MAX1103EUA+ [MAXIM]

8-Bit CODECs;
MAX1103EUA+
型号: MAX1103EUA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

8-Bit CODECs

文件: 总17页 (文件大小:521K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1873; Rev 1; 1/11  
8-Bit CODECs  
23/MAX104  
General Description  
Features  
The MAX1102/MAX1103/MAX1104 CODECs provide  
both an 8-bit analog-to-digital converter (ADC) and an  
8-bit digital-to-analog converter (DAC) with a 4-wire  
logic interface. The MAX1102/MAX1103 include an  
onboard +2V/+4V reference, providing a well-regulat-  
ed, low noise reference for both the ADC and DAC.  
The MAX1104 offers ratiometric conversion, with the  
o 8-Bit ADC  
1LSB INL  
Built-In Track-and-Hold  
48dB of SINAD  
o 8-Bit DAC  
1LSB INL  
55dB of SFDR  
reference internally connected to V  
.
DD  
o Internal Conversion Clock  
The MAX1102/MAX1103/MAX1104 are low-cost, low-  
power CODECs for use with microcontrollers (µCs).  
They allow for greater flexibility when selecting a µC.  
Less expensive µCs without onboard converters can be  
used while maintaining overall system performance.  
o Single-Supply Operation  
+2.7V to +3.6V (MAX1102)  
+4.5V to +5.5V (MAX1103)  
+2.7V to +5.5V (MAX1104)  
o Low Power Consumption  
The MAX1102 operates from a single +2.7V to +3.6V  
supply, the MAX1103 operates from a +4.5V to +5.5V  
supply, and the MAX1104 operates from a +2.7V to  
+5.5V supply. The MAX1102/MAX1103 incorporate a  
0.5mA at 25ksps  
1µA Shutdown Mode  
o 6MHz 4-Wire SPI™, QSPI™, and MICROWIRE™  
V
DD  
monitor in addition to AIN for power supply moni-  
Compatible Interface  
toring. All devices feature a low 18µA standby mode,  
where both data converters are disabled while the ref-  
erence remains active, and three shutdown modes:  
ADC disabled, DAC disabled, and complete shutdown  
(1µA). A quick 10µs wake-up time allows the  
MAX1102/MAX1103/MAX1104 to cycle in and out of  
shutdown even during short-duration idle times.  
o Compact 8-Pin µMAX Package  
o Internal Voltage Reference  
+2V: MAX1102  
+4V: MAX1103  
o Power-Supply Monitor (MAX1102/MAX1103)  
o Rail-to-rail DAC Output Buffer  
The MAX1102/MAX1103/MAX1104 are available in a  
®
space-saving 8-pin µMAX package.  
Ordering Information  
________________________Applications  
TEMP  
RANGE  
PIN-  
PACKAGE  
PART  
REFERENCE  
Analog I/O for Microcontrollers  
Analog System Signal Supervision  
Voice Recording and Playback  
MAX1102EUA+ -40°C to +85°C 8 µMAX  
MAX1103EUA+ -40°C to +85°C 8 µMAX  
MAX1104EUA+ -40°C to +85°C 8 µMAX  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
+2V  
+4V  
V
DD  
Functional Diagram  
Pin Configuration  
V
DD  
V
DD/2  
MAX1102  
MAX1103  
MAX1104  
TOP VIEW  
CS  
SCLK  
DIN  
ADC  
DAC  
T/H  
SERIAL  
INTERFACE  
AND  
CONTROL  
LOGIC  
AIN  
+
VOLTAGE  
REFERENCE  
V
1
2
3
4
8
7
6
5
DIN  
DD  
GND  
AIN  
DOUT  
SCLK  
CS  
DAC  
LATCH  
MAX1102  
MAX1103  
MAX1104  
AOUT  
DOUT  
OUT  
µMAX  
GND  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
8-Bit CODECs  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND..............................................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering,10s) ..................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
AIN, OUT, DOUT to GND ...........................-0.3V to (V  
DIN, SCLK, CS to GND ............................................-0.3V to +6V  
+ 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin µMAX (derate 4.1mW/°C above +70°C).................330mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.7V to +3.6V (MAX1102), V  
= +4.5V to +5.5V (MAX1103), V  
= +2.7V to +5.5V (MAX1104), f  
= 6.0MHz (50% duty  
DD  
DD  
DD  
SCLK  
cycle), R  
= 10k, C  
= 100pF, T = T  
to T  
. Typical values are at T = +25°C, unless otherwise noted.)  
MAX A  
OUT  
OUT  
MIN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ADC DC ACCURACY (Note 1)  
Bits  
Resolution  
8
Relative Accuracy  
(Note 2)  
INL  
All codes  
1/4  
1/4  
1
LSB  
LSB  
LSB  
%
Differential Nonlinearity  
Offset Error  
DNL  
Guaranteed monotonic  
1
1
5
1
MAX1102/MAX1103  
MAX1104  
Gain Error  
(Note 3)  
LSB  
ADC DYNAMIC SPECIFICATIONS (f  
= 10kHz SINE WAVE. V  
= 0.9  
V
)
AIN  
AIN  
REFp-p  
Signal to Noise and Distortion  
Ratio  
SINAD  
48  
dB  
23/MAX104  
dB  
dB  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Full-Power Bandwidth  
SFDR  
THD  
59  
58  
MHz  
2.5  
ADC Wake-Up Time from  
Standby  
Reference enabled (MAX1102/MAX1103)  
3
µs  
µs  
MAX1102/MAX11103  
MAX1104  
200  
ADC Wake-Up Time from Full  
Shutdown  
3
ANALOG INPUT  
V
Analog Input Voltage  
Input Resistance  
V
0
V
REF  
AIN  
M  
pF  
R
10  
20  
IN  
IN  
Input Capacitance  
VOLTAGE REFERENCE  
C
MAX1102  
2
4
Reference Voltage  
V
V
REF  
MAX1103  
ppm/oC  
Temperature Coefficient  
CONVERSION RATE  
Conversion Time  
MAX1102/MAX1103  
100  
µs  
µs  
t
24  
36  
CONV  
Track/Hold Acquisition Time  
Internal Clock Frequency  
t
3.5  
ACQ  
kHz  
375  
2
_______________________________________________________________________________________  
8-Bit CODECs  
23/MAX104  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.7V to +3.6V (MAX1102), V  
= +4.5V to +5.5V (MAX1103), V  
= +2.7V to +5.5V (MAX1104), f  
= 6.0MHz (50% duty  
DD  
DD  
DD  
SCLK  
cycle), R  
= 10k, C  
= 100pF, T = T  
to T  
. Typical values are at T = +25°C unless otherwise noted.)  
MAX A  
OUT  
OUT  
MIN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ksps  
Throughput Rate  
DAC DC ACCURACY  
Resolution  
ADC in continuous conversion mode  
25  
Bits  
8
Relative Accuracy  
(Note 2)  
INL  
1/4  
1/4  
1
LSB  
LSB  
mV  
%
Differential Nonlinearity  
Offset Error  
DNL  
Guaranteed monotonic  
1
30  
5
MAX1102/MAX1103  
Gain Error  
(Note 3)  
MAX1104  
30  
mV  
DAC DYNAMIC SPECIFICATIONS (f  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
= 1kHz SINE WAVE, V  
= 0.9  
V
)
OUT  
OUT  
REFp-p  
dB  
dB  
SFDR  
THD  
55  
53  
1
MHz  
kHz  
Small-Signal Bandwidth  
Full-Power Bandwidth  
72  
DAC Wake-Up Time from  
Standby (Note 4)  
Reference enabled (MAX1102/MAX1103)  
10  
µs  
MAX1102/MAX1103  
MAX1104  
200  
DAC Wake-Up Time from Full  
Shutdown (Note 4)  
µs  
10  
DAC OUTPUT  
V
0.1  
-
DD  
Full-Scale Swing  
MAX1104  
0
V
µs  
Settling Time (Note 5)  
Slew Rate  
Settle to within 1/2 LSB  
11  
Vµs  
1.2  
R open to 10kΩ  
L
Load Regulation  
0.05  
LSB  
0 < V  
< V  
- 0.1V  
OUT  
DD  
LOGIC INPUTS AND OUTPUTS (DIN, SLCK, CS)  
V
x
DD  
0.7  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
V
x
DD  
0.3  
V
IL  
µA  
V
Input Current  
V
= V  
or V  
DD  
0.1  
0.5  
15  
5
LOGIC  
GND  
Digital Input Hysteresis  
Digital Input Capacitance  
pF  
V
x
DD  
0.9  
Output High Voltage  
V
I = 1.0mA  
SOURCE  
V
OH  
V
x
DD  
0.1  
Output Low Voltage  
Three-State Leakage  
V
I = 1.0mA  
SINK  
V
OL  
µA  
I
5.0  
LEAK  
_______________________________________________________________________________________  
3
8-Bit CODECs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.7V to +3.6V (MAX1102), V  
= +4.5V to +5.5V (MAX1103), V  
= +2.7V to +5.5V (MAX1104), f  
= 6.0MHz (50% duty  
DD  
DD  
DD  
SCLK  
cycle), R  
= 10k, C  
= 100pF, T = T  
to T  
. Typical values are at T = +25°C unless otherwise noted.)  
MAX A  
OUT  
OUT  
MIN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY REQUIREMENTS  
MAX1102  
MAX1103  
MAX1104  
2.7  
4.5  
2.7  
3.6  
5.5  
5.5  
0.5  
0.66  
35  
Supply Voltage  
V
V
DD  
ADC on (25ksps), DAC off  
ADC off, DAC on (V = +5.5V)  
0.25  
0.4  
18  
Supply Current  
I
mA  
CC  
DD  
µA  
µA  
Standby Current  
ADC off, DAC off, clock off, reference on  
ADC off, DAC off, clock off  
Full Shutdown Current  
1
TIMING CHARACTERISTICS (Figures 4a and 4b)  
(V  
= +2.7V to +3.6V (MAX1102), V  
= +4.5V to +5.5V (MAX1103), V  
= +2.7V to +5.5V (MAX1104), f  
= 6.0MHz (50% duty  
DD  
DD  
DD  
SCLK  
cycle), R  
= 10k, C  
= 100pF, T = T  
to T  
. Typical values are at T = +25°C unless otherwise noted.)  
MAX A  
OUT  
OUT  
MIN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µs  
Power Up to Reset Complete  
CS Rise-to-DOUT = High-Z  
CS Fall-to-DOUT Valid  
CS Fall-to-SCLK Rise  
t9  
t10  
t11  
t3  
40  
ns  
40  
60  
ns  
R
R
= 3k, C  
= 50pF  
= 50pF  
DOUT  
DOUT  
DOUT  
ns  
15  
25  
10  
15  
23/MAX104  
ns  
SCLK Fall-to-CS Rise  
t8  
ns  
DIN-to-SCLK Setup Time  
DIN-to-SCLK Hold Time  
SCLK Fall to DOUT Valid  
SCLK Maximum Frequency  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t4  
ns  
t5  
ns  
t6  
= 3k, C  
78  
6
DOUT  
MHz  
ns  
f
SCLK  
t
60  
70  
CH  
ns  
t
CL  
Note 1: MAX1102/MAX1104 tested with V  
= +3V. MAX1103 tested with V  
= +5V.  
DD  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the gain error and offset  
error have been nulled.  
Note 3: Gain error calculation is referenced to the ideal FS output. Gain error for the MAX1102/MAX1103 also includes reference ini-  
tial accuracy error.  
Note 4: Wake-up time is the time it takes for the DAC output to settle to within 1/2 LSB of the FS value after a power-up command.  
Note 5: Output settling time is measured by taking the DAC from code 00hex to FFhex.  
4
_______________________________________________________________________________________  
8-Bit CODECs  
23/MAX104  
Typical Operating Characteristics  
(V  
= +3.0V (MAX1102), V  
= +5V (MAX1103), f  
= 6.0MHz (50% duty cycle), R  
= 10k, C  
= 100pF, T = +25°C,  
DD  
DD  
SCLK  
OUT  
OUT A  
unless otherwise noted.)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(ADC ENABLED, DAC ENABLED)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(ADC ENABLED, DAC DISABLED)  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
(DAC ENABLED, ADC DISABLED)  
500  
300  
250  
200  
150  
100  
50  
350  
300  
CODE = AAhex  
DAC CODE = FFhex  
CODE = FFhex  
450  
400  
250  
200  
150  
350  
300  
CODE = 00hex  
250  
200  
DAC CODE = 00hex  
ADC CODE = AAhex  
150  
100  
100  
50  
0
50  
0
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
DAC OFFSET ERROR  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT vs.  
SUPPLY VOLTAGE  
ADC OFFSET ERROR vs.  
SUPPLY VOLTAGE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
9
20  
15  
10  
5
CODE = 0Ahex  
ADC and DAC OFF  
REFERENCE ON  
8
7
6
ADC, DAC, and  
REFERENCE OFF  
5
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
ADC GAIN ERROR  
vs. SUPPLY VOLTAGE  
ADC GAIN ERROR vs. TEMPERATURE  
DAC GAIN ERROR vs. SUPPLY VOLTAGE  
10  
9
8
7
6
5
4
3
2
1
0
10  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
V
= 2.0V  
V
= 2.0V  
REF  
V
= 2.0V  
REF  
REF  
9
8
7
6
5
4
3
2
1
0
CODE = FFhex  
CODE = 7Fhex  
CODE = FFhex  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40  
-15  
10  
35  
60  
85  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
5
8-Bit CODECs  
Typical Operating Characteristics (continued)  
(V  
= +3.0V (MAX1102), V  
= +5V (MAX1103), f  
= 6.0MHz (50% duty cycle), R  
= 10k, C  
= 100pF, T = +25°C,  
OUT A  
DD  
DD  
SCLK  
OUT  
unless otherwise noted.)  
DAC OUTPUT HIGH VOLTAGE vs. OUTPUT  
SOURCE CURRENT  
DAC OUTPUT LOW VOLTAGE vs. OUTPUT  
SINK CURRENT  
DAC GAIN ERROR vs. TEMPERATURE  
3.95  
20  
15  
10  
5
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
V
V
= +5.0V  
= +2.0V  
DD  
REF  
V
= +5.0V  
DD  
CODE = 00hex  
3.90  
3.85  
3.80  
3.75  
3.70  
3.65  
3.60  
3.55  
CODE = FFhex  
CODE = FFhex  
CODE = F0hex  
CODE = 0Ahex  
V
V
= +5.0V  
= +4.0V  
DD  
REF  
0
-40  
-15  
10  
35  
60  
85  
0
2
4
6
8
10  
0
2
4
6
8
10  
TEMPERATURE (°C)  
OUTPUT SOURCE CURRENT (mA)  
OUTPUT SINK CURRENT (mA)  
ADC DIFFERENTIAL NONLINEARITY  
vs. CODE  
DAC INTEGRAL NONLINEARITY  
vs. CODE  
ADC INTEGRAL NONLINEARITY vs. CODE  
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
1.00  
0.75  
0.50  
0.25  
0
23/MAX104  
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
0
50  
100  
150  
200  
250 300  
0
50  
100  
150  
200  
250 300  
0
50  
100  
150  
200  
250 300  
ADC OUTPUT CODE  
DAC OUTPUT CODE  
ADC OUTPUT CODE  
DAC DIFFERENTIAL NONLINEARITY  
vs. CODE  
WORST-CASE 1LSB DIGITAL STEP CHANGE  
WORST-CASE 1LSB DIGITAL STEP CHANGE  
(POSITIVE)  
(NEGATIVE)  
MAX1102 toc17  
MAX1102 toc18  
1.00  
0.75  
0.50  
0.25  
0
3V  
3V  
SCLK  
OUT  
SCLK  
OUT  
0
0
-0.25  
-0.50  
-0.75  
-1.00  
20mV/div  
20mV/div  
0
50  
100  
150  
200  
250 300  
1µs/div  
1µs/div  
DAC OUTPUT CODE  
6
_______________________________________________________________________________________  
8-Bit CODECs  
23/MAX104  
Typical Operating Characteristics (continued)  
(V  
= +3.0V (MAX1102), V  
= +5V (MAX1103), f  
= 6.0MHz (50% duty cycle), R  
= 10k, C  
= 100pF, T = +25°C,  
DD  
DD  
SCLK  
OUT  
OUT A  
unless otherwise noted.)  
CLOCK FEEDTHROUGH  
POSITIVE SETTLING TIME  
NEGATIVE SETTLING TIME  
MAX1102 toc21  
MAX1102 toc19  
MAX1102 toc20  
3V  
0
3V  
0
3V  
0
SCLK  
SCLK  
OUT  
SCLK  
OUT  
OUT  
2mV/div  
1V/div  
1V/div  
1µs/div  
1µs/div  
1µs/div  
DAC FFT  
ADC FFT  
40  
20  
0
-20  
V
= +4.5V  
DD  
V
F
= +4.5V  
DD  
= 24.576kHz  
SAMPLE  
F = 10.002kHz  
L
0
-40  
-20  
-40  
-60  
-80  
-100  
-120  
-60  
-80  
-100  
-120  
-140  
0
0
1
2
3
4
5
6
7
8
9
10  
2
4
6
8
10  
12  
14  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
7
8-Bit CODECs  
Pin Description  
PIN  
1
NAME  
FUNCTION  
V
Voltage Supply  
DD  
2
GND  
AIN  
Ground  
3
ADC Analog Input  
DAC Analog Voltage Output  
4
OUT  
CS  
5
Chip Select Input. Device ignores all logic signals when CS is high.  
6
SCLK  
DOUT  
DIN  
Serial Clock Input. Data in is latched on the rising edge, data out transitions on the falling edge.  
ADC Digital Output. Output is high impedance when CS is high.  
7
8
DAC Digital Input. Input ignores all signals when CS is high.  
shows the detailed functional diagram of the ADC  
block.  
Detailed Description  
The MAX1102/MAX1103/MAX1104 are 8-bit CODECs in  
a compact 8-pin package. These devices consist of an  
8-bit ADC, an 8-bit DAC, track/hold (T/H), DAC output  
buffer amplifier, internal voltage reference, input multi-  
plexer (mux) and a 6MHz SPI, QSPI and MICROWIRE  
compatible 4-wire serial interface. A single 8-bit word  
configures the MAX1102/MAX1103/MAX1104, provid-  
ing a simple interface to a microcontroller (µC).  
ADC Operation  
The input architecture of the ADC is illustrated in Figure  
2, the equivalent input circuit, and is composed of the  
T/H, input mux (MAX1102/MAX1103), input comparator,  
switched capacitor DAC, and the auto-zero rail. The  
switched capacitor DAC is independent of the R-2R  
ladder DAC and does not provide the converted analog  
output on OUT.  
Analog-to-Digital Converter  
The MAX1102/MAX1103/MAX1104 ADC section uses a  
successive-approximation (SAR) conversion technique  
and input T/H circuitry to convert an analog signal to an  
8-bit digital output. No external hold capacitors are  
required. The MAX1102/MAX1103 have an input multi-  
plexer that directs either AIN or V /2 to the input of  
DD  
the T/H, allowing these devices to either convert the  
analog input, or monitor the power supply. Figure 1  
The T/H is in hold mode while a conversion is taking  
place. Once the conversion is completed, the T/H  
enters acquisition mode, and tracks the input signal  
until the start of the next conversion. In single conver-  
sion mode, conversion starts at the falling clock edge  
corresponding to the last bit of the control word. In con-  
tinuous conversion mode, the first conversion following  
the control word starts on the falling clock edge of the  
23/MAX104  
CS  
SCLK  
DIN  
MAX1102  
MAX1103  
INTERNAL  
OSCILLATOR  
CONTROL  
LOGIC/2  
SHIFT  
REGISTER  
SUCCESSIVE  
APPROXIMATION  
REGISTER  
OUTPUT  
DOUT  
T/H  
AIN  
/2  
ANALOG  
INPUT  
MUX  
V
DD  
CHARGE  
REDISTRIBUTION  
DAC  
INTERNAL  
OSCILLATOR  
Figure 1. ADC Detailed Functional Diagram  
8
_______________________________________________________________________________________  
8-Bit CODECs  
23/MAX104  
LSB of the control word. Successive conversions are  
initiated after the last bit of the previous conversion  
result has been clocked out. Resultant data is only  
available after conversion is complete.  
Conversion Progress  
The comparator’s negative input is connected to the  
auto-zero rail. Since the device requires only a single  
supply, the ZERO node at the input of the comparator  
equals V /2. The capacitive DAC restores node ZERO  
DD  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens, and more time must be  
to have no voltage difference at the comparator inputs  
within the limits of an 8-bit resolution.  
Input Voltage Range  
Internal protection diodes that clamp the analog input  
allowed between conversions. This time, t , is cal-  
ACQ2  
culated by the following equation:  
to V  
and GND allow AIN to swing from (V  
DD  
- 0.3V)  
GND  
DD  
to (V  
t
= (6.2  
R
S
15pF) + t  
ACQ  
+ 0.3V) without damaging the device.  
ACQ2  
However, for accurate conversions, the input must not  
exceed (V + 0.05V) or be less than (V - 0.05V).  
where R = the source impedance of the input signal;  
ACQ  
Characteristics table.  
S
GND  
DD  
t
is the T/H acquisition time from the Electrical  
The valid input range for the analog input is from GND  
to V . The output code is invalid (code zero) when a  
REF  
negative input voltage is applied, and full scale (FS)  
when the input voltage exceeds the reference.  
V
GND  
REF  
Input Bandwidth  
The ADC’s input tracking circuitry has a 2.5MHz full-  
power bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. To avoid high-fre-  
quency signals being aliased into the frequency band  
of interest, low-pass filters such as the MAX7418–  
MAX7426 are recommended.  
MAX1102  
MAX1103  
MAX1104  
HOLD  
AIN  
TRACK  
15pF  
5pF  
ZERO  
CAPACITIVE  
DAC  
TRACK  
Digital-to-Analog Converter  
The MAX1102/MAX1103/MAX1104 DAC section uses  
an R-2R ladder network that converts the 8-bit digital  
input into an equivalent analog output voltage propor-  
tional to the applied reference voltage (Figure 3). The  
DAC features a double-buffered input, and a buffered  
analog output.  
HOLD  
V
/2  
DD  
Figure 2. Equivalent Input Circuit  
R
R
R
R
R
R
R
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
2R  
REF  
OUT  
GND  
LSB  
MSB  
DAC_ REGISTER  
NOTE: SWITCH POSITIONS SHOWN FOR DAC CODE FFhex.  
Figure 3. DAC Simplified Circuit Diagram  
_______________________________________________________________________________________  
9
8-Bit CODECs  
Output Buffer  
The MAX1102/MAX1103/MAX1104 analog output is  
internally buffered by a precision unity-gain buffer that  
output transition, the amplifier output typically settles to  
1/2LSB in 11µs when loaded with 10kin parallel with  
100pF.  
slews at 1.2V/µs (typ). The output swings from V  
to  
GND  
- 0.1V to 0)  
The buffer amplifier is stable with any combination of  
resistive (10k) or capacitive (100pF) loads.  
V
DD  
- 0.1V. With a 0 to V  
- 0.1V (or V  
DD  
DD  
AOUT  
ADC CONVERSION CYCLE (ADC PREVIOUSLY ENABLED. DAC DISABLED)  
CS  
t3  
t3  
SCLK  
DOUT  
t10  
t11  
t4  
tconv  
D7  
D6 D5 D4 D3 D2 D1 D0  
MSB  
CONVERSION RESULT  
LSB  
DIN  
D7 D6 D5 D4 D3 D2 D1 D0  
t5  
AIN  
MSB  
CONTROL WORD  
LSB  
INPUT SAMPLING INSTANT  
Figure 4a. Serial Interface Timing Diagram. ADC enabled and DAC disabled.  
23/MAX104  
VDD  
AOUT  
twake-up  
tsettling  
CS  
t3  
t3  
SCLK  
DOUT  
t4  
D7 D6 D5 D4 D3 D2 D1 D0  
D7 D6 D5 D4 D3 D2 D1 D0  
t5  
DIN  
MSB  
Figure 4b. Serial Interface Timing Diagram. ADC disabled and DAC disabled.  
10 ______________________________________________________________________________________  
CONTROL WORD  
LSB  
MSB  
DAC DATA  
LSB  
8-Bit CODECs  
23/MAX104  
The control word sets the mode in which the MAX1102/  
MAX1103/MAX1104 operate. The enable bits, E0 to E2,  
determine what sections of the device are operating by  
either enabling or shutting down the two converters and  
voltage reference (see Shutdown Modes). The enable  
bits are independent of the address bits; for example,  
the ADC need not be addressed for it to be shutdown  
or powered up.  
Serial Interface and Control Logic  
The MAX1102/MAX1103/MAX1104 have 4-wire serial  
interfaces (Figure 4). The CS, SCLK, and DIN inputs  
are used to control and configure the device, while the  
three-state DOUT provides access to the ADC conver-  
sion result. DIN also serves as the data input to the  
DAC.  
The serial interface provides easy connection to µCs  
with SPI, QSPI, and MICROWIRE serial interfaces at  
clock rates up to 6MHz. For SPI and QSPI, set CPOL =  
CPHA = 0 in the SPI control registers of the µC. Figure  
4 gives detailed timing information.  
C0 and C1 are the control bits. C0 sets the conversion  
mode, either single or continuous (see Conversion  
Modes). C1 determines whether the ADC monitors  
V
DD  
/2 or AIN (see Power Sense). When changing C1,  
two control words must be written. The first control  
word changes the state of the mux. Then wait 3.5µs for  
the T/H to acquire the new input. Finally, the second  
control word causes the conversion to take place. For  
MAX1104 set C1 = 0.  
Digital Inputs and Outputs  
The logic levels of the MAX1102/MAX1103/MAX1104  
digital inputs are set to accept voltage levels from both  
+3V and +5V systems regardless of the supply volt-  
ages.  
A0 is the ADC address bit. A logic “1” on A0 addresses  
the ADC. The control word configures the ADC. A logic  
“0” on A0 deselects the ADC. In this state, the ADC is  
still active, but does not perform any conversions.  
Performing a Conversion  
Configuring the MAX1102/MAX1103/MAX1104  
The MAX1102/MAX1103/MAX1104 must be configured  
before a conversion can occur. Following CS falling, on  
each rising edge of SCLK, a bit from DIN is clocked  
into the MAX1102/MAX1103/MAX1104’s internal shift  
register. After CS falls, the first arriving logic “1” bit  
defines the MSB of the control byte (START). Until the  
START bit arrives, any number of logic “0” bits can be  
clocked into DIN with no effect. Table 1 shows the con-  
trol-byte format.  
A1 is the DAC address bit. A logic “1” on A1 address-  
es the DAC. The control word configures the DAC, and  
the eight bits following the control word are read in as  
DAC data. The converted analog output is available  
after the eighth data bit is read into the device. A logic  
“0” deselects the DAC. In this state the DAC is still  
active, but ignores any digital inputs.  
Both the ADC and DAC can be addresses from the  
same control word, allowing both converters to operate  
simultaneously.  
Table 1. Control-Byte Format  
BIT  
NAME  
DESCRIPTION  
7 (MSB)  
START  
1 = designates a new control word. 0 = control word ignored, unless byte is DAC data.  
1 = DAC addressed. Current byte configures DAC, the following byte is DAC data.  
0 = DAC not addressed.  
6
A1  
1 = ADC addressed. Current byte configures ADC. After the 36µs conversion time, the next eight  
clock cycles clock out the conversion result.  
5
A0  
0 = ADC not addressed.  
1 = ADC input to V /2.  
DD  
0 = ADC input to AIN.  
4
3
C1*  
C0  
1 = Continuous conversion. Control word not required unless the device is reconfigured.  
0 = Single conversion. New control word required before next conversion.  
2
1
0
E2  
E1  
E0  
1 = Reference enabled. 0 = Reference disabled. Don’t care for MAX1104.  
1 = ADC enabled. 0 = ADC disabled.  
1 = DAC enabled. 0 = DAC disabled.  
* Leave C1 = 0 for MAX1104.  
______________________________________________________________________________________ 11  
8-Bit CODECs  
Configuring the ADC  
In continuous conversion mode (C0 = 1), the device  
maintains its configuration from a single control word,  
and continuously updates the ADC conversion result,  
or accepts new DAC input data.  
When configuring the ADC immediately following  
power-up, the first control word enables the ADC and  
sets the T/H to track mode. Then wait 200µs for the  
internal reference to stablize (3µs typical from standby  
mode). Finally, the second control word sets the ADC  
into either single or continuous mode and causes con-  
version to take place.  
When operating the ADC and DAC simultaneously,  
both converters must be in the same conversion mode.  
ADC Single Conversion Mode  
Set C0 = 0 to select single conversion mode. The  
falling edge of SCLK after the eighth bit of each control  
word causes the ADC to switch from track to hold  
mode and begin conversion. To avoid corruption of the  
conversion result, SCLK must be disabled for 36µs  
(Figure 6). After completing the conversion, the ADC  
automatically returns to track mode, and the next eight  
clock cycles shift out the result on DOUT.  
Conversion Modes  
The MAX1102/MAX1103/MAX1104 have two conver-  
sion modes, single and continuous.  
In single conversion mode (C0 = 0), a control word  
must be written before an ADC conversion result can  
be read, or DAC input data is accepted. Once a con-  
version has occurred, the device will ignore any input  
until a new control word is written. Figures 5 and 6  
show the DAC and ADC single conversion mode timing  
diagrams.  
A minimum of 3.5µs in track mode is required for com-  
plete acquisition.  
CS  
SCLK  
DAC  
S ADDR  
DAC ON  
DAC  
S ADDR  
DAC ON  
DAC  
S ADDR  
DAC ON  
DAC  
S ADDR  
DAC OFF  
DAC  
S ADDR  
DAC ON  
DAC  
DATA  
DAC  
DATA  
DAC  
DATA  
DAC  
DATA  
DAC  
DATA  
DIN  
23/MAX104  
OUT  
NOTE: "S" DENOTES THE BEGINNING OF A CONTROL WORD  
Figure 5. DAC Single Conversion Mode Timing Diagram  
CS  
SCLK  
ADC  
S ADDR  
ADC ON  
ADC  
S ADDR  
ADC ON  
ADC  
S ADDR  
ADC OFF  
ADC  
S ADDR  
ADC ON  
ADC  
S ADDR  
ADC ON  
ADC  
ON  
ADC  
ON  
DIN  
S
S
t
t
CONV  
1
CONV  
2
AIN  
3
4
ACQUISITION MODE  
ACQUISITION MODE  
ACQUISITION  
MODE  
DOUT  
MSB LSB  
MSB LSB  
MSB LSB MSB LSB  
CONVERSION  
RESULT FOR 1  
CONVERSION  
RESULT FOR 2  
CONVERSION CONVERSION  
RESULT FOR 3 RESULT FOR 4  
Figure 6. ADC Single Conversion Mode Timing Diagram  
12 ______________________________________________________________________________________  
8-Bit CODECs  
23/MAX104  
CS  
SCLK  
DAC  
S ADDR  
DAC OFF  
DAC  
S ADDR  
DAC ON  
DAC  
DATA  
DAC  
DATA  
DAC  
DATA  
DAC  
DATA  
DAC  
DATA  
DAC  
DATA  
DAC  
DATA  
DAC  
DATA  
DIN  
OUT  
Figure 7. DAC Continuous Conversion Mode Timing Diagram  
CS  
SCLK  
ADC  
ADC  
ON  
ADC  
S ADDR  
ADC ON  
ADC  
S ADDR  
ADC ON  
ADC  
ON  
DIN  
S
S ADDR  
ADC ON  
S
t
CONV  
2
1
4
3
AIN  
5
7
6
T/MIN ACQUISITION  
MODE  
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
MSB LSB  
DOUT  
CONVERSION CONVERSION  
RESULT FOR 1 RESULT FOR 2  
CONVERSION  
RESULT FOR 3  
CONVERSION  
RESULT FOR 4  
CONVERSION  
RESULT FOR 5  
CONVERSION  
RESULT FOR 6  
Figure 8. ADC Continuous Conversion Mode Timing Diagram  
DAC Continuous Conversion Mode  
Once the DAC is configured in continuous conversion  
mode, the analog output, OUT, is updated at the rising  
edge of every eighth clock pulse (Figure 7). To exit  
DAC continuous conversion mode, toggle CS. The  
device requires a new control word before any further  
conversions take place.  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
11111111  
11111110  
11111101  
ADC Continuous Conversion Mode  
Set C0 = 1 to select continuous conversion mode. The  
falling edge of SCLK after the eighth bit of the control  
word causes the ADC to switch from track to hold  
mode and begin conversion. To avoid corruption of the  
conversion result, SCLK must be disabled for 36µs  
(Figure 8). After completing the conversion, the ADC  
automatically returns to track mode, and the next eight  
clock cycles shift out the result on DOUT. The falling  
edge of SCLK during the eighth bit of the result will  
again cause the ADC to switch from track to hold mode  
and begin the next conversion.  
00000011  
00000010  
00000001  
00000000  
0
0.5 1.5 2.5  
FS  
(IN-)  
INPUT VOLTAGE (LSB)  
FS - 1.5LSB  
Figure 9. ADC Input/Output Transfer Function  
______________________________________________________________________________________ 13  
8-Bit CODECs  
A minimum of 3.5µs in track mode is required for com-  
plete acquisition.  
Reference  
The full-scale range of both the ADC and DAC is set by  
the internal voltage reference. The MAX1102 provides a  
+2.0V reference, the MAX1103 has a +4.0V reference,  
In continuous ADC-only conversion mode, a new con-  
trol word (START = 1) reconfigures the device.  
and the MAX1104 uses V  
as the reference voltage.  
DD  
Interrupted Communication Results  
If CS transitions from low to high during the reception of  
a control word, the MAX1102/MAX1103/MAX1104  
enters its power-on reset state (full shutdown mode). If  
CS is toggled while receiving DAC data, the input is  
ignored and any received bits are discarded. In both  
cases, once CS returns low, the device requires a new  
control word before further conversions can occur. If  
CS goes high while data is read from the device, DOUT  
enters a high-impedance state, and the serial clock is  
ignored. When CS returns low, the remaining bits of the  
conversion result can be clocked out.  
ADC Transfer Function  
Figure 9 depicts the ADC input/output transfer function.  
Code transitions occur at the center of every LSB step.  
Output coding is binary; with a 2.0V reference 1LSB =  
(V  
/256) = 7.8125mV. Full scale is achieved at V  
REF  
AIN  
= V  
- 1.5LSB. Negative input voltages are invalid  
REF  
and give a zero output code. Voltages greater than full  
scale give an all ones output code.  
Shutdown Modes  
The MAX1102/MAX1103/MAX1104 feature four soft-  
ware-selectable shutdown modes, helping to conserve  
power by disabling any unused portion of the device.  
Bits 0 through 2 of the control word select the device  
shutdown mode (Table 1). Table 2 details the four  
power modes with the corresponding supply current  
and operating sections.  
Applications Information  
Power-On Reset  
When power is first applied, the device enters full shut-  
down mode and the DAC registers are reset to 0. To  
wake up the device, the proper control word must be  
written and 200µs allowed for the internal reference to  
stablize. DAC data may be written to the device imme-  
diately following the control word, but OUT will not finish  
settling until the wake-up time has passed.  
The ADC and DAC are individually controlled and can  
be shutdown independently of each other. Bit 0 (E0)  
controls the DAC, a logic “1” enables the DAC, a logic  
“0” disables the DAC. Bit 1 (E1) controls the ADC, a  
logic “1” enables the ADC, a logic “0” disables the  
ADC. Either the ADC or DAC or both can be shutdown,  
conserving power when one or both converters are not  
in use. A fast wake-up time (3µs ADC, 10µs DAC)  
allows the converters to be cycled in and out of shut-  
down even during short duration idle times.  
23/MAX104  
Power Sense  
The MAX1102/MAX1103 provide a multiplexer which  
sets the T/H to either AIN or one-half of V . With C1 =  
DD  
1, the ADC converts the V /2 voltage, providing  
DD  
power sensing capability to the system. When switch-  
ing the input multiplexer, two control words must be  
written before any conversion takes place. The first  
control word changes the multiplexer state, and the  
second starts the conversion.  
Data can be written to the DAC while it is in shutdown.  
A control word with A1 = 1 and E0 = 0 disables the  
DAC while allowing data to be written to the DAC. The  
eight bits following this control word are shifted into the  
DAC register. Conversion takes place once the DAC is  
enabled.  
Table 2. Operation Modes  
SUPPLY  
CURRENT  
BIT  
OPERATING SECTIONS  
E2  
0
E1  
0
E0  
0
REF  
Off  
On  
On  
On  
On  
ADC  
Off  
DAC  
Off  
1µA  
1
0
0
18µA  
Off  
Off  
1
1
0
250µA  
400µA  
520µA  
On  
Off  
1
0
1
Off  
On  
1
1
1
On  
On  
14 ______________________________________________________________________________________  
8-Bit CODECs  
23/MAX104  
Power Supply Bypassing and Layout  
For best performance, use printed circuit boards. Wire-  
wrap boards are not recommended. Board layout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another or run  
digital lines underneath the device.  
SYSTEM POWER SUPPLIES  
GND  
+3V/+5V  
Figure 10 shows the recommended system-ground  
connections. A single-point analog ground (star-ground  
point) should be established at the device ground.  
Connect all analog grounds to the star ground. No digi-  
tal-system ground should be connected to this point.  
The ground return to the power supply for the star  
ground should be connected to this point. The ground  
return to the power supply for the star ground should  
be low impedance and as short as possible for noise-  
free operation. High-frequency noise in the VDD power  
supply may affect device performance. Bypass the  
supply to the star ground with 0.1µF and 1µF capaci-  
tors close to the device. Minimize capacitor lead  
lengths for best supply-noise rejection. If the power  
supply is very noisy, connect a 10resistor in series  
with VDD to form a lowpass filter.  
1µF  
10Ω  
0.1µF  
GND  
V
DD  
DGND  
V
DD  
DIGITAL  
CIRCUITRY  
MAX1102  
MAX1103  
MAX1104  
Figure 10. Power-Supply Connections  
Two control words are necessary to enable the ADC.  
The first control word brings the ADC out of shutdown,  
and sets the T/H in acquisition mode. The second con-  
trol word initiates the conversion.  
Bit 2 (E2) controls the reference. A logic “1” enables  
the reference, a logic “0” disables the reference, further  
reducing power consumption.  
______________________________________________________________________________________ 15  
8-Bit CODECs  
Package Information  
Chip Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
LAND  
PACKAGE  
TYPE  
8 µMAX  
PACKAGE  
CODE  
OUTLINE NO.  
21-0036  
PATTERN NO.  
90-0092  
U8+1  
23/MAX104  
16 ______________________________________________________________________________________  
8-Bit CODECs  
23/MAX104  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
12/00  
1/11  
Initial release  
Changed spec in Timing Characteristics section  
4
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 17  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1103EUA+T

Analog Circuit, 1 Func, BICMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX1103EUA-T

Analog Circuit, 1 Func, BICMOS, PDSO8, MICRO MAX PACKAGE-8
MAXIM

MAX1104

8-Bit CODECs
MAXIM

MAX11040

24-Bit, 4-Channel, Simultaneous-Sampling, Cascadable, Sigma-Delta ADC
MAXIM

MAX11040DB

MAX11040 Evaluation Kit/Daughterboard
MAXIM

MAX11040DBEVKIT+

MAX11040 Evaluation Kit/Daughterboard
MAXIM

MAX11040EVKIT+

MAX11040 Evaluation Kit/Daughterboard
MAXIM

MAX11040GUU+

24-Bit, 4-Channel, Simultaneous-Sampling, Cascadable, Sigma-Delta ADC
MAXIM

MAX11040GUU+T

A/D Converter, 24-Bit, 4 Func, BICMOS, PDSO38
MAXIM

MAX11040K

24-/16-Bit, 4-Channel, Simultaneous-Sampling, Cascadable, Sigma-Delta ADCs
MAXIM

MAX11040KDBEVKIT

MAX11040K Evaluation Kit/Daughterboard
MAXIM

MAX11040KEVKIT

MAX11040K Evaluation Kit/Daughterboard
MAXIM