MAX11100 [MAXIM]

16-Bit, +5V, 200ksps ADC with 10μA Shutdown; 16位, + 5V , 200ksps的ADC,具有10μA停机
MAX11100
型号: MAX11100
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

16-Bit, +5V, 200ksps ADC with 10μA Shutdown
16位, + 5V , 200ksps的ADC,具有10μA停机

文件: 总19页 (文件大小:3674K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-6046; Rev 1; 1/12  
General Description  
Features  
The MAX11100 low-power, 16-bit analog-to-digital con-  
verter (ADC) features a successive-approximation ADC,  
automatic power-down, fast 1.1Fs wake-up, and a high-  
speed SPI/QSPI™/MICROWIRE®-compatible interface.  
The MAX11100 operates with a single +5V analog supply  
and features a separate digital supply, allowing direct  
interfacing with 2.7V to 5.25V digital logic.  
S 16-Bit Resolution, No Missing Codes  
S +5V Single-Supply Operation  
S Adjustable Logic Level (2.7V to 5.25V)  
S Input Voltage Range: 0 to V  
REF  
S Internal Track-and-Hold, 4MHz Input Bandwidth  
S SPI/QSPI/MICROWIRE-Compatible Serial Interface  
S Small 10-Pin µMAX and WLP Packages  
At the maximum sampling rate of 200ksps, the MAX11100  
typically consumes 2.45mA. Power consumption is typi-  
S Low Power  
cally 12.25mW (V  
= V  
= +5V) at a 200ksps  
AVDD  
DVDD  
2.45mA at 200ksps  
140µA at 10ksps  
0.1µA in Power-Down Mode  
(max) sampling rate. AutoShutdown™ reduces supply  
current to 140FA at 10ksps and to less than 10FA at  
reduced sampling rates.  
Excellent dynamic performance and low power, com-  
bined with ease of use and small package size (10-pin  
®
FMAX and 12-bump WLP), make the MAX11100 ideal  
for battery-powered and data-acquisition applications  
or for other circuits with demanding power consumption  
and space requirements.  
Functional Diagram  
DVDD  
AVDD  
Applications  
Motor Control  
REF  
AIN  
Industrial Process Control  
Industrial I/O Modules  
OUTPUT  
BUFFER  
16-BIT SAR  
ADC  
TRACK-AND-  
HOLD  
DOUT  
AGND  
SCLK  
Data-Acquisition Systems  
Thermocouple Measurements  
Accelerometer Measurements  
Portable- and Battery-Powered Equipment  
CONTROL  
CS  
MAX11100  
DGND  
Ordering Information appears at end of data sheet.  
QSPI is a trademark of Motorola, Inc.  
MICROWIRE is a registered trademark of National Semiconductor Corp.  
AutoShutdown is a trademark and µMAX is a registered trademark of Maxim Integrated Products, Inc.  
For related parts and recommended products to use with this part, refer to: www.maxim-ic.com/MAX11100.related  
����������������������������������������������������������������� Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
ABSOLUTE MAXIMUM RATINGS  
AVDD to AGND .......................................................-0.3V to +6V  
DVDD to DGND.......................................................-0.3V to +6V  
DGND to AGND ...................................................-0.3V to +0.3V  
Continuous Power Dissipation (T = +70NC)  
A
FMAX (derate 5.6mW/NC above +70NC) .....................444mW  
WLP (derate 16.1mW/NC above +70NC)......1300mW (Note 1)  
Operating Temperature Range.......................... -40NC to +85NC  
Maximum Junction Temperature.....................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (FMAX only; soldering, 10s).............+300NC  
Soldering Temperature (reflow) ......................................+260NC  
AIN, REF to AGND ............................... -0.3V to (V  
+ 0.3V)  
AVDD  
SCLK, CS to DGND.................................................-0.3V to +6V  
DOUT to DGND.................................... -0.3V to (V + 0.3V)  
DVDD  
Maximum Current Into Any Pin ....................................... Q50mA  
Note 1: All WLP devices are 100% production tested at T = +25NC. Specifications over temperature limits are guaranteed by  
A
design and characterization.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= V  
= 4.75V to 5.25V, f  
= 4.8MHz (50% duty cycle), 24 clocks/conversion (200ksps), V  
= 4.096V, C = 4.7FF,  
REF  
AVDD  
DVDD  
SCLK  
REF  
T
= T  
to T  
, unless otherwise noted. Typical values are at T = +25NC.)  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (Note 2)  
Resolution  
16  
-2  
-1  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
Transition Noise  
INL  
(Note 3)  
+2  
+2  
DNL  
RMS noise  
Q0.65  
0.1  
LSB  
RMS  
Offset Error  
Gain Error  
Offset Drift  
Gain Drift  
1
mV  
(Note 4)  
Q0.002 Q0.01  
%FSR  
ppm/°C  
ppm/°C  
0.4  
0.2  
(Note 4)  
DYNAMIC SPECIFICATIONS (1kHz sine wave, 4.096V ) (Note 2)  
P-P  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Full-Power Bandwidth  
Full-Linear Bandwidth  
CONVERSION RATE  
Conversion Time  
SINAD  
SNR  
86  
87  
91.5  
91.7  
dB  
dB  
THD  
-106  
108  
4
-90  
dB  
SFDR  
92  
dB  
-3dB point  
MHz  
kHz  
SINAD > 86dB  
10  
t
(Note 5)  
5
240  
4.8  
Fs  
MHz  
ns  
CONV  
Serial Clock Frequency  
Aperture Delay  
f
0.1  
SCLK  
t
15  
AD  
Aperture Jitter  
t
< 50  
ps  
AJ  
Sample Rate  
f
f
/24  
SCLK  
200  
ksps  
Fs  
S
Track/Hold Acquisition Time  
t
1.1  
ACQ  
����������������������������������������������������������������� Maxim Integrated Products  
2
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= 4.75V to 5.25V, f  
= 4.8MHz (50% duty cycle), 24 clocks/conversion (200ksps), V  
= 4.096V, C = 4.7FF,  
REF  
AVDD  
DVDD  
SCLK  
REF  
T
= T  
to T  
, unless otherwise noted. Typical values are at T = +25NC.)  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT (AIN)  
Input Range  
V
0
V
V
AIN  
REF  
Input Capacitance  
C
40  
pF  
FA  
AIN  
Input Leakage Current  
EXTERNAL REFERENCE  
Input-Voltage Range  
SCLK idle  
0.01  
10  
V
3.8  
V
V
REF  
AVDD  
150  
V
V
= 4.096V, f  
= 4.8MHz  
60  
REF  
SCLK  
Input Current  
I
= 4.096V, SCLK idle  
0.01  
0.01  
10  
FA  
REF  
REF  
CS = DVDD, SCLK idle  
DIGITAL INPUTS (SCLK, CS)  
0.7 x  
Input High Voltage  
V
V
= 2.7V to 5.25V  
= 2.7V to 5.25V  
V
V
IH  
DVDD  
V
DVDD  
0.3 x  
Input Low Voltage  
V
V
V
IL  
DVDD  
V
DVDD  
Input Leakage Current  
Input Hysteresis  
I
= 0 to V  
Q0.1  
0.2  
15  
Q1  
FA  
V
IN  
IN  
DVDD  
V
HYST  
Input Capacitance  
C
pF  
IN  
DIGITAL OUTPUT (DOUT)  
V
DVDD  
Output High Voltage  
Output Low Voltage  
V
I
I
= 0.5mA, V  
= 2.7V to 5.25V  
DVDD  
V
V
OH  
SOURCE  
- 0.25  
V
= 2mA, V  
SINK  
= 2.7V to 5.25V  
0.4  
OL  
DVDD  
Three-State Output Leakage  
Current  
I
Q0.1  
Q10  
FA  
pF  
CS = DVDD  
CS = DVDD  
L
Three-State Output Capacitance  
POWER SUPPLIES  
C
15  
OUT  
Analog Supply  
V
V
I
4.75  
2.7  
5.25  
V
AVDD  
Digital Supply  
5.25  
2.5  
V
DVDD  
Analog Supply Current  
Digital Supply Current  
1.85  
0.6  
mA  
mA  
CS = DGND, 200ksps  
AVDD  
DVDD  
I
1.0  
CS = DGND, DOUT = all zeros, 200ksps  
I
+
AVDD  
I
Shutdown Supply Current  
0.1  
68  
10  
FA  
CS = DVDD, SCLK = idle  
DVDD  
V
= V  
= 4.75V to 5.25V, full-  
AVDD  
DVDD  
Power-Supply Rejection Ratio  
PSRR  
dB  
scale input (Note 6)  
����������������������������������������������������������������� Maxim Integrated Products  
3
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
TIMING CHARACTERISTICS  
(V  
= V  
= 4.75V to 5.25V, f  
= 4.8MHz (50% duty cycle), 24 clocks/conversion (200ksps), V  
= 4.096V, T = T  
to  
AVDD  
DVDD  
SCLK  
REF  
A
MIN  
T
, unless otherwise noted. Typical values are at T = +25NC.) (See Figure 1, Figure 2, Figure 3, and Figure 6.)  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Fs  
Acquisition Time  
t
1.1  
ACQ  
SCLK to DOUT Valid  
t
C
C
C
= 50pF  
= 50pF  
= 50pF  
50  
80  
80  
ns  
DO  
DOUT  
DOUT  
DOUT  
t
ns  
CS Fall to DOUT Enable  
CS Rise to DOUT Disable  
CS Pulse Width  
DV  
t
ns  
TR  
CSW  
t
50  
ns  
t
100  
ns  
CS Fall to SCLK Rise Setup  
CS Rise to SCLK Rise Hold  
SCLK High Pulse Width  
SCLK Low Pulse Width  
SCLK Period  
CSS  
t
0
ns  
CSH  
t
65  
65  
ns  
CH  
t
ns  
CL  
CP  
t
208  
ns  
TIMING CHARACTERISTICS  
(V  
= 4.75V to 5.25V, V  
= 2.7V to 5.25V, f  
= 4.8MHz (50% duty cycle), 24 clocks/conversion (200ksps), V = 4.096V,  
REF  
AVDD  
DVDD  
SCLK  
T
= T  
to T  
, unless otherwise noted. Typical values are at T = +25NC.) (See Figure 1, Figure 2, Figure 3, and Figure 6.)  
A
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Fs  
Acquisition Time  
t
1.1  
ACQ  
SCLK to DOUT Valid  
t
C
C
C
= 50pF  
= 50pF  
= 50pF  
100  
100  
80  
ns  
DO  
DOUT  
DOUT  
DOUT  
t
ns  
CS Fall to DOUT Enable  
CS Rise to DOUT Disable  
CS Pulse Width  
DV  
t
ns  
TR  
CSW  
t
50  
ns  
t
100  
ns  
CS Fall to SCLK Rise Setup  
CS Rise to SCLK Rise Hold  
SCLK High Pulse Width  
SCLK Low Pulse Width  
SCLK Period  
CSS  
t
0
ns  
CSH  
t
t
65  
65  
ns  
CH  
t
ns  
CL  
208  
ns  
CP  
Note 2: V  
= V  
= +5V.  
AVDD  
DVDD  
Note 3: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 4: Offset and reference errors nulled.  
Note 5: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.  
Note 6: Defined as the change in positive full scale caused by a Q5% variation in the nominal supply voltage.  
����������������������������������������������������������������� Maxim Integrated Products  
4
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
Typical Operating Characteristics  
(V  
= V  
= 5V, f  
= 4.8MHz, C  
= 50pF, C  
= 4.7FF, V  
= 4.096V, T = +25NC, unless otherwise noted.)  
AVDD  
DVDD  
SCLK  
LOAD  
REF  
REF A  
DIFFERENTIAL NONLINEARITY (DNL)  
vs. CODE  
INTEGRAL NONLINEARITY (INL)  
vs. CODE  
INL AND DNL  
vs. ANALOG SUPPLY VOLTAGE  
1.0  
0.8  
1.0  
0.8  
1.5  
1.0  
0.5  
0
MAX INL  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
MAX DNL  
MIN INL  
MIN DNL  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.5  
-1.0  
-1.5  
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
8192  
24576  
40960  
57344  
8192  
24576  
40960  
57344  
V
AVDD  
OUTPUT CODE (DECIMAL)  
OUTPUT CODE (DECIMAL)  
MAX11100 FFT  
SINAD vs. FREQUENCY  
INL AND DNL vs. TEMPERATURE  
1.5  
1.0  
0.5  
0
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MAX INL  
-20  
-40  
-60  
MAX DNL  
MIN DNL  
-80  
-0.5  
-1.0  
-1.5  
-100  
-120  
-140  
MIN INL  
-40  
-15  
10  
35  
60  
85  
0
10 20 30 40 50 60 70 80 90 100  
0
1
10  
100  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
SFDR vs. FREQUENCY  
120  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-120  
0
0.1  
1
10  
100  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
����������������������������������������������������������������� Maxim Integrated Products  
5
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
Typical Operating Characteristics (continued)  
(V  
= V  
= 5V, f  
= 4.8MHz, C  
= 50pF, C  
= 4.7FF, V  
= 4.096V, T = +25NC, unless otherwise noted.)  
AVDD  
DVDD  
SCLK  
LOAD  
REF  
REF  
A
ANALOG SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SAMPLE RATE  
1.90  
10.0000  
1.88  
1.86  
1.84  
1.82  
1.80  
1.0000  
0.1000  
0.0100  
0.0010  
0.0001  
I
AVDD  
I
DVDD  
4.75  
4.75  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
5.25  
5.25  
1
10  
100  
1000  
SAMPLE RATE (ksps)  
AVDD  
SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20  
18  
16  
14  
12  
10  
8
I
AVDD  
6
4
I
2
DVDD  
0
-40  
-15  
10  
35  
60  
85  
4.85  
4.95  
5.05  
5.15  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
OFFSET ERROR  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
vs. ANALOG SUPPLY VOLTAGE  
500  
300  
150  
125  
100  
75  
100  
-100  
-300  
-500  
50  
25  
0
4.85  
4.95  
5.05  
(V)  
5.15  
-40  
-15  
10  
35  
60  
85  
V
TEMPERATURE (°C)  
AVDD  
����������������������������������������������������������������� Maxim Integrated Products  
6
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
Typical Operating Characteristics (continued)  
(V  
= V  
= 5V, f  
= 4.8MHz, C  
= 50pF, C  
= 4.7FF, V  
= 4.096V, T = +25NC, unless otherwise noted.)  
AVDD  
DVDD  
SCLK  
LOAD  
REF  
REF  
A
GAIN ERROR  
vs. ANALOG SUPPLY VOLTAGE  
0.010  
OFFSET ERROR vs. TEMPERATURE  
500  
0.006  
0.002  
300  
100  
-0.002  
-0.006  
-0.010  
-100  
-300  
-500  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
V
TEMPERATURE (°C)  
AVDD  
SIGNAL-TO-NOISE RATIO (SNR) AND  
SIGNAL-TO-NOISE AND DISTORTION  
RATIO (SINAD) vs. TEMPERATURE  
GAIN ERROR vs. TEMPERATURE  
0.010  
0.006  
93.0  
92.5  
92.0  
91.5  
91.0  
90.5  
f
= 1kHz  
IN  
SNR  
0.002  
-0.002  
-0.006  
-0.010  
SINAD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
����������������������������������������������������������������� Maxim Integrated Products  
7
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
Pin Configurations  
TOP VIEW  
(BUMP SIDE DOWN)  
MAX11100  
1
2
3
4
TOP VIEW  
+
REF  
AVDD  
AGND  
SCLK  
+
DOUT  
DGND  
DVDD  
AGND  
AIN  
1
10 SCLK  
A
B
C
2
3
4
5
9
8
7
6
CS  
AGND  
AIN  
REF  
DGND  
DVDD  
CS  
MAX11100  
AGND  
AVDD  
REF  
AGND  
DOUT  
µMAX  
WLP  
Pin Description  
PIN  
NAME  
FUNCTION  
WLP  
A1, B2  
A2  
µMAX  
External Reference Voltage Input. Sets the analog voltage range. Bypass to AGND with a 4.7FF  
capacitor.  
6
7
REF  
AVDD  
AGND  
Analog +5V Supply Voltage. Bypass to AGND with a 0.1FF capacitor.  
A3, B1,  
C2  
4, 8  
Analog Ground  
Serial Clock Input. SCLK drives the conversion process and clocks out data at data rates up to  
4.8MHz.  
A4  
B3  
10  
2
SCLK  
DGND  
Digital Ground  
Active-Low Chip-Select Input. Forcing CS high places the MAX11100 shutdown with a typical  
current of 0.1FA. A high-to-low transition on CS activates normal operating mode and initiates a  
conversion.  
B4  
9
CS  
C1  
C3  
5
3
AIN  
Analog Input  
DVDD  
Digital Supply Voltage. Bypass to DGND with a 0.1FF capacitor.  
Serial Data Output. Data changes state on SCLK’s falling edge. DOUT is high impedance when  
CS is high.  
C4  
1
DOUT  
����������������������������������������������������������������� Maxim Integrated Products  
8
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
Detailed Description  
V
DD  
The MAX11100 includes an input track-and-hold (T/H)  
and successive-approximation register (SAR) circuitry to  
convert an analog input signal to a digital 16-bit output.  
Figure 4 shows the MAX11100 in its simplest configura-  
tion. The serial interface requires only three digital lines  
(SCLK, CS, and DOUT) and provides an easy interface  
to microprocessors (FPs).  
1mA  
DOUT  
1mA  
DOUT  
C
LOAD  
= 50pF  
C
= 50pF  
LOAD  
DGND  
a) V TO V  
DGND  
b) HIGH-Z TO V AND V TO V  
OL  
The MAX11100 has two power modes: normal and shut-  
down. Driving CS high places the MAX11100 in shut-  
down, reducing the supply current to 0.1FA (typ), while  
pulling CS low places the MAX11100 in normal operating  
mode. Falling edges on CS initiate conversions that are  
driven by SCLK. The conversion result is available at  
DOUT in unipolar serial format. The serial data stream  
consists of eight zeros followed by the data bits (MSB  
first). Figure 3 shows the interface timing diagram.  
OL  
OH  
OL  
OH  
Figure 1. Load Circuits for DOUT Enable Time and SCLK to  
DOUT Delay Time  
V
DD  
1mA  
Analog Input  
Figure 5 illustrates the input sampling architecture of the  
ADC. The voltage applied at REF sets the full-scale input  
voltage.  
DOUT  
1mA  
DOUT  
C
LOAD  
= 50pF  
C
LOAD  
= 50pF  
Track-and-Hold (T/H)  
In track mode, the analog signal is acquired on the inter-  
nal hold capacitor. In hold mode, the T/H switches open  
and the capacitive DAC samples the analog input.  
DGND  
a) V TO HIGH-Z  
DGND  
b) V TO HIGH-Z  
OH  
OL  
Figure 2. Load Circuits for DOUT Disable Time  
CS  
t
CSW  
t
t
CH  
CL  
t
t
CSS  
CSH  
SCLK  
t
CP  
t
DO  
t
TR  
t
DV  
DOUT  
Figure 3. Detailed Serial Interface Timing  
����������������������������������������������������������������� Maxim Integrated Products  
9
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
t
= 13(R + R ) x 35pF  
S IN  
ACQ  
where R  
impedance, and t  
impedance less than 1kIdoes not significantly affect the  
ADC’s performance.  
= 800I, R = the input signal’s source  
S
IN  
AIN  
REF  
CS  
SCLK  
DOUT  
CS  
AIN  
is never less than 1.1Fs. A source  
ACQ  
SCLK  
DOUT  
V
REF  
4.7µF  
MAX11100  
AVDD  
+5V  
+5V  
To improve the input signal bandwidth under AC condi-  
tions, drive AIN with a wideband buffer (> 4MHz) that  
can drive the ADC’s input capacitance and settle quickly.  
0.1µF  
DVDD  
AGND  
DGND  
0.1µF  
Input Bandwidth  
The ADC’s input tracking circuitry has a 4MHz small-  
signal bandwidth, so it is possible to digitize high-speed  
transient events and measure periodic signals with  
bandwidths exceeding the ADC’s sampling rate by using  
undersampling techniques. To avoid aliasing of unwant-  
ed high-frequency signals into the frequency band of  
interest, use anti-alias filtering.  
GND  
Figure 4. Typical Operating Circuit  
REF  
TRACK  
CAPACITIVE DAC  
AIN  
Analog Input Protection  
Internal protection diodes, which clamp the analog input  
ZERO  
C
SWITCH  
3pF  
C
DAC  
32pF  
HOLD  
R
to AVDD or AGND, allow the input to swing from V  
IN  
AGND  
800  
GND  
- 0.3V to V  
+ 0.3V, without damaging the device.  
AVDD  
TRACK  
If the analog input exceeds 300mV beyond the supplies,  
limit the input current to 10mA.  
HOLD  
AUTOZERO  
RAIL  
Digital Interface  
Figure 5. Equivalent Input Circuit  
Initialization After Power-Up and Starting a  
Conversion  
During the acquisition, the analog input (AIN) charges  
capacitor CDAC. The acquisition interval ends on the  
falling edge of the sixth clock cycle (Figure 6). At this  
instant, the T/H switches open. The retained charge on  
CDAC represents a sample of the input.  
The digital interface consists of two inputs, SCLK and  
CS, and one output, DOUT. A logic-high on CS places  
the MAX11100 in shutdown (AutoShutdown) and places  
DOUT in a high-impedance state. A logic-low on CS  
places the MAX11100 in the fully powered mode.  
In hold mode, the capacitive digital-to-analog converter  
(DAC) adjusts during the remainder of the conversion  
cycle to restore node ZERO to zero within the limits of  
16-bit resolution. At the end of the conversion, force CS  
high and then low to reset the input side of the CDAC  
switches back to AIN, and charge CDAC to the input  
signal again.  
To start a conversion, pull CS low. A falling edge on CS  
initiates an acquisition. SCLK drives the A/D conversion  
and shifts out the conversion results (MSB first) at DOUT.  
Timing and Control  
Conversion-start and data-read operations are con-  
trolled by the CS and SCLK digital inputs (Figure 6  
and Figure 7). Ensure that the duty cycle on SCLK is  
between 40% and 60% at 4.8MHz (the maximum clock  
frequency). For lower clock frequencies, ensure that  
the minimum high and low times are at least 65ns.  
Conversions with SCLK rates less than 100kHz can  
result in reduced accuracy due to leakage.  
The time required for the T/H to acquire an input sig-  
nal is a function of how quickly its input capacitance  
is charged. If the input signal’s source impedance is  
high, the acquisition time lengthens and more time must  
be allowed between conversions. The acquisition time  
(t ) is the maximum time the device takes to acquire  
ACQ  
Note: Coupling between SCLK and the analog inputs  
(AIN and REF) may result in an offset.  
the signal. Use the following formula to calculate acquisi-  
tion time:  
���������������������������������������������������������������� Maxim Integrated Products 10  
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
CS  
24  
1
4
6
8
12  
16  
20  
SCLK  
DOUT  
t
t
CSS  
CL  
t
CSH  
t
CH  
D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2  
D1 D0  
D15 D14 D13  
t
t
t
DO  
DV  
ACQ  
t
TR  
Figure 6. External Timing Diagram  
COMPLETE CONVERSION SEQUENCE  
CS  
DOUT  
CONVERSION 0  
POWERED UP  
CONVERSION 1  
POWERED UP  
POWERED DOWN  
TIMING NOT TO SCALE.  
Figure 7. Shutdown Sequence  
Variations in frequency, duty cycle, or other aspects of  
the clock signal’s shape result in changing offset.  
conversion result has been clocked out, and prior to the  
rising edge of CS, produce trailing zeros at DOUT and  
have no effect on the converter operation.  
A CS falling edge initiates an acquisition sequence. The  
analog input is stored in the capacitive DAC, DOUT  
changes from high impedance to logic-low, and the ADC  
begins to convert after the sixth clock cycle. SCLK drives  
the conversion process and shifts out the conversion  
result on DOUT.  
Force CS high after reading the conversion’s LSB to  
reset the internal registers and place the MAX11100 in  
shutdown. For maximum throughput, force CS low again  
to initiate the next conversion immediately after the speci-  
fied minimum time (t ).  
CSW  
SCLK begins shifting out the data (MSB first) after the fall-  
ing edge of the 8th SCLK pulse. Twenty-four falling clock  
edges are needed to shift out the eight leading zeros  
and 16 data bits. Extra clock pulses occurring after the  
Note: Forcing CS high in the middle of a conversion  
immediately aborts the conversion and places the  
MAX11100 in shutdown.  
���������������������������������������������������������������� Maxim Integrated Products 11  
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
Output Coding and Transfer Function  
The data output from the MAX11100 is binary and Figure 8  
depicts the nominal transfer function. Code transitions  
occur halfway between successive-integer LSB values  
Input Buffer  
Most applications require an input buffer amplifier to  
achieve 16-bit accuracy. If the input signal is multiplexed,  
switch the input channel immediately after acquisition,  
rather than near the end of or after a conversion (Figure 9).  
This allows the maximum time for the input buffer ampli-  
fier to respond to a large step change in the input signal.  
The input amplifier must have a slew rate of at least 2V/Fs  
to complete the required output-voltage change before  
the beginning of the acquisition time.  
(V  
REF  
= 4.096V and 1 LSB = 63FV or 4.096V/65536).  
Applications Information  
External Reference  
The MAX11100 requires an external reference with a  
+3.8V and AVDD voltage range. Connect the external  
reference directly to REF. Bypass REF to AGND with  
a 4.7FF capacitor. When not using a low-ESR bypass  
capacitor, use a 0.1FF ceramic capacitor in parallel with  
the 4.7FF capacitor. Noise on the reference degrades  
conversion accuracy.  
At the beginning of the acquisition, the internal sam-  
pling capacitor array connects to AIN (the amplifier  
output), causing some output disturbance. Ensure that  
the sampled voltage has settled before the end of the  
acquisition time.  
Digital Noise  
Digital noise can couple to AIN and REF. The conversion  
clock (SCLK) and other digital signals active during input  
acquisition contribute noise to the conversion result.  
Noise signals synchronous with the sampling interval  
result in an effective input offset. Asynchronous signals  
produce random noise on the input, whose high-frequen-  
cy components can be aliased into the frequency band  
of interest. Minimize noise by presenting a low imped-  
ance (at the frequencies contained in the noise signal)  
at the inputs. This requires bypassing AIN to AGND, or  
buffering the input with an amplifier that has a small-  
signal bandwidth of several MHz, or preferably both. AIN  
has 4MHz (typ) of bandwidth.  
The input impedance at REF is 40kI for DC currents.  
During a conversion the external reference at REF must  
deliver 100FA of DC load current and have an output  
impedance of 10I or less.  
For optimal performance, buffer the reference through  
an op amp and bypass the REF input. Consider the  
MAX11100’s equivalent input noise (38FV  
choosing a reference.  
) when  
RMS  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
11 . . . 111  
Distortion  
Avoid degrading dynamic performance by choosing an  
amplifier with distortion much less than the MAX11100’s  
total harmonic distortion (THD = -102dB at 1kHz) at  
frequencies of interest. If the chosen amplifier has  
insufficient common-mode rejection, which results in  
degraded THD performance, use the inverting configu-  
ration (positive input grounded) to eliminate errors from  
this source. Low temperature-coefficient, gain-setting  
resistors reduce linearity errors caused by resistance  
changes due to self-heating. To reduce linearity errors  
due to finite amplifier gain, use amplifier circuits with suf-  
ficient loop gain at the frequencies of interest.  
11 . . . 110  
11 . . . 101  
FS = V  
REF  
V
REF  
1 LSB =  
65536  
00 . . . 011  
00 . . . 010  
00 . . . 001  
00 . . . 000  
0
1
2
3
FS  
DC Accuracy  
To improve DC accuracy, choose a buffer with an offset  
much less than the MAX11100’s offset (1mV (max) for  
+5V supply), or whose offset can be trimmed while main-  
taining stability over the required temperature range.  
FS - 3/2 LSB  
INPUT VOLTAGE (LSB)  
Figure 8. Unipolar Transfer Function, Full Scale (FS) = V  
Zero Scale (ZS) = GND  
,
REF  
���������������������������������������������������������������� Maxim Integrated Products 12  
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
A0  
A1  
IN1  
IN2  
4-TO-1  
MUX  
MAX11100  
IN3  
IN4  
AIN  
CS  
OUT  
CLK  
CS  
ACQUISITION  
CONVERSION  
A0  
A1  
CHANGE MUX INPUT HERE  
Figure 9. Change Multiplexer Input Near Beginning of Conversion to Allow Time for Slewing and Settling  
edge and the output is available in MSB-first format.  
Observe the SCLK to DOUT valid timing characteris-  
tic. Clock data into the FP on SCLK’s rising edge.  
Serial Interfaces  
The MAX11100’s interface is fully compatible with SPI,  
QSPI, and MICROWIRE standard serial interfaces.  
3) Pull CS high at or after the 24th falling clock edge. If  
CS remains low, trailing zeros are clocked out after  
the least significant bit (D0 = LSB).  
If a serial interface is available, establish the CPU’s  
serial interface as master, so that the CPU generates the  
serial clock for the MAX11100. Select a clock frequency  
between 100kHz and 4.8MHz:  
4) With CS high, wait at least 50ns (t  
) before start-  
CSW  
ing a new conversion by pulling CS low. A conver-  
sion can be aborted by pulling CS high before the  
conversion ends. Wait at least 50ns before starting a  
new conversion.  
1) Use a general-purpose I/O line on the CPU to pull CS low.  
2) Activate SCLK for a minimum of 24 clock cycles. The  
serial data stream of eight leading zeros followed by  
the MSB of the conversion result begins at the fall-  
ing edge of CS. DOUT transitions on SCLK’s falling  
���������������������������������������������������������������� Maxim Integrated Products 13  
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
Data can be output in three 8-bit sequences or con-  
tinuously. The bytes contain the results of the conversion  
padded with eight leading zeros before the MSB. If the  
serial clock has not been idled after the LSB (D0) and CS  
has been kept low, DOUT sends trailing zeros.  
I/O  
SCK  
CS  
SCLK  
DOUT  
MISO  
V
DD  
SPI  
SPI and MICROWIRE Interfaces  
When using the SPI (Figure 10a) or MICROWIRE (Figure 10b)  
interfaces, set CPOL = 0 and CPHA = 0. Conversion  
begins with a falling edge on CS (Figure 10c). Three con-  
secutive 8-bit readings are necessary to obtain the entire  
16-bit result from the ADC. DOUT data transitions on  
the serial clock’s falling edge. The first 8-bit data stream  
contains all leading zeros. The second 8-bit data stream  
contains the MSB through D8. The third 8-bit data stream  
contains D7 through D0.  
MAX11100  
SS  
Figure 10a. SPI Connections  
I/O  
SK  
CS  
SCLK  
DOUT  
SI  
MICROWIRE  
MAX11100  
Figure 10b. MICROWIRE Connections  
1ST BYTE READ  
4
2ND BYTE READ  
1
6
8
12  
16  
SCLK  
CS  
0
0
0
0
0
0
0
0
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
DOUT*  
MSB  
*WHEN CS IS HIGH, DOUT = HIGH-Z  
3RD BYTE READ  
20  
24  
HIGH-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TIMING NOT TO SCALE.  
LSB  
Figure 10c. SPI/MICROWIRE Interface Timing Sequence (CPOL = CPHA = 0)  
���������������������������������������������������������������� Maxim Integrated Products 14  
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
CS  
SCK  
CS  
SCLK  
DOUT  
MISO  
V
DD  
QSPI  
MAX11100  
SS  
Figure 11a. QSPI Connections  
24  
1
4
6
8
12  
16  
20  
SCLK  
CS  
END OF  
ACQUISITION  
HIGH-Z  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2  
MSB  
D1 D0  
LSB  
DOUT*  
*WHEN CS IS HIGH, DOUT = HIGH-Z  
Figure 11b. QSPI Interface Timing Sequence (CPOL = CPHA = 0)  
PIC16 with SSP Module and PIC17 Interface  
The MAX11100 is compatible with a PIC16/PIC17 micro-  
controller (FC) using the synchronous serial-port (SSP)  
module.  
V
V
DD  
DD  
SCLK  
DOUT  
CS  
SCK  
SDI  
I/O  
To establish SPI communication, connect the controller  
as shown in Figure 12a. Configure the PIC16/PIC17 as  
system master, by initializing its synchronous serial-port  
control register (SSPCON) and synchronous serial-port  
status register (SSPSTAT) to the bit patterns shown in  
Table 1 and Table 2.  
PIC16/17  
MAX11100  
GND  
In SPI mode, the PIC16/PIC17 FC allows 8 bits of data  
to be synchronously transmitted and received simultane-  
ously. Three consecutive 8-bit readings (Figure 12b) are  
necessary to obtain the entire 16-bit result from the ADC.  
DOUT data transitions on the serial clock’s falling edge  
and is clocked into the FC on SCLK’s rising edge. The  
first 8-bit data stream contains all zeros. The second 8-bit  
data stream contains the MSB through D8. The third 8-bit  
data stream contains bits D7 through D0.  
Figure 12a. SPI Interface Connection for a PIC16/PIC17  
QSPI Interface  
Using the high-speed QSPI interface with CPOL = 0 and  
CPHA = 0, the MAX11100 supports a maximum f  
of 4.8MHz. Figure 11a shows the MAX11100 connected  
to a QSPI master and Figure 11b shows the associated  
interface timing.  
SCLK  
���������������������������������������������������������������� Maxim Integrated Products 15  
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
1ST BYTE READ  
2ND BYTE READ  
12  
16  
SCLK  
CS  
0
0
0
0
0
0
0
0
D7  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
DOUT*  
MSB  
*WHEN CS IS HIGH, DOUT = HIGH-Z  
3RD BYTE READ  
20  
24  
HIGH-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TIMING NOT TO SCALE.  
LSB  
Figure 12b. SPI Interface Timing with PIC16/PIC17 in Master Mode (CKE = 1, CKP = 0, SMP = 0, SSPM3 - SSPM0 = 0001)  
Table 1. Detailed SSPCON Register Contents  
MAX11100  
SETTINGS  
CONTROL BIT  
SYNCHRONOUS SERIAL-PORT CONTROL REGISTER (SSPCON)  
WCOL  
SSPOV  
BIT 7  
BIT 6  
X
X
Write Collision Detection Bit  
Receive Overflow Detect Bit  
Synchronous Serial-Port Enable Bit:  
SSPEN  
BIT 5  
1
0: Disables serial port and configures these pins as I/O port pins.  
1: Enables serial port and configures SCK, SDO, and SCI pins as serial port pins.  
CKP  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
0
0
0
0
1
Clock Polarity Select Bit. CKP = 0 for SPI master mode selection.  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
Synchronous Serial-Port Mode Select Bit. Sets SPI master mode and selects f  
= f  
/16.  
CLK  
OSC  
Table 2. Detailed SSPSTAT Register Contents  
MAX11100  
SETTINGS  
CONTROL BIT  
SYNCHRONOUS SERIAL-PORT CONTROL REGISTER (SSPSTAT)  
SMP  
CKE  
D/A  
P
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
0
1
X
X
X
X
X
X
SPI Data Input Sample Phase. Input data is sampled at the middle of the data output time.  
SPI Clock Edge Select Bit. Data is transmitted on the rising edge of the serial clock.  
Data Address Bit  
STOP Bit  
S
START Bit  
R/W  
UA  
BF  
Read/Write Bit Information  
Update Address  
Buffer Full Status Bit  
���������������������������������������������������������������� Maxim Integrated Products 16  
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
Effective Number of Bits  
Effective number of bits (ENOB) indicate the global  
Definitions  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC error consists of quantiza-  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
tion noise only. With an input range equal to the full-scale  
on an actual transfer function from a straight line. This  
range of the ADC, calculate the effective number of bits  
straight line can be either a best-fit straight line fit or a  
line drawn between the endpoints of the transfer function,  
as follows:  
once offset and gain errors have been nulled. The static  
linearity parameters for the MAX11100 are measured  
using the endpoint method.  
ENOB = (SINAD - 1.76)/6.02  
Figure 13 shows the effective number of bits as a function  
of the MAX11100’s input frequency.  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A DNL  
error specification of 1 LSB guarantees no missing codes  
and a monotonic transfer function.  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
2
2
2
2
Aperture Definitions  
V
+ V + V + V  
3 4 5  
2
THD = 20 ×log  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
V
1
the time between samples. Aperture delay (t ) is the  
AD  
time between the falling edge of the sampling clock and  
the instant when the actual sample is taken.  
where V is the fundamental amplitude and V through  
V are the 2nd- through 5th-order harmonics.  
5
1
2
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of the  
full-scale analog input (RMS value) to the RMS quantiza-  
tion error (residual error). The ideal, theoretical minimum  
analog-to-digital noise is caused by quantization noise  
error only and results directly from the ADCs resolution  
(N bits):  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest fre-  
quency component.  
16  
14  
12  
10  
8
SNR = (6.02 x N + 1.76)dB  
In reality, there are other noise sources besides quantiza-  
tion noise: thermal noise, reference noise, clock jitter, etc.  
SNR is computed by taking the ratio of the RMS signal to  
the RMS noise, which includes all spectral components  
minus the fundamental, the first five harmonics, and the  
DC offset.  
6
4
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of  
the fundamental input frequency’s RMS amplitude to  
the RMS equivalent of all the other ADC output signals,  
excluding the DC offset.  
2
0
0.1  
1
10  
100  
INPUT FREQUENCY (kHz)  
Signal  
RMS  
Figure 13. Effective Number of Bits vs. Input Frequency  
SINAD(dB) = 20 ×log  
Noise + Distortion  
(
)
RMS  
���������������������������������������������������������������� Maxim Integrated Products 17  
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
Supplies, Layout, Grounding, and Bypassing  
Use PCBs with separate analog and digital ground  
planes. Do not use wire-wrap boards. Connect the two  
ground planes together at the MAX11100. Isolate the  
digital supply from the analog with a low-value resistor  
(10I) or ferrite bead when the analog and digital sup-  
plies come from the same source (Figure 14).  
Ordering Information  
PART  
TEMP RANGE  
-40NC to +85NC  
-40NC to +85NC  
PIN-PACKAGE  
10 FMAX  
MAX11100EUB+  
MAX11100EWC+  
12 WLP  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Constraints on sequencing the power supplies and  
inputs are as follows:  
Chip Information  
U Apply AGND before DGND.  
PROCESS: BiCMOS  
UApply AIN and REF after AVDD and AGND are present.  
U DVDD is independent of the supply sequencing.  
Package Information  
Ensure that digital return currents do not pass through  
the analog ground and that return-current paths are  
low impedance. A 5mA current flowing through a PCB  
ground trace impedance of only 0.05I creates an error  
voltage of about 250FV, 4 LSB error with a +4V full-scale  
system.  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
The board layout should ensure that digital and analog  
signal lines are kept separate. Do not run analog and dig-  
ital (especially the SCLK and DOUT) lines parallel to one  
another. If one must cross another, do so at right angles.  
10 FMAX  
U10+2  
21-0061  
90-0330  
Refer to  
Application  
Note 1891  
12 WLP  
W121A2+1  
21-0009  
The ADCs high-speed comparator is sensitive to high-  
frequency noise on the AVDD power supply. Bypass an  
excessively noisy supply to the analog ground plane with  
a 0.1FF capacitor in parallel with a 1FF to 10FF low-ESR  
capacitor. Keep capacitor leads short for best supply-  
noise rejection.  
AIN  
REF  
CS  
SCLK  
DOUT  
CS  
AIN  
SCLK  
DOUT  
V
REF  
4.7µF  
MAX11100  
AVDD  
+5V  
10  
0.1µF  
DVDD  
AGND  
DGND  
0.1µF  
GND  
Figure 14. Powering AVDD and DVDD from a Single Supply  
���������������������������������������������������������������� Maxim Integrated Products 18  
MAX11100  
16-Bit, +5V, 200ksps ADC with 10µA Shutdown  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
9/11  
Initial release  
Revised the Absolute Maximum Ratings and Electrical Characteristics.  
1/12  
2–4  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
19  
©
2012 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX11100EUB

16-Bit, +5V, 200ksps ADC with 10μA Shutdown
MAXIM

MAX11100EUB+

16-Bit, 5V, 200ksps ADC with 10μA Shutdown
MAXIM

MAX11100EWC

16-Bit, +5V, 200ksps ADC with 10μA Shutdown
MAXIM

MAX11100EWC+

16-Bit, 5V, 200ksps ADC with 10μA Shutdown
MAXIM

MAX11101

14-Bit, +5V, 200ksps ADC with 10μA Shutdown
MAXIM

MAX11101EUB

14-Bit, +5V, 200ksps ADC with 10μA Shutdown
MAXIM

MAX11101EUB+

14-Bit, 5V, 200ksps ADC with 10μA Shutdown
MAXIM

MAX11101EWC

14-Bit, +5V, 200ksps ADC with 10μA Shutdown
MAXIM

MAX11101EWC+

14-Bit, 5V, 200ksps ADC with 10μA Shutdown
MAXIM

MAX11102

2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs
MAXIM

MAX11102ATB

2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs 2.2V to 3.6V Supply Voltage
MAXIM

MAX11102ATB+

2Msps/3Msps, Low-Power, Serial 12-/10-/8-Bit ADCs
MAXIM