MAX11045 [MAXIM]

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs; 4- / 6 / 8通道, 16位,同时采样ADC
MAX11045
型号: MAX11045
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
4- / 6 / 8通道, 16位,同时采样ADC

文件: 总20页 (文件大小:2143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5036; Rev 1; 3/10  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
5/MAX1046  
General Description  
Features  
The MAX11044/MAX11045/MAX1104616-bit ADCs  
offer 4, 6, or 8 independent input channels. Featuring  
independent track and hold (T/H) and SAR circuitry,  
these parts provide simultaneous sampling at 250ksps  
for each channel.  
o 4-/6-/8-Channel 16-Bit ADC  
o Single Analog and Digital Supply  
o High-Impedance Inputs Up to 1GΩ  
o On-Chip T/H Circuit for Each Channel  
o Fast 3µs Conversion Time  
The MAX11044/MAX11045/MAX11046 accept a 5ꢀ  
input. All inputs are overrange protected with internal  
20mA input clamps providing overrange protection  
with a simple external resistor. Other features include a  
4MHz T/H input bandwidth, internal clock, and internal  
or external reference. A 20MHz, 16-bit, bidirectional,  
parallel interface provides the conversion results and  
accepts digital configuration inputs.  
o High Throughput: 250ksps for All 8 Channels  
o 16-Bit, High-Speed, Parallel Interface  
o Internal Clocked Conversions  
o 10ns Aperture Delay  
The MAX11044/MAX11045/MAX11046 operate with a  
4.75ꢀ to 5.25ꢀ analog supply and a separate flexible 2.7ꢀ  
to 5.25ꢀ digital supply for interfacing with the host without a  
level shifter. The MAX11044/MAX11045/MAX11046  
are available in a 56-pin TQFN and 64-pin TQFP pack-  
ages and operate over the extended -40°C to +85°C  
temperature range.  
o 100ps Channel-to-Channel T/H Matching  
o Low Drift, Accurate 4.096V Internal Reference  
Providing an Input Range of 5V  
o External Reference Range of 3.0V to 4.25V,  
Allowing Full-Scale Input Ranges of 4.0V to 5.2V  
o 56-Pin (8mm x 8mm) TQFN and 64-Pin  
Applications  
Automatic Test Equipment  
Power-Factor Monitoring and Correction  
Power-Grid Protection  
(10mm x 10mm) TQFP Packages  
o Evaluation Kit Available  
Multiphase Motor Control  
ꢀibration and Waveform Analysis  
Patent pending.  
Ordering Information  
Functional Diagram  
PART  
PIN-PACKAGE  
56 TQFN-EP**  
64 TQFP-EP**  
56 TQFN-EP**  
64 TQFP-EP**  
56 TQFN-EP**  
64 TQFP-EP**  
CHANNELS  
AVDD  
DVDD  
DB15  
MAX11044ETN+  
MAX11044ECB+*  
MAX11045ETN+  
MAX11045ECB+*  
MAX11046ETN+  
MAX11046ECB+*  
4
4
6
6
8
8
CH0  
16-BIT ADC  
S/H  
S/H  
CLAMP  
DB4  
DB3  
DB0  
CH7  
16-BIT ADC  
CLAMP  
Note: All devices are specified over the -40°C to +85°C operating  
temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
CONFIGURATION  
REGISTERS  
WR  
AGNDs  
AGND  
RD  
MAX11044  
MAX11045  
MAX11046  
CS  
INTERFACE  
AND  
CONTROL  
CONVST  
SHDN  
EOC  
INT REF  
EXT REF  
RDC  
BANDGAP  
REFERENCE  
REF  
BUF  
DGND  
REFIO  
Pin Configurations appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
ABSOLUTE MAXIMUM RATINGS  
AVDD to AGND ........................................................-0.3V to +6V  
DVDD to AGND and DGND .....................................-0.3V to +6V  
DGND to AGND.....................................................-0.3V to +0.3V  
AGNDS to AGND...................................................-0.3V to +0.3V  
CH0–CH7 to AGND...............................................-7.5V to +7.5V  
REFIO, RDC to AGND ..................................-0.3V to the lower of  
(AVDD + 0.3V) and +6V  
Maximum Current into Any Pin Except AVDD, DVDD, AGND,  
DGND ........................................................................... 50mA  
Continuous Power Dissipation  
56-Pin TQFN (derate 36mW/°C above +70°C) ..........2222mW  
64-Pin TQFP (derate 43.5mW/°C above +70°C)........3478mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
EOC, WR, RD, CS, CONVST to AGND.........-0.3V to the lower of  
(DVDD + 0.3V) and +6V  
DB0–DB15 to AGND ....................................-0.3V to the lower of  
(DVDD + 0.3V) and +6V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AVDD = +4.75V to +5.25V, DVDD = +2.70V to +5.25V, V  
= V  
= V = 0V, V  
DGND  
= internal reference, C  
= 4 x  
AGNDS  
AGND  
REFIO  
RDC  
33μF, C  
= 0.1μF, C  
= 4 x 0.1μF || 10μF, C  
= 3 x 0.1μF || 10μF; all digital inputs at DVDD or DGND, unless otherwise  
REFIO  
AVDD  
DVDD  
noted, f  
= 250ksps. T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
SAMPLE  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE (Note 1)  
Resolution  
N
16  
Bits  
(Note 2)  
(Note 3)  
(Note 4)  
(Note 5)  
(Note 3)  
>-2  
0.8  
0.7  
<+2  
Integral Nonlinearity  
INL  
LSB  
> -1  
> -1  
0.5  
< +1.2  
< +1.5  
Differential Nonlinearity  
DNL  
LSB  
0.7  
0.45  
No Missing Codes  
16  
Bits  
%FSR  
%FSR  
μV/°C  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
ppm/°C  
Offset Error  
0.002  
2.4  
0.01  
0.01  
5/MAX1046  
Channel Offset Matching  
Offset Temperature Coefficient  
Gain Error  
0.03  
0.02  
0.02  
0.02  
0.02  
0.03  
Positive Full-Scale Error  
Negative Full-Scale Error  
Positive Full-Scale Error Matching  
Negative Full-Scale Error Matching  
Channel Gain-Error Matching  
Gain Temperature Coefficient  
DYNAMIC PERFORMANCE (Note 6)  
Signal-to-Noise Ratio  
Between all channels  
0.8  
SNR  
SINAD  
SFDR  
THD  
f
IN  
f
IN  
f
IN  
f
IN  
= 10kHz, full-scale input  
= 10kHz, full-scale input  
= 10kHz, full-scale input  
= 10kHz, full-scale input  
91  
90.5  
95  
92.3  
92  
dB  
dB  
dB  
dB  
Signal-to-Noise and Distortion Ratio  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
106  
-105  
-95  
f
= 60Hz, full scale and ground on  
IN  
Channel-to-Channel Crosstalk  
-126  
-100  
dB  
adjacent channel (Note 7)  
2
_______________________________________________________________________________________  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
5/MAX1046  
ELECTRICAL CHARACTERISTICS (continued)  
(AVDD = +4.75V to +5.25V, DVDD = +2.70V to +5.25V, V  
= V  
= V = 0V, V  
DGND  
= internal reference, C  
= 4 x  
AGNDS  
AGND  
REFIO  
RDC  
33μF, C  
= 0.1μF, C  
= 4 x 0.1μF || 10μF, C  
= 3 x 0.1μF || 10μF; all digital inputs at DVDD or DGND, unless otherwise  
REFIO  
AVDD  
DVDD  
noted, f  
= 250ksps. T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
SAMPLE  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUTS (CH0–CH7)  
1.22 x  
Input-Voltage Range  
(Note 8)  
V
V
REFIO  
Input Leakage Current  
Input Capacitance  
-1  
+1  
μA  
pF  
15  
Input-Clamp Protection Current  
TRACK AND HOLD  
Throughput Rate  
Each input simultaneously  
-20  
+20  
mA  
Per channel, 8 channels in 4μs  
1
1
250  
ksps  
μs  
Acquisition Time  
t
1000  
ACQ  
-3dB point  
4
> 0.2  
10  
Full-Power Bandwidth  
MHz  
-0.1dB point  
Aperture Delay  
ns  
ps  
Aperture-Delay Matching  
Aperture Jitter  
100  
50  
ps  
RMS  
INTERNAL REFERENCE  
REFIO Voltage  
V
V
4.073  
4.096  
5
4.119  
V
REF  
REF  
REFIO Temperature Coefficient  
EXTERNAL REFERENCE  
Input Current  
ppm/°C  
-10  
+10  
4.25  
μA  
V
REF Voltage-Input Range  
REF Input Capacitance  
3.00  
15  
10  
pF  
DIGITAL INPUTS (DB0–DB15, RD, WR, CS, CONVST)  
Input Voltage High  
V
V
V
= 2.7V to 5.25V  
= 2.7V to 5.25V  
2
V
V
IH  
DVDD  
DVDD  
Input Voltage Low  
V
0.8  
10  
IL  
Input Capacitance  
C
pF  
μA  
IN  
Input Current  
I
V
= 0V or V  
DVDD  
IN  
IN  
DIGITAL OUTPUTS (DB0–DB15, EOC)  
V
-
DVDD  
0.4  
Output Voltage High  
V
I
I
= 1.2mA  
V
OH  
SOURCE  
Output Voltage Low  
V
= 1mA  
SINK  
0.25  
15  
0.4  
10  
V
OL  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER SUPPLIES  
DB0–DB15, V V or V V  
μA  
pF  
RD  
IH  
CS  
IH  
DB0–DB15, V V or V V  
RD  
IH  
CS  
IH  
Analog Supply Voltage  
Digital Supply Voltage  
AVDD  
DVDD  
4.75  
2.70  
5.25  
5.25  
48  
V
V
MAX11046, AVDD = 5V  
MAX11045, AVDD = 5V  
MAX11044, AVDD = 5V  
Analog Supply Current  
I
42  
mA  
AVDD  
36  
_______________________________________________________________________________________  
3
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(AVDD = +4.75V to +5.25V, DVDD = +2.70V to +5.25V, V  
= V  
= V = 0V, V  
DGND  
= internal reference, C  
= 4 x  
AGNDS  
AGND  
REFIO  
RDC  
33μF, C  
= 0.1μF, C  
= 4 x 0.1μF || 10μF, C  
= 3 x 0.1μF || 10μF; all digital inputs at DVDD or DGND, unless otherwise  
REFIO  
AVDD  
DVDD  
noted, f  
= 250ksps. T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
SAMPLE  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
7.3  
6.3  
5.5  
10  
UNITS  
mA  
MAX11046, DVDD = 3.3V (Note 9)  
MAX11045, DVDD = 3.3V (Note 9)  
MAX11044, DVDD = 3.3V (Note 9)  
Digital Supply Current  
I
mA  
DVDD  
mA  
I
DVDD  
μA  
Shutdown Current  
I
12  
AVDD  
Power-Supply Rejection Ratio  
TIMING CHARACTERISTICS (Note 9)  
CONVST Rise to EOC  
Acquisition Time  
PSRR  
V
= 4.9V to 5.1V (Note 10)  
3
LSB  
AVDD  
t
Conversion time (Note 11)  
Sample quiet time (Note 11)  
3
μs  
μs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CON  
t
1
1000  
ACQ  
CS Rise to CONVST Rise  
CONVST Rise to EOC Rise  
EOC Fall to CONVST Fall  
CONVST Low Time  
t
500  
Q
t
47  
140  
0
1
2
3
4
5
6
7
8
9
t
CONVST mode B0 = 0 only (Note 12)  
CONVST mode B0 = 1 only  
0
20  
0
t
t
t
t
t
t
t
t
CS Fall to WR Fall  
WR Low Time  
20  
0
CS Rise to WR Rise  
Input Data Setup Time  
Input Data Hold Time  
CS Fall to RD Fall  
10  
1
0
RD Low Time  
30  
0
RD Rise to CS Rise  
t
10  
t
11  
t
12  
t
13  
5/MAX1046  
RD High Time  
10  
RD Fall to Data Valid  
RD Rise to Data Hold Time  
35  
(Note 12)  
5
Note 1: See the Definitions section at the end of the data sheet.  
Note 2: INL is guaranteed at AVDD = 5.25V, for +25°C < T < +85°C. See the Input Range and Protection section and Typical  
A
Operating Characteristics.  
Note 3:  
T = -40°C.  
A
Note 4: DNL at code > 8192 or < 57343 (offset binary encoded), or code > -24576 or < +24575 (two’s complement), is guaranteed  
at AVDD = 5.25V, for +25°C < T < +85°C. See the Input Range and Protection section and Typical Operating  
A
Characteristics.  
Note 5: DNL at code 8192 or 57343 (offset binary encoded), or code -24576 or +24575 (2’s complements), is guaranteed  
at AVDD = 5.25V, for +25°C < T < +85°C. See the Input Range and Protection section and Typical Operating  
A
Characteristics.  
Note 6: AC dynamics are guaranteed at AVDD = 5.25V, for +25°C < T < +85°C. See the Input Range and Protection section and  
A
Typical Operating Characteristics.  
Note 7: Tested with alternating channels modulated at full scale and ground.  
Note 8: See the Input Range and Protection section for more details.  
Note 9:  
C
LOAD  
= 30pF on DB0–DB15 and EOC. Inputs (CH0–CH7) alternate between full scale and zero scale. f  
= 250ksps.  
CONV  
All data is read out.  
Note 10: Defined as the change in positive full scale caused by a 2% variation in the nominal supply voltage.  
Note 11: It is recommended that RD, WR, and CS are kept high for the quiet time (t ) and conversion time (t  
).  
CON  
Q
Note 12: Guaranteed by design.  
4
_______________________________________________________________________________________  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
5/MAX1046  
Typical Operating Characteristics  
(AVDD = 5V, DVDD = 3.3V, T = +25°C, f  
A
= 250ksps, internal reference, unless otherwise noted.)  
SAMPLE  
INL AND DNL  
vs. ANALOG SUPPLY VOLTAGE  
INTEGRAL NONLINEARITY vs. CODE  
DIFFERENTIAL NONLINEARITY vs. CODE  
1.0  
1.5  
1.0  
0.5  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
MAX INL  
0.8  
0.6  
0.4  
0.2  
0
MAX DNL  
MIN DNL  
-0.2  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
V
V
f
= 5.25V  
= 3.3V  
AVDD  
DVDD  
-0.5  
-1.0  
-1.5  
V
V
f
= 5.25V  
= 3.3V  
AVDD  
DVDD  
-0.4  
-0.6  
-0.8  
-1.0  
V
= 3.3V  
DVDD  
= 250ksps  
= +25°C  
= 250ksps  
SAMPLE  
f
= 250ksps  
T
= +25  
°
C
SAMPLE  
SAMPLE  
A
MIN INL  
T
A
T
A
= +25°C  
= 4.096V  
V
= 4.096V  
RDC  
V
= 4.096V  
V
RDC  
RDC  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
V
AVDD  
OUTPUT CODE (DECIMAL)  
OUTPUT CODE (DECIMAL)  
INL AND DNL  
vs. TEMPERATURE  
ANALOG SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
1.5  
1.0  
0.5  
0
45  
40  
35  
30  
25  
T
= +25°C  
A
MAX11046 CONVERTING  
MAX11046 STATIC  
MAX INL  
f
= 250ksps  
SAMPLE  
MAX DNL  
MAX11045 CONVERTING  
MAX11045 STATIC  
V
V
f
= 5.25V  
= 3.3V  
AVDD  
DVDD  
MIN DNL  
= 250ksps  
SAMPLE  
V
RDC  
= 4.096V  
MAX11044 CONVERTING  
-0.5  
-1.0  
-1.5  
MIN INL  
MAX11044 STATIC  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
TEMPERATURE (°C)  
V
AVDD  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
DIGITAL SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
45  
40  
35  
30  
25  
12  
10  
8
V
= 5.0V  
= 250ksps  
AVDD  
MAX11046 CONVERTING  
MAX11046 STATIC  
T = +25°C  
A
f
SAMPLE  
f
= 250ksps  
SAMPLE  
MAX11046 CONVERTING  
MAX11045 CONVERTING  
MAX11045 STATIC  
6
MAX11045 CONVERTING  
4
MAX11044 CONVERTING  
MAX11044/MAX11045/  
MAX11046 STATIC  
2
MAX11044 CONVERTING  
MAX11044 STATIC  
0
-40  
-15  
10  
35  
60  
85  
2.75  
3.25  
3.75  
4.25  
(V)  
4.75  
5.25  
TEMPERATURE (°C)  
V
DVDD  
_______________________________________________________________________________________  
5
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
Typical Operating Characteristics (continued)  
(AVDD = 5V, DVDD = 3.3V, T = +25°C, f  
A
= 250ksps, internal reference, unless otherwise noted.)  
SAMPLE  
DIGITAL SUPPLY CURRENT  
vs. TEMPERATURE  
7.2  
ANALOG AND DIGITAL SHUTDOWN  
CURRENT vs. SUPPLY VOLTAGE  
ANALOG AND DIGITAL SHUTDOWN  
CURRENT vs. TEMPERATURE  
5
4
3
2
1
0
5
4
3
2
1
0
V
V
= 5.0V  
= 3.3V  
T
A
= +25°C  
AVDD  
DVDD  
MAX11046 CONVERTING  
6.0  
4.8  
I
AVDD  
I
AVDD  
MAX11045 CONVERTING  
3.6  
MAX11044  
CONVERTING  
2.4  
V
= 3.3V  
= 250ksps  
= 15pF  
DVDD  
I
MAX11044/MAX11045/  
MAX11046 STATIC  
I
DVDD  
DVDD  
f
SAMPLE  
1.2  
0
C
DBxx  
-40  
-15  
10  
35  
60  
85  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
AVDD AND DVDD (V)  
TEMPERATURE (°C)  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGES  
vs. SUPPLY VOLTAGE  
4.09520  
4.09515  
4.09510  
4.09505  
4.09500  
4.09495  
4.09490  
4.112  
4.108  
4.104  
4.100  
4.096  
4.092  
4.088  
4.084  
4.080  
T
= +25  
°
C
V
= 5.0V  
AVDD  
A
UPPER TYPICAL LIMIT  
LOWER TYPICAL LIMIT  
V
RDC  
5/MAX1046  
V
REFIO  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
V
AVDD  
TEMPERATURE (°C)  
OFFSET ERROR AND OFFSET ERROR  
MATCHING vs. TEMPERATURE  
OFFSET ERROR AND OFFSET ERROR  
MATCHING vs. SUPPLY VOLTAGE  
0.010  
0.006  
0.010  
0.006  
V
V
= 5.0V  
= 4.096V  
T
= +25°C  
AVDD  
REFIO  
A
OFFSET ERROR MATCHING  
OFFSET ERROR MATCHING  
0.002  
0.002  
-0.002  
-0.006  
-0.010  
-0.002  
-0.006  
-0.010  
OFFSET ERROR  
OFFSET ERROR  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
TEMPERATURE (°C)  
V
AVDD  
6
_______________________________________________________________________________________  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
5/MAX1046  
Typical Operating Characteristics (continued)  
(AVDD = 5V, DVDD = 3.3V, T = +25°C, f  
A
= 250ksps, internal reference, unless otherwise noted.)  
SAMPLE  
GAIN ERROR AND GAIN ERROR  
MATCHING vs. TEMPERATURE  
GAIN ERROR AND GAIN ERROR  
MATCHING vs. SUPPLY VOLTAGE  
0.005  
FFT PLOT  
0.010  
0
-20  
T
A
= +25  
°
C
V
= 5.0V  
AVDD  
f
f
= 10kHz  
IN  
= 250ksps  
= +25  
SAMPLE  
GAIN ERROR  
OFFSET ERROR  
0.006  
T
°C  
A
0.003  
0
V
AVDD  
= 5.0V  
-40  
0.002  
-0.002  
-0.006  
-0.010  
-60  
GAIN ERROR MATCHING  
-80  
OFFSET ERROR  
MATCHING  
-100  
-120  
-140  
-0.003  
-0.005  
-40  
-15  
10  
35  
60  
85  
0
25  
50  
75  
100  
125  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
V
AVDD  
SIGNAL-TO-NOISE RATIO AND  
SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. TEMPERATURE  
TWO-TONE IMD PLOT  
95  
0
-20  
-40  
-60  
-80  
f
f
f
= 9838Hz  
= 10235Hz  
f
f
T
V
V
= 10kHz  
IN1  
IN2  
IN  
SAMPLE  
= 250ksps  
= +25  
= 250ksps  
°C  
SAMPLE  
94  
93  
92  
91  
90  
A
T
= +25°C  
= 4.096V  
A
RDC  
V
V
V
= 5.0V  
= -0.025dB FROM FS  
AVDD  
IN  
SNR  
= 4.096V  
RDC  
= -0.01dBFS  
IN  
-100  
SINAD  
-120  
-140  
-40  
-15  
10  
35  
60  
85  
7.2 8.0 8.8 9.6 10.4 11.2 12.0 12.8  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
TOTAL HARMONIC DISTORTION  
vs. TEMPERATURE  
SNR AND SINAD  
vs. ANALOG SUPPLY VOLTAGE  
-102.5  
-103.0  
-103.5  
-104.0  
-104.5  
-105.0  
93.0  
92.5  
92.0  
91.5  
91.0  
90.5  
f
f
T
V
V
= 10kHz  
IN  
SAMPLE  
= 250ksps  
= +25  
SNR  
°C  
A
= 4.096V  
RDC  
= -0.025dB FROM FS  
IN  
f
f
T
= 10kHz  
IN  
= 250ksps  
= +25  
SAMPLE  
°C  
A
SINAD  
4.85  
V
V
= 4.096V  
= -0.025dB FROM FS  
RDC  
IN  
-40  
-15  
10  
35  
60  
85  
4.75  
4.95  
5.05  
(V)  
5.15  
5.25  
TEMPERATURE (°C)  
V
AVDD  
_______________________________________________________________________________________  
7
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
Typical Operating Characteristics (continued)  
(AVDD = 5V, DVDD = 3.3V, T = +25°C, f  
A
= 250ksps, internal reference, unless otherwise noted.)  
SAMPLE  
TOTAL HARMONIC DISTORTION  
vs. ANALOG SUPPLY VOLTAGE  
-99  
SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. FREQUENCY  
THD vs. INPUT FREQUENCY  
-80  
-85  
96  
94  
92  
90  
88  
86  
84  
82  
f
T
V
V
= 250ksps  
SAMPLE  
= +25°C  
A
-100  
-101  
-102  
= 4.096V  
RDC  
= -0.025dB FROM FS  
-90  
IN  
-95  
-100  
-105  
-110  
-115  
f
f
T
V
V
= 10kHz  
IN  
SAMPLE  
-103  
-104  
-105  
f
= 250ksps  
SAMPLE  
= 250ksps  
= +25  
T
= +25°C  
°
C
A
A
V
RDC  
= 4.096V  
= 4.096V  
RDC  
V
= -0.025dB FROM FS  
IN  
= -0.025dB FROM FS  
IN  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
AVDD  
OUTPUT NOISE HISTOGRAM WITH  
INPUT CONNECTED TO GND  
CROSSTALK vs. FREQUENCY  
-90  
200,000  
150,000  
100,000  
50,000  
0
f
f
T
V
V
= 60kHz  
V
CHX  
= 0V  
IN  
= 250ksps  
V
f
= 5.0V  
SAMPLE  
AVDD  
= +25°C  
= 250ksps  
-100  
-110  
-120  
-130  
-140  
A
SAMPLE  
= 4.096V  
T
= +25°C  
RDC  
A
= -0.025dB FROM FS  
INACTIVE CHANNEL AT GND  
IN  
5/MAX1046  
0.1  
1
10  
100  
FREQUENCY (kHz)  
OUTPUT CODE (DECIMAL)  
CONVERSION TIME  
vs. ANALOG SUPPLY VOLTAGE  
CONVERSION TIME vs. TEMPERATURE  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
2.94  
2.93  
2.92  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
2.94  
2.93  
2.92  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
TEMPERATURE (°C)  
V
AVDD  
8
_______________________________________________________________________________________  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
5/MAX1046  
Pin Description  
PIN  
NAME  
FUNCTION  
TQFP  
TQFN  
1
56  
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
16-Bit Parallel Data Bus Digital Out Bit 14  
16-Bit Parallel Data Bus Digital Output Bit 13  
16-Bit Parallel Data Bus Digital Output Bit 12  
16-Bit Parallel Data Bus Digital Output Bit 11  
16-Bit Parallel Data Bus Digital Output Bit 10  
16-Bit Parallel Data Bus Digital Output Bit 9  
16-Bit Parallel Data Bus Digital Output Bit 8  
Digital Ground  
2
1
3
2
4
3
5
4
6
5
7
8, 22, 59  
9, 21, 60  
10  
6
DB8  
7, 21, 50  
DGND  
DVDD  
DB7  
8, 20, 51  
Digital Supply. Bypass to DGND with a 0.1μF capacitor at each DVDD input.  
16-Bit Parallel Data Bus Digital Output Bit 7  
16-Bit Parallel Data Bus Digital Output Bit 6  
16-Bit Parallel Data Bus Digital Output Bit 5  
16-Bit Parallel Data Bus Digital Output Bit 4  
16-Bit Parallel Data Bus Digital I/O Bit 3  
16-Bit Parallel Data Bus Digital I/O Bit 2  
16-Bit Parallel Data Bus Digital I/O Bit 1  
16-Bit Parallel Data Bus Digital I/O Bit 0  
9
11  
10  
11  
12  
13  
14  
15  
16  
DB6  
12  
DB5  
13  
DB4  
14  
DB3  
15  
DB2  
16  
DB1  
17  
DB0  
Active-Low, End-of-Conversion Output. EOC goes low when a conversion is completed.  
EOC goes high when a conversion is initiated.  
18  
19  
20  
17  
18  
19  
EOC  
Convert Start Input. The rising edge of CONVST ends sample and starts a conversion on  
the captured sample. The ADC is in acquisition mode when CONVST is low and CONVST  
mode = 0.  
CONVST  
Shutdown Input. If SHDN is held high, the entire device will enter and stay in a low-current  
state. Contents of the configuration register are not lost when in the shutdown state.  
SHDN  
AGNDS  
AVDD  
23, 28, 32,  
38, 43, 49,  
53, 58  
23, 27, 33,  
38, 44, 48  
Signal Ground. Connect all AGND and AGNDS inputs together.  
Analog Supply Input. Bypass AVDD to AGND with a 0.1μF capacitor at each AVDD input.  
Analog Ground. Connect all AGND inputs together.  
24, 29, 35,  
46, 52, 57  
24, 30,  
41, 47  
25, 30, 36,  
45, 51, 56  
25, 31,  
40, 46  
AGND  
Reference Buffer Sense Feedback. Connect to RDC plane. Internally connected on the  
56-pin TQFN parts  
26, 55  
RDC_SENSE  
RDC  
27, 33, 40,  
48, 54  
22, 28,  
35, 43, 49  
Reference Buffer Decoupling. Connect all RDC outputs together. Bypass to AGND with at  
least a 80μF total capacitance. See the Layout, Grounding, and Bypassing section.  
31  
34  
37  
39  
26  
29  
32  
34  
36  
CH0  
CH1  
Channel 0 Analog Input  
Channel 1 Analog Input  
CH2  
Channel 2 Analog Input  
CH3  
Channel 3 Analog Input  
External Reference Input/Internal Reference Output. Place a 0.1μF capacitor from REFIO  
41  
REFIO  
_______________________________________________________________________________________  
9
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
TQFP  
TQFN  
42  
44  
47  
50  
37  
39  
42  
45  
CH4  
CH5  
CH6  
CH7  
Channel 4 Analog Input  
Channel 5 Analog Input  
Channel 6 Analog Input  
Channel 7 Analog Input  
Active-Low Write Input. Drive WR low to write to the ADC. Configuration registers are  
loaded on the rising edge of WR.  
61  
62  
63  
64  
52  
53  
54  
55  
WR  
CS  
Active-Low Chip-Select Input. Drive CS low when reading from or writing to the ADC.  
Active-Low Read Input. Drive RD low to read from the ADC. Each rising edge of RD  
advances the channel output on the data bus.  
RD  
DB15  
EP  
16-Bit Parallel Data Bus Digital Out Bit 15  
Exposed Pad. Internally connected to AGND. Connect to a large ground plane to  
maximize thermal performance. Not intended as an electrical connection point.  
sient events and measure periodic signals with band-  
Detailed Description  
widths exceeding the ADC’s sampling rate by using  
undersampling techniques. Use anti-alias filtering to  
avoid high-frequency signals being aliased into the fre-  
quency band of interest.  
The MAX11044/MAX11045/MAX11046 are fast, low-  
power ADCs that combine 4, 6, or 8 independent ADC  
channels in a single IC. Each channel includes simulta-  
neously sampling independent T/H circuitry that pre-  
serves relative phase information between inputs  
making the MAX11044/MAX11045/MAX11046 ideal for  
motor control and power monitoring. The MAX11044/  
MAX11045/MAX11046 are available with 5V input  
ranges that feature 20mA overrange, fault-tolerant  
inputs. The MAX11044/MAX11045/MAX11046 operate  
with a single 4.75V to 5.25V supply. A separate 2.7V to  
5.25V supply for digital circuitry makes the devices  
compatible with low-voltage processors.  
Input Range and Protection  
The full-scale analog input voltage is a product of the ref-  
erence voltage. For the MAX11044/MAX11045/  
MAX11046, the full-scale input is bipolar in the range of:  
5
(V  
REFIO  
x
)
5/MAX1046  
4.096  
When in external reference mode, drive V  
with a  
REFIO  
The MAX11044/MAX11045/MAX11046 perform conver-  
sions for all channels in parallel by activating indepen-  
dent ADCs. Results are available through a high-speed,  
20MHz, parallel data bus after a conversion time of 3μs  
following the end of a sample. The data bus is bidirec-  
tional and allows for easy programming of the configu-  
ration register. The MAX11044/MAX11045/MAX11046  
feature a reference buffer, which is driven by an internal  
3.0V to 4.25V source, resulting in an input range of  
3.662V to 5.188V, respectively.  
All analog inputs are fault-protected to up to 20mA.  
The MAX11044/MAX11045/MAX11046 include an input  
clamping circuit that activates when the input voltage at  
the analog input is above (V  
+ 300mV) or below  
AVDD  
–(V  
+ 300mV). The clamp circuit remains high  
AVDD  
impedance while the input signal is within the range of  
bandgap reference circuit (V  
= 4.096V). Drive  
REFIO  
V
and draws little or almost no current. However,  
AVDD  
REFIO with an external reference or bypass with 0.1μF  
capacitor to ground when using the internal reference.  
when the input signal exceeds  
V
, the clamps  
AVDD  
begin to turn on and shunt current to/from the AVDD  
supply. Consequently, to obtain the highest accuracy,  
Analog Inputs  
ensure that the input voltage does not exceed  
V
AVDD  
.
Track and Hold (T/H)  
To preserve phase information across all channels,  
each input includes a dedicated T/H circuitry. The input  
tracking circuitry provides a 4MHz small-signal band-  
width, enabling the device to digitize high-speed tran-  
Note that the input clamp circuit also has a small  
amount of hysteresis and once triggered remains  
engaged, shunting current to/from AVDD until the input  
returns to within the convertible range by several hun-  
dredths of a volt. This effect can cause some errors at  
10 ______________________________________________________________________________________  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
5/MAX1046  
the extremes of the transfer function if V is driven  
IN  
V
- 7V  
FAULT _MAX  
beyond  
V
.
AVDD  
R
S
=
20mA  
To make use of the input clamps (see Figure 1), con-  
nect a resistor (R ) between the analog input and the  
S
where V  
is the maximum voltage that the  
FAULT_MAX  
voltage source to limit the voltage at the analog input so  
that the fault current into the MAX11044/MAX11045/  
MAX11046 does not exceed 20mA. Note that the volt-  
age at the analog input pin limits to approximately 7V  
during a fault condition so the following equation can  
source produces during a fault condition.  
Figures 2 and 3 illustrate the clamp circuit voltage-cur-  
rent characteristics for a source impedance R  
=
+
S
1280Ω. While the input voltage is within the (V  
AVDD  
300mV) range, no current flows in the input clamps.  
Once the input voltage goes beyond this voltage range,  
the clamps turn on and limit the voltage at the input pin.  
be used to calculate the value of R :  
S
INPUT  
PIN  
SIGNAL  
VOLTAGE  
AVDD  
DVDD  
DB15  
R
S
16-BIT ADC  
CH0  
S/H  
S/H  
CLAMP  
CLAMP  
SOURCE  
DB4  
DB3  
DB0  
CH7  
AGNDS  
AGND  
16-BIT ADC  
CONFIGURATION  
REGISTERS  
WR  
RD  
MAX11044  
MAX11045  
MAX11046  
CS  
INTERFACE  
AND  
CONTROL  
CONVST  
SHDN  
EOC  
INT REF  
EXT REF  
RDC  
BANDGAP  
REFERENCE  
REF  
BUF  
DGND  
REFIO  
Figure 1. Required Setup for Clamp Circuit  
30  
20  
30  
R
V
= 1280Ω  
AVDD  
R
V
= 1280Ω  
AVDD  
S
S
= 5V  
= 5V  
20  
10  
AT CH_ INPUT  
AT CH_ INPUT  
10  
AT SOURCE  
AT SOURCE  
0
0
-10  
-20  
-30  
-10  
-20  
-30  
-8 -6 -4 -2  
0
2
4
6
8
-50  
-30  
-10  
10  
30  
50  
SIGNAL VOLTAGE AT SOURCE AND PIN (V)  
SIGNAL VOLTAGE AT SOURCE AND PIN (V)  
Figure 2. Input Clamp Characteristics  
Figure 3. Input Clamp Characteristics (Zoom In)  
______________________________________________________________________________________ 11  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
Applications Information  
Table 1. Configuration Register  
DB3  
DB2  
DB1  
DB0  
Digital Interface  
The bidirectional, parallel, digital interface, DB0–DB3,  
sets the 4-bit configuration register. This interface  
configures the following control signals: chip select  
(CS), read (RD), write (WR), end of conversion (EOC),  
and convert start (CONVST). Figures 6 and 7 and the  
Timing Characteristics in the Electrical Characteristics  
table show the operation of the interface. DB0–DB3,  
together with the output-only DB4–DB15, also output  
the 16-bit conversion result. All bits are high imped-  
ance when RD = 1 or CS = 1.  
Int/Ext  
Reference  
Output  
Data Format  
CONVST  
Mode  
Reserved  
Starting a Conversion  
CONVST initiates conversions. The MAX11044/  
MAX11045/MAX11046 provide two acquisition modes  
set through the configuration register. Allow a quiet time  
(t ) of 500ns prior to the start of conversion to avoid  
Q
any noise interference during readout or write opera-  
tions from corrupting a sample.  
DB3 (Int/Ext Reference)  
DB3 selects the internal or external reference. The POR  
default = 0.  
In default mode (DB0 = 0), drive CONVST low to place  
the MAX11044/MAX11045/MAX11046 into acquisition  
mode. All the input switches are closed and the internal  
T/H circuits track the respective input voltage. Keep the  
0 = internal reference, REFIO internally driven through a  
10kΩ resistor, bypass with 0.1μF capacitor to AGND.  
1 = external reference, drive REFIO with a high-quality  
reference.  
CONVST signal low for at least 1μs (t  
) to enable  
ACQ  
proper settling of the sampled voltages. On the rising  
edge of CONVST, the switches are opened and the  
MAX11044/MAX11045/MAX11046 begin the conversion  
on all the samples in parallel. EOC remains high until  
the conversion is completed.  
DB2 (Output Data Format)  
DB2 selects the output data format. The POR default = 0.  
In the second mode (DB0 = 1), the MAX11044/  
MAX11045/MAX11046 enter acquisition mode as soon  
as the previous conversion is completed. CONVST rising  
edge initiates the next sample and conversion sequence.  
CONVST needs to be low for at least 20ns to be valid.  
0 = offset binary.  
1 = two’s complement.  
DB1 (Reserved)  
Set to 0 for normal operation.  
Provide adequate time for acquisition and the requisite  
quiet time in both modes to achieve accurate sampling  
and maximum performance of the MAX11044/  
MAX11045/MAX11046.  
0 = normal operation.  
1 = reserved; do not use.  
5/MAX1046  
DB0 (CONVST Mode)  
DB0 selects the acquisition mode. The POR default = 0.  
Reading Conversion Results  
The CS and RD are active-low, digital inputs that con-  
trol the readout through the 16-bit, parallel, 20MHz data  
bus (D0–D15). After EOC transitions low, read the con-  
version data by driving CS and RD low. Each low peri-  
od of RD presents the next channel’s result. When CS  
and RD are high, the data bus is high impedance. CS  
may be driven high between individual channel read-  
outs or left low during the entire 8-channel readout.  
0 = CONVST controls the acquisition and conversion.  
Drive CONVST low to start acquisition. The rising edge  
of CONVST begins the conversion.  
1 = acquisition mode starts as soon as the previous  
conversion is complete. The rising edge of CONVST  
begins the conversion.  
Programming the Configuration Register  
To program the configuration register, bring the CS and  
WR low and apply the required configuration data on  
DB3–DB0 of the bus and then raise WR once to save  
changes.  
Reference  
Internal Reference  
The MAX11044/MAX11045/MAX11046 feature a preci-  
sion, low-drift, internal bandgap reference. Bypass REFIO  
with a 0.1μF capacitor to AGND to reduce noise. The  
REFIO output voltage may be used as a reference for  
other circuits. The output impedance of REFIO is 10kΩ.  
Drive only high impedance circuits or buffer externally  
when using REFIO to drive external circuitry.  
12 ______________________________________________________________________________________  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
5/MAX1046  
External Reference  
vides the best performance. Connect DGND, AGND, and  
AGNDS pins on the MAX11044/MAX11045/MAX11046 to  
this ground plane. Keep the ground return to the power  
supply for this ground low impedance and as short as  
possible for noise-free operation.  
Set the configuration register to disable the internal ref-  
erence and drive REFIO with a high-quality external ref-  
erence. To avoid signal degradation, ensure that the  
integrated reference noise applied to REFIO is less  
than 10μV in the bandwidth of up to 50kHz.  
To achieve the highest performance, connect all the  
RDC pins (22, 28, 36, 43, and 49) to a local RDC plane  
on the PCB. A total of at least 80μF of capacitance  
should be placed on this RDC plane. If two capacitors  
are used, place each as close as possible to pins 22  
and 49. If four capacitors are used, place each as  
close as possible to pins 22, 28, 43, and 49. For exam-  
ple, two 47μF, 10V X5R capacitors in 1210 case size  
can be placed as close as possible to pins 22 and 49  
will provide excellent performance. Alternatively, four  
22μF, 10V X5R capacitors in 1210 case size placed as  
close as possible to pins 22, 28, 43, and 49 will also  
provide good performance. Ensure that each capacitor  
is connected directly into the GND plane with an inde-  
pendent via.  
Reference Buffer  
The MAX11044/MAX11045/MAX11046 have a built-in  
reference buffer to provide a low-impedance reference  
source to the SAR converters. This buffer is used in  
both internal and external reference mode. The refer-  
ence buffer output feeds five RDC pins. The RDC pins  
should be all connected together on the PCB. The ref-  
erence buffer is externally compensated and requires  
at least 10μF on the RDC node. For best performance,  
provide a total of at least 80μF on the RDC outputs.  
Transfer Functions  
Figures 8 and 9 show the transfer functions for all the  
formats and devices. Code transitions occur halfway  
between successive-integer LSB values.  
If Y5U or Z5U ceramics are used, be aware of the high-  
voltage coefficient these capacitors exhibit and select  
higher voltage rating capacitors to ensure that at least  
80μF of capacitance is on the RDC plane when the  
plane is driven to 4.096V by the built-in reference  
buffer. For example, a 22μF X5R with a 10V rating is  
approximately 20μF at 4.096V, whereas, the same  
capacitor in Y5U ceramic is just 13μF. However, a Y5U  
22μF capacitor with a 25V rating cap is approximately  
20μF at 4.096V.  
Layout, Grounding, and Bypassing  
For best performance use PCBs with ground planes.  
Ensure that digital and analog signal lines are separated  
from each other. Do not run analog and digital lines paral-  
lel to one another (especially clock lines), and avoid run-  
ning digital lines underneath the ADC package. A single  
solid GND plane configuration with digital signals routed  
from one direction and analog signals from the other pro-  
CS  
(USER SUPPLIED)  
CS  
t
5
(USER SUPPLIED)  
t
10  
t
t
t
8
9
11  
t
3
t
4
RD  
(USER SUPPLIED)  
WR  
(USER SUPPLIED)  
t
13  
t
12  
t
7
S
S
n + 1  
n
t
6
D0–D15  
CONFIGURATION  
REGISTER  
D0–D15  
(USER SUPPLIED)  
Figure 5. Readout Timing Requirements  
Figure 4. Programming Configuration-Register Timing  
Requirements  
______________________________________________________________________________________ 13  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
SAMPLE  
t
t
CON  
ACQ  
CONVST  
t
1
EOC  
t
O
t
Q
CS  
RD  
D0–D15  
S0  
S1  
S6  
S7  
Figure 6. Conversion Timing Diagram (DB0 = 0)  
SAMPLE  
t
t
5/MAX1046  
CON  
ACQ  
CONVST  
EOC  
t
2
t
O
t
Q
CS  
RD  
D0–D15  
S0  
S1  
S6  
S7  
Figure 7. Conversion Timing Diagram (DB0 = 1)  
14 ______________________________________________________________________________________  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
5/MAX1046  
Bypass AVDD and DVDD to the ground plane with  
Differential Nonlinearity (DNL)  
DNL is the difference between an actual step width and  
the ideal value of 1 LSB. For these devices, the DNL of  
each digital output code is measured and the worst-case  
value is reported in the Electrical Characteristics table. A  
DNL error specification of greater than -1 LSB guaran-  
tees no missing codes and a monotonic transfer func-  
tion. For example, -0.9 LSB guarantees no missing code  
while -1.1 LSB results in missing code.  
0.1μF ceramic chip capacitors on each pin as close as  
possible to the device to minimize parasitic inductance.  
Add at least one bulk 10μF decoupling capacitor to  
AVDD and DVDD per PCB. Interconnect all of the  
AVDD inputs and DVDD inputs using two solid power  
planes. For best performance, bring the AVDD power  
plane in on the analog interface side of the MAX11044/  
MAX11045/MAX11046 and the DVDD power plane from  
the digital interface side of the device.  
Offset Error  
For the MAX11044/MAX11045/MAX11046, the offset  
error is defined at code transition 0x8000 to 0x8001 in  
offset binary encoding and 0x0000 to 0x0001 for two’s  
complement encoding. The offset code transitions  
should occur with an analog input voltage of exactly 0.5  
For acquisition periods near minimum (1μs) use a 1nF  
C0G ceramic chip capacitor between each of the chan-  
nel inputs to the ground plane as close as possible to  
the MAX11044/MAX11045/MAX11046. This capacitor  
reduces the inductance seen by the sampling circuitry  
and reduces the voltage transient seen by the input  
source circuit.  
x (10/4.096) x V  
/65,536 above GND. The offset error  
REF  
is defined as the deviation between the actual analog  
input voltage required to produce the offset code transi-  
tion and the ideal analog input of 0.5 x (10/4.096) x  
Typical Application Circuits  
Power-Grid Protection  
Figure 10 shows a typical power-grid protection application.  
V /65,536 above GND, expressed in LSBs.  
REF  
Gain Error  
DSP Motor Control  
Gain error is defined as the difference between the  
change in analog input voltage required to produce a top  
code transition minus a bottom code transition, subtract-  
ed from the ideal change in analog input voltage on  
Figure 11 shows a typical DSP motor control application.  
Definitions  
Integral Nonlinearity (INL)  
INL is the deviation of the values on an actual transfer  
function from a straight line. For these devices, this  
straight line is a line drawn between the end points of  
the transfer function, once offset and gain errors have  
been nullified.  
(10/4.096) x V  
x (65,534/65,536). For the  
REF  
MAX11044/MAX11045/MAX11046, top code transition is  
0x7FFE to 0x7FFF in two’s complement mode and  
0xFFFE to 0xFFFF in offset binary mode. The bottom code  
transition is 0x8000 and 0x8001 in two’s complement  
5 x V  
REF  
FULL-SCALE  
TRANSITION  
7FFF  
7FFE  
+FS =  
5 x V  
REF  
4.096  
FULL-SCALE  
TRANSITION  
4.096  
FFFF  
FFFE  
+FS =  
ZS =  
ZS = 0  
-FS =  
-5 x V  
-5 x V  
REF  
REF  
4.096  
4.096  
+FS - (-FS)  
65,536  
0001  
0000  
FFFF  
FFFE  
+FS - (-FS)  
65,536  
LSB =  
LSB =  
8001  
8000  
7FFF  
7FFE  
V
V
x 32,768  
IN  
CODE =  
REFIO  
5
4.096  
V
V
x 32,768  
IN  
CODE =  
+ 32,768  
8001  
8000  
REFIO  
5
0001  
0000  
4.096  
-FS  
0
+FS  
-FS  
0
+FS  
-FS + 0.5 x LSB  
+FS - 1.5 x LSB  
-FS + 0.5 x LSB  
+FS - 1.5 x LSB  
INPUT VOLTAGE (LSB)  
INPUT VOLTAGE (LSB)  
Figure 8. Two’s Complement Transfer Function  
Figure 9. Offset-Binary Transfer Function  
______________________________________________________________________________________ 15  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
VOLTAGE  
TRANSFORMER  
PHASE 1  
OPT  
ADC  
ADC  
OPT  
CURRENT  
TRANSFORMER  
VN  
IN  
ADC  
ADC  
NEUTRAL  
LOAD 1  
MAX11046  
LOAD 2  
LOAD 3  
I3  
ADC  
ADC  
V3  
I2  
5/MAX1046  
PHASE 2  
V2  
ADC  
ADC  
PHASE 3  
Figure 10. Power-Grid Protection  
16 ______________________________________________________________________________________  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
5/MAX1046  
DSP-BASED DIGITAL  
PROCESSING ENGINE  
MAX11046  
16-BIT  
ADC  
IGBT CURRENT DRIVERS  
16-BIT  
ADC  
16-BIT  
ADC  
16-BIT  
ADC  
16-BIT  
ADC  
I
PHASE1  
I
PHASE3  
I
PHASE2  
3-PHASE ELECTRIC MOTOR  
POSITION  
ENCODER  
Figure 11. DSP Motor Control  
______________________________________________________________________________________ 17  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
mode and 0x0000 and 0x0001 in offset binary mode. For  
Spurious-Free Dynamic Range (SFDR)  
the MAX11044/MAX11045/MAX11046, the analog input  
voltage to produce these code transitions is measured  
and the gain error is computed by subtracting (10/4.096)  
SFDR is the ratio of the RMS amplitude of the funda-  
mental (maximum signal component) to the RMS value  
of the next-largest frequency component.  
x V  
x (65,534/65,536) from this measurement.  
REF  
Aperture Delay  
Aperture delay (t ) is the time delay from the sampling  
AD  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, SNR is the ratio of the full-scale analog input  
(RMS value) to the RMS quantization error (residual  
error). The ideal, theoretical minimum analog-to-digital  
noise is caused by quantization noise error only and  
results directly from the ADC’s resolution (N bits):  
clock edge to the instant when an actual sample is  
taken.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
aperture delay.  
SNR = (6.02 x N + 1.76)dB  
Channel-to-Channel Isolation  
Channel-to-channel isolation indicates how well each  
analog input is isolated from the other channels.  
Channel-to-channel isolation is measured by applying  
DC to channels 1 to 7, while a -0.4dBFS sine wave at  
60Hz is applied to channel 0. A 10ksps FFT is taken for  
channel 0 and channel 1. Channel-to-channel isolation  
is expressed in dB as the power ratio of the two 60Hz  
magnitudes.  
where N = 16 bits. In reality, there are other noise  
sources besides quantization noise: thermal noise, ref-  
erence noise, clock jitter, etc. SNR is computed by tak-  
ing the ratio of the RMS signal to the RMS noise, which  
includes all spectral components not including the fun-  
damental, the first five harmonics, and the DC offset.  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is the ratio of the fundamental input frequency’s  
RMS amplitude to the RMS equivalent of all the other  
ADC output signals:  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC in a manner that ensures that the signal’s slew  
rate does not limit the ADC’s performance. The input  
frequency is then swept up to the point where the  
amplitude of the digitized conversion result has  
decreased 3dB.  
Signal  
(Noise +Distortion)  
RMS  
SINAD(dB) = 10 ×log  
RMS  
Effective Number of Bits (ENOB)  
The ENOB indicates the global accuracy of an ADC at  
a specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. With an  
input range equal to the full-scale range of the ADC,  
calculate the ENOB as follows:  
Full-Power Bandwidth  
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by 3dB. This point is defined as full-  
power input bandwidth frequency.  
5/MAX1046  
SINAD 1.76  
Positive Full-Scale Error  
The error in the input voltage that causes the last code  
transition of FFFE to FFFF (hex) (in default offset binary  
mode) or 7FFE to 7FFF (hex) (in two’s complement mode)  
from the ideal input voltage of 32,766.5 x (5/4.096) x  
ENOB =  
6.02  
Total Harmonic Distortion (THD)  
THD is the ratio of the RMS of the first five harmonics of  
the input signal to the fundamental itself. This is:  
expressed as:  
(V  
/65,536) after correction for offset error.  
REFIO  
Negative Full-Scale Error  
2
2
2
2
V2 + V3 + V4 + V5  
The error in the input voltage that causes the first code  
transition of 0000 to 0001 (hex) (in default offset binary  
mode) or 8000 to 8001 (hex) (in two’s complement mode)  
from the ideal input voltage of -32,767.5 x (5/4.096) x  
THD = 20 ×log  
V
1
where V is the fundamental amplitude and V through  
V are the 2nd- through 5th-order harmonics.  
1
2
(V  
/65,536) after correction for offset error.  
REFIO  
5
Chip Information  
PROCESS: BiCMOS  
18 ______________________________________________________________________________________  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
5/MAX1046  
Pin Configurations  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
TOP VIEW  
RDC  
AGNDS  
CH0  
32  
31  
30  
AGNDS  
49  
42 41 40 39 38 37 36 35 34 33 32 31 30 29  
CH7 50  
AGND 51  
28  
27  
26  
25  
24  
23  
22  
21  
20  
43  
RDC  
AGND  
AGNDS 44  
CH7 45  
AGND 46  
AVDD 47  
AGNDS 48  
RDC 49  
DGND 50  
DVDD 51  
WR 52  
AGNDS  
CH0  
29 AVDD  
AVDD 52  
AGNDS  
RDC  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
AGNDS 53  
RDC 54  
AGND  
AVDD  
AGNDS  
RDC  
RDC_SENSE  
AGND  
RDC_SENSE 55  
AGND 56  
MAX11044  
MAX11045  
MAX11046  
MAX11044  
MAX11045  
MAX11046  
AVDD  
AVDD 57  
DGND  
DVDD  
AGNDS  
DGND  
DVDD  
WR  
AGNDS  
DGND  
58  
59  
60  
61  
62  
63  
19 SHDN  
18 CONVST  
17 EOC  
DVDD  
CS 53  
SHDN  
RD 54  
CONVST  
EOC  
CS  
*EP  
DB15 55  
DB14 56  
16 DB0  
+
*EP  
RD  
+
15 DB1  
DB15 64  
17 DB0  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
TQFN  
8mm x 8mm  
TQFP  
10mm x 10mm  
Package Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in the  
package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
PACKAGE TYPE  
56 TQFN-EP  
PACKAGE CODE  
T5688+2  
DOCUMENT NO.  
21-0135  
64 TQFP-EP  
C64E+6  
21-0084  
______________________________________________________________________________________ 19  
4-/6-/8-Channel, 16-Bit,  
Simultaneous-Sampling ADCs  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
10/09  
3/10  
Initial release  
Added TQFP package to data sheet  
1, 2, 8, 9, 19  
5/MAX1046  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX11045BECB+T

暂无描述
MAXIM

MAX11045BETN+T

ADC, Successive Approximation, 16-Bit, 1 Func, 6 Channel, Parallel, Word Access, BICMOS, 8 X 8 MM, ROHS COMPLIANT, TQFN-56
MAXIM

MAX11045ECB+

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
MAXIM

MAX11045ECB+T

A/D Converter, 16-Bit, 1 Func, 6 Channel, Parallel, Word Access, BICMOS, 10 X 10 MM, ROHS COMPLIANT, TQFP-64
MAXIM

MAX11045ETN+

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
MAXIM

MAX11046

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
MAXIM

MAX11046BECB+

ADC, Successive Approximation, 16-Bit, 1 Func, 8 Channel, Parallel, Word Access, BICMOS, PQFP64, 10 X 10 MM, ROHS COMPLIANT, TQFP-64
MAXIM

MAX11046BECB+T

ADC, Successive Approximation, 16-Bit, 1 Func, 8 Channel, Parallel, Word Access, BICMOS, PQFP64, 10 X 10 MM, ROHS COMPLIANT, TQFP-64
MAXIM

MAX11046BETN+

ADC, Successive Approximation, 16-Bit, 1 Func, 8 Channel, Parallel, Word Access, BICMOS, 8 X 8 MM, ROHS COMPLIANT, TQFN-56
MAXIM

MAX11046BETN+T

ADC, Successive Approximation, 16-Bit, 1 Func, 8 Channel, Parallel, Word Access, BICMOS, 8 X 8 MM, ROHS COMPLIANT, TQFN-56
MAXIM

MAX11046ECB+

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
MAXIM

MAX11046ECB+T

A/D Converter, 16-Bit, 1 Func, 8 Channel, Parallel, Word Access, BICMOS, 10 X 10 MM, ROHS COMPLIANT, TQFP-64
MAXIM