MAX1108_03 [MAXIM]

Single-Supply, Low-Power, 2-Channel, Serial 8-Bit ADCs; 单电源,低功耗, 2通道,串行8位ADC
MAX1108_03
型号: MAX1108_03
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single-Supply, Low-Power, 2-Channel, Serial 8-Bit ADCs
单电源,低功耗, 2通道,串行8位ADC

文件: 总20页 (文件大小:326K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1399; Rev 1; 6/03  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
General Description  
Features  
The MAX1108/MAX1109 low-power, 8-bit, dual-channel,  
analog-to-digital converters (ADCs) feature an internal  
track/hold (T/H) voltage reference, clock, and serial inter-  
face. The MAX1108 is specified from +2.7V to +3.6V and  
consumes only 105µA. The MAX1109 is specified from  
+4.5V to +5.5V and consumes only 130µA. The analog  
inputs are software configurable, allowing unipolar/bipolar  
and single-ended/differential operation; battery monitor-  
ing capability is also included.  
Single Supply: +2.7V to +3.6V (MAX1108)  
+4.5V to +5.5V (MAX1109)  
Low Power: 105µA at +3V and 50ksps  
0.5µA in Power-Down Mode  
Software-Configurable Unipolar or Bipolar Inputs  
Input Voltage Range: 0 to V  
Internal Track/Hold  
DD  
The full-scale analog input range is determined by the  
internal reference of +2.048V (MAX1108) or +4.096V  
(MAX1109), or by an externally applied reference rang-  
Internal Reference: +2.048V (MAX1108)  
+4.096V (MAX1109)  
ing from 1V to V . The MAX1108/MAX1109 also feature  
DD  
Reference Input Range: 1V to V  
DD  
a software power-down mode that reduces power con-  
sumption to 0.5µA when the device is not in use. The  
4-wire serial interface directly connects to SPI™, QSPI™,  
and MICROWIRE™ devices without external logic.  
Conversions up to 50ksps are performed using either the  
internal clock or an external serial-interface clock.  
SPI/QSPI/MICROWIRE-Compatible Serial Interface  
V Monitoring Mode  
DD  
Small 10-Pin µMAX Package  
The MAX1108 and MAX1109 are available in a 10-pin  
µMAX package with a footprint that is just 20% of an  
8-pin plastic DIP.  
Ordering Information  
PART  
TEMP RANGE  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
10 µMAX  
MAX1108CUB  
MAX1108EUB  
MAX1109CUB  
MAX1109EUB  
Applications  
Portable Data Logging  
10 µMAX  
10 µMAX  
Hand-Held Measurement Devices  
Medical Instruments  
10 µMAX  
System Diagnostics  
Functional Diagram  
Solar-Powered Remote Systems  
4–20mA-Powered Remote Systems  
Receive-Signal Strength Indicators  
V
DD  
CS  
SCLK  
OUTPUT  
SHIFT  
REGISTER  
INPUT  
SHIFT  
REGISTER  
DOUT  
DIN  
Pin Configuration  
MAX1108  
MAX1109  
INTERNAL  
OSCILLATOR  
TOP VIEW  
CONTROL  
LOGIC  
V
1
2
3
4
5
10 SCLK  
DD  
SAR  
CH0  
CH1  
T/H  
ANALOG  
INPUT  
MUX  
CH0  
CH1  
GND  
REF  
9
8
7
6
DOUT  
DIN  
MAX1108  
MAX1109  
COM  
CHARGE  
REDISTRIBUTION  
DAC  
CS  
INTERNAL  
REFERENCE  
COM  
REF  
µMAX  
GND  
SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND..............................................................-0.3V to +6V  
Operating Temperature Ranges  
CH0, CH1, COM, REF, DOUT to GND .......-0.3V to (V  
DIN, SCLK, CS to GND ............................................-0.3V to +6V  
+ 0.3V)  
MAX110_CUB......................................................0°C to +70°C  
MAX110_EUB ...................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
Continuous Power Dissipation (T = +70°C)  
A
10-pin µMAX (derate 5.6mW/°C above +70°C)............444mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX1108  
(V  
= +2.7V to +3.6V; unipolar input mode; COM = GND, f  
= 500kHz, external clock mode (50% duty cycle); 10 clocks/conver-  
DD  
SCLK  
sion cycle (50ksps); 1µF capacitor at REF, external +2.048V reference at REF; T = T  
to T  
; unless otherwise noted. Typical  
MAX  
A
MIN  
values are at T = +25°C.)  
A
PARAMETER  
DC ACCURACY  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
8
TYP  
MAX  
UNITS  
bits  
LSB  
LSB  
LSB  
V
V
= 2.7V to 3.6V  
0.15  
0.2  
0.5  
DD  
Relative Accuracy (Note 1)  
Differential Nonlinearity  
Offset Error  
INL  
= 5.5V (Note 2)  
DD  
DNL  
No missing codes over temperature  
1
1
V
DD  
V
DD  
= 2.7V to 3.6V  
= 5.5V (Note 2)  
0.2  
0.5  
Gain Error (Note 3)  
1
1
LSB  
Gain Temperature Coefficient  
0.8  
ppm/°C  
T
T
= +25°C  
A
Total Unadjusted Error  
TUE  
LSB  
= T  
to T  
0.5  
0.1  
50  
A
MIN  
MAX  
Channel-to-Channel  
Offset Matching  
LSB  
mV  
V
DD  
/ 2 Sampling Accuracy  
DYNAMIC PERFORMANCE (10kHz sine-wave input, 2.048Vp-p, 50ksps, 500kHz external clock)  
Signal-to-Noise Plus Distortion  
SINAD  
49  
dB  
dB  
Total Harmonic Distortion  
(up to the 5th harmonic)  
THD  
-70  
Spurious-Free Dynamic Range  
Small-Signal Bandwidth  
Full-Power Bandwidth  
ANALOG INPUTS  
SFDR  
68  
1.5  
0.8  
dB  
BW  
-3dB rolloff  
MHz  
MHz  
-3dB  
Unipolar input, V  
= 0  
0
V
REF  
COM  
Input Voltage Range (Note 4)  
V
CH_  
V
Bipolar input, V  
referenced to COM or CH1  
or V  
= V  
/ 2,  
COM  
CH1  
REF  
V
REF  
/ 2  
On/off-leakage current,  
Multiplexer Leakage Current  
Input Capacitance  
0.01  
18  
1
µA  
pF  
V
COM  
or V = 0 or V  
CH DD  
C
IN  
2
_______________________________________________________________________________________  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
ELECTRICAL CHARACTERISTICS—MAX1108 (continued)  
(V  
= +2.7V to +3.6V; unipolar input mode; COM = GND, f  
= 500kHz, external clock mode (50% duty cycle); 10 clocks/conver-  
DD  
SCLK  
sion cycle (50ksps); 1µF capacitor at REF, external +2.048V reference at REF; T = T  
to T  
; unless otherwise noted. Typical  
MAX  
A
MIN  
values are at T = +25°C.)  
A
PARAMETER  
TRACK/HOLD  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Internal clock  
35  
Conversion Time (Note 5)  
t
µs  
CONV  
External clock, 500kHz, 10 sclks/conv  
External clock, 2MHz  
20  
1
Track/Hold Acquisition Time  
Aperture Delay  
t
µs  
ns  
ACQ  
10  
Aperture Jitter  
<50  
400  
ps  
Internal Clock Frequency  
kHz  
kHz  
MHz  
50  
500  
2
External Clock Frequency Range  
For data transfer only  
INTERNAL REFERENCE  
Output Voltage  
V
1.968  
2.048  
150  
50  
2.128  
V
µA  
REF  
REF Short-Circuit Current  
REF Tempco  
I
(Note 6)  
REFSC  
ppm/°C  
mV  
Load Regulation  
0 to 0.5mA (Note 7)  
2.5  
Capacitive Bypass at REF  
EXTERNAL REFERENCE  
Input Voltage Range  
1
µF  
1.0  
V
+ 0.05  
20  
V
DD  
+2.048V at REF, full scale,  
500kHz external clock  
Input Current  
1
µA  
POWER REQUIREMENTS  
Supply Voltage  
V
I
2.7  
3
5.5  
V
DD  
Internal reference  
External reference  
105  
70  
250  
V
= 2.7V to 3.6V,  
DD  
C = 10pF  
L
µA  
Internal reference  
130  
95  
Supply Current (Notes 2, 8)  
V
DD  
= 5.5V,  
DD  
C = 10pF  
L
External reference  
Power down, V  
= 2.7V to 3.6V (Note 9)  
0.5  
0.4  
2.5  
4
DD  
Power-Supply Rejection (Note 10)  
PSR  
Full-scale input, V  
= 2.7V to 3.6V  
mV  
DD  
DIGITAL INPUTS (DIN, SCLK, and CS)  
V
V
3.6V  
2
3
V
V
DD  
Threshold Voltage High  
V
IH  
> 3.6V  
DD  
Threshold Voltage Low  
Input Hysteresis  
V
0.8  
V
IL  
V
0.2  
15  
V
HYST  
Input Current High  
Input Current Low  
Input Capacitance  
I
IH  
1
1
µA  
µA  
pF  
I
IL  
C
IN  
_______________________________________________________________________________________  
3
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
ELECTRICAL CHARACTERISTICS—MAX1108 (continued)  
(V  
= +2.7V to +3.6V; unipolar input mode; COM = GND, f  
= 500kHz, external clock mode (50% duty cycle); 10 clocks/conver-  
DD  
SCLK  
sion cycle (50ksps); 1µF capacitor at REF, external +2.048V reference at REF; T = T  
to T  
; unless otherwise noted. Typical  
MAX  
A
MIN  
values are at T = +25°C.)  
A
PARAMETER  
DIGITAL OUTPUT (DOUT)  
Output High Voltage  
SYMBOL  
CONDITIONS  
MIN  
- 0.5  
TYP  
MAX  
UNITS  
V
OH  
I
I
I
= 0.5mA  
V
V
V
SOURCE  
DD  
= 5mA  
0.4  
10  
SINK  
SINK  
Output Low Voltage  
V
OL  
= 16mA  
0.8  
0.01  
15  
V
Three-State Leakage Current  
I
L
µA  
pF  
CS = V  
CS = V  
DD  
Three-State Output Capacitance  
C
OUT  
DD  
TIMING CHARACTERISTICS (Figures 8, 9, and 10)  
Acquisition Time  
t
1.0  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ms  
ACQ  
DIN to SCLK Setup Time  
DIN to SCLK Hold Time  
SCLK Fall to Output Data Valid  
CS Fall to Output Enable  
CS Rise to Output Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
100  
0
DS  
DH  
DO  
t
t
Figure 1, C  
Figure 1, C  
Figure 2, C  
= 100pF  
= 100pF  
= 100pF  
20  
200  
240  
240  
LOAD  
LOAD  
LOAD  
t
DV  
t
TR  
t
100  
0
CSS  
CSH  
t
t
200  
200  
CH  
t
CL  
Wake-Up Time  
External reference  
20  
12  
t
WAKE  
Internal reference (Note 11)  
ELECTRICAL CHARACTERISTICS—MAX1109  
(V  
= +4.5V to +5.5V; unipolar input mode; COM = GND, f  
= 500kHz, external clock (50% duty cycle); 10 clocks/conversion  
DD  
SCLK  
cycle (50ksps); 1µF capacitor at REF, external +4.096V reference at REF; T = T  
to T  
; unless otherwise noted. Typical values  
MAX  
A
MIN  
are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Resolution  
8
bits  
LSB  
Relative Accuracy (Note 1)  
Differential Nonlinearity  
Offset Error  
INL  
V
= 4.5V to 5.5V  
0.15  
0.2  
0.5  
1
DD  
DNL  
No missing codes over temperature  
= 4.5V to 5.5V  
LSB  
V
DD  
1
LSB  
Gain Error (Note 3)  
Gain Temperature Coefficient  
1
LSB  
0.8  
ppm/°C  
T
T
= +25°C  
1
A
Total Unadjusted Error  
TUE  
LSB  
= T  
to T  
0.5  
0.1  
50  
A
MIN  
MAX  
Channel-to-Channel  
Offset Matching  
LSB  
mV  
V
DD  
/ 2 Sampling Accuracy  
4
_______________________________________________________________________________________  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
ELECTRICAL CHARACTERISTICS—MAX1109 (continued)  
(V  
= +4.5V to +5.5V; unipolar input mode; COM = GND, f  
= 500kHz, external clock (50% duty cycle); 10 clocks/conversion  
DD  
SCLK  
cycle (50ksps); 1µF capacitor at REF, external +4.096V reference at REF; T = T  
to T  
; unless otherwise noted. Typical values  
MAX  
A
MIN  
are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE (10kHz sine-wave input, 4.096Vp-p, 50ksps, 500kHz external clock)  
Signal-to-Noise Plus Distortion  
SINAD  
THD  
49  
dB  
dB  
Total Harmonic Distortion  
(up to the 5th harmonic)  
-70  
Spurious Free Dynamic Range  
Small-Signal Bandwidth  
Full-Power Bandwidth  
ANALOG INPUTS  
SFDR  
68  
1.5  
0.8  
dB  
BW  
-3dB rolloff  
MHz  
MHz  
-3dB  
Unipolar input, V  
= 0  
0
V
REF  
COM  
Input Voltage Range (Note 4)  
Multiplexer Leakage Current  
V
V
CH_  
Bipolar input, V  
referenced to COM or CH1  
or V  
= V  
/ 2,  
COM  
CH1  
REF  
V
REF  
/ 2  
On/off-leakage current,  
0.01  
18  
1
µA  
pF  
V
CH  
= 0 or V  
DD  
Input Capacitance  
C
IN  
TRACK/HOLD  
Internal clock  
35  
Conversion Time (Note 5)  
t
µs  
CONV  
External clock, 500kHz, 10 sclks/conv  
External clock, 2MHz  
20  
1
Track/Hold Acquisition Time  
Aperture Delay  
t
µs  
ns  
ACQ  
10  
Aperture Jitter  
<50  
400  
ps  
Internal Clock Frequency  
kHz  
kHz  
MHz  
50  
500  
2
External Clock Frequency Range  
For data transfer only  
0 to 0.5mA (Note 7)  
INTERNAL REFERENCE  
Output Voltage  
V
3.936  
4.096  
5
4.256  
V
mA  
REF  
REF Short-Circuit Current  
REF Tempco  
I
REFSC  
50  
ppm/°C  
mV  
Load Regulation  
2.5  
Capacitive Bypass at REF  
EXTERNAL REFERENCE  
Input Voltage Range  
1
µF  
1.0  
V
+ 0.05  
20  
V
DD  
+4.096V at REF, full scale,  
500kHz external clock  
Input Current  
1
µA  
_______________________________________________________________________________________  
5
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
ELECTRICAL CHARACTERISTICS—MAX1109 (continued)  
(V  
= +4.5V to +5.5V; unipolar input mode; COM = GND, f  
= 500kHz, external clock (50% duty cycle); 10 clocks/conversion  
DD  
SCLK  
cycle (50ksps); 1µF capacitor at REF, external +4.096V reference at REF; T = T  
to T  
; unless otherwise noted. Typical values  
MAX  
A
MIN  
are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Supply Voltage  
V
DD  
4.5  
5
5.5  
V
V
DD  
= 4.5V to 5.5V,  
Internal reference  
130  
250  
C = 10pF,  
L
full-scale input  
µA  
Supply Current (Notes 2, 8)  
I
DD  
External reference  
95  
Power down, V  
= 4.5V to 5.5V (Note 9)  
0.5  
2.5  
4
DD  
External reference = +4.096V,  
full-scale input, V = 4.5V to 5.5V  
Power-Supply Rejection (Note 10)  
PSR  
0.4  
mV  
DD  
DIGITAL INPUTS (DIN, SCLK, and CS)  
Threshold Voltage High  
Threshold Voltage Low  
Input Hysteresis  
V
3
V
V
IH  
V
0.8  
IL  
V
0.2  
15  
V
HYST  
Input Current High  
I
IH  
1
1
µA  
µA  
pF  
Input Current Low  
I
IL  
Input Capacitance  
C
IN  
DIGITAL OUTPUT (DOUT)  
Output High Voltage  
V
I
I
I
= 0.5mA  
V - 0.5  
DD  
V
V
OH  
SOURCE  
= 5mA  
0.4  
10  
SINK  
SINK  
Output Low Voltage  
V
OL  
= 16mA  
0.8  
0.01  
15  
Three-State Leakage Current  
I
µA  
pF  
CS = V  
CS = V  
L
DD  
Three-State Output Capacitance  
C
OUT  
DD  
TIMING CHARACTERISTICS (Figures 8, 9, and 10)  
Acquisition Time  
t
1.0  
µs  
ns  
ns  
ns  
ns  
ns  
ACQ  
DIN to SCLK Setup Time  
DIN to SCLK Hold Time  
SCLK Fall to Output Data Valid  
CS Fall to Output Enable  
CS Rise to Output Disable  
t
100  
0
DS  
DH  
DO  
t
t
Figure 1, C  
Figure 1, C  
Figure 2, C  
= 100pF  
= 100pF  
= 100pF  
20  
200  
240  
240  
LOAD  
LOAD  
LOAD  
t
DV  
t
TR  
6
_______________________________________________________________________________________  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
ELECTRICAL CHARACTERISTICS—MAX1109 (continued)  
(V  
= +4.5V to +5.5V; unipolar input mode; COM = GND, f  
= 500kHz, external clock (50% duty cycle); 10 clocks/conversion  
DD  
SCLK  
cycle (50ksps); 1µF capacitor at REF, external +4.096V reference at REF; T = T  
to T  
; unless otherwise noted. Typical values  
MAX  
A
MIN  
are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
100  
0
TYP  
MAX  
UNITS  
ns  
t
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
SCLK Pulse Width High  
SCLK Pulse Width Low  
CSS  
t
ns  
CSH  
t
200  
200  
ns  
CH  
t
CL  
ns  
External reference  
Internal reference (Note 11)  
20  
12  
µs  
Wake-Up Time  
t
WAKE  
ms  
Note 1: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 2: See Typical Operating Characteristics.  
Note 3:  
V
REF  
= +2.048V (MAX1108), V  
= +4.096V (MAX1109), offset nulled.  
REF  
Note 4: Common-mode range (CH0, CH1, COM) GND to V  
.
DD  
Note 5: Conversion time defined as the number of clock cycles times the clock period; clock has 50% duty cycle (Figures 6 and 8).  
Note 6: REF supplies typically 2.5mA under normal operating conditions.  
Note 7: External load should not change during the conversion for specified accuracy.  
Note 8: Power consumption with CMOS levels.  
Note 9: Power-down test performed using the following sequence 1) SHDN 5bit = 0 in the configuration register; 2) Wait for 10  
SCLK cycles to complete current conversion; 3) Measure shutdown current with CS, SCLK, D = V  
or GND.  
IN  
DD  
Note 10: Measured as V (2.7V) - V (3.6V)for MAX1108, and measured as V (4.5V) - V (5.5V)for MAX1109.  
FS  
FS  
FS  
FS  
Note 11: 1µF at REF, internal reference settling to 0.5LSB.  
Typical Operating Characteristics  
(V  
= +3.0V (MAX1108), V  
= +5.0V (MAX1109); external conversion mode; f  
= 500kHz; 50ksps; external reference; 1µF at  
DD  
DD  
SCLK  
REF; T = +25°C; unless otherwise noted.)  
A
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
0.50  
200  
200  
180  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
180  
C
= 47pF  
LOAD  
V
= 5V  
= 3V  
DD  
160  
140  
120  
100  
80  
160  
140  
120  
100  
80  
C
LOAD  
= 10pF  
V
DD  
60  
60  
D
OUT  
= 10101010  
D
C
= 10101010  
LOAD  
INTERNAL REFERENCE  
40  
40  
MAX1108 (2.7V TO 5.5V)  
MAX1109 (4.5V TO 5.5V)  
INTERNAL REFERENCE  
OUT  
= 10pF  
20  
20  
0
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
1
2
3
4
5
6
-40 -20 20  
0
40  
60  
80  
100  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
Typical Operating Characteristics (continued)  
(V  
= +3.0V (MAX1108), V  
= +5.0V (MAX1109); external conversion mode; f = 500kHz; 50ksps; external reference; 1µF at  
SCLK  
DD  
DD  
REF; T = +25°C; unless otherwise noted.)  
A
OFFSET ERROR vs. TEMPERATURE  
OFFSET ERROR vs. REFERENCE VOLTAGE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
0.5  
0.5  
0.4  
0.20  
0.4  
0.3  
0.15  
0.10  
0.05  
0
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.05  
-0.10  
-0.15  
-0.20  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40 -20  
0
20  
40  
60  
80  
100  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
REFERENCE VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
GAIN ERROR vs. SUPPLY VOLTAGE  
GAIN ERROR vs. REFERENCE VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
0.5  
0.4  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.0  
0.8  
0.3  
0.2  
0.6  
0.4  
0.1  
0.2  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
REFERENCE VOLTAGE (V)  
-40 -20  
0
20  
40  
60  
80  
100  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
DIFFERENTIAL NONLINEARITY  
vs. CODE  
DIFFERENTIAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
INTEGRAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
0.5  
0.4  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
50  
100  
150  
200  
250  
300  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
DIGITAL CODE  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
8
_______________________________________________________________________________________  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
Typical Operating Characteristics (continued)  
(V  
= +3.0V (MAX1108), V  
= +5.0V (MAX1109); external conversion mode; f = 500kHz; 50ksps; external reference; 1µF at  
SCLK  
DD  
DD  
REF; T = +25°C; unless otherwise noted.)  
A
INTEGRAL NONLINEARITY  
FFT PLOT  
vs. CODE  
CONVERSION TIME vs. SUPPLY VOLTAGE  
20  
0
0.5  
21.0  
f
f
= 9997Hz, 2Vp-p  
CH_  
0.4  
0.3  
0.2  
0.1  
0
INTERNAL CONVERSION MODE  
20.5  
= 53.25kHz  
SAMPLE  
-20  
-40  
-60  
-80  
-100  
20.0  
19.5  
19.0  
18.5  
18.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
5
10  
15  
20  
25  
30  
0
50  
100  
150  
200  
250  
300  
0
1
2
3
4
5
6
FREQUENCY (kHz)  
DIGITAL CODE  
SUPPLY VOLTAGE (V)  
NORMALIZED REFERENCE VOLTAGE  
vs. TEMPERATURE  
CHANNEL-TO-CHANNEL  
CROSSTALK vs. FREQUENCY  
CONVERSION TIME vs. TEMPERATURE  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1.0010  
1.0005  
1.0000  
0.9995  
0.9990  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
V
= V  
REFp-p  
INTERNAL CONVERSION MODE  
CH_OFF  
V
DD  
= 3V  
V
DD  
= 5V  
0.9985  
0.9980  
-40 -20  
0
20  
40  
60  
80  
100  
-40 -20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
Pin Description  
PIN  
1
NAME  
FUNCTION  
V
DD  
Positive Supply Voltage  
Sampling Analog Inputs  
Ground  
2, 3  
4
CH0, CH1  
GND  
Reference voltage for analog-to-digital conversion (internal or external reference). Reference input for  
external reference. Bypass internal reference with 1µF capacitor to GND.  
5
6
7
REF  
COM  
CS  
Common reference for analog inputs. Sets zero-code voltage in single-ended mode. Must be stable to  
0.5LSB during conversion.  
Active-Low Chip Select. Data is not clocked into DIN unless CS is low. When CS is high, DOUT is high  
impedance.  
8
9
DIN  
Serial Data Input. Data is clocked in at the rising edge of SCLK.  
DOUT  
Serial Data Output. Data is clocked out on the falling edge of SCLK. High impedance when CS is high.  
Serial Clock Input. Clocks data in and out of serial interface. In external clock mode, SCLK also sets the  
conversion speed.  
10  
SCLK  
_______________________________________________________________________________________  
9
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
V
DD  
VDD  
3kΩ  
3kΩ  
DOUT  
DOUT  
DOUT  
DOUT  
C
LOAD  
3kΩ  
C
LOAD  
3kΩ  
C
LOAD  
C
LOAD  
DGND  
DGND  
DGND  
a) High-Z to V and V to V  
OH  
DGND  
b) High-Z to V and V to V  
OL  
OH  
OL  
OL  
OH  
a) V to High-Z  
b) V to High-Z  
OH  
OL  
Figure 1. Load Circuits for Enable Time  
Figure 2. Load Circuits for Disable Time  
_______________Detailed Description  
V
The MAX1108/MAX1109 analog-to-digital converters  
(ADCs) use a successive-approximation conversion  
technique and input track/hold (T/H) circuitry to convert  
an analog signal to an 8-bit digital output. A flexible  
serial interface provides easy interface to microproces-  
sors (µPs). No external hold capacitors are required. All  
of the MAX1108/MAX1109 operating modes are soft-  
ware-configurable: internal or external reference, inter-  
nal or external conversion clock, single-ended unipolar  
or pseudo-differential unipolar/bipolar conversion, and  
power down (Table 1).  
DD  
V
DD  
V
CH0  
CH1  
DD  
0.1µF  
1µF  
ANALOG  
INPUTS  
GND  
COM  
CPU  
MAX1108  
MAX1109  
I/O  
CS  
SCLK  
DIN  
REF  
SCK (SK)  
MOSI (SO)  
1µF  
Analog Inputs  
DOUT  
MISO (SI)  
Track/Hold  
The input architecture of the ADCs is illustrated in the  
equivalent-input circuit of Figure 4 and is composed of  
the T/H, the input multiplexer, the input comparator, the  
switched capacitor DAC, the reference, and the auto-  
zero rail.  
V
SS  
Figure 3. Typical Operating Circuit  
GND  
The analog-inputs configuration is determined by the  
control-byte through the serial interface as shown in  
Table 2 (see Modes of Operation section and Table 1).  
The eight modes of operation include single-ended,  
CAPACITIVE DAC  
REF  
pseudo-differential, unipolar/bipolar, and a V  
moni-  
DD  
CH1  
C
HOLD  
18pF  
toring mode. During acquisition and conversion, only  
one of the switches in Figure 4 is closed at any time.  
COMPARATOR  
CH0  
The T/H enters its tracking mode on the falling clock  
edge after bit 4 (SEL0) of the control byte has been  
shifted in. It enters its hold mode on the falling edge  
after the bit 2 (I/EREF) of the control byte has been  
shifted in.  
COM  
R
IN  
6.5kΩ  
HOLD  
V
/ 2  
DD  
TRACK  
GND  
For example, If CH0 and COM are chosen (SEL2 =  
SEL1 = SEL0 = 1) for conversion, CH0 is defined as the  
sampled input (SI), and COM is defined as the refer-  
ence input (RI). During acquisition mode, the CH0  
switch and the T/H switch are closed, charging the  
AUTOZERO  
RAIL  
Figure 4. Equivalent Input Circuit  
10 ______________________________________________________________________________________  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
holding capacitor C  
through R . At the end of  
The input configuration selection also determines  
unipolar or bipolar conversion mode. The common-  
HOLD  
IN  
acquisition the T/H switch opens and C  
is con-  
HOLD  
nected to COM, retaining charge on C  
as a sam-  
mode input range of CH0, CH1, and COM is 0 to +V  
.
HOLD  
DD  
ple of the signal at CH0, and the difference between  
CH0 and COM is the converted signal. Once conver-  
sion is complete, the T/H returns immediately to its  
tracking mode. This procedure holds for the different  
combinations summarized in Table 2.  
In unipolar mode, full scale is achieved when (SI - RI) =  
; in bipolar mode, full scale is achieved when (SI  
V
REF  
- RI) = V  
/ 2. In unipolar mode, SI must be higher  
REF  
than RI; in bipolar mode, SI can span above and below  
RI provided that it is within the common-mode range.  
The time available for the T/H to acquire an input signal  
ACQ  
at the maximum clock frequency of 2MHz. The acquisi-  
tion time is also the minimum time needed for the signal  
to be acquired. It is calculated by:  
Conversion Process  
The comparator negative input is connected to the auto-  
zero rail. Since the device requires only a single supply,  
the ZERO node at the input of the comparator equals  
(t  
) is determined by the clock frequency, and is 1µs  
V
/2. The capacitive DAC restores node ZERO to have  
DD  
t
= 6(R + R )18pF  
S IN  
0V difference at the comparator inputs within the limits  
of 8-bit resolution. This action is equivalent to transfer-  
ACQ  
where R = 6.5k, R = the source impedance of  
IN  
S
ACQ  
ring a charge of 18pF(V  
- V ) from C  
to the  
HOLD  
IN+  
IN-  
the input signal, and t  
is never less than 1µs.  
binary-weighted capacitive DAC which, in turn, forms a  
digital representation of the analog-input signal.  
Note that source impedances below 2.7kdo not  
significantly affect the AC performance of the ADC at  
the maximum clock speed. If the input-source imped-  
ance is higher than 3k, the clock speed must be  
reduced accordingly.  
Input Voltage Range  
Internal protection diodes that clamp the analog input  
to V  
and AGND allow the channel input pins (CH0,  
DD  
CH1, and COM) to swing from (AGND - 0.3V) to (V  
+
DD  
Pseudo-Differential Input  
The MAX1108/MAX1109 input configuration is pseudo-  
differential to the extent that only the signal at the sam-  
pled input (SI) is stored in the holding capacitor  
0.3V) without damage. However, for accurate conver-  
sions, the inputs must not exceed (V  
less than (GND - 50mV).  
+ 50mV) or be  
DD  
(C  
). The reference input (RI) must remain stable  
If the analog input voltage on an “off” channel  
exceeds 50mV beyond the supplies, the current  
should be limited to 2mA to maintain conversion  
accuracy on the “on” channel.  
HOLD  
within 0.5LSB ( 0.1LSB for best results) in relation to  
GND during a conversion. Sampled input and refer-  
ence input configuration is determined by bit6–bit4  
(SEL2–SEL0) of the control byte (Table 2).  
The MAX1108/MAX1109 input range is from 0 to V  
;
DD  
If a varying signal is applied at the selected reference  
input, its amplitude and frequency need to be limited.  
The following equations determine the relationship  
between the maximum signal amplitude and its fre-  
quency to maintain 0.5LSB accuracy:  
unipolar or bipolar conversion is available. In unipolar  
mode, the output code is invalid (code zero) when a  
negative input voltage (or a negative differential input  
voltage) is applied. The reference input-voltage range  
at REF is from 1V to (V  
+ 50mV.)  
DD  
Assuming a sinusoidal signal at the reference input  
Input Bandwidth  
The ADC’s input tracking circuitry has a 1.5MHz small-  
signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. To avoid high-fre-  
quency signals being aliased into the frequency band  
of interest, anti-alias filtering is recommended.  
v
= V sin(2πft)  
RI  
RI  
the maximum voltage variation is determined by:  
dv 1 LSB  
V
RI  
REF  
max  
= 2πfv  
=
RI  
8
dt  
t
CONV  
2 t  
CONV  
a 60Hz signal at RI with an amplitude of 1.2V will gener-  
ate a 0.5LSB of error. This is with a 35µs conversion  
Serial Interface  
The MAX1108/MAX1109 have a 4-wire serial interface.  
The CS, DIN, and SCLK inputs are used to control the  
device, while the three-state DOUT pin is used to  
access the result of conversion.  
time (maximum t  
in internal conversion mode) and  
CONV  
a reference voltage of +4.096V. When a DC reference  
voltage is used at RI, connect a 0.1µF capacitor to  
GND to minimize noise at the input.  
______________________________________________________________________________________ 11  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
The serial interface provides easy connection to micro-  
controllers with SPI, QSPI and MICROWIRE serial inter-  
faces at clock rates up to 2MHz. For SPI and QSPI, set  
CPOL = CPHA = 0 in the SPI control registers of the  
microcontroller. Figure 5 shows the MAX1108/MAX1109  
common serial-interface connections.  
DOUT is active when CS is low and high impedance  
when CS is high. DOUT does not accept external volt-  
ages greater than V . In external-clock mode, data is  
DD  
clocked out at the maximum clock rate of 500kHz while  
conversion is in progress. In internal-clock mode, data  
can be clocked out at up to 2MHz clock rate.  
Digital Inputs  
The logic levels of the MAX1108/MAX1109 digital input  
are set to accept voltage levels from both +3V and +5V  
systems, regardless of the supply voltages. Input data  
(control byte) is clocked in at the DIN pin on the rising  
edge of serial clock (SCLK). CS is the standard chip-  
select signal which enables communication with the  
device. SCLK is used to clock data in and out of serial  
interface. In external clock mode, SCLK also sets the  
conversion speed.  
Modes of Operation  
The MAX1108/MAX1109 feature single-ended or pseu-  
do-differential operation in unipolar or bipolar configu-  
ration. The device is programmed through the input  
control-byte at the DIN pin of the serial interface  
(Table 1). Table 2 shows the analog-input configuration  
and Table 3 shows the input-voltage ranges in unipolar  
and bipolar configuration.  
How to Start a Conversion  
A conversion is started by clocking a control byte into  
DIN. With CS low, each rising edge on SCLK clocks a  
bit from DIN into the MAX1108/MAX1109’s internal shift  
register. After CS falls, the first arriving logic “1” bit at  
DIN defines the MSB of the control byte. Until this first  
start bit arrives, any number of logic “0” bits can be  
clocked into DIN with no effect. Table 1 shows the con-  
trol-byte format.  
Digital Output  
Output data is read on the rising edge of SCLK at  
DOUT, MSB first (D7). In unipolar input mode, the out-  
put is straight binary. For bipolar input mode, the output  
is twos-complement (see Transfer Function section).  
I/O  
CS  
Using the Typical Operating Circuit (Figure 3), the sim-  
plest software interface requires two 8-bit transfers to  
perform a conversion (one 8-bit transfer to configure  
the ADC, and one 8-bit transfer to clock out the 8-bit  
conversion result). Figure 6 shows a single-conversion  
timing diagram using external clock mode.  
SCK  
SCLK  
MISO  
MOSI  
DOUT  
DIN  
+3V  
MAX1108  
MAX1109  
SS  
Clock Modes  
The MAX1108/MAX1109 can use either an external ser-  
ial clock or the internal clock to perform the successive-  
approximation conversion. In both clock modes, the  
external clock shifts data in and out of the devices. Bit  
3 of control-byte (I/ECLK) programs the clock mode.  
Figure 8 shows the timing characteristics common to  
both modes.  
a) SPI  
CS  
CS  
SCK  
SCLK  
MISO  
MOSI  
DOUT  
DIN  
+3V  
MAX1108  
MAX1109  
SS  
External Clock  
In external clock mode, the external clock not only  
shifts data in and out, it also drives the analog-to-digital  
conversion steps. In this mode the clock frequency  
must be between 50kHz and 500kHz. Single-conver-  
sion timing using an external clock begins with a falling  
edge on CS. When this occurs, DOUT leaves the high  
impedance state and goes low. The first “1” clocked  
into DIN by SCLK after CS is set low is considered as  
the start bit. The next seven clocks latch in the rest of  
the control byte. On the falling edge of the fourth clock,  
track mode is enabled, and on the falling edge of the  
sixth clock, acquisition is complete and conversion is  
b) QSPI  
I/O  
SK  
CS  
SCLK  
SI  
DOUT  
DIN  
SO  
MAX1108  
MAX1109  
c) MICROWIRE  
Figure 5. Common Serial-Interface Connections  
12 ______________________________________________________________________________________  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
Table 1. Control Byte Format  
BIT 7  
(MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
(LSB)  
START  
SEL2  
SEL1  
SEL0  
I/ECLK  
I/EREF  
REFSHDN  
SHDN  
BIT  
NAME  
DESCRIPTION  
7 (MSB)  
START  
The first logic “1” bit after CS goes low defines the beginning of the control byte.  
6
5
4
SEL2  
SEL1  
SEL0  
Selects the mode of operation (Table 2).  
1 = external clock, 0 = internal clock. The SAR can be driven by the internal oscillator, or with the  
SCLK signal.  
3
2
I/ECLK  
I/EREF  
1 = internal reference, 0 = external reference. Internal reference selects +2.048V (MAX1108) or  
+4.096V (MAX1109), or an external reference can be applied to the REF pin.  
1 = operational (if I / EREF = 1), 0 = reference shutdown. When using an external reference, power  
consumption can be minimized by powering down the internal reference separately (I / EREF = 0).  
REFSHDN must be set to 0 when SHDN = 0.  
1
REFSHDN  
SHDN  
1 = operational, 0 = power down. For a full power down set REFSHDN = SHDN = 0. (See Power-  
Down Mode section.)  
0 (LSB)  
Table 2. Conversion Configuration  
SAMPLED INPUT  
(SI)  
REFERENCE INPUT  
(RI)  
SEL2  
SEL1  
SEL0  
CONVERSION MODE  
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
CH0  
CH1  
CH0  
CH1  
CH0  
CH1  
CH0  
COM  
COM  
GND  
GND  
COM  
COM  
CH1  
Unipolar  
Unipolar  
Unipolar  
Unipolar  
Bipolar  
Bipolar  
Bipolar  
V
/ 2  
GND  
Unipolar  
DD  
Table 3. Full- and Zero-Scale Voltages  
UNIPOLAR MODE  
BIPOLAR MODE  
Negative  
Full Scale  
Zero  
Scale  
Positive  
Full Scale  
Zero Scale  
Full Scale  
RI + V  
RI*  
RI - V  
/ 2  
RI  
RI + V  
/ 2  
REF  
REF  
REF  
*RI = Reference Input (Table 2)  
______________________________________________________________________________________ 13  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
initiated. The MSB successive-approximation bit deci-  
Internal Clock  
sion is made on the rising edge of the seventh SCLK.  
On the falling edge of the eighth SCLK, the MSB is  
clocked out on the DOUT pin; on each of the next  
seven SCLK falling edges, the remaining bits of conver-  
sion are clocked out. Zeros are clocked out on DOUT  
after the LSB has been clocked out, until CS is dis-  
abled. Then DOUT becomes high impedance and the  
part is ready for another conversion (Figure 6).  
Internal clock mode frees the µP from the burden of  
running the SAR conversion clock. This allows the con-  
version results to be read back at the processor’s con-  
venience, at any clock rate up to 2MHz.  
An internal register stores data when the conversion is  
in progress. On the falling edge of the fourth SCLK,  
track mode is enabled, and on the falling edge of the  
eighth SCLK, acquisition is complete and internal con-  
version is initiated. The internal 400kHz clock com-  
pletes the conversion in 20µs typically (35µs max), at  
which time the MSB of the conversion is present at the  
DOUT pin. The falling edge of SCLK clocks the remain-  
ing data out of this register at any time after the conver-  
sion is complete (Figure 8).  
The conversion must complete in 1ms, or droop on the  
sample-and-hold capacitors may degrade conversion  
results. Use internal clock mode if the serial-clock fre-  
quency is less than 50kHz, or if serial-clock interruptions  
could cause the conversion interval to exceed 1ms.  
CS  
1
4
8
12  
16  
20  
SCLK  
MSB  
LSB  
REF  
SHDN  
SEL2  
SEL1 SEL0 I/ECLK I/EREF  
SHDN  
DIN  
START  
MSB  
D7  
LSB  
D0  
D6  
D5  
D4  
D3  
D2  
D1  
DOUT  
t
ACQ  
t
A/D STATE  
CONV  
IDLE  
IDLE  
Figure 6. Single Conversion Timing, External Clock Mode  
CS  
• • •  
• • •  
t
t
t
CSH  
CSS  
CH  
t
t
CL  
CSH  
SCLK  
t
DS  
t
DH  
DIN  
• • •  
• • •  
t
DV  
t
t
TR  
DO  
DOUT  
Figure 7. Detailed Serial-Interface Timing  
14 ______________________________________________________________________________________  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
Quick Look  
To quickly evaluate the MAX1108/MAX1109’s analog  
performance, use the circuit of Figure 9. The device  
requires a control byte to be written to DIN before each  
CS does not need to be held low once a conversion is  
started. Pulling CS high prevents data from being  
clocked into the MAX1108/MAX1109 and three-states  
DOUT, but it does not adversely affect an internal  
clock-mode conversion already in progress. In this  
mode, data can be shifted in and out of the  
MAX1108/MAX1109 at clock rates up to 2MHz, provid-  
conversion. Tying CS to GND and DIN to V  
feeds in  
DD  
control bytes of FFH. In turn, this triggers single-ended,  
unipolar conversions on CH0 in relation to COM in  
external clock mode without powering down between  
conversions. Apply an external 50kHz to 500kHz clock  
ed that the minimum acquisition time (t  
above 1µs.  
) is kept  
ACQ  
CS  
1
4
8
10  
14  
18  
SCLK  
REF  
SHDN  
SEL2 SEL0 SEL1 I/EREF I/ECLK  
SHDN  
DIN  
START  
DOUT  
D4  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
t
CONV  
t
ACQ  
A/D STATE  
IDLE  
IDLE  
35µs MAX  
Figure 8. Single Conversion Timing, Internal Clock Mode  
V
DD  
V
SUPPLY  
OSCILLOSCOPE  
0.1µF  
1µF  
DOUT*  
SCLK  
LSB  
MSB  
GND  
CS  
MAX1108  
MAX1109  
ANALOG  
INPUT  
CH0  
0.01µF  
SCLK  
DIN  
5µs/div  
500kHz  
OSCILLATOR  
COM  
CH2  
CH1  
V
DD  
DOUT  
REF  
C1  
1µF  
*CONVERSION RESULT = 10101010  
Figure 9. Quick-Look Schematic  
______________________________________________________________________________________ 15  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
to the SCLK pin; varying the analog input alters the  
result of conversion that is clocked out at the DOUT pin.  
A total of 10 clock cycles is required per conversion.  
In external clock mode, the first high bit  
clocked into DIN after the bit 5 (D5) of a con-  
version in progress is clocked onto the  
DOUT pin.  
Data Framing  
The falling edge of CS does not start a conversion. The  
first logic high clocked into DIN is interpreted as a start  
bit and defines the first bit of the control byte.  
Acquisition starts on the falling edge of the fourth SCLK  
and lasts for two SCLKs in external clock mode or four  
SCLKs in internal clock mode. Conversion starts imme-  
diately after acquisition is completed. The start bit is  
defined as:  
OR  
In internal clock mode, the first high bit  
clocked into DIN after the bit 4 (D4) is  
clocked onto the DOUT pin.  
The MAX1108/MAX1109 can run at a maximum speed  
of 10 clocks per conversion. Figure 10 shows the serial-  
interface timing necessary to perform a conversion  
every 10 SCLK cycles in external clock mode.  
The first high bit clocked into DIN with CS  
Many microcontrollers require that conversions occur in  
multiples of 8 SCLK clocks; 16 clocks per conversion is  
typically the fastest that a microcontroller can drive the  
MAX1108/MAX1109. Figure 11 shows the serial-inter-  
face timing necessary to perform a conversion every 16  
SCLK cycles in external clock mode.  
low any time the converter is idle; e.g., after  
V
DD  
is applied.  
OR  
CS  
1
8
10  
1
10  
1
10  
1
SCLK  
DIN  
S
CONTROL BYTE 2  
S
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
CONVERSION RESULT 0  
D5  
CONVERSION RESULT 1  
D5 D0  
DOUT  
D7  
D7  
D0  
D7  
t
t
t
t
t
CONV  
t
CONV  
ACQ  
CONV  
ACQ  
ACQ  
A/D STATE  
IDLE  
Figure 10. Continuous Conversion, External Clock Mode, 10 Clocks/Conversion Timing  
CS  
1
8
17  
25  
SCLK  
DIN  
S
CONTROL BYTE 0  
S
S
CONTROL BYTE 1  
CONVERSION RESULT 0  
CONVERSION RESULT 1  
D7  
D0  
D7  
D0  
DOUT  
Figure 11. Continuous Conversion, External Clock Mode, 16 Clocks/Conversion Timing  
16 ______________________________________________________________________________________  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
In external clock mode, if CS is toggled before the cur-  
Table 4. Power-Down Modes of the  
MAX1108/MAX1109  
rent conversion is complete, the current conversion is  
terminated, and the next high bit clocked into DIN is  
recognized as a new start bit. This can be useful in  
extending acquisition time by selecting conversion on  
the same channel with the second control byte (double-  
clocking mode), effectively extending acquisition to 6  
SCLKs. This technique is ideal if the analog input  
source has high impedance, or if it requires more than  
1µs to settle; it can also be used to allow the device  
and the reference to settle when using power down-  
modes (see Power-Down Modes section).  
BIT 2–BIT 0 OF  
CONTROL BYTE  
OPERATING MODE  
I/EREF  
REFSHDN SHDN  
Device Active/Internal  
Reference Active  
1
1
1
Device Active; Internal refer-  
ence powered down after con-  
version, powered up at next  
start bit.  
1
0
1
__________Applications Information  
Device Active/External  
Reference Mode  
0
1
X
0
1
0
Battery Monitoring Mode  
Device and internal reference  
powered down after conversion,  
powered up at next start bit.  
This mode of operation samples and converts the mid-  
supply voltage, V  
/ 2, which is internally generated.  
DD  
Set SEL2 = SEL1 = SEL0 = 0 in the control byte to  
select this configuration. This allows the user to monitor  
Device powered down after  
each conversion, powered up  
at next start bit. External  
Reference Mode.  
the condition of a battery providing V . The reference  
DD  
0
X
1
0
0
voltage must be larger than V  
/ 2 for this mode of  
DD  
operation to work properly. From the result of conver-  
sion (CODE), V is determined as follows:  
1
Reserved. Do not use.  
DD  
V
= CODE · V  
/ 128.  
DD  
REF  
X = Don’t care  
Power-On Configuration  
The first logical 1 clocked into DIN after CS falls powers  
up the MAX1108/MAX1109 (20µs required for the  
device to power up). The reference is powered up only  
if internal reference was selected during the previous  
conversion. When the reference is powered up after  
being disabled, consider the settling time before using  
the result of conversion. Typically, 12ms are required  
for the reference to settle from a discharge state; less  
time may be considered if the external capacitor is not  
discharged completely when exiting shutdown. In all  
power-down modes, the interface remains active and  
conversion results may be read. Use the double clock-  
ing technique described in the Data Framing section to  
allow more time for the reference to settle before start-  
ing a conversion after short power-down.  
When power is first applied, the MAX1108/MAX1109’s  
reference is powered down and SHDN is not enabled.  
The device needs to be configured by setting CS low  
and writing the control byte. Conversion can be started  
within 20µs if an external reference is used. When using  
the internal reference, allow 12ms for the reference to  
settle. This is done by first performing a configuration  
conversion to power up the reference and then perform-  
ing a second conversion once the reference is settled. No  
conversions should be considered correct until the refer-  
ence voltage (internal or external) has stabilized.  
Power-Down Modes  
To save power, place the converter into low-current  
power-down mode between conversions. Minimum  
power consumption is achieved by programming  
REFSHDN = 0 and SHDN = 0 in the input control byte  
(Table 4). When software power-down is asserted, it  
becomes effective only after the conversion. If the con-  
trol byte contains REFSHDN = 0, then the reference will  
turn off at the end of conversion. If SHDN = 0, then the  
chip will power-down at the end of conversion (in this  
mode I/EREF or REFSHDN should also be set to zero).  
Table 4 lists the power-down modes of the MAX1108/  
MAX1109.  
Voltage Reference  
The MAX1108/MAX1109 operate from a single supply  
and feature a software-controlled internal reference of  
+2.048V (MAX1108) and +4.096V (MAX1109). The  
device can operate with either the internal reference or  
an external reference applied at the REF pin. See the  
Power-Down Modes and Modes of Operation sections  
for detailed instructions on reference configuration.  
The reference voltage determines the full-scale range:  
in unipolar mode, the input range is from 0 to V  
; in  
REF  
/ 2 with  
bipolar mode, the input range spans RI  
RI = V / 2.  
V
REF  
REF  
______________________________________________________________________________________ 17  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
External Reference  
OUTPUT CODE  
To use an external reference, set bit 2 (I/EREF) and bit  
FULL-SCALE  
TRANSITION  
1 (REFSHDN) of control byte to 0 and connect the  
11111111  
11111110  
external reference (V  
between 1V and V ) directly  
DD  
REF  
at the REF pin. The DC input impedance at REF is  
extremely high, consisting of leakage current only (typi-  
cally 10nA). During a conversion, the reference must  
be able to deliver up to 20µA average load current and  
have an output impedance of 1kor less at the conver-  
sion clock frequency. If the reference has higher output  
impedance or is noisy, bypass it close to the REF pin  
with a 0.1µF capacitor. MAX1109 has an internal refer-  
ence of +4.096V. To use the device with supply volt-  
ages below 4.5V, external reference mode is required.  
11111101  
FS = V + COM  
REF  
1LSB = V  
REF  
256  
00000011  
00000010  
With an external reference voltage of less than +2.048V  
(MAX1108) or +4.096V (MAX1109) at REF, the increase  
in the ratio of the RMS noise to the LSB value (FS / 256)  
results in performance degradation and decreased  
dynamic range.  
00000001  
00000000  
0
1
2
3
FS  
FS - 1LSB  
(COM)  
INPUT VOLTAGE (LSB)  
Figure 12a. Unipolar Transfer Function  
Internal Reference  
To use the internal reference, set bit 2 (I/EREF) and bit 1  
(REFSHDN) of the control byte to 1 and bypass REF with  
a 1µF capacitor to ground. The internal reference can be  
powered down after a conversion by setting bit 1 (REF-  
SHDN) of the control byte to 0. When using the internal  
reference, use MAX1108 and MAX1109 with supply volt-  
age below 4.5V and above 4.5V, respectively.  
OUTPUT CODE  
V
REF  
2
+FS =  
+ COM  
01111111  
01111110  
V
REF  
COM =  
2
-V  
REF  
2
-FS =  
+ COM  
00000010  
00000001  
00000000  
V
REF  
1LSB =  
Transfer Function  
Table 4 shows the full-scale voltage ranges for unipolar  
and bipolar modes. Figure 12a depicts the nominal,  
unipolar I/O transfer function, and Figure 12b shows the  
bipolar I/O transfer function. The zero scale is deter-  
mined by the input selection setting and is either COM,  
GND, or CH1.  
256  
11111111  
11111110  
11111101  
10000001  
10000000  
Code transitions occur at integer LSB values. Output  
coding is straight binary for unipolar operation and  
two’s complement for bipolar operation. With a +2.048V  
COM  
INPUT VOLTAGE (LSB)  
-FS  
reference, 1LSB = 8mV (V  
/ 256).  
1
REF  
+FS - LSB  
2
Layout, Grounding, and Bypassing  
For best performance, use printed circuit boards. Wire-  
wrap boards are not recommended. Board layout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another or run  
digital lines underneath the ADC package.  
Figure 12b. Bipolar Transfer Function  
The ground return to the power supply for the star  
ground should be low impedance and as short as pos-  
sible for noise-free operation.  
High-frequency noise in the V  
power supply may  
DD  
affect the comparator in the ADC. Bypass the supply to  
the star ground with 0.1µF and 1µF capacitors close to  
Figure 13 shows the recommended system-ground  
connections. A single-point analog ground (star-ground  
point) should be established at the A/D ground.  
Connect all analog grounds to the star ground. No digi-  
tal-system ground should be connected to this point.  
the V  
pin of the MAX1108/MAX1109. Minimize  
DD  
capacitor lead lengths for best supply-noise rejection. If  
the power supply is very noisy, a 10resistor can be  
connected to form a lowpass filter.  
18 ______________________________________________________________________________________  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
Chip Information  
TRANSISTOR COUNT: 2373  
SYSTEM POWER SUPPLIES  
GND  
+3V/+5V  
1µF  
10Ω  
0.1µF  
GND  
COM  
V
DD  
DGND  
V
DD  
DIGITAL  
CIRCUITRY  
MAX1108  
MAX1109  
Figure 13. Power-Supply Connections  
______________________________________________________________________________________ 19  
Single-Supply, Low-Power,  
2-Channel, Serial 8-Bit ADCs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.  
e
4X S  
10  
10  
INCHES  
MAX  
MILLIMETERS  
MAX  
1.10  
0.15  
0.95  
3.05  
3.00  
3.05  
3.00  
5.05  
0.70  
DIM MIN  
MIN  
-
A
-
0.043  
0.006  
0.037  
0.120  
0.118  
0.120  
0.118  
0.199  
A1  
A2  
D1  
D2  
E1  
E2  
H
0.002  
0.030  
0.116  
0.114  
0.116  
0.114  
0.187  
0.05  
0.75  
2.95  
2.89  
2.95  
2.89  
4.75  
0.40  
H
ÿ 0.50 0.1  
0.6 0.1  
L
0.0157 0.0275  
0.037 REF  
L1  
b
0.940 REF  
0.007  
0.0106  
0.177  
0.270  
0.200  
1
1
e
0.0197 BSC  
0.500 BSC  
0.6 0.1  
c
0.0035 0.0078  
0.0196 REF  
0.090  
BOTTOM VIEW  
0.498 REF  
S
α
TOP VIEW  
0∞  
6∞  
0∞  
6∞  
D2  
E2  
GAGE PLANE  
A2  
c
A
E1  
b
L
α
A1  
D1  
L1  
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 10L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0061  
I
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1109

Evaluation Kit for the MAX4135/MAX4136/MAX4137/MAX4138[MAX4135EVKIT ]
MAXIM

MAX1109CUB

Single-Supply, Low-Power, 2-Channel, Serial 8-Bit ADCs
MAXIM

MAX1109CUB+T

ADC, Successive Approximation, 8-Bit, 1 Func, 2 Channel, Serial Access, CMOS, PDSO10, USOP, UMAX-10
MAXIM

MAX1109CUB-T

ADC, Successive Approximation, 8-Bit, 1 Func, 2 Channel, Serial Access, CMOS, PDSO10, USOP, UMAX-10
MAXIM

MAX1109EUB

Single-Supply, Low-Power, 2-Channel, Serial 8-Bit ADCs
MAXIM

MAX1109EUB+

ADC, Successive Approximation, 8-Bit, 1 Func, 2 Channel, Serial Access, CMOS, PDSO10, USOP, UMAX-10
MAXIM

MAX1109EUB+T

ADC, Successive Approximation, 8-Bit, 1 Func, 2 Channel, Serial Access, CMOS, PDSO10, USOP, UMAX-10
MAXIM

MAX110ACAP

Low-Cost, 2-Channel, 【14-Bit Serial ADCs
MAXIM

MAX110ACAP+

ADC, Delta-Sigma, 14-Bit, 1 Func, 2 Channel, Serial Access, PDSO20, 5.30 MM, 0.65 MM PITCH, SSOP-20
MAXIM

MAX110ACPE

Low-Cost, 2-Channel, 【14-Bit Serial ADCs
MAXIM

MAX110ACWE

Low-Cost, 2-Channel, 【14-Bit Serial ADCs
MAXIM

MAX110ACWE-T

ADC, Delta-Sigma, 14-Bit, 1 Func, 2 Channel, Serial Access, PDSO16, 0.300 INCH, MS-013AA, WSOIC-16
MAXIM