MAX11160 [MAXIM]

16-Bit, 500ksps/250ksps, ±5V SAR ADCs with Internal Reference in TDFN; 16位, 500KSPS / 250ksps的,为± 5V的SAR ADC ,TDFN封装内部参考
MAX11160
型号: MAX11160
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

16-Bit, 500ksps/250ksps, ±5V SAR ADCs with Internal Reference in TDFN
16位, 500KSPS / 250ksps的,为± 5V的SAR ADC ,TDFN封装内部参考

文件: 总33页 (文件大小:1358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs with  
Internal Reference in TDFN  
General Description  
The MAX11166/MAX11167 16-bit, 500ksps/250ksps,  
SAR ADCs offer excellent AC and DC performance with  
true bipolar input range, small size, and internal reference.  
Features  
High DC and AC Accuracy  
16-Bit Resolution with No Missing Codes  
SNR: 92.6dB  
The MAX11166/MAX11167 measure a Q5V (10V ) input  
P-P  
THD: -105dB at 10kHz  
±0.5 LSB INL (typ)  
range while operating from a single 5V supply. A patented  
charge-pump architecture allows direct sampling of high-  
impedance sources. The MAX11166/MAX11167 integrate  
an optional 6ppm/NC reference with internal buffer, saving  
the cost and space of an external reference.  
±0.2 LSB DNL (typ)  
Internal Reference and Reference Buffer Saves Cost  
and Board Space  
6ppm/°C typ  
These ADCs achieve 92.6dB SNR and -105dB THD. The  
MAX11166/MAX11167 guarantee 16-bit no-missing codes  
and Q0.5 LSB INL (typ).  
Tiny 12-Pin 3mm x 3mm TDFN Package  
Bipolar ±5V Analog Input Range Saves External  
Signal Conditioning  
The MAX11166/MAX11167 communicate using an SPI-  
compatible serial interface at 2.5V, 3V, 3.3V, or 5V logic.  
The serial interface can be used to daisy-chain multiple  
ADCs in parallel for multichannel applications and pro-  
vides a busy indicator option for simplified system syn-  
chronization and timing.  
Single-Supply ADC with Low Power  
5V Analog Supply  
2.3V to 5V Digital Supply  
26.4mW at 500ksps  
1µA Shutdown Mode  
The MAX11166/MAX11167 are offered in 12-pin, 3mm x  
3mm, TDFN packages and are specified over the -40NC  
to +85NC temperature range.  
500ksps Throughput Rate (MAX11166)  
250ksps Throughput Rate (MAX11167)  
No Pipeline Delay/Latency  
Applications  
Flexible Industry-Standard Serial Interface Saves I/O  
●ꢀ Data Acquisition Systems  
●ꢀ Industrial Control Systems/Process Control  
●ꢀ Medical Instrumentation  
●ꢀ Automatic Test Equipment  
Pins  
®
SPI/QSPI™/MICROWIRE /DSP-Compatible  
QSPI is a trademark of Motorola, Inc.  
MICROWIRE is a registered trademark of National  
Semiconductor Corporation.  
Selector Guide and Ordering Information appear at end of  
data sheet.  
For related parts and recommended products to use with this part, refer  
to www.maximintegrated.com/MAX11166.related.  
Typical Operating Circuit  
V
OVDD  
1µF  
DD  
1µF  
(5V)  
(2.3V TO 5V)  
SCLK  
DIN  
DOUT  
50Ω  
500pF  
AIN+  
AIN-  
INTERFACE  
HOST  
CONTROLLER  
5V  
16-BIT ADC  
AND CONTROL  
MAX9632  
CNVST  
MAX11166  
MAX11167  
CONFIGURATION REGISTER  
INTERNAL REFERENCE  
REF  
REF  
BUF  
10µF  
REFIO  
0.1µF  
AGNDS  
GND  
19-6445; Rev 1; 12/12  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Absolute Maximum Ratings  
DD  
V
to GND ............................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70NC)  
A
OVDD to GND....... -0.3V to the lower of (V  
AIN+ to GND ........................................................................ Q7V  
AIN-, REF, REFIO, AGNDS  
+ 0.3V) and +6V  
TDFN (derate 18.2mW/NC above +70NC)..................1349mW  
Operating Temperature Range........................... -40NC to +85NC  
Junction Temperature......................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) .................................+300NC  
Soldering Temperature (reflow).......................................+260NC  
DD  
to GND............... -0.3V to the lower of (V  
SCLK, DIN, DOUT, CNVST  
+ 0.3V) and +6V  
+ 0.3V) and +6V  
DD  
to GND............... -0.3V to the lower of (V  
DD  
Maximum Current into Any Pin...........................................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
Package Thermal Characteristics (Note 1)  
TDFN  
Junction-to-Ambient Thermal Resistance (q ).......59.3NC/W  
JA  
Junction-to-Case Thermal Resistance (q )...........22.5NC/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= 4.75V to 5.25V, V  
= 2.3V to 5.25V, f  
= 500kHz or 250kHz, V  
CONDITIONS  
5.000  
= 4.096V; T = T  
A
to T  
, unless otherwise  
DD  
OVDD  
SAMPLE  
REF  
MIN  
MAX  
noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT (Note 3)  
Input Voltage Range  
AIN+ to AIN-, K =  
-K x V  
+K x V  
V
V
REF  
REF  
4.096  
-(V  
+
+(V  
+
DD  
DD  
AIN+ to GND  
0.1)  
0.1)  
Absolute Input Voltage Range  
AIN- to GND  
-0.1  
+0.1  
Input Leakage Current  
Input Capacitance  
Input-Clamp Protection Current  
DC ACCURACY (Note 4)  
Resolution  
Acquisition phase  
-10  
-20  
+0.001  
15  
+10  
+20  
µA  
pF  
Both inputs  
mA  
N
16  
16  
Bits  
Bits  
No Missing Codes  
Offset Error  
-1.5  
±0.1  
±2.4  
±2  
+1.5  
±10  
mV  
Offset Temperature Coefficient  
Gain Error  
µV/°C  
LSB  
Gain Error Temperature  
Coefficient  
±1  
ppm/°C  
MAX11167, T = T  
to T  
MAX  
-2.0  
-1.0  
-2.4  
-1.5  
-0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.2  
+2.0  
+1.0  
+2.4  
+1.5  
+0.5  
±14  
A
MIN  
MAX11167, T = +25°C to +85°C  
A
Integral Nonlinearity  
INL  
LSB  
MAX11166, T = T  
to T  
MAX  
A
MIN  
MAX11166, T = +25°C to +85°C  
A
Differential Nonlinearity  
Positive Full-Scale Error  
DNL  
LSB  
LSB  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Electrical Characteristics (continued)  
(V  
= 4.75V to 5.25V, V  
= 2.3V to 5.25V, f  
= 500kHz or 250kHz, V  
= 4.096V; T = T  
A
to T  
, unless otherwise  
DD  
OVDD  
SAMPLE  
REF  
MIN  
MAX  
noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
Negative Full-Scale Error  
Analog Input CMRR  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LSB  
dB  
±13  
CMRR  
PSR  
-77  
±3.0  
0.5  
Power-Supply Rejection (Note 5)  
Transition Noise  
LSB  
LSB  
RMS  
REFERENCE (Note 7)  
REF Output Initial Accuracy  
V
Reference mode 0  
4.092  
4.092  
4.096  
±9  
4.100  
±17  
V
REF  
REF Output Temperature  
Coefficient  
TC  
Reference mode 0  
ppm/°C  
V
REF  
REFIO Output Initial Accuracy  
V
Reference modes 0 and 2  
Reference modes 0 and 2  
4.096  
±6  
4.100  
±15  
REFIO  
REFIO Output Temperature  
Coefficient  
TC  
ppm/°C  
REFIO  
REFIO Output Impedance  
REFIO Input Voltage Range  
Reference Buffer Initial Offset  
Reference modes 0 and 2  
Reference mode 1  
10  
kΩ  
V
3
4.096  
4.25  
Reference mode 1  
-500  
+500  
µV  
Reference Buffer Temperature  
Coefficient  
Reference mode 1  
±6  
±10  
µV/°C  
µF  
Required for reference modes 0 and 1,  
recommended for reference modes 2 and 3  
External Compensation Capacitor  
C
EXT  
10  
REF Voltage Input Range  
REF Input Capacitance  
V
Reference modes 2 and 3  
Reference modes 2 and 3  
2.5  
4.25  
V
REF  
20  
65  
pF  
V
= 4.096V,  
MAX11167, 250ksps  
MAX11166, 500ksps  
REF  
REF Load Current  
I
reference modes 2  
µA  
REF  
130  
and 3  
AC ACCURACY (Note 6)  
V
= 4.096V, reference  
REF  
mode 3  
91.5  
92.6  
92.4  
89.8  
92.4  
92.3  
92.3  
89.5  
91.8  
V
= 4.096V, reference  
REF  
mode 1  
Signal-to-Noise Ratio (Note 7)  
SNR  
f
= 10kHz  
IN  
dB  
V
= 2.5V, reference  
REF  
mode 3  
Internal reference,  
reference mode 0  
V
= 4.096V, reference  
REF  
mode 3  
90  
V
= 4.096V, reference  
REF  
mode 1  
Signal-to-Noise Plus Distortion  
(Note 7)  
SINAD  
f
= 10kHz  
dB  
IN  
V
= 2.5V, reference  
REF  
mode 3  
Internal reference,  
reference mode 0  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
SFDR  
THD  
IMD  
96  
105  
-105  
-115  
dB  
dB  
dB  
-96  
Intermodulation Distortion (Note 8)  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Electrical Characteristics (continued)  
(V  
= 4.75V to 5.25V, V  
= 2.3V to 5.25V, f  
= 500kHz or 250kHz, V  
= 4.096V; T = T  
A
to T  
, unless otherwise  
DD  
OVDD  
SAMPLE  
REF  
MIN  
MAX  
noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SAMPLING DYNAMICS  
MAX11166  
0.01  
0.01  
500  
250  
400  
Throughput Sample Rate  
Transient Response  
ksps  
ns  
MAX11167  
Full-scale step  
-3dB point  
6
Full-Power Bandwidth  
MHz  
-0.1dB point  
> 0.2  
2.5  
Aperture Delay  
ns  
Aperture Jitter  
< 50  
ps  
RMS  
POWER SUPPLIES  
Analog Supply Voltage  
Interface Supply Voltage  
V
4.75  
5.25  
V
V
DD  
V
2.3  
5.0  
3.0  
5.25  
6.5  
OVDD  
Internal reference mode  
External reference mode  
5.8  
3.5  
Analog Supply Current  
I
mA  
µA  
VDD  
4.0  
V
DD  
Shutdown Current  
6.3  
10  
V
V
V
V
= 2.3V, MAX11167  
= 5.25V, MAX11167  
= 2.3V, MAX11166  
= 5.25V, MAX11166  
0.75  
0.85  
OVDD  
OVDD  
OVDD  
OVDD  
2.0  
1.5  
4.3  
0.9  
2.4  
2.0  
5.0  
10  
Interface Supply Current (Note 9)  
OVDD Shutdown Current  
I
mA  
µA  
OVDD  
V
= 5V, V  
= 3.3V, MAX11167  
OVDD  
DD  
21.2  
33.3  
26.4  
40.5  
reference mode = 2, 3  
V
= 5V, V = 3.3V, MAX11167  
DD  
OVDD  
reference mode = 0, 1  
Power Dissipation  
mW  
V
= 5V, V = 3.3V, MAX11166  
DD  
OVDD  
reference mode = 2, 3  
V
= 5V, V = 3.3V, MAX11166  
DD  
OVDD  
reference mode = 0, 1  
DIGITAL INPUTS (DIN, SCLK, CNVST)  
0.7 x  
Input Voltage High  
V
V
IH  
V
OVDD  
Input Voltage Low  
Input Hysteresis  
V
0.3 x V  
V
V
IL  
OVDD  
V
±0.05 x V  
HYS  
OVDD  
Input Capacitance  
Input Current  
C
10  
pF  
µA  
IN  
I
V
= 0V or V  
OVDD  
-10  
+10  
IN  
IN  
DIGITAL OUTPUT (DOUT)  
V
- 0.4  
OVDD  
Output Voltage High  
V
I
I
= 2mA  
SOURCE  
V
OH  
Output Voltage Low  
V
= 2mA  
SINK  
0.4  
V
OL  
Three-State Leakage Current  
Three-State Output Capacitance  
-10  
+10  
µA  
pF  
15  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Electrical Characteristics (continued)  
(V  
= 4.75V to 5.25V, V  
= 2.3V to 5.25V, f  
= 500kHz or 250kHz, V  
= 4.096V; T = T  
A
to T  
, unless otherwise  
DD  
OVDD  
SAMPLE  
REF  
MIN  
MAX  
noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAMETER  
TIMING (Note 9)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MAX11166  
2
4
100000  
100000  
1.5  
µs  
µs  
Time Between Conversions  
Conversion Time  
t
CYC  
MAX11167  
MAX11166  
1.35  
2.7  
0.5  
1
CNVST rising to  
data available  
t
µs  
CONV  
MAX11167  
MAX11166  
MAX11167  
3.0  
Acquisition Time  
t
t
= t - t  
CYC CONV  
µs  
ns  
ACQ  
ACQ  
CNVST Pulse Width  
t
CS mode  
5
CNVPW  
V
V
V
V
V
V
> 4.5V  
> 2.7V  
> 2.3V  
> 4.5V  
> 2.7V  
> 2.3V  
14  
20  
26  
16  
24  
30  
5
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
SCLK Period (CS Mode)  
t
ns  
ns  
SCLK  
SCLK Period (Daisy-Chain Mode)  
t
SCLK  
SCLK Low Time  
SCLK High Time  
t
ns  
ns  
SCLKL  
t
5
SCLKH  
V
V
V
V
> 4.5V  
> 2.7V  
> 2.3V  
> 2.7V  
< 2.7V  
12  
18  
23  
14  
17  
OVDD  
OVDD  
OVDD  
OVDD  
OVDD  
SCLK Falling Edge to Data Valid  
Delay  
t
ns  
DDO  
CNVST Low to DOUT D15 MSB  
Valid (CS Mode)  
t
ns  
ns  
EN  
V
CNVST High or Last SCLK  
Falling Edge to DOUT High  
Impedance  
t
CS Mode  
20  
DIS  
V
V
V
> 4.5V  
> 2.7V  
> 2.3V  
3
5
6
OVDD  
OVDD  
OVDD  
DIN Valid Setup Time from SCLK  
Falling Edge  
t
ns  
SDINSCK  
DIN Valid Hold Time from SCLK  
Falling Edge  
t
0
3
6
ns  
ns  
ns  
HDINSCK  
SCLK Valid Setup Time to  
CNVST Falling Edge  
t
SSCKCNF  
HSCKCNF  
SCLK Valid Hold Time to CNVST  
Falling Edge  
t
Note 2: Maximum and minimum limits are fully production tested over specified supply voltage range and at a temperature of +25°C  
and +85°C. Limits below +25°C are guaranteed by design and device characterization. Typical values are not guaranteed.  
Note 3: See the Analog Inputs and Overvoltage Input Clamps sections.  
Note 4: See the Definitions section.  
Note 5: Defined as the change in positive full-scale code transition caused by a Q5% variation in the V  
Note 6: 10kHz sine wave input, -0.1dB below full scale.  
supply voltage.  
DD  
Note 7: See Table 4 for definition of the reference modes.  
Note 8: f  
~ 9.4kHz, f  
~ 10.7kHz, Each tone at -6.1dB below full scale.  
IN1  
IN2  
Note 9: C  
= 65pF on DOUT.  
LOAD  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Typical Operating Characteristics—MAX11166  
OFFSET AND GAIN ERROR  
OFFSET AND GAIN ERROR  
vs. SUPPLY VOLTAGE  
vs. TEMPERATURE  
MAX11166 toc01  
MAX11166 toc02  
1.0  
0.5  
0
2.0  
1.0  
0
1.0  
0.6  
1.0  
OFFSET ERROR (mV)  
GAIN ERROR (LSB)  
OFFSET ERROR (mV)  
GAIN ERROR (LSB)  
0.6  
0.2  
0.2  
-0.2  
-0.6  
-1.0  
-0.2  
-0.6  
-1.0  
f
= 500ksps  
-0.5  
-1.0  
f
= 500ksps  
-1.0  
-2.0  
SAMPLE  
SAMPLE  
V
V
T
= 4.096V  
= 3.3V  
V
V
V
= 4.096V  
REF  
OVDD  
REF  
DD  
OVDD  
= 5.0V  
= 3.3V  
= +25°C  
A
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
TEMPERATURE (°C)  
DD  
INTEGRAL NONLINEARITY vs. CODE  
DIFFERENTIAL NONLINEARITY vs. CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
f
= 500ksps  
= 4.096V  
SAMPLE  
V
f
= 500ksps  
SAMPLE  
REF  
V
= 4.096V  
REF  
V
= 5.0V  
= 3.3V  
DD  
V
= 5.0V  
= 3.3V  
DD  
OVDD  
V
OVDD  
V
T
= +25°C  
A
T
= +25°C  
A
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
16384  
24576  
OUTPUT CODE (DECIMAL)  
32768  
49152  
65536  
0
16384  
24576  
OUTPUT CODE (DECIMAL)  
32768  
49152  
65536  
8192  
40960  
57344  
8192  
40960  
57344  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Typical Operating Characteristics—MAX11166 (continued)  
INL AND DNL  
OUTPUT NOISE HISTOGRAM WITH  
INPUT CONNECTED TO GND  
vs. V  
SUPPLY VOLTAGE  
DD  
INL AND DNL vs. TEMPERATURE  
200k  
150k  
100k  
50k  
0
1.4  
1.0  
1.4  
1.0  
MAX INL  
MIN INL  
MAX DNL  
MIN DNL  
MAX INL  
MIN INL  
MAX DNL  
MIN DNL  
f
= 500ksps  
AINP  
SAMPLE  
V
= 0V  
= 5V  
V
DD  
V
= 4.096V  
= +25°C  
0.6  
REF  
0.6  
T
A
0.2  
0.2  
-0.2  
-0.6  
-1.0  
-1.4  
-0.2  
-0.6  
-1.0  
-1.4  
f
= 500ksps  
REF  
SAMPLE  
f
= 500ksps  
SAMPLE  
V
V
= 4.096V  
V
V
V
= 4.096V  
REF  
DD  
OVDD  
= 3.3V  
OVDD  
= 5.0V  
= 3.3V  
T
= +25°C  
A
32765  
32767 32769  
32768  
32771  
32770 32772  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
32766  
TEMPERATURE (°C)  
DD  
OUTPUT CODE (DECIMAL)  
INTERNAL REFERENCE VOLTAGES  
vs. V VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE (REF PIN)  
DD  
4.09604  
4.100  
4.099  
4.098  
4.097  
4.096  
4.095  
4.094  
4.093  
4.092  
4.091  
4.090  
V
= 3.3V  
OVDD  
A
REFIO  
REF  
T
= +25°C  
REF MODE = 0  
4.09602  
4.09600  
4.09598  
4.09596  
4.09594  
V
= 5.0V  
DD  
MAX MEASURED  
MIN MEASURED  
REF MODE = 0  
30 DEVICES  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
DD  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Typical Operating Characteristics—MAX11166 (continued)  
SNR AND SINAD  
SUPPLY VOLTAGE  
vs. V  
DD  
FFT PLOT  
= 500ksps  
TWO TONES IMD  
= 500ksps  
93.0  
92.8  
92.5  
92.3  
92.0  
91.8  
91.5  
0
-20  
0
-20  
SNR  
SINAD  
f
f
SAMPLE  
FFT N  
IN1  
IN1  
IN2  
IN2  
SAMPLE  
FFT N  
= 4096  
= 16384  
SAMPLE  
= S9A3M6P8L.9EHz  
f
= 10101Hz  
f
IN  
V
= -0.1dBFS  
IN  
V
= -6.1dBFS  
REF MODE = 3  
f
= 10651Hz  
-40  
-40  
V
V
V
= 4.096V  
REF  
= 5.0V  
V
= -6.1dBFS  
DD  
OVDD  
= +25°C  
REF MODE = 3  
-60  
= 3.3V  
-60  
V
V
V
= 4.096V  
REF  
DD  
OVDD  
T
A
= 5.0V  
SNR = 92.7dB  
SINAD = 92.4dB  
SFDR = 107.4dB  
THD = -104.4dB  
-80  
-80  
= 3.3V  
= +25°C  
f
f
= 500ksps  
SAMPLE  
T
A
= 10kHz  
IN  
IN  
A
IMD = -119.7dBFS  
-100  
-120  
-140  
-100  
-120  
-140  
V
= -0.1dBFS  
T
= +25°C  
REF MODE = 3  
= 4.096V  
V
REF  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
0
50  
100  
150  
200  
250  
5
7
9
11  
13  
15  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
DD  
SIGNAL-TO-NOISE RATIO AND  
SIGNAL-TO-NOISE AND  
THD vs. V  
DD  
SUPPLY VOLTAGE  
DISTORTION RATIO vs. TEMPERATURE  
THD vs. TEMPERATURE  
= 500ksps  
-100  
-102  
-104  
-106  
-108  
-110  
-112  
93.5  
93.0  
92.5  
92.0  
91.5  
-98  
-100  
-102  
-104  
-106  
-108  
SNR  
SINAD  
f
f
SAMPLE  
= 10kHz  
IN  
V
IN  
= -0.1dBFS  
REF MODE = 3  
V
V
V
= 4.096V  
REF  
= 5.0V  
DD  
OVDD  
= 3.3V  
f
f
= 500ksps  
SAMPLE  
IN  
f
f
V
= 500ksps  
SAMPLE  
IN  
IN  
= 10kHz  
= 10kHz  
V
A
= -0.1dBFS  
IN  
= -0.1dBFS  
T
= +25°C  
REF MODE = 3  
REF MODE = 3  
V
V
V
= 4.096V  
= 5.0V  
REF  
VDD  
OVDD  
V
V
= 4.096V  
REF  
OVDD  
= 3.3V  
= 3.3V  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
V
DD  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Typical Operating Characteristics—MAX11166 (continued)  
SINAD vs. FREQUENCY  
ENOB vs. INPUT SIGNAL FREQUENCY  
94  
92  
90  
88  
86  
84  
82  
15.4  
15.0  
14.6  
14.2  
13.8  
13.4  
f
= 500ksps  
f
= 500ksps  
SAMPLE  
SAMPLE  
V
A
= -0.1dBFS  
V = -0.1dBFS  
IN  
IN  
T
= +25°C  
T = +25°C  
A
REF MODE = 3  
REF MODE = 3  
V
V
V
= 4.096V  
V
V
V
= 4.096V  
REF  
REF  
= 5.0V  
= 5.0V  
DD  
OVDD  
DD  
OVDD  
= 3.3V  
= 3.3V  
0.1  
1.0  
10  
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
THD vs. INPUT FREQUENCY  
= 500ksps  
CMRR vs. INPUT FREQUENCY  
= 500ksps  
-80  
-85  
-40  
-50  
-60  
-70  
-80  
-90  
f
SAMPLE  
A
f
SAMPLE  
IN  
A
T
= +25°C  
V
= -0.1dBFS  
V
V
V
V
= 5.0V  
DD  
OVDD  
T
= +25°C  
-90  
= 3.3V  
= 4.096V  
AIN-  
REF MODE = 3  
REF  
AIN+  
V
V
V
= 4.096V  
REF  
-95  
= V  
= 100ꢀV  
P-P  
= 5.0V  
DD  
OVDD  
= 3.3V  
-100  
-105  
-110  
-115  
-120  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Typical Operating Characteristics—MAX11166 (continued)  
V
SUPPLY CURRENT  
V
SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
DD  
OVDD SUPPLY CURRENT  
vs. TEMPERATURE  
vs. V SUPPLY VOLTAGE  
DD  
8
7
6
5
4
3
2
8.0  
7.0  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
REF MODE 0 AND 1  
REF MODE 2 AND 3  
REF MODE 0 AND 1  
REF MODE 2 AND 3  
500ksps  
10ksps  
6.0  
5.0  
4.0  
3.0  
2.0  
V
= 5.0V  
= 3.3V  
= 65pF  
DD  
OVDD  
f
= 500ksps  
SAMPLE  
f
V
V
= 500ksps  
SAMPLE  
V
C
T
= +25°C  
A
= 5.0V  
DD  
DOUT  
V
= 3.3V  
OVDD  
= 3.3V  
OVDD  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
DD  
TEMPERATURE (°C)  
V
AND OVDD SHUTDOWN  
ANALOG AND DIGITAL SHUTDOWN  
CURRENT vs. TEMPERATURE  
OVDD SUPPLY CURRENT  
vs. OVDD SUPPLY VOLTAGE  
DD  
CURRENT vs. SUPPY VOLTAGE  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= +25°C  
V
= 5.0V  
= 3.3V  
A
IVDD  
DD  
OVDD  
IVDD  
IOVDD  
500ksps  
10ksps  
V
IOVDD  
T
= +25°C  
A
V
= 5.0V  
= 65pF  
DD  
DOUT  
C
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
OR V (V)  
-40  
-15  
10  
35  
60  
85  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
(V)  
V
DD  
TEMPERATURE (°C)  
V
OVDD  
OVDD  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Typical Operating Characteristics—MAX11166 (continued)  
OFFSET AND GAIN ERROR  
vs. TEMPERATURE  
OFFSET AND GAIN ERROR  
vs. SUPPLY VOLTAGE  
MAX11166 toc27  
MAX11166 toc26  
1.0  
0.5  
0
2.0  
1.0  
0
1.0  
0.6  
1.0  
OFFSET ERROR (mV)  
GAIN ERROR (LSB)  
OFFSET ERROR (mV)  
GAIN ERROR (LSB)  
0.6  
0.2  
0.2  
-0.2  
-0.6  
-1.0  
-0.2  
-0.6  
-1.0  
f
= 250ksps  
f
= 250ksps  
SAMPLE  
SAMPLE  
-0.5  
-1.0  
-1.0  
-2.0  
V
V
T
= 4.096V  
= 3.3V  
V
V
V
= 4.096V  
REF  
OVDD  
A
REF  
= 5.0V  
DD  
OVDD  
= +25°C  
= 3.3V  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
TEMPERATURE (°C)  
DD  
DIFFERENTIAL NONLINEARITY  
vs. CODE  
INTEGRAL NONLINEARITY vs. CODE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
f
= 250ksps  
SAMPLE  
f
= 250ksps  
SAMPLE  
V
V
V
= 4.096V  
REF  
= 5.0V  
V
V
V
= 4.096V  
REF  
= 5.0V  
DD  
OVDD  
DD  
= 3.3V  
= 3.3V  
OVDD  
T
= +25°C  
A
T
= +25°C  
A
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
8192  
24576 40960  
57344  
8192  
24576 40960  
57344  
OUTPUT CODE (DECIMAL)  
OUTPUT CODE (DECIMAL)  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Typical Operating Characteristics—MAX11167 (continued)  
INL AND DNL  
OUTPUT NOISE HISTOGRAM WITH  
INPUT CONNECTED TO GND  
vs. V SUPPLY VOLTAGE  
DD  
INL AND DNL vs. TEMPERATURE  
200k  
150k  
100k  
50k  
0
1.4  
1.0  
1.4  
1.0  
MAX INL  
MIN INL  
MAX INL  
MIN INL  
f
= 250ksps  
SAMPLE  
V
= 0V  
AINP  
DD  
= 4.096V  
= +25°C  
MAX DNL  
MIN DNL  
MAX DNL  
MIN DNL  
V
= 5.0V  
V
REF  
0.6  
0.6  
T
A
0.2  
0.2  
-0.2  
-0.6  
-1.0  
-1.4  
-0.2  
-0.6  
-1.0  
-1.4  
f
= 250ksps  
SAMPLE  
f
= 250ksps  
SAMPLE  
V = 4.096V  
REF  
V
V
V
= 4.096V  
REF  
= 5.0V  
V
= 3.3V  
OVDD  
= +25°C  
DD  
OVDD  
T
= 3.3V  
A
32765  
32767  
32769  
32771  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
32766 32768  
32770  
32772  
TEMPERATURE (°C)  
DD  
OUTPUT CODE (DECIMAL)  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE (REF PIN)  
INTERNAL REFERENCE VOLTAGES  
vs. V VOLTAGE  
DD  
4.09604  
4.100  
V
A
= 5.0V  
DD  
= +25°C  
REFIO  
REF  
4.099  
4.098  
4.097  
4.096  
4.095  
4.094  
4.093  
4.092  
4.091  
4.090  
T
REF MODE = 0  
4.09602  
4.09600  
4.09598  
4.09596  
4.09594  
V
= 5.0V  
DD  
REF MODE = 0  
30 DEVICES  
MAX MEASURED  
MIN MEASURED  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
DD  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Typical Operating Characteristics—MAX11167 (continued)  
TWO TONES IMD  
FFT PLOT  
SNR AND SINAD vs. TEMPERATURE  
0
-20  
93.5  
93.0  
92.5  
92.0  
91.5  
f
= 250ksps  
f
= 250ksps  
SAMPLE  
SAMPLE  
SNR  
SINAD  
FFT N  
FFT N  
= 8192  
SAMPLE  
SAMPLE  
= 10101Hz  
0
-20  
= 32768  
f
IN  
IN  
V
= -0.1dBFS  
f
= 9376.5HZ  
IN1  
REF MODE = 3  
V
f
= -6.1dBFS  
-40  
IN1  
IN2  
IN2  
V
V
V
= 4.096V  
= 10674Hz  
= -6.1dBFS  
REF  
-40  
= 5.0V  
V
DD  
OVDD  
-60  
= 3.3V  
REF MODE = 3  
-60  
T
= +25°C  
A
V
V
V
= 4.096V  
REF  
= 5.0V  
SNR = 92.7dB  
SINAD = 92.5dB  
SFDR = 108.9dB  
THD = -107.7dB  
-80  
DD  
OVDD  
= +25°C  
f
f
= 250ksps  
SAMPLE  
= 10kHz  
-80  
= 3.3V  
IN  
T
A
V
= -0.1dBFS  
-100  
-120  
-140  
IN  
IMD = -126.5dBFS  
-100  
-120  
-140  
REF MODE = 3  
V
V
V
= 4.096V  
REF  
= 5.0V  
DD  
OVDD  
= 3.3V  
5.0  
7.0  
9.0  
11.0  
13.0  
15.0  
0
25  
50  
75  
100  
125  
-40  
-15  
10  
35  
60  
85  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
SNR AND SINAD  
vs. V SUPPLY VOLTAGE  
THD vs. V SUPPLY VOLTAGE  
DD  
THD vs. TEMPERATURE  
DD  
93.0  
92.8  
92.5  
92.3  
92.0  
91.8  
91.5  
-100  
-102  
-104  
-106  
-108  
-110  
-112  
-100  
-102  
-104  
-106  
-108  
-110  
f
= 250ksps  
= 10kHz  
f
= 250ksps  
SAMPLE  
SAMPLE  
SNR  
f
IN  
f = 10kHz  
IN  
SINAD  
V
IN  
= -0.1dBFS  
T
V
= -0.1dBFS  
IN  
= +25°C  
REF MODE = 3  
A
REF MODE = 3  
V
V
V
= 4.096V  
REF  
= 5.0V  
V
V
= 4.096V  
= 3.3V  
REF  
DD  
OVDD  
= 3.3V  
OVDD  
f
= 250ksps  
SAMPLE  
f
= 10kHz  
IN  
V
= -0.1dBFS  
IN  
T
= +25°C  
A
REF MODE = 3  
= 4.096V  
V
REF  
OVDD  
V
= 3.3V  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
DD  
TEMPERATURE (°C)  
DD  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Typical Operating Characteristics—MAX11167 (continued)  
SINAD vs. FREQUENCY  
ENOB vs. INPUT SIGNAL FREQUENCY  
94  
92  
90  
88  
86  
84  
82  
15.4  
15.0  
14.6  
14.2  
13.8  
13.4  
f
= 250ksps  
SAMPLE  
IN  
A
V
T
= -0.1dBFS  
f
= 250ksps  
SAMPLE  
IN  
A
= +25°C  
V
= -0.1dBFS  
REF MODE = 3  
T
= +25°C  
V
V
V
= 4.096V  
REF MODE = 3  
REF  
DD  
OVDD  
= 5.0V  
V
V
= 4.096V  
= 3.3V  
REF  
OVDD  
= 3.3V  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
THD vs. INPUT FREQUENCY  
CMRR vs. INPUT FREQUENCY  
-80  
-85  
-40  
-50  
-60  
-70  
-80  
-90  
f
= 250ksps  
f
= 250ksps  
SAMPLE  
SAMPLE  
T
= +25°C  
V
T
= -0.1dBFS  
A
DD  
IN  
A
V
V
V
V
= 5.0V  
= 3.3V  
= +25°C  
-90  
REF MODE = 3  
OVDD  
REF  
AIN+  
= 4.096V  
V
V
V
= 4.096V  
REF  
-95  
= V  
AIN-  
= 100ꢀV  
P-P  
= 5.0V  
DD  
OVDD  
= 3.3V  
-100  
-105  
-110  
-115  
-120  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Typical Operating Characteristics—MAX11167 (continued)  
V
DD  
SUPPLY CURRENT  
V
SUPPLY CURRENT  
OVDD SUPPLY CURRENT  
vs. TEMPERATURE  
DD  
vs. TEMPERATURE  
vs. V SUPPLY VOLTAGE  
DD  
8
7
6
5
4
3
2
8
7
6
5
4
3
2
2.0  
1.5  
1.0  
0.5  
0
V
V
= 5.0V  
REF MODE 0 AND 1  
REF MODE 2 AND 3  
REF MODE 0 AND 1  
REF MODE 2 AND 3  
250ksps  
10ksps  
DD  
OVDD  
= 3.3V  
= 65pF  
C
DOUT  
f
= 250ksps  
f
= 250ksps  
SAMPLE  
A
OVDD  
SAMPLE  
DD  
OVDD  
T
= +25°C  
V
V
= 5.0V  
V
= 3.3V  
= 3.3V  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
V
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DD  
OVDD SUPPLY CURRENT  
ANALOG AND DIGITAL SHUTDOWN  
CURRENT vs. TEMPERATURE  
V
AND OVDD SHUTDOWN  
DD  
vs. OVDD SUPPLY VOLTAGE  
CURRENT vs. SUPPY VOLTAGE  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
V
= 5.0V  
T = +25°C  
A
DD  
OVDD  
IVDD  
IOVDD  
IVDD  
IOVDD  
250ksps  
10ksps  
T
= +25°C  
= 5.0V  
DOUT  
A
DD  
= 3.3V  
V
C
= 65pF  
-40  
-15  
10  
35  
60  
85  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
OR V (V)  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
(V)  
TEMPERATURE (°C)  
V
DD  
OVDD  
V
OVDD  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Pin Configuration  
TOP VIEW  
AGNDS  
1
2
3
4
5
6
12  
REFIO  
REF  
11  
10  
9
OVDD  
DIN  
V
DD  
MAX11166  
MAX11167  
AIN+  
AIN-  
GND  
SCLK  
8
DOUT  
CNVST  
EP  
7
TDFN  
Pin Description  
PIN  
NAME  
I/O  
FUNCTION  
External Reference Input/Internal Reference Output. Place a 0.1µF capacitor from REFIO to  
AGNDS.  
1
REFIO  
I/O  
External Reference Input/Reference Buffer Decoupling. Bypass to AGNDS in close proximity with a  
X5R or X7R 10µF 16V chip. See the Layout, Grounding, and Bypassing section.  
2
3
REF  
I/O  
I
Analog Power Supply. Bypass to GND with a 0.1µF capacitor for each device and one 10µF  
per PCB.  
V
DD  
4
5
6
AIN+  
AIN-  
GND  
I
I
I
Positive Analog Input  
Negative Analog Input. Connect AIN- to the analog ground plane or to a remote-sense ground.  
Power-Supply Ground  
Convert Start Input. The rising edge of CNVST initiates conversions. The falling edge of CNVST  
with SCLK high enables the serial interface.  
7
CNVST  
I
8
9
DOUT  
SCLK  
DIN  
O
I
Serial Data Output. DOUT will change stated on the falling edge of SCLK.  
Serial Clock Input. Clocks data out of the serial interface when the device is selected.  
Serial Data Input. DIN data is latched into the serial interface on the rising edge of SCLK.  
10  
I
Digital Power Supply. Bypass to GND with a 0.1µF capacitor for each device and one 10µF  
per PCB.  
11  
OVDD  
I
Analog Ground Sense. Zero current reference for the on-board DAC and reference source.  
Reference for REFIO and REF.  
12  
AGNDS  
EP  
I
Exposed Pad. EP is connected internally to GND. Connect to PCB GND.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Functional Diagram  
DIN  
AIN+  
SCLK  
DOUT  
CNVST  
INTERFACE  
AND CONTROL  
16-BIT ADC  
AIN-  
CONFIGURATION  
REGISTER  
REFERENCE SWITCH  
STATE  
CONFIGURATION REGISTER  
REFERENCE  
MODE  
MAX11166  
AGNDS  
REFIO  
MAX11167  
B5  
0
B4  
0
SW1  
CLOSED  
OPEN  
SW2  
CLOSED  
CLOSED  
OPEN  
V
DD  
0
1
2
3
OVDD  
GND  
0
1
1
0
CLOSED  
OPEN  
SW1  
SW2  
1
1
OPEN  
10kΩ  
REF  
REF  
BUF  
INTERNAL  
REFERENCE  
This allows for accurate sampling of a number of scanned  
channels through an external multiplexer.  
Detailed Description  
The MAX11166/MAX11167 are 16-bit single-channel,  
pseudo-differential ADCs with maximum throughput rates  
of 500ksps/250ksps. These ADCs include a precision  
internal reference that allows for measuring a bipolar  
input voltage range of Q5V. An external reference can also  
be applied for input ranges between Q3.05V and Q5.19V.  
Both inputs (AIN+ and AIN-) are sampled with a pseudo-  
differential on-chip track-and-hold.  
The MAX11166/MAX11167 can thus convert input sig-  
nals on AIN+ in the range of -(K O V  
+ AIN-) to +(K  
REF  
O V  
+ AIN-) where K = 5.000/4.096. AIN+ should also  
REF  
be limited to ±(V  
+ 0.1V) for accurate conversions.  
DD  
AIN- has an input range of -0.1V to +0.1V and should  
be connected to the ground reference of the input signal  
source. The MAX11166/MAX11167 performs a true dif-  
ferential sampling on inputs between AIN+ and AIN- with  
good common-mode rejection (see the Typical Operating  
Circuit). This allows for improved sampling of remote  
transducer inputs.  
The MAX11166/MAX11167 measure a true bipolar volt-  
age of Q5V (10V ) and the inputs are protected for up  
P-P  
to Q20mA of overrange current. These ADCs are powered  
from a 4.75 to 5.25V analog supply (V ) and a separate  
DD  
Many traditional ADCs with single supplies that mea-  
sure bipolar input signals use resistive divider networks  
directly on the analog inputs. These networks increase  
the complexity of the input signal conditioning. However,  
the MAX11166/MAX11167 include a patented input switch  
architecture that allows direct sampling of high-imped-  
ance sources. This architecture requires a minimum  
sample rate of 10Hz to maintain accurate conversions  
over the designed temperature and supply ranges.  
2.3V to 5.25V digital supply (OVDD). The MAX11166/  
MAX11167 require 500ns/1Fs to acquire the input sam-  
ple on an internal track-and-hold and then convert the  
sampled signal to 16 bits of accuracy using an internally  
clocked converter.  
Analog Inputs  
The MAX11166/MAX11167 ADCs consist of a true sam-  
pling pseudo-differential input stage with high-impedance,  
capacitive inputs. The internal T/H circuitry feature a small-  
signal bandwidth of about 6MHz to provide 16-bit accu-  
rate sampling in 500ns (MAX11166)/1Fs (MAX11167).  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Overvoltage Input Clamps  
Internal/External Reference  
(REFIO) Configuration  
The MAX11166/MAX11167 include an input clamping  
circuit that activates when the input voltage at AIN+ is  
The MAX11166/MAX11167 include a standard SPI inter-  
face that selects internal or external reference modes of  
operation through an input configuration register (see the  
Input Configuration Interface section). The MAX11166/  
MAX11167 feature an internal bandgap reference circuit  
above (V  
+ 300mV) or below -(V  
+ 300mV). The  
DD  
DD  
clamp circuit remains high impedance while the input sig-  
nal is within the range of Q(V + 100mV) and draws little  
DD  
to no current. However, when the input signal exceeds  
this range the clamps begin to turn on. Consequently, to  
obtain the highest accuracy, ensure that the input voltage  
(V  
= 4.096V) that is buffered with an internal ref-  
REFIO  
erence buffer that drives the REF pin. The MAX11166/  
MAX11167 configure register allows four combinations of  
reference configuration. These reference mode are:  
does not exceed the range of Q(V  
+ 100mV).  
DD  
To make use of the input clamps, connect a resistor (R )  
S
between the AIN+ input and the voltage source to limit the  
voltage at the analog input and to ensure the fault current  
into the devices does not exceed Q20mA. Note that the  
voltage at the AIN+ input pin limits to approximately 7V  
during a fault condition so the following equation can be  
Reference Mode 00: ADC reference is provided by the  
internal bandgap feed out the REFIO pin, noise filtered  
with an external capacitor on the REFIO pin, then buff-  
ered by the internal reference buffer and decoupled with  
an external capacitor on the REF pin. In this mode the  
ADC requires no external reference source.  
used to calculate the value of R :  
S
Reference Mode 01: ADC reference is provided external-  
ly and feeds into the REFIO pin, buffered with the internal  
reference buffer and decoupled with an external capaci-  
tor on the REF pin. This mode is typically used when a  
common reference source is needed for more than one  
MAX11166/MAX11167.  
V
7V  
FAULT MAX  
R
=
S
20mA  
is the maximum voltage that the  
source produces during a fault condition.  
where V  
FAULT  
MAX  
Figure 1 and Figure 2 illustrate the clamp circuit volt-  
age current characteristics for a source impedance  
Reference Mode 10: The internal bandgap is used as  
a reference source output and feed out the REFIO pin.  
However, the internal reference buffer is in a shutdown  
state and the REF pin is high impedance. This state  
would typically be used to provide a common reference  
source to a set of external reference buffers for several  
MAX11166/MAX11167.  
R
= 1280I. While the input voltage is within the Q(V  
S
DD  
+ 300mV) range, no current flows in the input clamps.  
Once the input voltage goes beyond this voltage range,  
the clamps turn on and limit the voltage at the input pin.  
MAX11166/MAX11167 INPUT CLAMP  
CHARACTERISTICS  
MAX11166/MAX11167 INPUT CLAMP  
CHARACTERISTICS  
25  
25  
AIN+ PIN  
INPUT SOURCE  
AIN+ PIN  
INPUT SOURCE  
15  
20  
15  
10  
5
5
-5  
0
-5  
-10  
-15  
-15  
R
DD  
= 1280I  
S
R
DD  
= 1280I  
S
-20  
-25  
V
= 5.0V  
V
= 5.0V  
-25  
-40 -30 -20 -10  
0
10 20 30 40  
-10  
-5  
0
5
10  
SIGNAL VOLTAGE AT SOURCE AND AIN+ INPUT (V)  
SIGNAL VOLTAGE AT SOURCE AND AIN+ INPUT (V)  
Figure 1. Input Clamp Characteristics  
Figure 2. Input Clamp Characteristics (Zoom In)  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
sampling capacitor charges during the acquisition period.  
During this acquisition period, the settling of the sampled  
voltage is affected by the source resistance and the input  
sampling capacitance. Sampling error can be estimated  
by modeling the time constant of the total input capaci-  
tance and the driving source impedance.  
Reference Mode 11: The internal bandgap reference  
source as well as the internal reference buffer are both  
in a shutdown state. The REF pin is in a high-impedance  
state. This mode would typically be used when an exter-  
nal reference source and external reference buffer is used  
to drive all MAX11166/MAX11167 parts in a system.  
Although the MAX11166/MAX11167 are easy to drive, an  
amplifier buffer is recommended if the source impedance  
is such that when driving a switch capacitor of ~20pF a  
significant settling error in the desired sampling period will  
occur. If this is the case, it is recommended that a con-  
figuration shown in the Typical Operating Circuit is used  
where at least a 500pF capacitor is attached to the AIN+  
pin. This capacitance reduces the size of the transient at  
the start of the acquisition period, which in some buffers  
will cause an input signal dependent offsets.  
Regardless of the reference mode used, the MAX11166/  
MAX11167 require a low-impedance reference source on  
the REF pin to support 16-bit accuracy. When using the  
internal reference buffer, externally bypass the reference  
buffer output using at least a 10FF, low-inductance, low-  
ESR capacitor placed as close as possible to the REF pin,  
thus minimizing additional PCB inductance. When using  
the internal bandgap reference source, bypass the REFIO  
pin with a 0.1FF capacitor to ground. If providing an exter-  
nal reference and using the internal reference buffer, drive  
the REFIO pin directly with an external reference source  
in the range of 3.0V to 4.25V. Finally, if disabling the  
MAX11166/MAX11167 internal bandgap reference source  
and internal reference buffer, drive the REF pin with a ref-  
erence voltage in the range of 2.5V to 4.25V and place at  
least a 10FF, low-inductance, low-ESR capacitor placed  
as close as possible to the REF pin .  
Regardless of whether an external buffer amp is used or  
not, the time constant, R  
× C  
, of the input  
LOAD  
SOURCE  
should not exceed t  
/12, where R  
is the total  
ACQ  
SOURCE  
signal source impedance, C  
is the total capacitance  
LOAD  
at the ADC input (external and internal) and t  
is the  
ACQ  
acquisition period. Thus to obtain accurate sampling in a  
500ns acquisition time a source impedance of less than  
1042ΩꢀshouldꢀbeꢀusedꢀifꢀdrivingꢀtheꢀADCꢀdirectly.ꢀWhenꢀ  
driving the ADC from a buffer, it is recommended a series  
resistanceꢀ(5Ωꢀtoꢀ50Ωꢀtypical)ꢀbetweenꢀtheꢀamplifierꢀandꢀ  
the external input capacitance as shown in the Typical  
Operating Circuit.  
When using the MAX11166/MAX11167 in external refer-  
ence mode, it is recommended that an external reference  
buffer be used. For bypass capacitors on the REF pin,  
X7R or X5R ceramic capacitors in a 1210 case size or  
smaller have been found to provide adequate bypass  
performance. Y5U or Z5U ceramics capacitors are not  
recommended due to their high voltage and temperature  
coefficients.  
1) Fast settling time: For multichannel multiplexed appli-  
cations the driving operational amplifier must be able  
to settle to 16-bit resolution when a full-scale step is  
applied during the minimum acquisition time.  
Maxim offers a wide range of precision references ideal  
for 16-bit accuracy. Table 1 lists some of the options rec-  
ommended.  
2) Low noise: It is important to ensure that the driver  
amplifier has a low average noise density appropriate  
for the desired bandwidth of the application. When  
the MAX11166/MAX11167 are used with its full band-  
width of 6MHz, it is preferable to use an amplifier that  
will produce an output noise spectral density of less  
than6nV/√Hz, to ensure that the overall SNR is not  
Input Amplifier  
The conversion results are accurate when the ADC  
acquires the input signal for an interval longer than the  
input signal's worst-case settling time. The ADC input  
Table 1. MAX11166/MAX11167 External Reference Recommendations  
TEMPERATURE  
COEFFICIENT (MAX)  
INITIAL  
ACCURACY (%)  
NOISE (0.1Hz TO  
PART  
V
(V)  
PACKAGE  
OUT  
10Hz) (µV  
)
P-P  
µMAX-8  
SO-8  
MAX6126  
2.5, 3, 4.096, 5.0  
2.5, 4.096, 5.0  
3 (A), 5 (B)  
1
0.06  
1.35  
MAX6325  
MAX6341  
MAX6350  
0.04, 0.02  
1.5, 2.4, 3.0  
SO-8  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
degraded significantly. It is recommended to insert  
an external RC filter at the MAX11166/MAX11167  
AIN+ input to attenuate out-of-band input noise and  
preserve the ADCs SNR. The effective RMS noise at  
the MAX11166/MAX11167 AIN+ input is 64FV, thus  
additional noise from a buffer circuit should be sig-  
nificantly lower in order to achieve the maximum SNR  
performance.  
1) This is also the code for an overranged analog  
input (V  
- V  
greater than +K x V  
, K =  
AIN+  
AIN-  
REF  
5.000/4.096).  
2) This is also the code for an underranged analog input  
(V  
- V  
less than -K x V , K = 5.000/4.096)  
REF  
AIN+  
AIN-  
5 x V  
4.096  
-5 x V  
REF  
+FS =  
-FS =  
FULL-SCALE  
TRANSITION  
FFFF  
FFFE  
3) THD performance: The input buffer amplifier used  
should have a comparable THD performance with that  
of the MAX11166/MAX11167 to ensure the THD of the  
digitized signal is not degraded.  
REF  
4.096  
+FS - (-FS)  
65536  
LSB =  
8001  
8000  
7FFF  
7FFE  
Table 2 summarizes the operational amplifiers that are  
compatible with the MAX11166/MAX11167. The MAX9632  
has sufficient bandwidth, low enough noise and distor-  
tion to support the full performance of the MAX11166/  
MAX11167. The MAX9633 is a dual amp and can support  
buffering for true pseudo-differential sampling.  
0001  
0000  
Transfer Function  
The ideal transfer characteristic for the MAX11166/  
MAX11167 is shown in Figure 3. The precise location of  
various points on the transfer function are given in Table 3.  
0
-FS  
-FS  
-FS + 0.5 × LSB  
+FS - 1.5 × LSB  
INPUT VOLTAGE (LSB)  
Figure 3. Bipolar Transfer Function  
Table 2. List of Recommended ADC Driver Op Amps for MAX11166/MAX11167  
INPUT-NOISE  
DENSITY  
(nV/Hz)  
SMALL-SIGNAL  
BANDWIDTH  
(MHz)  
SLEW RATE  
(V/µs)  
THD  
(dB)  
I
CC  
(mA)  
AMPLIFIER  
COMMENTS  
MAX9632  
MAX9633  
1
3
55  
27  
30  
18  
-128  
-128  
3.9  
3.5  
Low noise, THD at 10kHz  
Low noise, dual amp, THD at 10kHz  
Table 3. Transfer Function Example  
CODE TRANSITION  
+FS - 1.5 LSB  
BIPOLAR INPUT (V)  
+4.999771  
+0.000076  
0
DIGITAL OUTPUT CODE (HEX)  
FFFE - FFFF  
Midscale + 0.5 LSB  
Midscale  
8000 - 8001  
8000  
Midscale - 0.5 LSB  
-FS + 0.5 LSB  
-0.000076  
-4.999924  
7FFF - 8000  
2
0000 - 0001  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Input Configuration Interface  
Configuring in CS Mode  
An SPI interface clocked at up to 50MHz controls the  
MAX11166/MAX11167. Input configuration data is clocked  
into the configuration register on the falling edge of SCLK  
through the DIN pin. The data on DIN is used to program  
the ADC configuration register. The construct of this reg-  
ister is illustrated in Table 4. The configuration register  
defines the output interface mode, the reference mode,  
and the power-down state of the MAX11166/MAX11167.  
Figure 4 details the timing for loading the input configuration  
register when the MAX11166/MAX11167 are connected in  
CS mode (see Figure 6 and Figure 8 for hardware connec-  
tions). The load process is enabled on the falling edge of  
CNVST when SCLK is held high. The configuration data is  
clocked into the configuration register through DIN on the  
next 8 SCLK falling edges. Pull CNVST high to complete  
the input configuration register load process. DIN should  
idle high outside an input configuration register read.  
Table 4. ADC Configuration Register  
DEFAULT  
STATE  
LOGIC  
STATE  
BIT NAME  
BIT  
FUNCTION  
00  
01  
10  
11  
CS Mode, No-Busy Indicator  
CS Mode, with Busy Indicator  
MODE  
7:6  
00  
Daisy-Chain Mode, No-Busy Indicator  
Daisy-Chain Mode, with Busy Indicator  
Reference Mode 0. Internal reference and reference buffer are both  
powered on.  
00  
01  
Reference Mode 1. Internal reference is turned off, but internal reference  
buffer powered on. Apply the external reference voltage at REFIO.  
REF  
5:4  
00  
Reference Mode 2. Internal reference is powered on, but the internal  
reference buffer is powered off. This mode allows for internal reference to  
be used with an external reference buffer.  
10  
Reference Mode 3. Internal reference and reference buffer are both  
powered off. Apply an external reference voltage at REF.  
11  
0
1
0
Normal Mode. All circuitry is fully powered up at all times.  
Static Shutdown. All circuitry is powered down.  
Reserved, Set to 0  
SHDN  
3
0
0
Reserved  
2:0  
CNVST  
SCLK  
DIN  
t
HSCKCNF  
1
t
SSCKCNF  
0
2
3
4
SDINSCK  
B3  
5
6
7
t
t
HDINSCK  
B7  
B6  
B5  
B4  
B2  
B1  
B0  
Figure 4. Input Configuration Timing in CS Mode  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
CNVST  
t
HSCKCNF  
2
t
SSCKCNF  
SCLK  
DIN  
0
1
3
4
5
6
7
0
1
2
3
4
5
6
7
t
t
HDINSCK  
SDINSCK  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DATA LOADED TO PART B  
SHIFTED THROUGH PART A  
DATA LOADED TO PART A  
Figure 5. Input Configuration Timing in Daisy-Chain Mode  
Configuring in Daisy-Chain Mode  
Output Interface  
Figure 5 details the configuration register load process  
when the MAX11166/MAX11167 are connected in a  
daisy-chain configuration (see Figure 12 and Figure 14  
for hardware connections). The load process is enabled  
on the falling edge of CNVST when SCLK is held high.  
In daisy-chain mode, the input configuration registers are  
chained together through DOUT to DIN. Device A’s DOUT  
will drive device B’s DIN. The input configuration register  
is an 8-bit, first-in first-out shift register. The configuration  
data is clocked in N times through 8 O N falling SCLK  
edges. After the MAX11166/MAX11167 ADCs in the chain  
are loaded with the configuration byte, pull CNVST high  
to complete the configuration register loading process.  
Figure 5 illustrates a configuration sequence for loading  
two devices in a chain.  
The MAX11166/MAX11167 can be programmed into one  
of four output modes; CS modes with and without busy  
indicator and daisy-chain modes with and without busy  
indicator. When operating without busy indication, the  
user must externally timeout the maximum ADC conver-  
sion time before commencing readback. When operating  
in one of the two busy indication modes, the user can  
connect the DOUT output of the MAX11166/MAX11167 to  
an interrupt input on the digital host and use this interrupt  
to trigger the output data read.  
Regardless of the output interface mode used, digital  
activity should be limited to the first half of the conversion  
phase. Having SCLK or DIN transitions near the sampling  
instance can also corrupt the input sample accuracy.  
Therefore, keep the digital inputs quiet for approximately  
25ns before and 10ns after the rising edge of CNVST.  
Data loaded into the configuration register alters the state  
of the MAX11166/MAX11167 on the next conversion cycle  
after the register is loaded. However, powering up the inter-  
nal reference buffer or stabilizing the REFIO pin voltage  
will take several milliseconds to settle to 16-bit accuracy.  
These times are denoted as t  
quent timing diagrams.  
and t  
in all subse-  
SQ  
HQ  
In all interface modes, the data on DOUT is valid on  
both SCLK edges. However, the input setup time into  
the receiving digital host will be maximized when data is  
clocked into that digital host on the falling SCLK edge.  
Doing so will allow for higher data transfer rates between  
the MAX11166/MAX11167 and the digital host and conse-  
quently higher converter throughput.  
Shutdown Mode  
The SHDN bit in the configuration register forces the  
MAX11166/MAX11167 into and out of shutdown. Set  
SHDN to 0 for normal operation. Set SHDN to 1 to shut  
down all internal circuitry and reset all registers to their  
default state.  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
In all interface modes, it is recommended that the SCLK be  
idled low to avoid triggering an input configuration write on  
the falling edge of CNVST. If at anytime the device detects  
a high SCLK state on a falling edge of CNVST, it will enter  
the input configuration write mode and will write the state  
of DIN on the next 8 falling SCLK edges to the input con-  
figuration register.  
Table 5. ADC Output Interface Mode  
Selector Guide  
MODE  
TYPICAL APPLICATION AND BENEFITS  
Single or multiple ADCs connected to SPI-  
compatible digital host. Ideally suited for  
maximum throughput.  
CS Mode,  
No-Busy  
Indicator  
In all interface modes, all data bits from a previous conver-  
sion must be read before reading bits from a new conver-  
sion. When reading out conversion data, if too few SCLK  
falling edges are provided and all data bits are not read out,  
only the remaining unread data bits will be outputted during  
the next readout cycle. In such an event, the output data  
in every other readout cycle will appear to have been trun-  
cated as only the leftover bits from the previous readout  
cycle are outputted. This is an indication to the user that  
there are insufficient SCLK falling edges in a given readout  
cycle. Table 5 provides a guide to aid in the selection of the  
appropriate output interface mode for a given application.  
Single ADC connected to SPI-compatible  
digital host with interrupt input. Ideally suited  
for maximum throughput.  
CS Mode,  
With Busy  
Indicator  
Daisy-Chain  
Mode,  
No-Busy  
Indicator  
Multiple ADCs connected to a SPI-  
compatible digital host. Ideally suited for  
multichannel simultaneous sampled isolated  
applications.  
Daisy-Chain  
Mode,  
With Busy  
Indicator  
Multiple ADCs connected to a SPI-  
compatible digital host with interrupt input.  
Ideally suited for multichannel simultaneous  
sampled isolated applications.  
CS No-Busy Indicator Mode  
The CS no-busy indicator mode is ideally suited for maxi-  
mum throughput when a single MAX11166/MAX11167 is  
connected to a SPI-compatible digital host. The connec-  
tion diagram is shown in Figure 6, and the corresponding  
timing is provided in Figure 7.  
CONVERT  
DIGITAL HOST  
A rising edge on CNVST completes the acquisition, initi-  
ates the conversion, and forces DOUT to high impedance.  
The conversion continues to completion irrespective of the  
state of CNVST allowing CNVST to be used as a select line  
for other devices on the board. If CNVST is brought low  
during a conversion and held low throughout the maximum  
conversion time, the MSB will be output at the end of the  
conversion.  
CNVST  
DOUT  
DIN  
DATA IN  
CONFIG  
MAX11166  
MAX11167  
SCLK  
CLK  
When the conversion is complete, the MAX11166/  
MAX11167 enter the acquisition phase. Drive CNVST  
low to output the MSB onto DOUT. The remaining data  
bits are then clocked by subsequent SCLK falling edges.  
DOUT returns to high impedance after the 16th SCLK fall-  
ing edge, or when CNVST goes high.  
Figure 6. CS No-Busy Indicator Mode Connection Diagram  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
A rising edge on CNVST completes the acquisition, initi-  
ates the conversion and forces DOUT to high impedance.  
The conversion continues to completion irrespective of  
the state of CNVST allowing CNVST to be used as a  
select line for other devices on the board.  
CS with Busy Indicator Mode  
The CS with busy indicator mode is shown in Figure 8  
where a single ADC is connected to a SPI-compatible  
digital host with interrupt input. The corresponding timing  
is given in Figure 9.  
t
CNVPW  
CNVST  
DIN  
t
CYC  
t
t
ACQ  
CONV  
ACQUISITION  
CONVERSION  
ACQUISITION  
t
SSCKCNF  
t
SCLK  
t
SCLKL  
t
HSCKCNF  
SCLK  
DOUT  
1
2
3
14  
15  
16  
t
SCLKH  
t
t
t
DIS  
EN  
DDO  
D15  
D14  
D13  
D1  
D0  
Figure 7. CS No Busy Indicator Mode Timing  
CONVERT  
DIGITAL HOST  
OVDD  
10kΩ  
CNVST  
DOUT  
DATA IN  
MAX11166  
MAX11167  
IRQ  
DIN  
CONFIG  
SCLK  
CLK  
Figure 8. CS With Busy Indicator Mode Connection Diagram  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
t
CNVPW  
CNVST  
DIN  
t
CYC  
t
t
ACQ  
CONV  
ACQUISITION  
CONVERSION  
ACQUISITION  
t
SCLK  
t
SSCKCNF  
t
SCLKL  
t
HSCKCNF  
SCLK  
DOUT  
1
2
3
4
15  
16  
17  
t
SCLKH  
t
t
DIS  
DDO  
BUSY BIT  
D15  
D14  
D13  
D1  
D0  
Figure 9. CS With Busy Indicator Mode Timing  
When the conversion is complete, DOUT transitions from  
high impedance to a low logic level, signaling to the digital  
host through the interrupt input that data readback can  
commence. The MAX11166/MAX11167 then enter the  
acquisition phase. The data bits are then clocked out,  
MSB first, by subsequent SCLK falling edges. DOUT  
returns to high impedance after the 17th SCLK falling  
edge or when CNVST goes high, and is then pulled to  
OVDD through the external pullup resistor.  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
irrespective of the state of CNVST allowing CNVST  
to be used as a select line for other devices on the  
board. However, CNVST must be returned high before  
the minimum conversion time for proper operation so  
that another conversion is not initiated with insufficient  
acquisition time and data correctly read out of the  
device.  
Multichannel CS Configuration,  
Asynchronous or Simultaneous Sampling  
The multichannel CS configuration is generally used when  
multiple MAX11166/MAX11167 ADCs are connected to an  
SPI-compatible digital host. Figure 10 shows the connec-  
tion diagram example using two MAX11166/MAX11167  
devices. Figure 11 shows the corresponding timing.  
When the conversion is complete, the MAX11166/  
MAX11167 enter the acquisition phase. Each ADC result  
can be read by bringing its CNVST input low, which conse-  
quently outputs the MSB onto DOUT. The remaining data  
bits are then clocked by subsequent SCLK falling edges.  
For each device, its DOUT will return to a high-impedance  
state after the 16th SCLK falling edge or when CNVST  
goes high. This control allows multiple devices to share  
the same DOUT bus.  
Asynchronous or simultaneous sampling is possible by  
controlling the CS1 and CS2 edges. In Figure 10, the  
DOUT bus is shared with the digital host limiting the  
throughput rate. However, maximum throughput is pos-  
sible if the host accommodates each ADC’s DOUT pin  
independently.  
A rising edge on CNVST completes the acquisition,  
initiates the conversion and forces DOUT to high  
impedance. The conversion continues to completion  
CS2  
CS1  
CNVST  
DOUT  
CNVST  
DOUT  
DIN  
DIGITAL HOST  
MAX11166  
MAX11166  
MAX11167  
MAX11167  
DIN  
CONFIG  
DEVICE A  
DEVICE B  
SCLK  
SCLK  
DATA IN  
CLK  
Figure 10. Multichannel CS Configuration Diagram  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
t
t
CNVPW  
CNVPW  
CNVSTA(CS1)  
CNVSTB(CS2)  
DIN  
t
CYC  
t
t
CONV  
ACQ  
ACQUISITION  
t
CONVERSION  
ACQUISITION  
t
SCLK  
SSCKCNF  
t
SCLKL  
t
HSCKCNF  
17  
18  
19  
31  
t
32  
SCLK  
DOUT  
1
2
3
15  
16  
t
SCLKH  
t
EN  
t
EN  
t
DDO  
DIS  
t
DIS  
D15  
D14  
D13  
D1  
D0  
D15  
D14  
D13  
D1  
D0  
Figure 11. Multichannel CS Configuration Timing  
Each ADC in the chain outputs its MSB data first requir-  
ing 16 × N clocks to read back N ADCs.  
Daisy-Chain, No-Busy Indicator Mode  
The daisy-chain mode with no-busy indicator is ideally  
suited for multichannel isolated applications that require  
minimal wiring complexity. Simultaneous sampling of  
multiple ADC channels is realized on the serial interface  
where data readback is analogous to clocking a shift  
register. Figure 12 shows a connection diagram of two  
MAX11166/MAX11167s configured in a daisy chain. The  
corresponding timing is given in Figure 13.  
In daisy-chain mode, the maximum conversion rate  
is reduced due to the increased readback time. For  
instance, with a 6ns or less digital host setup time and  
3V interface, up to four MAX11166/MAX11167 devices  
running at a conversion rate of 218ksps (MAX11167) or  
324ksps (MAX11166) can be daisy-chained.  
Daisy-Chain with Busy Indicator Mode  
A rising edge on CNVST completes the acquisition and  
initiates the conversion. Once a conversion is initiated,  
it continues to completion irrespective of the state of  
CNVST. When a conversion is complete, the MSB is  
presented onto DOUT and the MAX11166/MAX11167  
return to the acquisition phase. The remaining data bits  
are stored within an internal shift register. To read these  
bits out, CNVST is brought low and each bit is shifted  
out on subsequent SCLK falling edge. The DIN input  
of each ADC in the chain is used to transfer conversion  
data from the previous ADC into the internal shift register  
of the next ADC, thus allowing for data to be clocked  
through the multichip chain on each SCLK falling edge.  
The daisy-chain mode with busy indicator is ideally suited  
for multichannel isolated applications that require minimal  
wiring complexity while providing a conversion complete  
indication that can be used to interrupt a host processor  
to read data.  
Simultaneous sampling of multiple ADC channels is real-  
ized on the serial interface where data readback is analo-  
gous to clocking a shift register. The daisy-chain mode  
with busy indicator is shown in Figure 14 where three  
MAX11166/MAX11167s are connected to a SPI-compatible  
digital host with corresponding timing given in Figure 15.  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
A rising edge on CNVST completes the acquisition and  
initiates the conversion. Once a conversion is initiated, it  
continues to completion irrespective of the state of CNVST.  
When a conversion is complete, the busy indicator is pre-  
sented onto each DOUT and the MAX11166/MAX11167  
return to the acquisition phase. The busy indicator for the  
last ADC in the chain can be connected to an interrupt input  
on the digital host. The digital host should insert a 50ns  
delay from the receipt of this interrupt before reading out  
data from all ADCs to ensure that all devices in the chain  
have completed conversion.  
The conversion data is stored within an internal shift reg-  
ister. To read these bits out, CNVST is brought low and  
each bit is shifted out on subsequent SCLK falling edge.  
The DIN input of each ADC in the chain is used to transfer  
conversion data from the previous ADC into the internal  
shift register of the next ADC, thus allowing for data to be  
clocked through the multichip chain on each SCLK falling  
edge. The total of number of falling SCLKs needed to read  
back all data from N ADCs is 16 × N + 1 edges, the one  
additional SCLK falling edge required to clock out the busy  
mode bit from the host side ADC.  
CONFIG  
CONVERT  
CNVST  
CNVST  
DIGITAL HOST  
D
D
B
MAX11166  
MAX11167  
MAX11166  
MAX11167  
A
DIN  
DOUT  
DIN  
DOUT  
DATA IN  
DEVICE A  
SCLK  
DEVICE B  
SCLK  
CLK  
Figure 12. Daisy-Chain, No-Busy Indicator Mode Connection Diagram  
t
CNVPW  
CNVST  
t
CYC  
DIN  
t
CONV  
t
ACQ  
ACQUISITION  
SCLK  
CONVERSION  
ACQUISITION  
t
t
SSCKCNF  
SCLK  
t
SCLKL  
t
HSCKCNF  
1
2
3
14  
15  
16  
17  
18  
30  
31  
32  
t
SCLKH  
t
DDO  
D 14  
D 15  
B
D 13  
B
D 1  
B
D 0  
B
D 15  
A
D 14  
A
D 1  
A
D 0  
A
DOUT  
B
B
Figure 13. Daisy-Chain, No-Busy Indicator Mode Timing  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
CONFIG  
CONVERT  
CNVST  
CNVST  
CNVST  
DIGITAL HOST  
D
D
B
MAX11166  
MAX11167  
DEVICE A  
SCLK  
MAX11166  
MAX11167  
DEVICE B  
SCLK  
MAX11166  
MAX11167  
DEVICE C  
SCLK  
D
C
A
DIN  
DOUT  
DIN  
DOUT  
DIN  
DOUT  
DATA IN  
IRQ  
CLK  
Figure 14. Daisy-Chain Mode with Busy Indicator Connection Diagram  
t
CNVPW  
CNVST  
t
CYC  
DIN  
t
t
ACQ  
CONV  
ACQUISITION  
SCLK  
CONVERSION  
ACQUISITION  
t
t
SSCKCNF  
48  
SCLK  
t
t
HSCKCNF  
SCLKH  
4
1
2
3
15  
16  
17  
18  
19  
31  
32  
33  
34  
35  
47  
49  
t
SCLKL  
t
DDO  
DOUT = DIN  
D 15 D 14 D 13  
D 1 D 0  
A A  
BUSY  
BIT  
A
B
A
A
A
DOUT = DIN  
B
D 15 D 14 D 13  
D 1 D 0 D 15 D 14  
D 1 D 0  
A A  
C
B
B
B
B
B
A
A
BUSY  
BIT  
DOUT  
C
D 15 D 14 D 13  
D 15 D 14  
D 1 D 10  
D 1 D 0 D 15 D 14  
D 1 D 0  
B B  
BUSY  
BIT  
C
C
C
A
A
A
A
C
C
B
B
Figure 15. Daisy-Chain Mode with Busy Indicator Timing  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
In daisy-chain mode, the maximum conversion rate is  
reduced due to the increased readback time. For instance,  
with a 6ns or less digital host setup time and 3V interface, up  
to four MAX11166/MAX11167 devices running at a conver-  
sion rate of 217ksps (MAX11167) or 322ksps (MAX11166)  
can be daisy-chained on a 3-wire port.  
these devices, the DNL of each digital output code is  
measured and the worst-case value is reported in the  
Electrical Characteristics table. A DNL error specification  
of less than Q1 LSB guarantees no missing codes and a  
monotonic transfer function.  
Offset Error  
Layout, Grounding, and Bypassing  
For the MAX11166/MAX11167, the offset error is defined  
at code center 0x8000. This code center should occur at  
0V input between AIN+ and AIN-. The offset error is the  
actual voltage required to produce code center 0X8000,  
expressed in mV.  
For best performance, use PCBs with ground planes.  
Ensure that digital and analog signal lines are separated  
from each other. Do not run analog and digital lines parallel  
to one another (especially clock lines), and avoid running  
digital lines underneath the ADC package. A single solid  
GND plane configuration with digital signals routed from  
one direction and analog signals from the other provides  
the best performance. Connect the GND and AGNDS pins  
on the MAX11166/MAX11167 to this ground plane. Keep  
the ground return to the power-supply low impedance and  
as short as possible for noise-free operation.  
Gain Error  
Gain error is defined as the difference between the change  
in analog input voltage required to produce a top code  
transition minus a bottom code transition, subtracted from  
the ideal change in analog input voltage on (5.0V/4.096V)  
x V  
x (65534/65536). For the MAX11166/MAX11167,  
REF  
top code transition is 0xFFFE to 0xFFFF. The bottom  
code transition is 0x0000 and 0x0001. For the MAX11166/  
MAX11167, the analog input voltage to produce these  
code transitions is measured and then the gain error is  
A 500pF C0G (or NPO) ceramic chip capacitor should  
be placed between AIN+ and the ground plane as close  
as possible to the MAX11166/MAX11167. This capaci-  
tor reduces the inductance seen by the sampling cir-  
cuitry and reduces the voltage transient seen by the input  
source circuit.  
computed by subtracting 2.0 x (5.0V/4.096V) x V  
(65534/65536) from this measurement.  
x
REF  
Signal-to-Noise Ratio  
For best performance, connect the REF output to the  
ground plane with a 16V, 10FF ceramic chip capacitor  
with a X5R or X7R dielectric in a 1210 or smaller case  
size. Ensure that all bypass capacitors are connected  
directly into the ground plane with an independent via.  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of the  
full-scale analog input (RMS value) to the RMS quantiza-  
tion error (residual error). The ideal, theoretical minimum  
analog-to-digital noise is caused by quantization noise  
error only and results directly from the ADC’s resolution  
(N bits):  
Bypass V  
and OVDD to the ground plane with 0.1FF  
DD  
ceramic chip capacitors on each pin as close as pos-  
sible to the device to minimize parasitic inductance.  
Add at least one bulk 10FF decoupling capacitor to V  
SNR = (6.02 x N + 1.76)dB  
DD  
and OVDD per PCB. For best performance, bring a  
where N = 16 bits. In reality, there are other noise sources  
besides quantization noise: thermal noise, reference  
noise, clock jitter, etc. SNR is computed by taking the ratio  
of the RMS signal to the RMS noise, which includes all  
spectral components not including the fundamental, the  
first five harmonics, and the DC offset.  
V
DD  
power plane in on the analog interface side of the  
MAX11166/MAX11167 and a OVDD power plane from the  
digital interface side of the device.  
Definitions  
Integral Nonlinearity  
Signal-to-Noise Plus Distortion  
Integral nonlinearity (INL) is the deviation of the values on  
an actual transfer function from a straight line. For these  
devices, this straight line is a line drawn between the end  
points of the transfer function, once offset and gain errors  
have been nullified.  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all the other ADC output signals:  
Signal  
RMS  
Differential Nonlinearity  
SINAD(dB) = 20 ×log   
(Noise + Distortion)  
RMS  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. For  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Effective Number of Bits  
Aperture Delay  
The effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quantiza-  
tion noise only. With an input range equal to the full-scale  
range of the ADC, calculate the ENOB as follows:  
Aperture delay (t ) is the time delay from the sampling  
AD  
clock edge to the instant when an actual sample is taken.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
aperture delay.  
SINAD 1.76  
ENOB =  
Small-Signal Bandwidth  
6.02  
A small -20dBFS analog input signal is applied to an ADC  
in a manner that ensures that the signal’s slew rate does  
not limit the ADC’s performance. The input frequency is  
then swept up to the point where the amplitude of the  
digitized conversion result has decreased 3dB.  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
Full-Power Bandwidth  
2
2
2
2
V
+ V  
+ V  
+ V  
2
3
4
5
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by 3dB. This point is defined as full-power  
input bandwidth frequency.  
THD = 10×log  
2
1
V
where V is the fundamental amplitude and V through V  
are the 2nd- through 5th-order harmonics.  
1
2
5
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next-largest fre-  
quency component.  
Maxim Integrated  
31  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Selector Guide  
PART  
BITS  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
INPUT RANGE (V)  
REFERENCE  
Internal  
PACKAGE  
SPEED (ksps)  
MAX11160  
MAX11161  
MAX11162  
MAX11163  
MAX11164  
MAX11165  
MAX11166  
MAX11167  
MAX11168  
MAX11169  
0 to 5  
0 to 5  
0 to 5  
0 to 5  
0 to 5  
0 to 5  
±5  
µMAX-10  
µMAX-10  
µMAX-10  
µMAX-10  
500  
250  
500  
250  
500  
250  
500  
250  
500  
250  
Internal  
External  
External  
Internal/External  
Internal/External  
Internal/External  
Internal/External  
Internal  
3mm x 3mm TDFN-12  
3mm x 3mm TDFN-12  
3mm x 3mm TDFN-12  
3mm x 3mm TDFN-12  
µMAX-10  
±5  
±5  
±5  
Internal  
µMAX-10  
Ordering Information  
Package Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PART  
TEMP RANGE  
PIN-PACKAGE  
12 TDFN-EP*  
12 TDFN-EP*  
MAX11166ETC+T  
MAX11167ETC+T  
-40°C to +85°C  
-40°C to +85°C  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
*EP = Exposed Pad.  
12 TDFN-EP  
TD1233+1  
21-0664  
90-0397  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX11166/MAX11167  
16-Bit, 500ksps/250ksps, ±5V SAR ADCs  
with Internal Reference in TDFN  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
8/12  
Initial release  
Released the MAX11166. Updated the Electrical Characteristics, Typical Operating  
Characteristics, Table 2, and the Input Amplifier section.  
1
12/12  
1–9, 11–14, 26  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2012 Maxim Integrated Products, Inc.  
33  

相关型号:

MAX11160EUB+

ADC, Successive Approximation, 16-Bit, 1 Func, PDSO10,
MAXIM

MAX11160EUB+T

ADC, Successive Approximation, 16-Bit, 1 Func, PDSO10,
MAXIM

MAX11161

16-Bit, 500ksps/250ksps, ±5V SAR ADCs with Internal Reference in TDFN
MAXIM

MAX11161EUB+

ADC, Successive Approximation, 16-Bit, 1 Func, PDSO10,
MAXIM

MAX11161EUB+T

ADC, Successive Approximation, 16-Bit, 1 Func, PDSO10,
MAXIM

MAX11162

16-Bit, 500ksps/250ksps, ±5V SAR ADCs with Internal Reference in TDFN
MAXIM

MAX11162EUB+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, PDSO10, UMAX-10
MAXIM

MAX11162EUB+T

4-/6-/8-CHANNEL, 16-/14-BIT, SIMULTANEOUS-SAMPLING ADCS
MAXIM

MAX11163

16-Bit, 500ksps/250ksps, ±5V SAR ADCs with Internal Reference in TDFN
MAXIM

MAX11163EUB+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, PDSO10, 3 X 5 MM, ROHS COMPLIANT, USOP-10
MAXIM

MAX11163EUB+T

暂无描述
MAXIM

MAX11164

16-Bit, 500ksps/250ksps, ±5V SAR ADCs with Internal Reference in TDFN
MAXIM