEEI

400ksps, +5V, 8-/4-Channel, 10-Bit ADCs with +2.5V Reference and Parallel Interface
MAXIM

MAX1090AEEI+

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDSO28, LEAD FREE, QSOP-28
MAXIM

MAX1090AEEI-T

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDSO28, QSOP-28
MAXIM

MAX1090BCEI

400ksps, +5V, 8-/4-Channel, 10-Bit ADCs with +2.5V Reference and Parallel Interface
MAXIM

MAX1090BCEI+T

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDSO28, LEAD FREE, QSOP-28
MAXIM