MAX11125ATI+ [MAXIM]

1Msps, Low-Power, Serial 12-/10-/8-Bit,4-/8-/16-Channel ADCs; 1MSPS ,低功耗,串行12位/ 10位/ 8位,4 / 8 / 16通道ADC
MAX11125ATI+
型号: MAX11125ATI+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1Msps, Low-Power, Serial 12-/10-/8-Bit,4-/8-/16-Channel ADCs
1MSPS ,低功耗,串行12位/ 10位/ 8位,4 / 8 / 16通道ADC

文件: 总40页 (文件大小:3114K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-6148; Rev 1; 4/12  
E V A L U A T I O N K I T A V A I L A B L E  
General Description  
Benefits and Features  
S Scan Modes, Internal Averaging, and Internal  
The MAX11120–MAX11128 are 12-/10-/8-bit with exter-  
nal reference and industry-leading 1.5MHz, full linear  
bandwidth, high speed, low-power, serial output suc-  
cessive-approximation register (SAR) analog-to-digital  
converters (ADCs). The MAX11120–MAX11128 include  
both internal and external clock modes. These devices  
feature scan mode in both internal and external clock  
modes. The internal clock mode features internal averag-  
ing to increase SNR. The external clock mode features  
the SampleSetK technology, a user-programmable ana-  
log input channel sequencer. The SampleSet approach  
provides greater sequencing flexibility for multichannel  
applications while alleviating significant microcontroller  
or DSP (controlling unit) communication overhead.  
Clock  
S 16-Entry First-In/First-Out (FIFO)  
S SampleSet: User-Defined Channel Sequence with  
Maximum Length of 256  
S Analog Multiplexer with True Differential  
Track/Hold  
16-/8-/4-Channel Single-Ended  
8-/4-/2-Channel Fully-Differential Pairs  
15-/8-/4-Channel Pseudo-Differential Relative to  
a Common Input  
S Two Software-Selectable Bipolar Input Ranges  
QV /2, QV  
REF+ REF+  
S Flexible Input Configuration Across All Channels  
S High Accuracy  
The internal clock mode features an integrated FIFO  
allowing data to be sampled at high speeds and then held  
for readout at any time or at a lower clock rate. Internal  
averaging is also supported in this mode improving SNR  
for noisy input signals. The devices feature analog input  
channels that can be configured to be single-ended  
inputs, fully differential pairs, or pseudo-differential inputs  
with respect to one common input. The MAX11120–  
MAX11128 operate from a 2.35V to 3.6V supply and con-  
sume only 5.4mW at 1Msps.  
Q1 LSB INL, Q1 LSB DNL, No Missing Codes  
Over Temperature Range  
S 70dB SINAD Guaranteed at 250kHz Input  
Frequency  
S 1.5V to 3.6V Wide Range I/O Supply  
Allows the Serial Interface to Connect Directly  
to 1.8V, 2.5V, or 3.3V Digital Systems  
S 2.35V to 3.6V Supply Voltage  
S Longer Battery Life for Portable Applications  
Low Power  
The MAX11120–MAX11128 include AutoShutdownK,  
fast wake-up, and a high-speed 3-wire serial interface.  
The devices feature full power-down mode for optimal  
power management.  
5.4mW at 1Msps with 3V Supplies  
2µA Full-Shutdown Current  
S External Differential Reference (1V to V  
)
DD  
S 16MHz, 3-Wire SPI-/QSPI-/MICROWIRE-/DSP-  
Compatible Serial Interface  
The 16MHz, 3-wire serial interface directly connects to  
M
SPI, QSPIK, and MICROWIRE devices without external  
S Wide -40NC to +125NC Operation  
logic.  
S Space-Saving, 28-Pin, 5mm x 5mm TQFN  
Packages  
Excellent dynamic performance, low voltage, low power,  
ease of use, and small package size make these convert-  
ers ideal for portable battery-powered data-acquisition  
applications, and for other applications that demand low  
power consumption and small space.  
S 1Msps Conversion Rate, No Pipeline Delay  
S 12-/10-/8-Bit Resolution  
Applications  
High-Speed Data Acquisition Systems  
High-Speed Closed-Loop Systems  
Industrial Control Systems  
Medical Instrumentation  
The MAX11120–MAX11128 are available in 28-pin, 5mm  
x 5mm, TQFN packages and operate over the -40NC to  
+125NC temperature range.  
SampleSet and AutoShutdown are trademarks of Maxim  
Integrated Products, Inc.  
QSPI is a trademark of Motorola, Inc.  
Battery-Powered Instruments  
Portable Systems  
MICROWIRE is a registered trademark of National  
Semiconductor Corporation.  
For related parts and recommended products to use with this part,  
refer to www.maxim-ic.com/MAX11120.related.  
Ordering Information appears at end of data sheet.  
����������������������������������������������������������������� Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND.............................................................-0.3V to +4V  
Continuous Power Dissipation (T = +70NC)  
A
OVDD, AIN0–AIN13, CNVST/AIN14, REF+, REF-/AIN15  
TQFN (derate 34.4mW/NC above +70NC)..................2758mW  
Operating Temperature Range........................ -40NC to +125NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
to GND......................-0.3V to the lower of (V + 0.3V) and +4V  
DD  
CS, SCLK, DIN, DOUT, EOC TO GND ..... -0.3V to the Lower of  
(V + 0.3V) and +4V  
OVDD  
DGND to GND......................................................-0.3V to +0.3V  
Input/Output Current (all pins) ...........................................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
TQFN  
Junction-to-Ambient Thermal Resistance (B )...........29NC/W  
JA  
Junction-to-Case Thermal Resistance (B )..................2NC/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS (MAX11122/MAX11125/MAX11128)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
DC ACCURACY (Notes 3 and 4)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RES  
INL  
12 bit  
12  
Bits  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
1.0  
1.0  
2.5  
4.0  
DNL  
No missing codes  
(Note 5)  
0.7  
Gain Error  
-0.5  
Offset Error Temperature  
Coefficient  
OE  
GE  
2
ppm/NC  
ppm/NC  
LSB  
TC  
Gain Temperature Coefficient  
0.8  
0.5  
0.4  
TC  
Channel-to-Channel Offset  
Matching  
Line Rejection  
PSR  
(Note 6)  
1.5  
-78  
LSB/V  
DYNAMIC PERFORMANCE (250kHz, input sine wave) (Notes 3 and 7)  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
70  
70  
72.5  
72.6  
dB  
dB  
Total Harmonic Distortion  
(Up to the 5th Harmonic)  
THD  
-87  
dB  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
SFDR  
IMD  
79  
88  
dB  
dB  
f = 249.878kHz, f = 219.97kHz  
-85  
1
2
����������������������������������������������������������������� Maxim Integrated Products  
2
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
ELECTRICAL CHARACTERISTICS (MAX11122/MAX11125/MAX11128) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
Full-Power Bandwidth  
Full-Linear Bandwidth  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
-3dB  
50  
7.5  
1.5  
-0.1dB  
SINAD > 70dB  
MHz  
-0.5dB below full scale of  
249.878kHz sine wave input to the  
channel being sampled, apply full-  
scale 219.97kHz sine wave signal to  
all 15 nonselected input channels  
Crosstalk  
-88  
dB  
CONVERSION RATE  
Power-Up Time  
t
Conversion cycle, external clock  
Internally clocked (Note 8)  
2
Cycles  
ns  
PU  
Acquisition Time  
t
156  
5.9  
ACQ  
µs  
Conversion Time  
t
CONV  
Externally clocked, f  
16 cycles (Note 8)  
= 16MHz,  
SCLK  
1000  
0.16  
ns  
External Clock Frequency  
Aperture Delay  
f
16  
MHz  
ns  
SCLK  
8
Aperture Jitter  
RMS  
30  
ps  
ANALOG INPUT  
Unipolar (single-ended and pseudo  
differential)  
0
V
REF+  
Input Voltage Range  
V
V
INA  
RANGE bit set to 0  
Bipolar  
-V  
/2  
V
/2  
REF+  
REF+  
(Note 9)  
AIN+, AIN- relative to GND  
= V , GND  
RANGE bit set to 1  
-V  
V
REF+  
REF+  
Absolute Input Voltage Range  
Static Input Leakage Current  
-0.1  
V
+ 0.1  
V
REF+  
I
V
-0.1  
15  
1.5  
FA  
ILA  
AIN_  
DD  
During acquisition time,  
RANGE bit = 0 (Note 10)  
Input Capacitance  
C
pF  
AIN  
During acquisition time,  
RANGE bit = 1 (Note 10)  
7.5  
EXTERNAL REFERENCE INPUT  
REF- Input Voltage Range  
V
-0.3  
1
+1  
V
V
REF-  
REF+ Input Voltage Range  
REF+ Input Current  
V
V
+ 50mV  
REF+  
DD  
V
V
= 2.5V, f  
= 2.5V, f  
= 1Msps  
= 0  
36.7  
0.1  
REF+  
SAMPLE  
I
FA  
REF+  
REF+  
SAMPLE  
����������������������������������������������������������������� Maxim Integrated Products  
3
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
ELECTRICAL CHARACTERISTICS (MAX11122/MAX11125/MAX11128) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (SCLK, DIN, CS, CNVST)  
V
O
OVDD  
0.25  
Input Voltage Low  
Input Voltage High  
Input Hysteresis  
V
V
V
IL  
V
O
OVDD  
0.75  
V
IH  
V
O
OVDD  
0.15  
V
mV  
HYST  
Input Leakage Current  
I
V
= 0V or V  
DD  
0.09  
3
1.0  
FA  
IN  
AIN_  
Input Capacitance  
C
pF  
IN  
DIGITAL OUTPUTS (DOUT, EOC)  
V
O
OVDD  
0.15  
Output Voltage Low  
Output Voltage High  
V
I
I
= 200FA  
V
V
OL  
SINK  
V
O
OVDD  
0.85  
V
= 200FA  
OH  
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
Positive Supply Voltage  
I
-0.3  
1.5  
FA  
CS = V  
CS = V  
L
DD  
C
4
pF  
OUT  
DD  
V
2.35  
1.5  
3.0  
3.0  
1.8  
1
3.6  
3.6  
2.5  
V
V
DD  
Digital I/O Supply Voltage  
V
OVDD  
f
f
= 1Msps  
SAMPLE  
Positive Supply Current  
I
= 0 (1Msps devices)  
mA  
DD  
SAMPLE  
Full shutdown  
0.0015  
0.006  
V
= 3V,  
DD  
5.4  
Normal mode  
(external  
reference)  
f
= 1Msps  
SAMPLE  
V
= 2.35V,  
DD  
3.8  
2.6  
1.6  
f
= 1Msps  
SAMPLE  
mW  
V
= 3V,  
DD  
Power Dissipation  
f
= 1Msps  
SAMPLE  
AutoStandby  
V
= 2.35V,  
DD  
f
= 1Msps  
SAMPLE  
V
V
= 3V  
4.5  
2.1  
Full/  
AutoShutdown  
DD  
FW  
= 2.35V  
DD  
����������������������������������������������������������������� Maxim Integrated Products  
4
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
ELECTRICAL CHARACTERISTICS (MAX11122/MAX11125/MAX11128) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (Figure 1) (Note 11)  
SCLK Clock Period  
SCLK Duty Cycle  
t
Externally clocked conversion  
62.4  
40  
4
ns  
%
CP  
t
60  
16.5  
15  
CH  
V
V
= 1.5V to 2.35V  
= 2.35V to 3.6V  
C
10pF  
=
OVDD  
LOAD  
SCLK Fall to DOUT Transition  
t
ns  
DOT  
4
OVDD  
16th SCLK Fall to DOUT Disable  
14th SCLK Fall to DOUT Disable  
SCLK Fall to DOUT Enable  
DIN to SCLK Rise Setup  
SCLK Rise to DIN Hold  
t
C
C
C
= 10pF, channel ID on  
= 10pF, channel ID off  
= 10pF  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DOD  
LOAD  
LOAD  
LOAD  
16  
t
14  
DOE  
t
4
1
4
1
5
DS  
DH  
t
t
CS Fall to SCLK Fall Setup  
SCLK Fall to CS Fall Hold  
CNVST Pulse Width  
CSS  
CSH  
t
t
See Figure 6  
CSW  
CS or CNVST Rise to EOC Low  
(Note 7)  
t
See Figure 7, f  
= 1Msps  
5.3  
6.2  
Fs  
CNV_INT  
SAMPLE  
t
5
ns  
CS Pulse Width  
CSBW  
ELECTRICAL CHARACTERISTICS (MAX11121/MAX11124/MAX11127)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
DC ACCURACY (Notes 3 and 4)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RES  
INL  
10 bit  
10  
Bits  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
0.4  
0.4  
1.0  
1.0  
DNL  
No missing codes  
(Note 5)  
0.5  
Gain Error  
-0.2  
Offset Error Temperature  
Coefficient  
OE  
GE  
2
ppm/NC  
ppm/NC  
LSB  
TC  
Gain Temperature Coefficient  
0.8  
0.5  
0.1  
TC  
Channel-to-Channel Offset  
Matching  
Line Rejection  
PSR  
(Note 6)  
0.3  
LSB/V  
����������������������������������������������������������������� Maxim Integrated Products  
5
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
ELECTRICAL CHARACTERISTICS (MAX11121/MAX11124/MAX11127) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+  
DD  
A
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE (250kHz, input sine wave) (Notes 3 and 7)  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
61  
61  
61.7  
61.7  
dB  
dB  
Total Harmonic Distortion  
(Up to the 5th Harmonic)  
THD  
-86  
-76  
dB  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
SFDR  
IMD  
77  
85  
-84  
50  
dB  
dB  
f = 249.878kHz, f = 219.97kHz  
1
2
-3dB  
MHz  
MHz  
MHz  
Full-Power Bandwidth  
Full-Linear Bandwidth  
-0.1dB  
7.5  
1.5  
SINAD > 61dB  
-0.5dB below full-scale of  
249.878kHz sine-wave input to the  
channel being sampled; apply full-  
scale 219.97kHz sine wave signal to  
all 15 nonselected input channels  
Crosstalk  
-88  
dB  
CONVERSION RATE  
Power-Up Time  
t
Conversion cycle, external clock  
2
Cycles  
ns  
PU  
Acquisition Time  
t
156  
5.9  
ACQ  
Internally  
clocked  
f
= 1Msps  
SAMPLE  
µs  
ns  
(Note 8)  
Conversion Time  
t
CONV  
Externally clocked, f  
16 cycles (Note 8)  
= 16MHz,  
SCLK  
1000  
0.16  
External Clock Frequency  
Aperture Delay  
f
16  
MHz  
ns  
SCLK  
8
Aperture Jitter  
RMS  
30  
ps  
ANALOG INPUT  
Unipolar (single-ended and pseudo  
differential)  
0
V
REF+  
Input Voltage Range  
V
V
INA  
RANGE bit set to 0 -V  
Bipolar (Note 9)  
/2  
+V  
/2  
REF+  
REF+  
RANGE bit set to 1 -V  
+V  
REF+  
REF+  
Absolute Input Voltage Range  
Static Input Leakage Current  
AIN+, AIN- relative to GND  
= V , GND  
-0.1  
V
+ 0.1  
V
REF+  
I
V
-0.1  
15  
FA  
ILA  
AIN_  
DD  
During acquisition time,  
RANGE bit = 0 (Note 10)  
Input Capacitance  
C
pF  
AIN  
During acquisition time,  
RANGE bit = 1 (Note 10)  
7.5  
����������������������������������������������������������������� Maxim Integrated Products  
6
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
ELECTRICAL CHARACTERISTICS (MAX11121/MAX11124/MAX11127) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+  
DD  
A
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EXTERNAL REFERENCE INPUT  
REF- Input Voltage Range  
V
-0.3  
1
+1  
V
V
REF-  
V
+
DD  
50mV  
REF+ Input Voltage Range  
REF+ Input Current  
V
REF+  
V
V
= 2.5V, f  
= 2.5V, f  
= 1Msps  
= 0  
36.7  
0.1  
FA  
FA  
REF+  
REF+  
SAMPLE  
I
REF+  
SAMPLE  
DIGITAL INPUTS (SCLK, DIN, CS, CNVST)  
V
O
OVDD  
0.25  
Input Voltage Low  
Input Voltage High  
Input Hysteresis  
V
V
V
IL  
V
O
OVDD  
0.75  
V
IH  
V
O
OVDD  
0.15  
V
mV  
HYST  
Input Leakage Current  
I
V
= 0V or V  
0.09  
3
FA  
IN  
AIN_  
DD  
Input Capacitance  
C
pF  
IN  
DIGITAL OUTPUTS (DOUT, EOC)  
V
O
OVDD  
0.15  
Output Voltage Low  
Output Voltage High  
V
I
= 200FA  
SINK  
V
V
OL  
V
O
OVDD  
0.85  
V
I = 200FA  
SOURCE  
OH  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
Positive Supply Voltage  
I
-0.3  
4
FA  
CS = V  
CS = V  
L
DD  
C
pF  
OUT  
DD  
V
2.35  
1.5  
3.0  
3.0  
1.8  
1
3.6  
3.6  
2.5  
V
V
DD  
Digital I/O Supply Voltage  
V
OVDD  
f
f
= 1Msps  
SAMPLE  
Positive Supply Current  
I
= 0 (1Msps devices)  
mA  
DD  
SAMPLE  
Full shutdown  
0.0015  
0.006  
V
= 3V,  
DD  
5.4  
Normal mode  
(external  
reference)  
f
= 1Msps  
SAMPLE  
V
= 2.35V,  
DD  
3.8  
2.6  
1.6  
f
= 1Msps  
SAMPLE  
mW  
V
= 3V,  
DD  
Power Dissipation  
f
= 1Msps  
SAMPLE  
AutoStandby  
V
= 2.35V,  
DD  
f
= 1Msps  
SAMPLE  
V
V
= 3V  
4.5  
2.1  
Full/  
AutoShutdown  
DD  
DD  
FW  
= 2.35V  
����������������������������������������������������������������� Maxim Integrated Products  
7
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
ELECTRICAL CHARACTERISTICS (MAX11121/MAX11124/MAX11127)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (Figure 1) (Note 11)  
SCLK Clock Period  
SCLK Duty Cycle  
t
Externally clocked conversion  
62.4  
40  
ns  
%
CP  
t
60  
CH  
V
V
= 1.5V to 2.35V  
= 2.35V to 3.6V  
4
4
16.5  
15  
C
10pF  
=
OVDD  
LOAD  
SCLK Fall to DOUT Transition  
t
ns  
DOT  
OVDD  
16th SCLK Fall to DOUT Disable  
14th SCLK Fall to DOUT Disable  
SCLK Fall to DOUT Enable  
DIN to SCLK Rise Setup  
SCLK Rise to DIN Hold  
t
C
C
C
= 10pF, channel ID on  
= 10pF, channel ID off  
= 10pF  
15  
16  
14  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DOD  
LOAD  
LOAD  
LOAD  
t
DOE  
t
4
1
4
1
5
DS  
DH  
t
t
CS Fall to SCLK Fall Setup  
SCLK Fall to CS Fall Hold  
CNVST Pulse Width  
CSS  
CSH  
t
t
See Figure 6  
CSW  
CS or CNVST Rise to EOC Low  
(Note 8)  
t
See Figure 7, f  
= 1Msps  
5.3  
6.2  
Fs  
CNV_INT  
SAMPLE  
t
5
ns  
CS Pulse Width  
CSBW  
ELECTRICAL CHARACTERISTICS (MAX11120/MAX11123/MAX11126)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
DC ACCURACY (Notes 3 and 4)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RES  
INL  
8 bit  
8
Bits  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
0.02  
0.02  
0.5  
0.15  
0.15  
0.7  
DNL  
No missing codes  
(Note 5)  
Gain Error  
-0.03  
0.3  
Offset Error Temperature  
Coefficient  
OE  
GE  
2
0.8  
ppm/NC  
ppm/NC  
LSB  
TC  
TC  
Gain Temperature Coefficient  
Channel-to-Channel Offset  
Matching  
0.5  
Line Rejection  
PSR  
(Note 6)  
+0.03  
0.1  
LSB/V  
����������������������������������������������������������������� Maxim Integrated Products  
8
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
ELECTRICAL CHARACTERISTICS (MAX11120/MAX11123/MAX11126) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+  
DD  
A
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC PERFORMANCE (250kHz, input sine wave) (Notes 3 and 7)  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
49  
49  
49.6  
49.6  
dB  
dB  
Total Harmonic Distortion  
(Up to the 5th Harmonic)  
THD  
-77  
-66  
dB  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
SFDR  
IMD  
63  
69  
-75  
50  
dB  
dB  
f = 249.878kHz, f = 219.97kHz  
1
2
-3dB  
MHz  
MHz  
MHz  
Full-Power Bandwidth  
Full-Linear Bandwidth  
-0.1dB  
7.5  
1.5  
SINAD > 49dB  
-0.5dB below full-scale of 249.878kHz sine-  
wave input to the channel being sampled;  
apply full-scale 219.97kHz sine wave signal  
to all 15 nonselected input channels  
Crosstalk  
-88  
dB  
CONVERSION RATE  
Power-Up Time  
t
Conversion cycle, external clock  
2
Cycles  
ns  
PU  
Acquisition Time  
t
156  
5.9  
ACQ  
f
= 1Msps  
SAMPLE  
(Note 8)  
Internally clocked  
µs  
ns  
Conversion Time  
t
CONV  
Externally clocked, f  
cycles (Note 8)  
= 16MHz, 16  
SCLK  
1000  
0.16  
External Clock Frequency  
Aperture Delay  
f
16  
MHz  
ns  
SCLK  
8
Aperture Jitter  
RMS  
30  
ps  
ANALOG INPUT  
Unipolar (single-ended and pseudo  
differential)  
0
V
REF+  
Input Voltage Range  
V
V
INA  
RANGE bit set to 0  
RANGE bit set to 1  
-V  
/2  
+V  
/2  
REF+  
REF+  
Bipolar (Note 9)  
-V  
+V  
REF+  
REF+  
V
+
REF+  
0.1  
Absolute Input Voltage Range  
Static Input Leakage Current  
AIN+, AIN- relative to GND  
= V , GND  
-0.1  
V
I
V
-0.1  
FA  
ILA  
AIN_  
DD  
During acquisition time,  
RANGE bit = 0 (Note 10)  
15  
Input Capacitance  
C
pF  
AIN  
During acquisition time,  
RANGE bit = 1 (Note 10)  
7.5  
����������������������������������������������������������������� Maxim Integrated Products  
9
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
ELECTRICAL CHARACTERISTICS (MAX11120/MAX11123/MAX11126) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+  
DD  
A
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EXTERNAL REFERENCE INPUT  
REF- Input Voltage Range  
V
-0.3  
1
+1  
V
V
REF-  
V
+
DD  
50mV  
REF+ Input Voltage Range  
REF+ Input Current  
V
REF+  
V
V
= 2.5V, f  
= 1Msps  
36.7  
0.1  
FA  
FA  
REF+  
SAMPLE  
I
REF+  
= 2.5V, f  
= 0  
REF+  
SAMPLE  
DIGITAL INPUTS (SCLK, DIN, CS, CNVST)  
V
O
OVDD  
0.25  
Input Voltage Low  
Input Voltage High  
Input Hysteresis  
V
V
V
IL  
V
O
OVDD  
0.75  
V
IH  
V
O
OVDD  
0.15  
V
mV  
HYST  
Input Leakage Current  
I
V
= 0V or V  
0.09  
3
FA  
IN  
AIN_  
DD  
Input Capacitance  
C
pF  
IN  
DIGITAL OUTPUTS (DOUT, EOC)  
V
O
OVDD  
0.15  
Output Voltage Low  
Output Voltage High  
V
I
I
= 200FA  
SINK  
V
V
OL  
V
O
OVDD  
0.85  
V
= 200FA  
SOURCE  
OH  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
Positive Supply Voltage  
I
-0.3  
4
FA  
CS = V  
CS = V  
L
DD  
C
pF  
OUT  
DD  
V
2.35  
1.5  
3.0  
3.0  
1.8  
1.0  
3.6  
3.6  
2.5  
V
V
DD  
Digital I/O Supply Voltage  
V
OVDD  
f
f
= 1Msps  
SAMPLE  
SAMPLE  
Positive Supply Current  
I
= 0  
mA  
DD  
Full shutdown  
0.0015 0.006  
V
f
= 3V,  
DD  
5.4  
= 1Msps  
Normal mode (external  
reference)  
SAMPLE  
V
= 2.35V,  
DD  
3.8  
2.6  
1.6  
f
= 1Msps  
SAMPLE  
mW  
V
= 3V,  
DD  
Power Dissipation  
f
= 1Msps  
SAMPLE  
AutoStandby  
V
= 2.35V,  
DD  
f
= 1Msps  
SAMPLE  
V
= 3V  
4.5  
2.1  
Full/  
AutoShutdown  
DD  
DD  
FW  
V
= 2.35V  
���������������������������������������������������������������� Maxim Integrated Products 10  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
ELECTRICAL CHARACTERISTICS (MAX11120/MAX11123/MAX11126) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TIMING CHARACTERISTICS (Figure 1) (Note 11)  
SCLK Clock Period  
SCLK Duty Cycle  
t
Externally clocked conversion  
62.4  
ns  
%
CP  
t
40  
4
60  
16.5  
15  
CH  
V
V
= 1.5V to 2.35V  
= 2.35V to 3.6V  
OVDD  
SCLK Fall to DOUT Transition  
t
C
= 10pF  
ns  
DOT  
LOAD  
4
OVDD  
16th SCLK Fall to DOUT Disable  
14th SCLK Fall to DOUT Disable  
SCLK Fall to DOUT Enable  
DIN to SCLK Rise Setup  
SCLK Rise to DIN Hold  
t
C
C
C
= 10pF, channel ID on  
= 10pF, channel ID off  
= 10pF  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DOD  
LOAD  
LOAD  
LOAD  
16  
14  
t
DOE  
t
4
1
4
1
5
DS  
DH  
t
t
CS Fall to SCLK Fall Setup  
SCLK Fall to CS Fall Hold  
CNVST Pulse Width  
CSS  
t
CSH  
t
See Figure 6  
CSW  
CS or CNVST Rise to EOC Low  
(Note 8)  
t
See Figure 7, f  
= 1Msps  
5.3  
6.2  
Fs  
CNV_INT  
SAMPLE  
t
5
ns  
CS Pulse Width  
CSBW  
Note 2: Limits are 100% production tested at T = +25NC. Limits over the operating temperature range are guaranteed by design.  
A
Note 3: Channel ID disabled.  
Note 4: Tested in single-ended mode.  
Note 5: Offset nulled.  
Note 6: Line rejection D(D  
) with V  
= 2.35V to 3.6V and V  
= 2.35V.  
OUT  
DD  
REF+  
Note 7: Tested and guaranteed with fully differential input.  
Note 8: Conversion time is defined as the number of clock cycles multiplied by the clock period with a 50% duty cycle.  
Maximum conversion time: 4.73Fs + N x 16 x T  
.
OSC_MAX  
T
= 88.2ns, T  
= 75ns.  
OSC_MAX  
OSC_TYP  
Note 9: The operational input voltage range for each individual input of a differentially configured pair is from V  
to GND. The  
DD  
operational input voltage difference is from -V  
Note 10: See Figure 3 (Equivalent Input Circuit).  
Note 11: Guaranteed by characterization.  
/2 to +V  
/2 or -V  
to +V  
.
REF+  
REF+  
REF+  
REF+  
���������������������������������������������������������������� Maxim Integrated Products 11  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
t
CSBW  
CS  
t
t
CSH  
t
CP  
CSS  
t
CH  
1ST  
CLOCK  
SCLK  
16TH  
CLOCK  
t
DH  
t
DS  
t
DOT  
DIN  
t
DOD  
t
DOE  
DOUT  
Figure 1. Detailed Serial-Interface Timing Diagram  
Typical Operating Characteristics  
(MAX11122ATI+/MAX11125ATI+/MAX11128ATI+, T = +25°C, unless otherwise noted.)  
A
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
OFFSET ERROR vs. TEMPERATURE  
1.0  
0.8  
1.0  
0.5  
0
3
2
f
= 1.0Msps  
f
= 1.0Msps  
SAMPLE  
SAMPLE  
0.6  
0.4  
1
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1  
-2  
-3  
-0.5  
-1.0  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
DIGITAL OUTPUT CODE (DECIMAL)  
DIGITAL OUTPUT CODE (DECIMAL)  
���������������������������������������������������������������� Maxim Integrated Products 12  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Typical Operating Characteristics (continued)  
(MAX11122ATI+/MAX11125ATI+/MAX11128ATI+, T = +25°C, unless otherwise noted.)  
A
SNR AND SINAD  
vs. ANALOG INPUT FREQUENCY  
GAIN ERROR vs. TEMPERATURE  
HISTOGRAM FOR 30,000 CONVERSIONS  
74.0  
73.5  
73.0  
72.5  
72.0  
71.5  
71.0  
3
2
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5000  
f
= 1Msps  
f
= 1Msps  
SAMPLE  
SAMPLE  
29992 CODE HITS  
SNR  
1
0
SINAD  
-1  
-2  
-3  
4 CODE HITS  
2058  
4 CODE HITS  
2060 2065  
0
0
100  
200  
300  
(kHz)  
IN  
400  
500  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
2045  
2059  
f
OUTPUT CODE (DECIMAL)  
THD vs. ANALOG INPUT FREQUENCY  
SFDR vs. ANALOG INPUT FREQUENCY  
THD vs. INPUT RESISTANCE  
-80  
-85  
100  
95  
90  
85  
80  
-80  
-85  
f
= 1.0Msps  
f
= 1.0Msps  
f
f
= 1.0Msps  
SAMPLE  
SAMPLE  
SAMPLE  
= 250kHz  
IN  
-90  
-90  
-95  
-95  
-100  
-100  
0
100  
200  
300  
(kHz)  
400  
500  
0
100  
200  
300  
(kHz)  
400  
500  
0
100  
200  
(I)  
300  
400  
f
IN  
f
R
IN  
IN  
���������������������������������������������������������������� Maxim Integrated Products 13  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Typical Operating Characteristics (continued)  
(MAX11122ATI+/MAX11125ATI+/MAX11128ATI+, T = +25°C, unless otherwise noted.)  
A
REFERENCE CURRENT  
vs. SAMPLING RATE  
250kHz SINE-WAVE INPUT  
(8192-POINT FFT PLOT)  
50  
40  
30  
20  
10  
0
0
-20  
f
f
= 1Msps  
SAMPLE  
= 250kHz  
IN  
A
= -92.369dB  
HD3  
f = 254.4kHz  
-40  
A
= -104.1dB  
HD2  
f = 500kHz  
-60  
-80  
-100  
-120  
0
200  
400  
600  
800  
1000  
0
100  
200  
300  
400  
500  
f
(ksps)  
FREQUENCY (kHz)  
SAMPLE  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
SNR vs. REFERENCE VOLTAGE  
74  
73  
72  
71  
70  
69  
3.0  
2.5  
2.0  
1.5  
1.0  
f
f
= 1.0Msps  
SAMPLE  
= 250kHz  
IN  
f
V
= 1.0Msps  
SAMPLE  
= 3.0V  
DD  
1.0 1.4  
1.8  
2.2  
2.6  
(V)  
3.0  
3.4  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
V
REFP  
���������������������������������������������������������������� Maxim Integrated Products 14  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Pin Configurations  
TOP VIEW  
21 20 19 18 17 16 15  
21 20 19 18 17 16 15  
14  
13  
DGND 22  
GND  
REF-  
14  
13  
DGND 22  
OVDD 23  
GND  
REF-  
OVDD 23  
12 CNVST  
24  
12 CNVST  
24  
DOUT  
DOUT  
MAX11120  
MAX11121  
MAX11122  
MAX11123  
MAX11124  
MAX11125  
GND  
GND  
GND  
GND  
25  
11  
10  
9
GND  
11  
25  
EOC  
EOC  
26  
26  
10  
AIN0  
AIN0  
GND  
27  
28  
GND  
GND  
AIN1  
AIN2  
27  
28  
9
8
AIN1  
AIN2  
+
+
8
1
2
3
4
5
6
7
1
2
3
4
5
6
7
TQFN  
4 CHANNEL  
TQFN  
8 CHANNEL  
21 20 19 18 17 16 15  
14  
13  
DGND 22  
OVDD 23  
GND  
REF-/AIN15  
12 CNVST/AIN14  
24  
25  
26  
27  
28  
DOUT  
EOC  
MAX11126  
MAX11127  
MAX11128  
AIN13  
AIN12  
AIN11  
AIN10  
11  
10  
9
AIN0  
AIN1  
AIN2  
+
8
1
2
3
4
5
6
7
TQFN  
16 CHANNEL  
���������������������������������������������������������������� Maxim Integrated Products 15  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Pin Description  
MAX11120  
MAX11121  
MAX11122  
MAX11123  
MAX11124  
MAX11125  
MAX11126  
MAX11127  
MAX11128  
NAME  
FUNCTION  
(4 CHANNEL)  
(8 CHANNEL)  
(16 CHANNEL)  
26, 27, 28,  
1–11  
AIN0–AIN13 Analog Inputs  
26, 27, 28, 1–5  
AIN0–AIN7  
AIN0–AIN3  
GND  
Analog Inputs  
Analog Inputs  
Ground  
26, 27, 28, 1  
2–11  
6–11  
CNVST/  
AIN14  
12  
12  
12  
13  
Active-Low Conversion Start Input/Analog Input 14  
Active-Low Conversion Start Input  
CNVST  
REF-/  
AIN15  
External Differential Reference Negative Input /Analog  
Input 15  
13  
13  
REF-  
GND  
External Differential Reference Negative Input  
Ground  
14, 16  
14, 16  
14, 16  
External Positive Reference Input. Apply a reference  
voltage at REF+. Bypass to GND with a 0.47FF  
capacitor.  
15  
15  
15  
REF+  
Power-Supply Input. Bypass to GND with a 10FF in  
parallel with a 0.1FF capacitors.  
17, 18  
19  
17, 18  
19  
17, 18  
19  
V
DD  
Serial Clock Input. Clocks data in and out of the serial  
interface  
SCLK  
Active-Low Chip Select Input. When CS is low, the serial  
interface is enabled. When CS is high, DOUT is high  
impedance or three-state.  
20  
20  
20  
CS  
Serial Data Input. DIN data is latched into the serial  
interface on the rising edge of SCLK.  
21  
22  
23  
21  
22  
23  
21  
22  
23  
DIN  
DGND  
OVDD  
Digital I/O Ground  
Interface Digital Power-Supply Input. Bypass to GND  
with a 10FF in parallel with a 0.1FF capacitors.  
Serial Data Output. Data is clocked out on the falling  
edge of SCLK. When CS is high, DOUT is high  
impedance or three-state.  
24  
24  
24  
DOUT  
End of Conversion Output. Data is valid after EOC pulls  
low (Internal clock mode only).  
25  
25  
25  
EOC  
Exposed Pad. Connect EP directly to GND plane for  
guaranteed performance.  
EP  
���������������������������������������������������������������� Maxim Integrated Products 16  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Functional Diagram  
V
DD  
OVDD  
REF+ REF-  
AIN0  
AIN1  
REF+  
ADC  
CS  
REF-  
DOUT  
SCLK  
I/P  
MUX  
OSCILLATOR  
AIN15  
CS  
SCLK  
DIN  
CONTROL LOGIC  
AND  
SEQUENCER  
DOUT  
CNVST  
EOC  
MAX11120–MAX11128  
data to be sampled at high speed and then held for read-  
out at any time or at a lower clock rate. Internal averaging  
is also supported in this mode improving SNR for noisy  
input signals. All input channels are configurable for sin-  
gle-ended, fully differential or pseudo-differential inputs  
in unipolar or bipolar mode. The MAX11120–MAX11128  
operate from a 2.35V to 3.6V supply and consume only  
5.4mW at 1Msps.  
Detailed Description  
The MAX11120–MAX11128 are 12-/10-/8-bit with external  
reference and industry-leading 1.5MHz, full linear band-  
width, high-speed, low-power, serial output successive-  
approximation register (SAR) analog-to-digital converters  
(ADC). These devices feature scan mode, internal aver-  
aging to increase SNR, and AutoShutdown.  
The MAX11120–MAX11128 include AutoShutdown, fast  
wake-up, and a high-speed 3-wire serial interface. The  
devices feature full power-down mode for optimal power  
management.  
The external clock mode features the SampleSet technol-  
ogy, a user-programmable analog input channel sequenc-  
er. The user may define and load a unique sequencing  
pattern into the ADC allowing both high- and low-frequen-  
cy inputs to be converted without interface activity. This  
feature frees the controlling unit for other tasks while lower-  
ing overall system noise and power consumption.  
Data is converted from analog voltage sources in a  
variety of channel and data-acquisition configurations.  
Microprocessor (FP) control is made easy through a 3-wire  
SPI-/QSPI-/MICROWIRE-compatible serial interface.  
The MAX11120–MAX11128 includes internal clock. The  
internal clock mode features an integrated FIFO, allowing  
���������������������������������������������������������������� Maxim Integrated Products 17  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Set CS low to latch input data at DIN on the rising edge  
of SCLK. Output data at DOUT is updated on the falling  
edge of SCLK. A high-to-low transition on CS samples  
the analog inputs and initiates a new frame. A frame is  
defined as the time between two falling edges of CS.  
There is a minimum of 16 bits per frame. The serial data  
input, DIN, carries data into the control registers clocked  
in by the rising edge of SCLK. The serial data output,  
DOUT, delivers the conversion results and is clocked out  
by the falling edge of SCLK. DOUT is a 16-bit data word  
containing a 4-bit channel address, followed by a 12-bit  
conversion result led by the MSB when CHAN_ID is set  
to 1 in the ADC Mode Control register (Figure 2a). In  
this mode, keep the clock high for at least one full SCLK  
period before the CS falling edge to ensure best perfor-  
mance (Figure 2b). When CHAN_ID is set to 0 (external  
clock mode only), the 16-bit data word includes a leading  
zero and the 12-bit conversion result is followed by 3 trail-  
ing zeros (Figure 2c). In the 10-bit ADC, the last 2 LSBs  
are set to 0. In the 8-bit ADC, the last 4 LSBs are set to 0.  
Input Bandwidth  
The ADC’s input-tracking circuitry features a 1.5MHz,  
small-signal, full-linear bandwidth to digitize high-speed  
transient events and measure periodic signals with  
bandwidths exceeding the ADC’s sampling rate by using  
undersampling techniques. Anti-alias filtering of the input  
signals is necessary to avoid high-frequency signals  
aliasing into the frequency band of interest.  
3-Wire Serial Interface  
The MAX11120–MAX11128 feature a serial interface  
compatible with SPI/QSPI and MICROWIRE devices. For  
SPI/QSPI, ensure the CPU serial interface runs in mas-  
ter mode to generate the serial clock signal. Select the  
SCLK frequency of 16MHz or less, and set clock polarity  
(CPOL) and phase (CPHA) in the FP control registers to  
the same value. The MAX11120–MAX11128 operate with  
SCLK idling high, and thus operate with CPOL = CPHA  
= 1.  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
DIN  
DI[15] DI[14]  
DI[1] DI[0]  
DOUT  
Ch[3] Ch[2] Ch[1] Ch[0] MSB MSB-1  
LSB+1 LSB  
Figure 2a. External Clock Mode Timing Diagram with CHAN_ID=1  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
DIN  
t
> t  
QUIET SCLK  
DI[15]  
DI[1] DI[0]  
DOUT  
Ch[3] Ch[2] Ch[1] Ch[0] MSB MSB-1  
LSB+1 LSB  
Figure 2b. External Clock Mode Timing Diagram with CHAN_ID=1 for Best Performance  
���������������������������������������������������������������� Maxim Integrated Products 18  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
DIN  
DI[15] DI[14]  
DI[1] DI[0]  
0
MSB] MSB-1 MSB-2  
LSB  
0
DOUT  
Figure 2c. External Clock Timing Diagram with CHAN_ID=0  
Single-Ended, Differential,  
and Pseudo-Differential Input  
The MAX11120–MAX11128 include up to 16 analog input  
channels that can be configured to 16 single-ended  
inputs, 8 fully differential pairs, or 15 pseudo-differential  
inputs with respect to one common input (REF-/AIN15 is  
the common input).  
DAC  
COMPARATOR  
AINn  
HOLD  
The analog input range is 0V to V  
and pseudo-differential mode (unipolar) and QV  
in single-ended  
REF+  
AINn+1  
(GND)  
/2 or  
REF+  
QV  
in fully differential mode (bipolar) depending on  
REF+  
DAC  
the RANGE register settings. See Table 7 for the RANGE  
register setting.  
Unipolar mode sets the differential input range from 0  
to V . If the positive analog input swings below the  
REF+  
Figure 3. Equivalent Input Circuit  
negative analog input in unipolar mode, the digital output  
code is zero. Selecting bipolar mode sets the differential  
Fully Differential Reference (REF+, REF-)  
When the reference is used in fully differential mode  
(REFSEL = 1), the full-scale range is set by the difference  
between REF+ and REF-. The output clips if the input  
signal surpasses this reference range.  
input range to QV  
RANGE register settings (Table 7).  
/2 or QV  
depending on the  
REF+  
REF+  
In single-ended mode, the ADC always operates in uni-  
polar mode. The analog inputs are internally referenced  
to GND with a full-scale input range from 0 to V  
Single-ended conversions are internally referenced to  
GND (Figure 3).  
.
ADC Transfer Function  
The output format of the MAX11120–MAX11128 is straight  
binary in unipolar mode and two’s complement in bipolar  
mode. The code transitions midway between successive  
integer LSB values, such as 0.5 LSB, 1.5 LSB. Figure 4  
and Figure 5 show the unipolar and bipolar transfer func-  
tion, respectively. Output coding is binary, with 1 LSB =  
REF+  
The MAX11120–MAX11128 feature 15 pseudo differen-  
tial inputs by setting the PDIFF_COM bits in the Unipolar  
register to 1 (Table 10). The 15 analog input signals  
inputs are referenced to a DC signal applied to the  
REF-/AIN15.  
V /4096.  
REF+  
���������������������������������������������������������������� Maxim Integrated Products 19  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
OUTPUT CODE (hex)  
OUTPUT CODE (hex)  
V
REF+  
+FS =  
ZS = 0  
-FS =  
FFF  
FFE  
FFD  
FFC  
FFB  
FS = V  
REF+  
7FF  
7FE  
2
ZS = 0  
-V  
REF+  
V
REF+  
1 LSB =  
2
4096  
V
REF+  
1 LSB =  
001  
000  
FFF  
FFE  
4096  
004  
003  
002  
001  
000  
801  
800  
0
1
2
3
4
FS  
-FS  
0
+FS  
FS -1.5 LSB  
INPUT VOLTAGE (LSB)  
-FS +0.5 LSB  
+FS -1.5 LSB  
INPUT VOLTAGE (LSB)  
Figure 4. Unipolar Transfer Function for 12-Bit Resolution  
Figure 5. Bipolar Transfer Function for 12-Bit Resolution  
Control register (Table 2). The wake-up, acquisition, con-  
version, and shutdown sequences are initiated through  
CNVST and are performed automatically using the inter-  
nal oscillator. Results are added to the internal FIFO.  
Internal FIFO  
The MAX11120–MAX11128 contain a FIFO buffer that can  
hold up to 16 ADC results. This allows the ADC to handle  
multiple internally clocked conversions without tying up  
the serial bus. If the FIFO is filled and further conversions  
are requested without reading from the FIFO, the oldest  
ADC results are overwritten by the new ADC results. Each  
result contains 2 bytes, with the MSB preceded by four  
leading channel address bits. After each falling edge of  
CS, the oldest available byte of data is available at DOUT.  
When the FIFO is empty, DOUT is zero.  
With CS high, initiate a scan by setting CNVST low for  
at least 5ns before pulling it high (Figure 6). Then, the  
MAX11120–MAX11128 wake up, scan all requested  
channels, store the results in the FIFO, and shut down.  
After the scan is complete, EOC is pulled low and the  
results are available in the FIFO. Wait until EOC goes  
low before pulling CS low to communicate with the serial  
interface. EOC stays low until CS or CNVST is pulled low  
again. Do not initiate a second CNVST before EOC goes  
low; otherwise, the FIFO may become corrupted.  
External Clock  
In external clock mode, the analog inputs are sampled at  
the falling edge of CS. Serial clock (SCLK) is used to per-  
form the conversion. The sequencer reads in the channel  
to be converted from the serial data input (DIN) at each  
frame. The conversion results are sent to the serial output  
(DOUT) at the next frame.  
Alternatively, set SWCNV to 1 in the ADC Mode Control  
register to initiate conversions with CS rising edge  
instead of cycling CNVST (Table 2). For proper operation,  
CS must be held low for 17 clock cycles to guarantee  
that the device interprets the SWCNV setting. A delay  
is initiated at the rising edge of CS and the conversion  
is started when the delay times out. Upon completing  
the conversion, this bit is reset to 0 (Figure 7). Apply a  
soft reset when changing from internal to external clock  
mode: RESET[1:0] = 10.  
Internal Clock  
The MAX11120–MAX11128 operate from an internal  
oscillator, which is accurate within Q15% of the 13.33MHz  
nominal clock rate. Request internally timed conversions  
by writing the appropriate sequence to the ADC Mode  
���������������������������������������������������������������� Maxim Integrated Products 20  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
UP TO N INTERNALLY  
CLOCKED ACQUISITIONS  
AND CONVERSIONS  
CNVST  
CS  
t
CSW  
EOC  
t
CNV_INT  
1
16  
1
16  
SCLK  
DIN  
DOUT  
INTERNAL  
OSCILLATOR ON  
READ DATA FROM FIFO  
READ DATA FROM FIFO  
SCAN OPERATION AND  
RESULTS STORED IN FIFO  
Figure 6. Internal Conversions with CNVST  
UP TO N INTERNALLY  
CLOCKED ACQUISITIONS  
AND CONVERSIONS  
t
CNV_INT  
(N = 1)  
CS  
EOC  
1
16  
1
16  
SCLK  
SWCNV = 1  
DIN  
DOUT  
MODE CONTROL  
INTERNAL OSCILLATOR ON  
READ DATA FROM FIFO  
SCAN OPERATION AND  
RESULTS STORED IN FIFO  
Figure 7. Internal Conversions with SWCNV  
���������������������������������������������������������������� Maxim Integrated Products 21  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
I/P MUX is selected every frame on the thirteenth falling  
edge of SCLK. Custom_Int works with the internal clock.  
Custom_Ext works with the external clock.  
Analog Input  
The MAX11120–MAX11128 produce a digital output that  
corresponds to the analog input voltage as long as the  
analog inputs are within the specified operating range.  
Internal protection diodes confine the analog input volt-  
age within the region of the analog power input rails  
Standard_Int and Standard_Ext  
In Standard_Int and Standard_Ext modes, the device  
scans channels 0 through N in ascending order where  
N is the last channel specified in the ADC Mode Control  
register. A new I/P MUX is selected every frame on the  
thirteenth falling edge of SCLK. Standard_Int works with  
the internal clock. Standard_Ext works with the external  
clock.  
(V , GND) and allow the analog input voltage to swing  
DD  
from GND - 0.3V to V  
+ 0.3V without damaging the  
DD  
device. Input voltages beyond GND - 0.3V and V  
+
DD  
0.3V forward bias the internal protection diodes. Limit the  
forward diode current to less than 50mA to avoid dam-  
age to the MAX11120–MAX11128.  
Upper_Int and Upper_Ext  
In Upper_Int and Upper_Ext modes, the device scans  
channels N through 15/11/7/3 in ascending order where  
N is the first channel specified in the ADC Mode Control  
register. A new I/P MUX is selected every frame on the  
thirteenth falling edge of SCLK. Upper_Int works with the  
internal clock. Upper_Ext works with the external clock.  
ECHO  
When writing to the ADC Configuration register, set  
ECHO to 1 in ADC Configuration register to echo back  
the configuration data onto DOUT at time n+1 (Figure 8,  
Table 6).  
Scan Modes  
The MAX11120–MAX11128 feature nine scan modes  
(Table 3).  
SampleSet  
The SampleSet mode of operation allows the definition  
of a unique channel sequence combination with maxi-  
mum length of 256. SampleSet is supported only in the  
external clock mode. SampleSet is ideally suited for mul-  
tichannel measurement applications where some analog  
inputs must be converted more often than others.  
Manual Mode  
The next channel to be selected is identified in each SPI  
frame. The conversion results are sent out in the next  
frame. The manual mode works with the external clock  
only. The FIFO is unused.  
The SampleSet approach provides greater sequencing  
flexibility for multichannel applications while alleviating  
significant microcontroller or DSP (controlling unit) com-  
munication overhead. SampleSet technology allows the  
user to exploit available ADC input bandwidth without  
need for constant communication between the ADC and  
controlling unit. The user may define and load a unique  
sequencing pattern into the ADC allowing both high- and  
low-frequency inputs to be converted appropriately with-  
out interface activity. With the unique sequence loaded  
Repeat Mode  
Repeat scanning channel N for number of times and  
store all the conversion results in the FIFO. The number of  
scans is programmed in the ADC Configuration register.  
The repeat mode works with the internal clock only.  
Custom_Int and Custom_Ext  
In Custom_Int and Custom_Ext modes, the device scans  
preprogrammed channels in ascending order. The chan-  
nels to be scanned in sequence are programmed in  
the Custom Scan0 or Custom Scan1 registers. A new  
t = n-1  
t = n  
t = n+1  
t = n+2  
CS  
CONFIGURATION  
DATA  
CONFIGURATION  
DATA  
CONFIGURATION  
DATA  
DIN  
TURN ON ECHO  
CONFIGURATION  
DATA  
CONFIGURATION  
DATA  
DOUT  
Figure 8. Echo Back the Configuration Data  
���������������������������������������������������������������� Maxim Integrated Products 22  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
into ADC memory, the pattern may be repeated indefi-  
nitely or changed at any time.  
the ADC can resolve (Nyquist Theorem) is 31.25kHz.  
If all 16 channels must be measured, with some chan-  
nels having greater than 31.25kHz input frequency, the  
user must revert back to manual mode requiring con-  
stant communication on the serial interface. SampleSet  
technology solves this problem. Figure 9 provides a  
SampleSet use-model example.  
For example, the maximum throughput of MAX11120–  
MAX11128 is 1Msps. Traditional ADC scan modes allow  
up to 16-channel conversions in ascending order. In this  
case, the effective throughput per channel is 1Msps/16  
channel or 62.5ksps. The maximum input frequency that  
SampleSet REPEATS: LENGTH = 256  
SAMPLE SET  
(DEPTH = 256)  
ST  
ND  
RD  
TH  
TH  
TH  
TH  
TH  
TH  
9 CYCLE  
1
CYCLE  
2
CYCLE  
3
CYCLE  
4
CYCLE  
5
CYCLE  
6
CYCLE  
7
CYCLE  
8
CYCLE  
POTENTIAL SampleSet PATTERN  
AIN2/  
AIN2/  
AIN3  
AIN2/  
AIN3  
AIN2/  
AIN3  
CHANNEL:  
AIN0  
2
AIN1  
3
AIN0  
4
AIN1  
5
AIN0  
AIN1  
AIN3  
AIN4  
123  
AIN5  
124  
AIN6  
125  
AIN7  
126  
AIN8  
127  
AIN9  
128  
AIN10 AIN11 AIN12 AIN13 AIN14 AIN15  
129 130 131 132 133 134  
AIN0  
136  
AIN1  
137  
AIN0  
254  
AIN1  
255  
1
120  
121  
122  
135  
256  
ENTRY NO.:  
120 CONVERSIONS:  
AIN0 AND AIN1  
120 CONVERSIONS:  
AIN0 AND AIN1  
ANALOG  
INPUTS  
AIN0  
AIN1  
100kHz  
100 CYCLES  
135  
AIN2  
FULLY  
DIFFERENTIAL  
10kHz  
10 CYCLES  
1
AIN3  
122  
123  
124  
125  
256  
1kHz  
1 CYCLES  
AIN4  
AIN5  
AIN6  
t
= 1/f = 1/1Msps = 100ns  
S
S
AIN7  
CS  
10  
AIN8  
8
AIN0  
12  
6
14  
4
AIN9  
16  
32  
2
18  
10µs  
30  
T
S
5µs  
AIN10  
AIN11  
AIN12  
AIN13  
20  
28  
22  
f
= 100kHz  
26  
in  
24  
9
11  
AIN1  
7
13  
5
15  
3
17  
31  
19  
5µs  
10µs  
T
S
29  
21  
27  
23  
25  
Figure 9. SampleSet Use-Model Example  
���������������������������������������������������������������� Maxim Integrated Products 23  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Averaging Mode  
In averaging mode, the device performs the specified  
Register Descriptions  
number of conversions and returns the average for each  
requested result in the FIFO. The averaging mode works  
with internal clock only.  
The MAX11120–MAX11128 communicate between the  
internal registers and the external circuitry through the  
SPI-/QSPI-compatible serial interface. Table 1 details the  
register access and control. Table 2 through Table 14  
detail the various functions and configurations.  
Scan Modes and Unipolar/Bipolar Setting  
When the Unipolar or Bipolar registers are configured  
as pseudo-differential or fully differential, the analog  
input pairs are repeated in this automated mode. For  
example, if N is set to 15 to scan all 16 channels and  
all analog input pairs are configured for fully-differential  
conversion, the ADC converts the channels twice. In this  
case, the user may avoid dual conversions on input pairs  
by implementing Manual mode or using Custom_Int or  
Custom_Ext scan modes.  
For ADC mode control, set bit 15 of the register code  
identification to zero. The ADC Mode Control register  
determines when and under what scan condition the  
ADC operates.  
To set the ADC data configuration, set the bit 15 of the  
register code identification to one.  
Table 1. Register Access and Control  
REGISTER IDENTIFICATION CODE  
DIN DATA INPUTS  
REGISTER NAME  
BIT 15  
BIT 14  
BIT 13  
BIT 12  
BIT 11  
BIT [10:0]  
DIN  
ADC Mode Control  
ADC Configuration  
Unipolar  
0
1
1
1
1
1
1
1
1
DIN  
0
DIN  
0
DIN  
0
DIN  
0
DIN  
0
0
0
1
DIN  
Bipolar  
0
0
1
0
DIN  
RANGE  
0
0
1
1
DIN  
Custom Scan0  
Custom Scan1  
SampleSet  
0
1
0
0
DIN  
0
1
0
1
DIN  
0
1
1
0
DIN  
Reserved. Do not use.  
1
1
1
1
DIN  
Table 2. ADC Mode Control Register  
DEFAULT  
STATE  
BIT NAME  
BIT  
FUNCTION  
REG_CNTL  
SCAN[3:0]  
15  
0
Set to 0 to select the ADC Mode Control register  
ADC Scan Control register (Table 3)  
14:11  
0001  
Analog Input Channel Select register (Table 4).  
CHSEL[3:0]  
10:7  
6:5  
0000  
See Table 3 to determine which modes use CHSEL[3:0] for the channel scan  
instruction.  
RESET1  
RESET0  
FUNCTION  
0
0
1
1
0
1
0
1
No reset  
RESET[1:0]  
00  
Reset the FIFO only (resets to zero)  
Reset all registers to default settings (includes FIFO)  
Unused  
���������������������������������������������������������������� Maxim Integrated Products 24  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Table 2. ADC Mode Control Register (continued)  
DEFAULT  
STATE  
BIT NAME  
BIT  
FUNCTION  
Power Management Modes (Table 5). In external clock mode, PM[1:0] selects  
between normal mode and various power-down modes of operation.  
PM[1:0]  
4:3  
00  
External Clock Mode. Channel address is always present in internal clock mode.  
Set to 1, DOUT is a 16-bit data word containing a 4-bit channel address, followed by  
a 12-bit conversion result led by the MSB.  
CHAN_ID  
2
0
Set to 1 to initiate conversions with the rising edge of CS instead of cycling CNVST  
(internal clock mode only).  
This bit is used for the internal clock mode only and must be reasserted in the ADC  
mode control, if another conversion is desired.  
SWCNV  
1
0
0
0
Unused  
Table 3. ADC Scan Control  
SCAN3 SCAN2 SCAN1 SCAN0  
MODE NAME  
FUNCTION  
Continue to operate in the previously selected mode. Ignore data  
on bits [10:0]. This feature is provided so that DIN can be held low  
when no changes are required in the ADC Mode Control register.  
Bits [6:3, 1] can be still written without changing the scan mode  
properties.  
0
0
0
0
0
0
0
1
N/A  
The next channel to be selected is identified in each SPI frame. The  
conversion results are sent out in the next frame.  
Clock mode: External clock only  
Manual  
Channel scan/sequence: Single channel per frame  
Channel selection: See Table 4, CHSEL[3:0]  
Averaging: No  
Scans channel N repeatedly. The FIFO stores 4, 8, 12, or 16  
conversion results for channel N.  
Clock mode: Internal clock only  
0
0
0
0
1
1
0
1
Repeat  
Channel scan/sequence: Single channel per frame  
Channel selection: See Table 4, CHSEL[3:0]  
Averaging: Yes  
Scans channels 0 through N. The FIFO stores N conversion results.  
Clock mode: Internal clock  
Standard_Int  
Channel scan/sequence: N channels in ascending order  
Channel selection: See Table 4, CHSEL[3:0] determines channel N  
Averaging: Yes  
���������������������������������������������������������������� Maxim Integrated Products 25  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Table 3. ADC Scan Control (continued)  
SCAN3 SCAN2 SCAN1 SCAN0  
MODE NAME  
FUNCTION  
Scans channels 0 through N  
Clock mode: External clock  
0
1
0
0
Standard_Ext  
Channel scan/sequence: N channels in ascending order  
Channel selection: See Table 4, CHSEL[3:0] determines channel N  
Averaging: No  
Scans channel N through the highest numbered channel. The FIFO  
stores X conversion results where:  
X = Channel 16–N  
X = Channel 8–N  
16-channel devices  
8-channel devices  
4-channel devices  
X = Channel 4–N  
0
1
0
1
Upper_Int  
Clock mode: Internal clock  
Channel scan/sequence: Channel N through the highest numbered  
channel in ascending order  
Channel selection: See Table 4, CHSEL[3:0] determines channel N  
Averaging: Yes  
Scans channel N through the highest numbered channel  
Clock mode: External clock  
Channel scan/sequence: Channel N through the highest numbered  
channel in ascending order  
0
0
1
1
1
1
0
1
Upper_Ext  
Channel selection: See Table 4, CHSEL[3:0] determines channel N  
Averaging: No  
Scans preprogrammed channels in ascending order. The FIFO  
stores conversion results for this unique channel sequence.  
Clock mode: Internal clock  
Channel scan/sequence: Unique ascending channel sequence  
Maximum depth: 16 conversions  
Custom_Int  
Channel selection: See Table 12, Custom Scan0 register and Table  
13, Custom Scan1 register  
Averaging: Yes  
Scans preprogrammed channels in ascending order  
Clock mode: External clock  
Channel scan/sequence: Unique ascending channel sequence  
Maximum depth: 16 conversions  
1
0
0
0
Custom_Ext  
Channel selection: See Table 12, Custom Scan0 register and Table  
13, Custom Scan1 register  
Averaging: No  
���������������������������������������������������������������� Maxim Integrated Products 26  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Table 3. ADC Scan Control (continued)  
SCAN3 SCAN2 SCAN1 SCAN0  
MODE NAME  
FUNCTION  
Scans preprogrammed channel sequence with maximum length of  
256. There is no restriction on the channel pattern.  
Clock mode: External clock only  
Channel scan/sequence: Unique channel sequence  
Maximum depth: 256 conversions  
Channel Selection: See Table 4  
Averaging: No  
1
0
0
1
SampleSet  
Continue to operate in the previously selected mode. Ignore data on  
bits [10:0].  
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
Continue to operate in the previously selected mode. Ignore data on  
bits [10:0].  
Continue to operate in the previously selected mode. Ignore data on  
bits [10:0].  
Continue to operate in the previously selected mode. Ignore data on  
bits [10:0].  
Continue to operate in the previously selected mode. Ignore data on  
bits [10:0].  
Continue to operate in the previously selected mode. Ignore data on  
bits [10:0].  
Table 4. Analog Input Channel Select  
CHSEL3  
CHSEL2  
CHSEL1  
CHSEL0  
SELECTED CHANNEL (N)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
���������������������������������������������������������������� Maxim Integrated Products 27  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
AutoShutdown with External Clock Mode  
When the PM_ bits in the ADC Mode Control register are  
asserted (Table 5), the device shuts down at the rising  
edge of CS in the next frame. The device powers up  
again at the following falling edge of CS. There are two  
available options:  
Power-Down Mode  
The MAX11120–MAX11128 feature three power-down  
modes.  
Static Shutdown  
The devices shut down when the SPM bits in the ADC  
Configuration register are asserted (Table 6). There are  
two shutdown options:  
U AutoShutdown where all circuitry is shutdown.  
U AutoStandby where all circuitry are powered down  
UFull shutdown where all circuitry is shutdown.  
except for the internal bias generator.  
UPartial shutdown where all circuitry is powered down  
AutoShutdown with Internal Clock Mode  
The device shuts down after all conversions are complet-  
ed. The device powers up again at the next falling edge  
of CNVST or at the rising edge of CS after the SWCNV  
bit is asserted.  
except for the internal bias generator.  
Table 5. Power Management Modes  
PM1  
PM0  
MODE  
FUNCTION  
0
0
Normal  
All circuitry is fully powered up at all times.  
The device enters full shutdown mode at the end of each conversion. All circuitry  
is powered down. The device powers up following the falling edge of CS. It takes 2  
cycles before valid conversions take place. The information in the registers is retained.  
0
1
AutoShutdown  
The device powers down all circuitry except for the internal bias generator. The part  
powers up following the falling edge of CS. It takes 2 cycles before valid conversions  
take place. The information in the registers is retained.  
1
1
0
1
AutoStandby  
Unused.  
Table 6. ADC Configuration Register  
DEFAULT  
STATE  
BIT NAME  
BIT  
FUNCTION  
CONFIG_SETUP  
15:11  
N/A  
Set to 10000 to select the ADC Configuration register.  
REFSEL  
VOLTAGE REFERENCE  
REF- CONFIGURATION  
REFSEL  
AVGON  
10  
9
0
0
0
1
External single-ended  
External differential  
AIN15 ( for the 16-channel devices)  
REF-  
Set to 1 to turn averaging on. Valid for internal clock mode only.  
Set to 0 to turn averaging off.  
���������������������������������������������������������������� Maxim Integrated Products 28  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Table 6. ADC Configuration Register (continued)  
DEFAULT  
STATE  
BIT NAME  
BIT  
FUNCTION  
Valid for internal clock mode only.  
AVGON NAVG1  
NAVG0  
FUNCTION  
Performs 1 conversion for each requested  
result.  
0
1
1
1
1
X
0
0
1
1
X
Performs 4 conversions and returns the  
average for each requested result.  
0
1
0
1
NAVG[1:0]  
8:7  
00  
Performs 8 conversions and returns the  
average for each requested result.  
Performs 16 conversions and returns the  
average for each requested result.  
Performs 32 conversions and returns the  
average for each requested result.  
Scans channel N and returns 4, 8, 12, or 16 results. Valid for repeat mode only.  
NSCAN1  
NSCAN0  
FUNCTION  
0
0
1
1
0
1
0
1
Scans channel N and returns 4 results.  
Scans channel N and returns 8 results.  
Scans channel N and returns 12 results.  
Scans channel N and returns 16 results.  
NSCAN[1:0]  
6:5  
00  
Static power-down modes  
SPM1  
SPM0  
MODE  
Normal  
Full  
FUNCTION  
0
0
All circuitry is fully powered up at all times.  
All circuitry is powered down. The information  
0
1
Shutdown in the registers is retained.  
SPM[1:0]  
4:3  
00  
All circuitry is powered down except for  
the reference and reference buffer. The  
information in the registers is retained.  
Partial  
Shutdown  
1
1
0
1
Unused  
Set to 0 to disable the instruction echo on DOUT.  
ECHO  
2
0
0
Set to 1 to echo back the DIN instruction given at time = n onto the DOUT line at  
time = n + 1. It takes 1 full cycle for the echoing to begin (Figure 8).  
1:0  
Unused  
���������������������������������������������������������������� Maxim Integrated Products 29  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Table 7. RANGE Register (RANGE Settings Only Applies to Bipolar Fully Differential  
Analog Input Configurations)  
DEFAULT  
STATE  
BIT NAME  
RANGE_SETUP  
RANGE0/1  
BIT  
15:11  
10  
FUNCTION  
N/A  
Set to 10011 to select the RANGE register  
Set to 0 for AIN0/1: +V  
Set to 1 for AIN0/1: +V  
/2  
/2  
/2  
/2  
/2  
REF+  
REF+  
0
0
0
0
0
0
0
Set to 0 for AIN2/3: +V  
Set to 1 for AIN2/3: +V  
REF+  
REF+  
RANGE2/3  
RANGE4/5  
RANGE6/7  
RANGE8/9  
RANGE10/11  
RANGE12/13  
9
8
7
6
5
4
Set to 0 for AIN4/5: +V  
Set to 1 for AIN4/5: +V  
REF+  
REF+  
Set to 0 for AIN6/7: +V  
Set to 1 for AIN6/7: +V  
REF+  
REF+  
Set to 0 for AIN8/9: +V  
Set to 1 for AIN8/9: +V  
REF+  
REF+  
Set to 0 for AIN10/11: +V  
Set to 1 for AIN10/11: +V  
/2  
/2  
/2  
REF+  
REF+  
Set to 0 for AIN12/13: +V  
Set to 1 for AIN12/13: +V  
REF+  
REF+  
Set to 0 for AIN14/15: +V  
Set to 1 for AIN14/15: +V  
REF+  
REF+  
RANGE14/15  
3
0
2:0  
000  
Unused  
ADC OUTPUT as a Function  
of Unipolar and Bipolar Modes  
The ADC Scan Control register (Table 3) determines the  
ADC mode of operation. The Unipolar and Bipolar regis-  
ters in Table 10 and Table 11 determine output coding  
and whether input configuration is single-ended or fully  
differential.  
SampleSet Mode of Operation  
The SampleSet register stores the unique channel  
sequence length. The sequence pattern is comprised of  
up to 256 unique single-ended and/or differential conver-  
sions with any order or pattern.  
Patterns are assembled in 4-bit channel identifier nib-  
bles as described in Table 4. Figure 10 presents the  
SampleSet timing diagram. Note that two CS frames are  
required to configure the SampleSet functionality. The  
first frame indicates the sequence length. The second  
frame is used to encode the channel sequence pattern.  
Table 9 details the conversion output for analog inputs,  
AIN0 and AIN1. The truth table is consistent for any other  
valid input pairs (AINn/AINn+1). Table 8 shows the appli-  
cable input signal format with respect to analog input  
configurations.  
After the SampleSet register has been coded (Table 14),  
by the next falling edge of CS, the new SampleSet pattern  
is activated (Figure 10). If the pattern length is less than  
SEQ_LENGTH, the remaining channels default to AIN0. If  
the select pattern length is greater than SEQ_LENGTH,  
the additional data is ignored as the ADC waits for the ris-  
ing edge of CS. If CS is asserted in the middle of a nibble,  
the full nibble defaults to AIN0.  
CHSEL[3:0] is used for MANUAL, REPEAT,  
STANDARD_EXT,  
UPPER_INT modes of operation. CHSCAN[15:0] is used  
for CUSTOM_EXT and CUSTOM_INT modes of operation  
STANDARD_INT,  
UPPER_EXT,  
.
���������������������������������������������������������������� Maxim Integrated Products 30  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Table 8. Analog Input Configuration and Unipolar/Bipolar Waveforms  
SUPPORTED WAVEFORMS  
REFSEL = 0 REFSEL = 1  
ANALOG INPUT  
CONFIGURATION  
UNIPOLAR/BIPOLAR  
REGISTER SETTING  
REF+  
RANGE: 1V - V  
REF+  
RANGE: 1V - V  
Table 10. Unipolar Register:  
Set desired channel(s) to 0  
or PDIFF_COM to 1.  
DD  
DD  
V
IN+  
V
IN+  
Unipolar  
(Binary  
Coding)  
REF+  
REF+  
Single-  
Ended  
1V  
Counterpart Register  
REF-  
Table 11. Bipolar Register:  
Set desired channel(s) to 0.  
GND, AIN15  
PDIFF_COM = 1  
0V  
-0.3V  
REF+  
REF+  
RANGE: 1V - V  
RANGE: 1V - V  
DD  
DD  
V
IN+  
Table 10. Unipolar Register:  
Set desired channel(s) to 1.  
V
IN+  
Unipolar  
(Binary  
Coding)  
REF+  
REF+  
Fully  
Differential  
V
V
IN-  
IN-  
V
IN-  
V
IN-  
Counterpart Register  
Table 11. Bipolar Register:  
Set desired channel(s) to 0.  
(DC OFFSET  
OR  
1V  
(DC OFFSET  
OR  
SINUSOID)  
REF-  
SINUSOID)  
GND  
0V  
-0.3V  
REF+  
RANGE: 1V - V  
REF+  
RANGE: 1V - V  
See Table 11. Bipolar  
Register:  
DD  
DD  
V
IN+  
V
IN+  
Set desired channel(s) to 1.  
REF+  
2
REF+  
REF+  
Fully  
Differential  
Bipolar  
(2’s Comp)  
V
V
IN-  
IN-  
1V  
Counterpart Register  
Table 10. Unipolar Register:  
Set desired channel(s) to 0.  
REF-  
GND  
0V  
-0.3V  
Table 9. ADC Output as a Function of Unipolar/Bipolar Register Settings  
CHANNEL SELECTION  
BIT NAME  
UNIPOLAR REGISTER  
UCH0/1 PDIFF�COM  
BIPOLAR REGISTER  
FUNCTION  
BCH0/1  
0
0
1
0
0
0
0
1
0
AIN0 (binary, unipolar)  
AIN0/1 pair (two’s complement, bipolar)  
AIN0/1 pair (binary, unipolar)  
AIN0 Selection:  
CHSEL[3:0] = 0000  
CHSCAN0 = 1  
AIN0/1 pair (binary, unipolar); Unipolar register  
takes precedence  
1
0
1
X
0
0
1
1
0
0
0
X
0
1
0
AIN0 referred to REF-/AIN15 (binary, unipolar)  
AIN1 (binary, unipolar)  
AIN0/1 pair (two’s complement, bipolar)  
AIN0/1 pair (binary, unipolar)  
AIN1 Selection:  
CHSEL[3:0] = 0001  
CHSCAN1 = 1  
AIN0/1 pair (binary, unipolar), Unipolar register  
takes precedence  
1
X
0
1
1
X
AIN1 referred to REF-/AIN15 (binary, unipolar)  
���������������������������������������������������������������� Maxim Integrated Products 31  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Table 10. Unipolar Register  
DEFAULT  
STATE  
BIT NAME  
UNI_SETUP  
UCH0/1  
BIT  
15:11  
10  
FUNCTION  
Set to 10001 to select the Unipolar register.  
Set to 1 to configure AIN0 and AIN1 for pseudo-differential conversion.  
Set to 0 to configure AIN0 and AIN1 for single-ended conversion.  
0
Set to 1 to configure AIN2 and AIN3 for pseudo-differential conversion.  
Set to 0 to configure AIN2 and AIN3 for single-ended conversion.  
Set to 1 to configure AIN4 and AIN5 for pseudo-differential conversion.  
Set to 0 to configure AIN4 and AIN5 for single-ended conversion.  
UCH2/3  
UCH4/5  
9
8
7
6
5
4
3
0
0
0
0
0
0
0
Set to 1 to configure AIN6 and AIN7 for pseudo-differential conversion.  
Set to 0 to configure AIN6 and AIN7 for single-ended conversion.  
UCH6/7  
Set to 1 to configure AIN8 and AIN9 for pseudo-differential conversion.  
Set to 0 to configure AIN8 and AIN9 for single-ended conversion.  
Set to 1 to configure AIN10 and AIN11 for pseudo-differential conversion.  
Set to 0 to configure AIN10 and AIN11 for single-ended conversion.  
Set to 1 to configure AIN12 and AIN13 for pseudo-differential conversion.  
Set to 0 to configure AIN12 and AIN13 for single-ended conversion.  
Set to 1 to configure AIN14 and AIN15 for pseudo-differential conversion.  
Set to 0 to configure AIN14 and AIN15 for single-ended conversion.  
UCH8/9  
UCH10/11  
UCH12/13  
UCH14/15  
Set to 1 to configure AIN0–AIN14 to be referenced to one common DC voltage on  
the REF-/AIN15. Set to 0 to disable the 15:1 pseudo differential mode.  
PDIFF_COM  
2
0
1:0  
000  
Unused.  
Table 11. Bipolar Register  
DEFAULT  
STATE  
BIT NAME  
BIP_SETUP  
BCH0/1  
BIT  
15:11  
10  
FUNCTION  
Set to 10010 to select the Bipolar register.  
Set to 1 to configure AIN0 and AIN1 for bipolar fully differential conversion.  
Set to 0 to configure AIN0 and AIN1 for unipolar conversion mode.  
0
Set to 1 to configure AIN2 and AIN3 for bipolar fully differential conversion.  
Set to 0 to configure AIN2 and AIN3 for unipolar conversion mode.  
BCH2/3  
BCH4/5  
9
8
7
6
5
4
0
0
0
0
0
0
Set to 1 to configure AIN4 and AIN5 for bipolar fully differential conversion.  
Set to 0 to configure AIN4 and AIN5 for unipolar conversion mode.  
Set to 1 to configure AIN6 and AIN7 for bipolar fully differential conversion.  
Set to 0 to configure AIN6 and AIN7 for unipolar conversion mode.  
BCH6/7  
Set to 1 to configure AIN8 and AIN9 for bipolar fully differential conversion.  
Set to 0 to configure AIN8 and AIN9 for unipolar conversion mode.  
BCH8/9  
Set to 1 to configure AIN10 and AIN11 for bipolar fully differential conversion.  
Set to 0 to configure AIN10 and AIN11 for unipolar conversion mode.  
BCH10/11  
BCH12/13  
Set to 1 to configure AIN12 and AIN13 for bipolar fully differential conversion.  
Set to 0 to configure AIN12 and AIN13 for unipolar conversion mode.  
Set to 1 to configure AIN14 and AIN15 for bipolar fully differential conversion.  
Set to 0 to configure AIN14 and AIN15 for unipolar conversion mode.  
BCH14/15  
3
0
2:0  
000  
Unused.  
���������������������������������������������������������������� Maxim Integrated Products 32  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Table 12. Custom Scan0 Register  
DEFAULT  
STATE  
BIT NAME  
BIT  
FUNCTION  
CUST_SCAN0  
CHSCAN15  
CHSCAN14  
CHSCAN13  
CHSCAN12  
CHSCAN11  
CHSCAN10  
CHSCAN9  
CHSCAN8  
15:11  
0
Set to 10100 to select the Custom Scan0 register.  
Set to 1 to scan AIN15. Set to 0 to omit AIN15.  
Set to 1 to scan AIN14. Set to 0 to omit AIN14.  
Set to 1 to scan AIN13. Set to 0 to omit AIN13.  
Set to 1 to scan AIN12. Set to 0 to omit AIN12.  
Set to 1 to scan AIN11. Set to 0 to omit AIN11.  
Set to 1 to scan AIN10. Set to 0 to omit AIN10.  
Set to 1 to scan AIN9. Set to 0 to omit AIN9.  
Set to 1 to scan AIN8. Set to 0 to omit AIN8.  
Unused.  
10  
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2:0  
000  
Table 13. Custom Scan1 Register  
DEFAULT  
STATE  
BIT NAME  
BIT  
FUNCTION  
CUST_SCAN1  
CHSCAN7  
CHSCAN6  
CHSCAN5  
CHSCAN4  
CHSCAN3  
CHSCAN2  
CHSCAN1  
CHSCAN0  
15:11  
0
Set to 10101 to select the Custom Scan1 register.  
Set to 1 to scan AIN7. Set to 0 to omit AIN7.  
Set to 1 to scan AIN6. Set to 0 to omit AIN6.  
Set to 1 to scan AIN5. Set to 0 to omit AIN5.  
Set to 1 to scan AIN4. Set to 0 to omit AIN4.  
Set to 1 to scan AIN3. Set to 0 to omit AIN3.  
Set to 1 to scan AIN2. Set to 0 to omit AIN2.  
Set to 1 to scan AIN1. Set to 0 to omit AIN1.  
Set to 1 to scan AIN0. Set to 0 to omit AIN0.  
Unused.  
10  
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2:0  
000  
Table 14. SampleSet Register  
BIT NAME  
BIT  
DEFAULT STATE  
FUNCTION  
SMPL_SET  
15:11  
Set to 10110 to select the SampleSet register.  
8-bit binary word indicating desired sequence length. The equation is:  
Sequence length = SEQ_LENGTH + 1  
00000000 = Sequence length = 1  
11111111 = Sequence length = 256  
Coding: Straight binary  
SEQ_LENGTH  
10:3  
2:0  
00000000  
Maximum length: 256 ADC conversions  
Unused.  
���������������������������������������������������������������� Maxim Integrated Products 33  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
CS  
SCLK  
DIN  
1
16  
1
1
ENTRY 1  
ENTRY 2  
ENTRY N = (SEQ_LENGTH)  
DOUT  
WRITE SampleSet REGISTER  
DEFINE SEQ_LENGTH  
LOAD SampleSet PATTERN  
TIME BETWEEN CS FALLING AND  
RISING EDGE DEPENDS IN SEQ_LENGTH  
WRITE ADC MODE CONTROL  
OR CONTINUE WITH ADDITIONAL  
CONFIGURATION SETTINGS  
Figure 10. SampleSet Timing Diagram  
Upon receiving the SampleSet pattern, the user can  
set the ADC Mode Control register to begin the conver-  
sion process where data readout begins with the first  
SampleSet entry. While the last conversion result is read,  
the ADC can be instructed to enter AutoShutdown, if  
desired. If the user wishes to change the SampleSet  
length, a new pattern must be loaded into the ADC as  
described in Figure 10.  
Layout, Grounding, and Bypassing  
For best performance, use PCBs with a solid ground  
plane. Ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digital  
(especially clock) lines parallel to one another or digital  
lines underneath the ADC package. Noise in the V  
OVDD, and REF affects the ADC’s performance. Bypass  
,
DD  
the V , OVDD, and REF to ground with 0.1FF and 10FF  
DD  
bypass capacitors. Minimize capacitor lead and trace  
lengths for best supply-noise rejection.  
Applications Information  
Choosing an Input Amplifier  
It is important to match the settling time of the input  
amplifier to the acquisition time of the ADC. The conver-  
sion results are accurate when the ADC samples the  
input signal for an interval longer than the input signal’s  
worst-case settling time. By definition, settling time is  
the interval between the application of an input voltage  
step and the point at which the output signal reaches  
and stays within a given error band centered on the  
resulting steady-state amplifier output level. The ADC  
input sampling capacitor charges during the sampling  
cycle, referred to as the acquisition period. During this  
acquisition period, the settling time is affected by the  
input resistance and the input sampling capacitance.  
This error can be estimated by looking at the settling  
of an RC time constant using the input capacitance  
and the source impedance over the acquisition time  
period. Figure 13 shows a typical application circuit. The  
MAX4430, offering a settling time of 37ns at 16-bit reso-  
lution, is an excellent choice for this application. See the  
THD vs. Input Resistance graph in the Typical Operating  
Characteristics.  
How to Program Modes  
1) Configure the ADC (set the MSB on DIN to 1).  
2) Program ADC mode control (set the MSB on DIN to 0)  
to begin the conversion process or to control power  
management features.  
•ꢀ IfꢀADCꢀmodeꢀcontrolꢀisꢀwrittenꢀduringꢀaꢀconversionꢀ  
sequence, the ADC finishes the present conver-  
sion and at the next falling edge of CS initiates its  
new instruction.  
•ꢀ Ifꢀconfigurationꢀdataꢀ(MSBꢀonꢀDINꢀisꢀaꢀ1)ꢀisꢀwrittenꢀ  
during a conversion sequence, the ADC finishes  
the present conversion in the existing scan mode.  
However, data on DOUT is not valid in following  
frames until a new ADC mode control instruction  
is coded.  
Programming Sequence Flow Chart  
See Figure 11 for programming sequence.  
���������������������������������������������������������������� Maxim Integrated Products 34  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
SELECT REFERENCE  
EXTERNAL SINGLE-ENDED  
EXTERNAL DIFFERENTIAL  
SINGLE-ENDED  
OR DIFFERENTIAL  
SELECT ADC  
CONFIGURATION REGISTER  
SET REFSEL BIT TO 1  
SELECT ADC  
CONFIGURATION REGISTER  
SET REFSEL BIT TO 0  
FIGURE OUT NUMBER  
OF CHANNELS TO USE (N)  
FOR EACH ADC CHANNEL  
SE, PsD/FD  
SINGLE-ENDED  
PSEUDO-  
DIFFERENTIAL  
FULLY-  
DIFFERENTIAL  
SINGLE-ENDED  
PSEUDO-  
DIFFERENTIAL  
UNIPOLAR OR  
BIPOLAR  
PSEUDO-DIFFERENTIAL  
SINGLE-ENDED  
BIPOLAR  
UNIPOLAR  
SELECT UNIPOLAR AND  
BIPOLAR REGISTER SET PER  
CHANNEL UCH{X}/{X+1}  
AND BCH{X}/{X+1} TO 0 FOR  
SINGLE-ENDED SELECTION  
SELECT BIPOLAR REGISTER  
SET PER CHANNEL  
BCH{X}/{X+1} TO 1  
FOR BIPOLAR FULLY  
DIFFERENTIAL  
SELECT UNIPOLAR AND  
REGISTER SET BIT PDIFF_COM  
TO 1 FOR PSEUDO-  
SELECT UNIPOLAR  
REGISTER SET PER  
CHANNEL UCH{X}/{X+1}  
TO 1 FOR UNIPOLAR  
DIFFERENTIAL SELECTION  
1
SELECT RANGE REGISTER SET PER CHANNEL  
RANGE SELECT  
PAIR RANGE{X}/{X+1} TO 1 QV  
REF+  
0
SELECT RANGE REGISTER SET PER CHANNEL  
FOR EACH ADC CHANNEL  
PAIR RANGE{X}/{X+1} TO 0 QV  
/2  
REF+  
NEXT CHANNEL  
SEE FIGURE 12  
Figure 11. ADC Programming Sequence  
���������������������������������������������������������������� Maxim Integrated Products 35  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
INTERNAL  
EXTERNAL  
INTERNAL/EXTERNAL  
CLOCK  
ADC MODE CONTROL REGISTER  
YES  
NO  
SET SCAN[3:0] TO 0001  
SET CHSEL[3:0] TO CHANNEL NUMBER  
SELECT THE PM[1:0] BITS  
REPEAT  
AVERAGE  
MANUAL  
YES  
YES  
YES  
YES  
YES  
YES  
NO  
NO  
ADC CONFIGURATION REGISTER  
SET AVG ON BIT TO 1  
SET NAVG[1:0] TO N  
ADC CONFIGURATION REGISTER  
SET NSCAN[1:0] FOR SCAN COUNT  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 0100  
SET CHSEL[3:0] TO CHANNEL NUMBER  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 0010  
SET CHSEL[3:0] TO CHANNEL NUMBER  
SELECT THE RIGHT SWCNV BIT  
STANDARD-EXT  
NO  
YES  
NO  
STANDARD-INT  
AVERAGE  
YES  
NO  
ADC CONFIGURATION REGISTER  
SET AVG ON BIT TO 1  
SET NAVG[1:0] TO N  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 0110  
SET CHSEL[3:0] TO CHANNEL NUMBER  
UPPER-EXT  
NO  
ADC MODE CONTROL REGISTER  
SET SCA[3:0] TO 0011  
SET CHSEL[3:0] TO CHANNEL NUMBER  
SELECT THE RIGHT SWCNV BIT  
YES  
NO  
UPPER-INT  
AVERAGE  
YES  
NO  
ADC CONFIGURATION REGISTER  
SET AVG ON BIT TO 1  
SET NAVG[1:0] TO N  
SET CUSTOM Scan0 REGISTER  
SET CUSTOM Scan1 REGISTER  
CUSTOM-EXT  
NO  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 0101  
SET CHSEL[3:0] TO CHANNEL NUMBER  
SELECT THE RIGHT SWCNV BIT  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 1000  
SET CHSEL[3:0] TO CHANNEL NUMBER  
YES  
NO  
CUSTOM-INT  
AVERAGE  
YES  
NO  
ADC CONFIGURATION REGISTER  
SET AVGON BIT TO 1  
SET NAVG[1:0] TO N  
SampleSet REGISTER  
SET SEQ_DEPTH[7:0] TO SET  
CHANNEL CAPTURE DEPTH  
SampleSet  
SET CUSTOM Scan0 REGISTER  
SET CUSTOM Scan1 REGISTER  
FOLLOW SampleSet REGISTER WITH  
CHANNEL PATTERN OF THE SAME SIZE  
AS SEQUENCE DEPTH  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 0111  
SET CHSEL[3:0] TO CHANNEL NUMBER  
SELECT THE RIGHT SWCNV BIT  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 1001  
SET CHSEL[3:0] TO CHANNEL NUMBER  
Figure 12. ADC Mode Select Programming Sequence  
���������������������������������������������������������������� Maxim Integrated Products 36  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
U Initial voltage accuracy  
Choosing a Reference  
For devices using an external reference, the choice of the  
reference determines the output accuracy of the ADC.  
An ideal voltage reference provides a perfect initial accu-  
racy and maintains the reference voltage independent  
of changes in load current, temperature, and time. The  
following parameters need to be considered in selecting  
a reference:  
U Temperature drift  
U Current source capability  
U Current sink capability  
U Quiescent current  
U Noise. The MAX6033 and MAX6043 are also excellent  
reference choices (Figure 13).  
+5V  
0.1µF  
10µF  
V
DD  
V
OVDD  
100pF  
V
DD  
OVDD  
0.1µF  
10µF  
0.1µF  
10µF  
500I  
AGND  
500I  
4
3
5
INPUT 1  
MAX11120–MAX11128  
AIN0  
10I  
1
MAX4430  
470pF  
470pF  
COG  
CAPACITOR  
V
DC  
SCLK  
DOUT  
SCLK  
2
-5V  
10µF  
MISO  
CPU  
AIN1  
0.1µF  
+5V  
COG  
CAPACITOR  
INPUT 2  
CS  
SS  
AIN15  
REF  
MOSI  
DIN  
GND  
10µF  
0.1µF  
10µF  
+5V  
100pF  
7
6
2
1
OUTF  
OUTS  
IN  
1µF  
0.1µF  
500I  
MAX6126  
0.1µF  
500I  
4
3
4
3
5
GNDS  
GND  
NR  
INPUT 2  
10I  
0.1µF  
1
MAX4430  
V
DC  
2
-5V  
10µF  
0.1µF  
Figure 13. Typical Application Circuit  
���������������������������������������������������������������� Maxim Integrated Products 37  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Total Harmonic Distortion  
Total harmonic distortion (THD) is expressed as:  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nulled. The static  
linearity parameters for the MAX11120–MAX11128 are  
measured using the end-points method.  
2
2
2
2
5
V
+ V + V + V  
3 4  
2
THD = 20 × log  
V
1
where V is the fundamental amplitude, and V through V  
5
are the amplitudes of the 2nd- through 5th-order harmonics.  
1
2
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest distor-  
tion component.  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A DNL  
error specification of 1 LSB or less guarantees no miss-  
ing codes and a monotonic transfer function.  
Full-Power Bandwidth  
Full-power bandwidth is the frequency at which the input  
signal amplitude attenuates by 3dB for a full-scale input.  
Signal-to-Noise Ratio  
Signal-to-noise ratio is the ratio of the amplitude of the  
desired signal to the amplitude of noise signals at a  
given point in time. The larger the number, the better. The  
theoretical minimum analog-to-digital noise is caused by  
quantization error and results directly from the ADC’s  
resolution (N bits):  
Full-Linear Bandwidth  
Full-linear bandwidth is the frequency at which the sig-  
nal-to-noise plus distortion (SINAD) is more than 68dB.  
Intermodulation Distortion  
Any device with nonlinearities creates distortion products  
when two sine waves at two different frequencies (f1 and  
f2) are input into the device. Intermodulation distortion  
(IMD) is the total power of the IM2 to IM5 intermodulation  
products to the Nyquist frequency relative to the total  
input power of the two input tones, f1 and f2. The indi-  
vidual input tone levels are at -6dBFS.  
SNR = (6.02 x N + 1.76) dB  
In reality, there are other noise sources besides quantiza-  
tion noise, including thermal noise, reference noise, clock  
jitter, etc. Therefore, SNR is computed by taking the ratio  
of the RMS signal to the RMS noise, which includes all  
spectral components minus the fundamental, the first five  
harmonics, and the DC offset.  
���������������������������������������������������������������� Maxim Integrated Products 38  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Ordering Information  
PART  
PIN-PACKAGE  
28 TQFN-EP**  
28 TQFN-EP**  
28 TQFN-EP**  
28 TQFN-EP**  
28 TQFN-EP**  
28 TQFN-EP**  
28 TQFN-EP**  
28 TQFN-EP**  
28 TQFN-EP**  
BITS  
8
SPEED (Msps)  
NO. OF CHANNELS  
MAX11120ATI+*  
MAX11121ATI+*  
MAX11122ATI+*  
MAX11123ATI+*  
MAX11124ATI+*  
MAX11125ATI+  
MAX11126ATI+  
MAX11127ATI+  
MAX11128ATI+  
1
1
1
1
1
1
1
1
1
4
4
10  
12  
8
4
8
10  
12  
8
8
8
16  
16  
16  
10  
12  
Note: All devices are specified over the -40°C to +125°C temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE OUTLINE  
LAND  
PATTERN NO.  
CODE  
NO.  
28 TQFN-EP  
T2855+3  
21-0140  
90-0023  
���������������������������������������������������������������� Maxim Integrated Products 39  
MAX11120–MAX11128  
1Msps, Low-Power, Serial 12-/10-/8-Bit,  
4-/8-/16-Channel ADCs  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
1
12/11  
4/12  
Initial release  
Released the MAX11125.  
39  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
40  
©
2012 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX11126

1Msps, Low-Power, Serial 12-/10-/8-Bit, 4-/8-/16-Channel ADCs
MAXIM

MAX11126ATI

1Msps, Low-Power, Serial 12-/10-/8-Bit,4-/8-/16-Channel ADCs
MAXIM

MAX11126ATI+

1Msps, Low-Power, Serial 12-/10-/8-Bit,4-/8-/16-Channel ADCs
MAXIM

MAX11127

1Msps, Low-Power, Serial 12-/10-/8-Bit, 4-/8-/16-Channel ADCs
MAXIM

MAX11127ATI

1Msps, Low-Power, Serial 12-/10-/8-Bit,4-/8-/16-Channel ADCs
MAXIM

MAX11127ATI+

1Msps, Low-Power, Serial 12-/10-/8-Bit,4-/8-/16-Channel ADCs
MAXIM

MAX11128

1Msps, Low-Power, Serial 12-/10-/8-Bit, 4-/8-/16-Channel ADCs
MAXIM

MAX11128ATI

1Msps, Low-Power, Serial 12-/10-/8-Bit,4-/8-/16-Channel ADCs
MAXIM

MAX11128ATI+

1Msps, Low-Power, Serial 12-/10-/8-Bit,4-/8-/16-Channel ADCs
MAXIM

MAX11128ATI/V+

1Msps, Low-Power, Serial 12-/10-/8-Bit, 4-/8-/16-Channel ADCs
MAXIM

MAX11129

3Msps, Low-Power, Serial 12-/10-Bit, 8-/16-Channel ADCs
MAXIM

MAX11129ATI+

3Msps, Low-Power, Serial 12-/10-Bit,8-/16-Channel ADCs
MAXIM