MAX11254ATJ/V+ [MAXIM]

24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA, Delta-Sigma ADC with SPI Interface;
MAX11254ATJ/V+
型号: MAX11254ATJ/V+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA, Delta-Sigma ADC with SPI Interface

文件: 总51页 (文件大小:1162K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here for production status of specific part numbers.  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
General Description  
Benefits and Features  
High Resolution for Industrial Applications that  
The MAX11254 is a 6-channel, 24-bit delta-sigma ADC  
that achieves exceptional performance while consuming  
very low power. Sample rates up to 64ksps allow preci-  
sion DC measurements. The MAX11254 communicates  
via a SPI serial interface and is available in a small (5mm  
x 5mm) TQFN package.  
Require a Wide Dynamic Range  
• 133dB SNR at 50sps  
• 124dB SNR at 1000sps  
Longer Battery Life for Portable Applications  
• 2.2mA Operating Mode Current  
1μA Sleep Current  
The MAX11254 offers a 6.2nV/Hz noise programmable  
gain amplifier (PGA) with gain settings from 1x to 128x.  
The integrated PGA provides isolation of the signal inputs  
from the switched capacitor sampling network. The PGA  
also enables the MAX11254 to interface directly with  
high-impedance sources without compromising available  
dynamic range.  
Single or Split Analog Supplies Provide Input Voltage  
Range Flexibility  
• 2.7V to 3.6V (Single Supply) or ±1.8V (Split Supply)  
Enables System Integration  
• Low Noise, 6.2nV/Hz PGA with Gains of 1, 2, 4,  
The MAX11254 operates from a single 2.7V to 3.6V  
analog supply, or split ±1.8V analog supplies, allowing  
the analog input to be sampled below ground. The digital  
supply range is 1.7V to 2.0V or 2.0V to 3.6V, allowing  
communication with 1.8V, 2.5V, 3V, or 3.3V logic.  
8, 16, 32, 64, 128  
6-Channel, Fully Differential Input  
Enables On-Demand Device and System Gain and  
Offset Calibration  
• User-Programmable Offset and Gain Registers  
Applications  
Analog I/O for Programmable Logic Controllers  
Weigh Scales  
Pressure Sensors  
Robust Performance in a Small Package  
• -40°C to +125°C Operating Temperature Range  
• TQFN Package, 5mm x 5mm  
Battery-Powered Instrumentation  
Automotive  
AEC-Q100 Qualified, Refer to Ordering Information  
for List of /V Parts  
Typical Application Circuit  
2.7V TO 3.6V  
REF  
2.0V TO 3.6V  
1µF  
10nF  
1µF  
REFN REFP  
AIN0P  
AVDD  
DVDD  
1nF  
C0G  
RSTB  
CSB  
AIN0N  
SCLK  
µC  
MAX11254  
DIN  
DOUT  
AIN5P  
RDYB  
1nF  
C0G  
AIN5N  
GPO0 GPO1 GPOGND CAPP CAPN CAPREG AVSS  
DGND  
220nF  
0603  
X7R  
1nF  
C0G  
RESISTIVE BRIDGE MEASUREMENT CIRCUIT, SPI CONFIGURATION  
19-7542; Rev 5; 9/18  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Absolute Maximum Ratings  
AVDD to AVSS .....................................................-0.3V to +3.9V  
AVDD to DGND....................................................-0.3V to +3.9V  
DVDD to DGND....................................................-0.3V to +3.9V  
AVSS to DGND ..................................................-1.95V to +0.3V  
DVDD to AVSS.....................................................-0.3V to +3.9V  
AVSS to GPOGND.............................................-1.95V to +0.3V  
GPOGND to DGND............................................-1.95V to +0.3V  
AIN_P, AIN_N,REFP, REFN,  
CAPREG to DGND...............................................-0.3V to +2.1V  
All Other Pins to DGND.............................. -0.3V to the lower of  
+3.9V or (V  
+ 0.3V)  
DVDD  
Maximum Continuous Current into Any Pins  
Except GPOGND Pin...................................................±50mA  
Maximum Continuous Current into  
GPOGND Pin .............................................................±100mA  
Continuous Power Dissipation (T = +70°C)  
A
CAPP, CAPN to AVSS ............................ -0.3V to the lower of  
TQFN (derate 34.5mW/°C above +70°C)...............2758.6mW  
Operating Temperature Range......................... -40°C to +125°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -55°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
+3.9V or (V  
+ 0.3V)  
AVDD  
GPO_ to GPOGND .................................... -0.3V to the lower of  
+3.9V or (V + 0.3V)  
AVDD  
CAPREG to AVSS................................................-0.3V to +3.9V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
TQFN  
Junction-to-Ambient Thermal Resistance (θ )…….29°C/W  
JA  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= 3.6V, V  
= 0V, V  
= 2.0V to 3.6V, V  
- V  
= V  
, DATA RATE = 1ksps, PGA low-noise mode, single-cycle  
AVDD  
AVDD  
AVSS  
DVDD  
REFP  
REFN  
conversion mode (SCYCLE = 1). T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)(Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE (Single-Cycle Conversion Mode)  
PGA low-  
noise mode  
PGA gain of  
128, single-cycle  
mode at 1ksps  
data rate  
0.19  
0.26  
0.83  
1.16  
0.83  
PGA low-  
power mode  
PGA low-  
noise mode  
PGA gain of 128,  
single-cycle  
mode at 12.8ksps  
data rate  
Noise Voltage  
(Referred to Input)  
V
µV  
RMS  
n
PGA low-  
power mode  
PGA low-  
noise mode  
PGA gain of 128,  
continuous  
mode at 64ksps  
data rate  
PGA low-  
power mode  
1.16  
3
Integral Nonlinearity  
Zero Error  
INL  
15  
ppm  
After system zero-scale  
calibration  
Z
1
µV  
ERR  
Zero Drift  
Z
50  
2
nV/°C  
Drift  
After system full-scale  
calibration (Notes 3 and 4)  
Full-Scale Error  
FSE  
ppmFSR  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Electrical Characteristics (continued)  
(V  
= 3.6V, V  
= 0V, V  
= 2.0V to 3.6V, V  
- V  
= V  
, DATA RATE = 1ksps, PGA low-noise mode, single-cycle  
AVDD  
AVDD  
AVSS  
DVDD  
REFP  
REFN  
conversion mode (SCYCLE = 1). T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)(Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
FSE  
CONDITIONS  
MIN  
TYP  
0.05  
130  
130  
105  
95  
MAX  
UNITS  
Full-Scale Error Drift  
ppmFSR/°C  
Drift  
DC rejection  
110  
110  
80  
50Hz/60Hz rejection (Note 5)  
DC rejection with PGA gain 64  
DC rejection with PGA gain 128  
DC rejection  
Common-Mode Rejection  
CMR  
dB  
73  
75  
95  
AVDD, AVSS Supply Rejection  
Ratio  
PSRRA  
PSRRD  
50Hz/60Hz rejection (Note 5)  
DC rejection with PGA gain 128  
DC rejection  
95  
dB  
dB  
65  
75  
105  
105  
90  
115  
115  
110  
DVDD Supply Rejection Ratio  
50Hz/60Hz rejection (Note 5)  
DC rejection with PGA gain 128  
PGA  
Gain Setting  
1
128  
V/V  
Low-noise mode  
Low-power mode  
Gain = 1  
6.2  
10  
0.75  
1.2  
2
Noise-Spectral Density  
NSD  
nV/√Hz  
Gain = 2  
Gain = 4  
Gain = 8  
3
Gain Error, Not Calibrated  
Output Voltage Range  
G
%
ERR  
Gain = 16  
4.5  
6
Gain = 32  
Gain = 64  
5.5  
2
Gain = 128  
V
AVSS  
+ 0.3  
V
AVDD  
- 0.3  
VOUT  
V
RNG  
MUX  
Channel-to-Channel Isolation  
GENERAL-PURPOSE OUTPUTS  
ISO  
DC  
140  
dB  
CH-CH  
GPO_ output current = 30mA,  
GPOGND connected to AVSS  
Resistance (On)  
R
3.5  
30  
10  
90  
ON  
Per output  
mA  
mA  
Maximum Current (On)  
I
MAX  
Total from all outputs into  
GPOGND pin (Note 5)  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Electrical Characteristics (continued)  
(V  
= 3.6V, V  
= 0V, V  
= 2.0V to 3.6V, V  
- V  
= V  
, DATA RATE = 1ksps, PGA low-noise mode, single-cycle  
AVDD  
AVDD  
AVSS  
DVDD  
REFP  
REFN  
conversion mode (SCYCLE = 1). T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)(Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Current into the GPOGND pin  
with one individual GPO_ pin  
connected to 3V  
I
0.4  
leak1  
leak3  
Leakage Current (Off)  
nA  
Current into the GPOGND pin  
with all GPO_ pins connected  
to 3V  
I
13  
100  
POWER-UP DELAYS (Note 5)  
SLEEP state (full power-down)  
to LDO wake-up  
T
23  
4
45  
8
PUPSLP  
V
= 2.7V, V  
= 2.0V,  
AVDD  
DVDD  
CAPREG = 220nF  
Power-Up Time  
µs  
STANDBY state (analog blocks  
powered down, LDO on) to  
Active  
T
PUPSBY  
ANALOG INPUTS/REFERENCE INPUTS  
Direct (PGA bypassed)  
V
V
AVDD  
Common-Mode Input Voltage  
AVSS  
Range,  
= (V  
CMI  
V
V
RNG  
V
+ 0.4  
V
AVSS  
AVDD  
- 1.3  
PGA  
V
+ V  
)/2  
CM  
AIN_P  
AIN_N  
Direct (PGA bypassed)  
PGA  
V
V
V
AVSS  
AVDD  
Input Voltage Range (AIN_P,  
AIN_N)  
V
V
+ 0.4  
IN(RNG)  
AVSS  
AVDD  
- 1.3  
Unipolar  
0
V
REF  
Differential Input Voltage  
Range (AIN_P – AIN_N)  
V
V
IN(DIFF)  
Bipolar  
-V  
+V  
REF  
REF  
DC Input Leakage  
I
SLEEP state enabled  
Direct (PGA bypassed)  
PGA enabled  
±0.1  
±11.6  
±1  
nA  
µA/V  
nA  
IN_LEAK  
Differential Input Conductance  
Differential Input Current  
G
DIFF  
I
DIFF  
Common-Mode Input  
Conductance  
G
Direct (PGA bypassed)  
PGA enabled  
±1  
±10  
26  
µA/V  
nA  
CM  
Common-Mode Input Current  
I
CM  
Reference Differential  
Input Resistance  
R
Active state  
kΩ  
REF  
Reference Differential  
Input Current  
I
STANDBY and SLEEP state  
±1  
nA  
pF  
REF_PD  
C
Direct (PGA bypassed)  
PGA  
2.5  
0.25  
4.096  
IN  
Input Capacitance  
CP  
GAIN  
AIN_P, AIN_N Sampling Rate  
f
MHz  
V
S
Reference Voltage Range  
(REFP, REFN)  
V
(Note 6)  
V
AVDD  
REF(RNG)  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Electrical Characteristics (continued)  
(V  
= 3.6V, V  
= 0V, V  
= 2.0V to 3.6V, V  
- V  
= V  
, DATA RATE = 1ksps, PGA low-noise mode, single-cycle  
AVDD  
AVDD  
AVSS  
DVDD  
REFP  
REFN  
conversion mode (SCYCLE = 1). T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)(Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Differential Reference Voltage  
Range (REFP – REFN)  
V
1.5  
V
AVDD  
REF  
REFP, REFN Sampling Rate  
4.096  
MHz  
SENSOR FAULT DETECT CURRENTS  
Current  
1.1  
±10  
0.3  
µA  
%
Initial Tolerance  
Drift  
%/°C  
DIGITAL SINC FILTER RESPONSE  
0.203  
x DATA  
RATE  
Bandwidth (-3dB)  
Hz  
s
5/DATA  
RATE  
Settling Time (Latency)  
LOGIC INPUTS  
Input Current  
IDIGI  
Leakage current  
±1  
µA  
V
LEAK  
0.3 x  
Input Low Voltage  
V
IL  
V
DVDD  
0.7 x  
Input High Voltage  
V
V
IH  
V
DVDD  
Input Hysteresis  
V
200  
20  
mV  
V
HYS  
GPIO Input Low Voltage  
GPIO Input High Voltage  
GPIO Input Hysteresis  
LOGIC OUTPUTS  
V
0.3  
IL_GPIO  
IH_GPIO  
V
1.2  
V
V
mV  
HYS_GPIO  
Output Low Level  
V
I
I
= 1mA  
0.4  
V
V
OL  
OL  
Output High Level (RDYB,  
DOUT, GPIO_ )  
0.9 x  
V
= 1mA  
OH  
OH  
V
DVDD  
Floating State Leakage Current  
IDIGO  
±10  
µA  
pF  
LEAK  
DIGO  
Floating State Output  
Capacitance  
C
9
POWER REQUIREMENTS  
Negative Analog Supply  
Voltage  
V
-1.8  
0
V
AVSS  
V
V
AVSS  
+ 3.6  
AVSS  
+ 2.7  
Positive Analog Supply Voltage  
Negative I/O Supply Voltage  
V
V
V
AVDD  
V
0
DGND  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Electrical Characteristics (continued)  
(V  
= 3.6V, V  
= 0V, V  
= 2.0V to 3.6V, V  
- V  
= V  
, DATA RATE = 1ksps, PGA low-noise mode, single-cycle  
AVDD  
AVDD  
AVSS  
DVDD  
REFP  
REFN  
conversion mode (SCYCLE = 1). T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)(Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CAPREG not driven by external  
supply  
2.0  
3.6  
Positive I/O Supply Voltage  
V
V
DVDD  
DVDD and CAPREG pins  
connected together on the circuit  
board  
1.7  
1.8  
1.7  
2.0  
2.0  
Internal LDO enabled  
When CAPREG pin is driven  
externally, ensure it is connected  
directly to DVDD pin  
CAPREG Supply Voltage  
V
V
CAPREG  
Direct  
2.2  
3.5  
3
Analog Supply Current  
I
PGA low-power mode  
PGA low-noise mode  
4.7  
5.75  
1.1  
mA  
mA  
AVDD(CNV)  
4.2  
V
= 2.0V, LDO enabled  
0.65  
DVDD  
DVDD  
DVDD Operating Current  
I
DVDD(CNV)  
V
= V  
= 2.0V,  
CAPREG  
0.58  
LDO disabled  
V
V
= 3.6V, V  
= 2.0V  
= 0V,  
= 0V,  
AVDD  
DVDD  
AVSS  
AVSS  
AVDD Sleep Current  
DVDD Sleep Current  
AVDD Standby Current  
1
µA  
µA  
µA  
IAVDD(SLP)  
I
V
= 2.0V  
0.3  
1.5  
50  
2.3  
DVDD(SLP)  
AVDD(SBY)  
DVDD  
V
V
= 3.6V, V  
= 2.0V  
AVDD  
DVDD  
I
V
= 2.0V, LDO enabled  
175  
DVDD  
DVDD  
DVDD Standby Current  
I
µA  
V
V
= V  
= 2.0V,  
DVDD(SBY)  
CAPREG  
2.5  
LDO disabled  
AVDD, DVDD supply  
undervoltage lockout  
0.8  
0.65  
0.6  
1.2  
1.0  
1.1  
1.65  
1.35  
1.55  
UVLO Threshold Low to High  
V
LH  
HL  
CAPREG supply undervoltage  
lockout  
AVDD, DVDD supply  
undervoltage lockout  
UVLO Threshold High to Low  
V
V
CAPREG supply undervoltage  
lockout  
0.45  
0.95  
1.3  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Electrical Characteristics (continued)  
(V  
= 3.6V, V  
= 0V, V  
= 2.0V to 3.6V, V  
- V  
= V  
, DATA RATE = 1ksps, PGA low-noise mode, single-cycle  
AVDD  
AVDD  
AVSS  
DVDD  
REFP  
REFN  
conversion mode (SCYCLE = 1). T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)(Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AVDD, DVDD supply  
undervoltage lockout  
4
UVLO Hysteresis  
V
%
HYS  
CAPREG supply undervoltage  
lockout  
5
AVDD, DVDD supply  
undervoltage lockout  
10  
3.5  
10  
10  
UVLO Delay Low to High or  
High to Low  
T
µs  
ns  
DEL  
CAPREG supply undervoltage  
lockout  
AVDD, DVDD supply  
undervoltage lockout  
UVLO Glitch Suppression  
T
P
CAPREG supply undervoltage  
lockout  
SPI 24B DATA READ  
RDYB  
CSB  
tCSW  
tR1  
tCSS0  
tCSH1  
tCH  
tCL  
tCP  
9
tCSS1  
SCLK  
DIN  
1
8
31  
24b data  
tDS  
tDH  
‘X’  
‘1’ ‘1’ ‘0’ ‘0’ ‘1’ ‘1’ ‘0’ ‘1’  
tDOE  
tDOT  
tDOH  
tDOD  
HIGH-Z  
HIGH-Z  
DOUT  
‘X’  
MSB  
LSB  
Figure 1. SPI Timing Diagram  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
SPI Timing Requirements  
(V  
= 3.6V, V  
= 0V, V  
= 1.7V to 3.6V, T = T  
to T  
, unless otherwise noted. For output pins, C = 20pF.)  
LOAD  
AVDD  
AVSS  
DVDD  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
0.05  
125  
50  
TYP  
MAX  
UNITS  
MHz  
ns  
SCLK Frequency  
f
Note 5 applies to minimum value  
8
SCLK  
SCLK Clock Period  
t
CP  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
CSB Low Setup  
t
Allow 40% duty cycle  
ns  
CH  
t
Allow 40% duty cycle  
50  
ns  
CL  
t
t
CSB low to 1st SCLK rise setup  
40  
ns  
CSS0  
CSB rising edge to SCLK rising edge  
setup time (Note 5)  
CSB High Setup  
SCLK Fall Hold  
40  
3
ns  
ns  
CSS1  
SCLK falling edge to CSB rising edge,  
SCLK hold time  
t
CSH1  
CSB Pulse Width  
DIN Setup  
t
Minimum CSB pulse-width high  
DIN setup to SCLK rising edge  
DIN hold after SCLK rising edge  
40  
40  
0
ns  
ns  
ns  
CSW  
t
DS  
DIN Hold  
t
DH  
DOUT transition valid after SCLK fall  
(Note 5)  
DOUT Transition  
DOUT Hold  
t
40  
ns  
ns  
DOT  
Output hold time remains valid after  
SCLK fall (Note 5)  
t
t
3
DOH  
DOD  
DOUT Disable  
CSB rise to DOUT disable (Note 5)  
(Note 5)  
25  
40  
ns  
ns  
CSB Fall to DOUT Valid  
t
0
0
DOE  
RDYB transitions from ‘0’ to ‘1’ on  
rising edge of SCLK when LSB-1 of  
DATA is shifted onto DOUT (Note 5)  
SCLK Rise to RDYB ‘1’  
RSTB Fall to RDYB ‘1’  
t
40  
ns  
ns  
R1  
RDYB transition from ‘0’ to ‘1’ on  
falling edge of RSTB, internal clock  
mode (Note 5)  
300  
t
R2  
RDYB transition from ‘0’ to ‘1’ on  
falling edge of RSTB, external clock  
2/f  
s
CLK  
mode, clock frequency = f  
(Note 5)  
CLK  
Note 2: Limits are 100% tested at T = +25°C, unless otherwise noted. Limits over the operating temperature range and relevant  
A
supply voltage range are guaranteed by design and characterization.  
Note 3: Full-scale error includes errors from gain and offset or zero-scale error.  
Note 4: ppmFSR is parts per million of full-scale range.  
Note 5: These specifications are guaranteed by design, characterization, or SPI protocol.  
Note 6: Reference common mode (V  
+ V  
)/2 ≤ (V  
+ V  
)/2 + 0.1V.  
REFP  
REFN  
AVDD  
AVSS  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Typical Operating Characteristics  
(V  
= +3.6V, V  
= 0V, V  
= +2.0V, V  
- V  
= V  
; T = T  
to T  
, LDO enabled, PGA enabled, unless oth-  
MAX  
AVDD  
AVSS  
DVDD  
REFP  
REFN  
AVDD  
A
MIN  
erwise noted. Data rate = 1ksps, single-cycle conversion mode (SCYCLE = 1) Typical values are at T = +25°C.)  
A
INPUT-REFERRED NOISE  
vs. COMMON-MODE VOLTAGE  
INL vs. INPUT VOLTAGE  
INL vs. INPUT VOLTAGE  
toc02  
toc03  
toc01  
5
4
0.50  
0.40  
0.30  
0.20  
0.10  
0.00  
5
4
PGA GAIN = 4V/V  
PGA GAIN = 128V/V  
BYPASS MODE  
TA = -40°C  
TA = +25°C  
TA = +25°C  
TA = +125°C  
3
3
2
2
TA = +25°C  
1
1
TA = +125°C  
TA = -40°C  
0
0
-1  
-2  
-3  
-4  
-5  
-1  
-2  
-3  
-4  
-5  
TA = -40°C  
TA = +125°C  
0
0.5  
1
1.5  
2
2.5  
-3.5 -2.5 -1.5 -0.5  
0.5  
1.5  
2.5  
3.5  
-3.5 -2.5 -1.5 -0.5  
0.5  
1.5  
2.5  
3.5  
COMMON-MODE VOLTAGE (V)  
DIFFERENTIAL INPUT (V)  
DIFFERENTIAL INPUT (V)  
INPUT-REFERRED NOISE  
vs. TEMPERATURE  
OFFSET ERROR  
vs. TEMPERATURE  
OFFSET ERROR  
vs. AVDD VOLTAGE  
toc04  
toc05  
toc06  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0
-5  
5
0
PGA GAIN = 128V/V  
BYPASS MODE  
TA = +125°C  
TA = -40°C  
-10  
-15  
-20  
-25  
-5  
BYPASS MODE  
-10  
-15  
-20  
TA = +25°C  
PGA = 4  
-50  
0
50  
100  
150  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
2.7  
3
3.3  
3.6  
VAVDD (V)  
TEMPERATURE (°C)  
OFFSET ERROR  
vs. VREFP - VREFN  
OFFSET ERROR  
vs. VREFP - VREFN  
OFFSET ERROR  
vs. AVDD VOLTAGE  
toc09  
toc08  
toc07  
5
-5  
10  
0
PGA = 4  
BYPASS MODE  
TA = -40°C  
PGA = 4  
TA = -40°C  
-8  
-13  
-18  
-23  
-28  
TA = -40°C  
-15  
-25  
-35  
-45  
-55  
-10  
-20  
-30  
-40  
-50  
TA = +25°C  
TA = +25°C  
TA = +25°C  
TA = +125°C  
TA = +125°C  
TA = +125°C  
1.5  
2.2  
2.9  
3.6  
1.5  
2.2  
2.9  
3.6  
2.7  
3
3.3  
3.6  
VAVDD (V)  
VREFP - VREFN (V)  
VREFP - VREFN (V)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Typical Operating Characteristics (continued)  
(V  
= +3.6V, V  
= 0V, V  
= +2.0V, V  
- V  
= V  
; T = T  
to T  
, LDO enabled, PGA enabled, unless oth-  
MAX  
AVDD  
AVSS  
DVDD  
REFP  
REFN  
AVDD  
A
MIN  
erwise noted. Data rate = 1ksps, single-cycle conversion mode (SCYCLE = 1) Typical values are at T = +25°C.)  
A
INTERNAL OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
INTERNAL OSCILLATOR FREQUENCY  
vs. DVDD VOLTAGE  
INTERNAL OSCILLATOR FREQUENCY  
vs. DVDD VOLTAGE  
toc12  
toc10  
toc11  
8.5  
8.5  
8.4  
8.4  
8.3  
8.3  
8.2  
8.2  
8.1  
8.1  
8.0  
8.20  
8.20  
8.19  
8.19  
8.18  
8.18  
8.17  
8.17  
8.16  
8.20  
8.20  
8.19  
8.19  
8.18  
8.18  
8.17  
8.17  
8.16  
LDO DISABLED  
LDO ENABLED  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
1.7  
1.8  
1.9  
2
2
2.5  
3
3.5  
VDVDD (V)  
TEMPERATURE (°C)  
VDVDD (V)  
PSRR  
PSRR  
ACTIVE CURRENT  
vs. TEMPERATURE  
vs. FREQUENCY ON AVDD  
vs. FREQUENCY ON DVDD  
toc13  
toc15  
toc14  
-85  
-90  
-100  
-105  
-110  
-115  
-120  
-125  
-130  
fsample = 64ksps  
BYPASS MODE  
VAVDD = 3.3V 50mVP-P  
fsample = 64ksps  
Bypass Mode  
DVDD = 2.1V 50mVP-P  
5.5  
4.5  
3.5  
2.5  
1.5  
0.5  
-0.5  
PGA LOW NOISE  
TA = -40°C  
V
TA = +125°C  
-95  
TA = +25°C  
-100  
-105  
-110  
-115  
-120  
IAVDD  
TA = -40°C  
IDVDD  
TA = +125°C  
TA = +25°C  
10  
100  
1000  
10000 100000 1000000  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
10  
100  
1000  
10000 100000 1000000  
FREQUENCY ON AVDD (Hz)  
TEMPERATURE (°C)  
FREQUENCY ON DVDD (Hz)  
STANDBY CURRENT  
vs. TEMPERATURE  
ACTIVE CURRENT  
vs. AVDD VOLTAGE  
SLEEP CURRENT  
vs. TEMPERATURE  
toc17  
toc18  
toc16  
100  
10  
1
6
5.5  
5
3
2.5  
2
PGA LOW NOISE  
IDVDD_STBY  
TA = +125°C  
4.5  
4
1.5  
1
IAVDD_SLEEP  
TA = +25°C  
TA = -40°C  
IAVDD_STBY  
3.5  
3
0.5  
0
IDVDD_SLEEP  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
2.7  
3
3.3  
3.6  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
VAVDD (V)  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Typical Operating Characteristics (continued)  
(V  
= +3.6V, V  
= 0V, V  
= +2.0V, V  
- V  
= V  
; T = T  
to T  
, LDO enabled, PGA enabled, unless oth-  
MAX  
AVDD  
AVSS  
DVDD  
REFP  
REFN  
AVDD  
A
MIN  
erwise noted. Data rate = 1ksps, single-cycle conversion mode (SCYCLE = 1) Typical values are at T = +25°C.)  
A
STANDBY CURRENT  
vs. AVDD VOLTAGE  
ACTIVE CURRENT  
vs. DVDD VOLTAGE  
SLEEP CURRENT  
vs. AVDD VOLTAGE  
toc20  
toc21  
toc19  
750  
730  
710  
690  
670  
650  
630  
610  
590  
LDO ENABLED  
2.5  
2
2.8  
2.3  
1.8  
1.3  
0.8  
0.3  
TA = +125°C  
TA = +125°C  
TA = +125°C  
1.5  
1
TA = -40°C  
TA = -40°C  
TA = +25°C  
TA = -40°C  
0.5  
0
TA = +25°C  
TA = +25°C  
3.3  
2.7  
3
3.3  
3.6  
2
2.4  
2.8  
3.2  
3.6  
2.7  
3
3.6  
VAVDD (V)  
VAVDD (V)  
VDVDD (V)  
SLEEP CURRENT  
vs. DVDD VOLTAGE  
STANDBY CURRENT  
vs. DVDD VOLTAGE  
toc23  
toc22  
90  
80  
70  
60  
50  
40  
LDO DISABLED  
LDO ENABLED  
1.4  
TA = +125°C  
1.2  
1
TA = -40°C  
0.8  
0.6  
0.4  
0.2  
TA = +125°C  
TA = +25°C  
TA = +25°C  
TA = -40°C  
2
2.4  
2.8  
3.2  
3.6  
2
2.4  
2.8  
VDVDD (V)  
3.2  
3.6  
VDVDD (V)  
THD  
vs. FREQUENCY  
OUTPUT SPECTRUM  
SHORTED INPUTS  
SNR  
vs. TEMPERATURE  
toc25  
toc26  
toc24  
0
-20  
0
120  
120  
119  
119  
118  
118  
117  
117  
116  
116  
115  
BYPASS MODE  
CONTINUOUS  
sample = 8ksps  
BYPASS MODE  
SINGLE CYCLE CONTINOUS  
BYPASS MODE  
SINGLE CYCLE CONTINUOUS  
sample = 1ksps  
-20  
-40  
f
fsample = 1ksps  
f
-40  
-60  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-80  
-100  
-120  
-140  
-40  
10  
60  
110  
0
200  
400  
600  
800  
1000  
0
100  
200  
300  
400  
500  
TEMPERATURE (ºC)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Pin Configuration  
+
RDYB  
SCLK  
AVDD  
AVSS  
REFP  
REFN  
AIN0N  
AIN0P  
1
24 GPO0  
2
3
4
5
6
7
8
23 GPIO0/CLK  
22 GPO1  
21 GPOGND  
MAX11254  
20 CAPP  
19 CAPN  
18 AIN5P  
17 AIN5N  
EP  
Pin Description  
PIN  
NAME  
FUNCTION  
Active-Low Data Ready Output. RDYB goes low when a new conversion result is available in the  
data register. When a read operation of a full output word completes, RDYB returns high. RDYB is  
1
RDYB  
always driven.  
2
3
SCLK  
AVDD  
AVSS  
REFP  
REFN  
AIN0N  
AIN0P  
AIN1N  
AIN1P  
SPI Serial Clock Input  
Positive Analog Supply  
Negative Analog Supply  
Positive Reference Input  
Negative Reference Input  
Negative Analog Input 0  
Positive Analog Input 0  
Negative Analog Input 1  
Positive Analog Input 1  
4
5
6
7
8
9
10  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Pin Description (continued)  
PIN  
11  
NAME  
AIN2N  
AIN2P  
AIN3N  
AIN3P  
AIN4N  
AIN4P  
AIN5N  
AIN5P  
CAPN  
FUNCTION  
Negative Analog Input 2  
Positive Analog Input 2  
Negative Analog Input 3  
Positive Analog Input 3  
Negative Analog Input 4  
Positive Analog Input 4  
Negative Analog Input 5  
Positive Analog Input 5  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
PGA Filter Input. Connect 1nF C0G capacitor between CAPP and CAPN.  
PGA Filter Input. Connect 1nF C0G capacitor between CAPP and CAPN.  
Analog Switch/General-Purpose Output, GND Terminal  
CAPP  
GPOGND  
Analog Switch Normally Open Terminal/General-Purpose Output 1. Register controlled, close  
position connects GPO1 to GPOGND. Current sink only.  
22  
23  
24  
GPO1  
General-Purpose I/O Pin (Default) or External Clock Signal for the Device. When external clock  
mode is selected, provide a digital clock signal at this pin. The MAX11254 is specified with a clock  
frequency of 8.192MHz. Clock frequencies below 8.192MHz are supported. The data rate and  
digital filter notch frequencies scale with the clock frequency.  
GPIO0/  
CLK  
Analog Switch Normally Open Terminal/General-Purpose Output 0. Register controlled, close  
position connects GPO0 to GPOGND. Current sink only.  
GPO0  
Synchronization Input (default) or General-Purpose I/O Pin. SYNC resets both the digital filter and  
the modulator. Connect SYNC from multiple MAX11254s in parallel to synchronize more than one  
ADC to an external trigger.  
GPIO1/  
SYNC  
25  
26  
1.8V Subregulator Output. Connects to DVDD when driven externally by a 1.8V supply. Connect a  
220nF or larger capacitor between CAPREG and DGND.  
CAPREG  
27  
28  
29  
30  
31  
32  
RSTB  
DVDD  
DGND  
DOUT  
CSB  
Active-Low Power-On-Reset Input  
Digital Power Supply, 1.7V to 3.6V  
Digital Ground  
Serial Data Output  
Active-Low Chip-Select Input  
Serial Data Input  
DIN  
EP  
Exposed Pad. Connect EP directly to AVSS plane.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Functional Diagram  
AVDD  
AVSS  
DVDD  
AVDD  
DGND  
CLOCK  
GENERATOR  
1µA  
TIMING  
AIN0P  
AIN0N  
AIN1P  
AIN1N  
AIN2P  
AIN2N  
AIN3P  
AIN3N  
AIN4P  
AIN4N  
AIN5P  
AIN5N  
RSTB  
CSB  
SCLK  
DIN  
DELTA-SIGMA  
ADC  
DIGITAL  
FILTER  
SERIAL  
INTERFACE  
MUX  
PGA  
DOUT  
RDYB  
GPIO0/CLK  
GPIO1/SYNC  
GPOGND  
1µA  
1.8V  
REGULATOR  
AVSS  
CAPP CAPN REFP REFN  
CAPREG  
GPO0 GPO1  
Voltage Reference Inputs  
Detailed Description  
The MAX11254 provides differential inputs REFP and  
REFN for an external reference voltage. Connect the  
external reference directly across the REFP and REFN  
pins to obtain the differential reference voltage. The  
The MAX11254 is a 24-bit delta-sigma ADC that achieves  
exceptional performance consuming minimal power.  
Sample rates up to 64ksps support precision DC mea-  
surements. The built-in sequencer supports scanning  
of selected analog channels, programmable conversion  
delay, and math operations to automate sensor monitor-  
ing.  
V
voltage should always be greater than the V  
REFP  
REFN  
voltage, and the common-mode voltage range is between  
0.75V and V - 0.75V.  
AVDD  
The fourth order delta-sigma modulator is unconditionally  
stable and measures six differential input voltages. The  
modulator is monitored for overrange conditions, which  
are reported in the status register. The digital filter is a  
variable decimation-rate SINC filter with overflow monitor-  
ing reported in the status register.  
Analog Inputs  
The MAX11254 measures six pairs of differential analog  
inputs (AIN_P, AIN_N) in direct connection or buffered  
through the PGA.  
See the CTRL2: Control Register 2 (Read/Write) table  
for programming and enabling the PGA or direct connect  
mode. The default configuration is direct connect, with the  
PGA powered down.  
The programmable gain differential amplifier (PGA) is low  
noise and is programmable from 1 to 128. The PGA buf-  
fers the modulator and provides a high-impedance input  
to the analog channels.  
Bypass/Direct Connect  
System Clock  
The MAX11254 offers the option to bypass the PGA and  
route the analog inputs directly to the modulator. This  
option lowers the power of the device since the PGA is  
powered down.  
The MAX11254 incorporates a highly stable internal oscil-  
lator that provides the system clock. The system clock is  
trimmed to 8.192MHz, providing digital and analog timing.  
The MAX11254 also supports an external clock mode.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Programmable Gain Amplifier (PGA)  
Input Voltage Range  
The integrated PGA provides gain settings from 1x to  
128x. (Figure 2). Direct connection is available to bypass  
the PGA and directly connect to the modulator. The PGA’s  
The ADC input range is programmable for bipolar (-V  
REF  
to +V  
) or unipolar (0 to VREF) ranges. The U/B bit in  
REF  
the CTRL1 register configures the MAX11254 for unipolar  
or bipolar transfer functions.  
absolute input voltage range is CMI  
and the PGA  
RNG  
output voltage range is VOUT  
Electrical Characteristics.  
, as specified in the  
RNG  
Data Rates  
Table 1 lists the available data rates for the MAX11254,  
RATE[3:0] setting of the conversion command (see the  
Modes and Registers section). The single-cycle mode has  
an overhead of 48 digital master clocks that is approxi-  
mately 5.86µs for a typical digital master clock frequency  
of 8.192MHz. The single-cycle effective column contains  
the data rate values including the 48 clock startup delays.  
The 48 clocks are required to stabilize the modulator at  
startup. In continuous conversion mode, the output data  
rate is five times the single-cycle rate up to a maximum  
of 64ksps. During continuous conversions, the output  
sample data requires five 24-bit cycles to settle to a valid  
conversion from an input step, PGA gain changes, or a  
change of input channel through the multiplexer.  
Note that linearity and performance degrade when the  
specified input common-mode voltage of the PGA is  
exceeded. The input common-mode range and output  
common-mode range are shown in Figure 3. The fol-  
lowing equations describe the relationship between the  
analog inputs and PGA output.  
AINP = Positive input to the PGA  
AINN = Negative input to the PGA  
CAPP = Positive output of PGA  
CAPN = Negative output of PGA  
V
CM  
= Input common mode  
GAIN = PGA gain  
If self-calibration is used, 48 additional master clocks are  
required to process the data per conversion. Likewise,  
system calibration takes an additional 48 master clocks to  
complete.  
V
V
= ADC reference input voltage  
REF  
= V  
- V  
AINN  
IN  
AINP  
Note: Input voltage range is limited by the reference volt-  
If both self and system calibration are used, it takes an  
additional 80 master clocks to complete. If self and/or  
system calibration are used, the effective data rate will be  
age as described by V  
≤ ±V  
/GAIN  
IN  
REF  
reduced by these additional clock cycles per conversion  
.
V
+ V  
(
)
AINP  
AINN  
V
=
CM  
Noise Performance  
2
The MAX11254 provides exceptional noise performance.  
SNR is dependent on data rate, PGA gain, and power  
mode. Bandwidth is reduced at low data rates; both noise  
and SNR are improved proportionally. Tables 2 and 3  
summarize the noise performance for both single-cycle  
V
= V  
= V  
+ GAIN× V  
V  
CM  
(
)
CAPP  
CM  
AINP  
V  
AINN  
V
GAIN× V  
(
)
CAPN  
CM  
CM  
AINP  
R3  
CAPP  
A1  
R1  
CCAPP/N  
(C0G capacitor)  
R2  
R1  
R3  
CAPN  
A2  
AINN  
Figure 2. Simplified Equivalent Diagram of the PGA  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Table 1. Available Programmable Data Rates  
DATA RATE (sps)  
CONVERSION PLUS  
CONVERSION  
PLUS SELF-  
SINGLE  
CYCLE  
CONVERSION  
SELF-CALIBRATION  
PLUS SYSTEM  
RATE[3:0]  
CONTINUOUS  
ONLY  
CALIBRATION*  
CALIBRATION*  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
1.9  
3.9  
50  
62.5  
100  
50.01  
62.51  
49.99  
62.48  
49.98  
62.47  
7.8  
99.98  
99.92  
99.88  
15.6  
31.2  
62.5  
125  
125  
124.95  
199.80  
249.66  
398.98  
498.34  
796.11  
991.86  
1578.72  
1974.16  
3114.26  
3895.78  
6135.27  
11776.90  
124.86  
199.57  
249.29  
398.05  
496.89  
792.41  
986.13  
1564.26  
1951.60  
3058.48  
3808.89  
5922.49  
11017.10  
124.80  
199.41  
249.05  
397.44  
495.93  
789.97  
982.35  
1554.77  
1936.84  
3022.39  
3753.08  
5788.64  
10562.79  
200  
250  
400  
250  
500  
500  
800  
1000  
2000  
4000  
8000  
16000  
32000  
64000  
1000  
1600  
2000  
3200  
4000  
6400  
12800  
*The effective data rate is lower when the calibration is enabled due to additional MAC (multiply/accumulate) operations required after  
the conversion is complete to perform the calibration adjustment.  
ANALOG INPUTS  
PGA OUTPUT  
V
AVDD  
V
AVDD  
- 0.3V  
OUTPUT VOLTAGE RANGE = GAIN  
x INPUT VOLTAGE RANGE  
V
AVDD  
- 1.3V  
COMMON-MODE  
INPUT VOLTAGE  
≤ V  
REF  
INPUT VOLTAGE RANGE  
V
+ 0.4V  
AVSS  
V
+ 0.3V  
AVSS  
V
AVSS  
Figure 3. Analog Input Voltage Range Compared to PGA Output Range  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Table 2. Noise vs. PGA Mode and Gain (Single-Cycle Conversion)  
SINGLE-CYCLE CONVERSION MODE  
INPUT-REFERRED NOISE VOLTAGE (µV  
) vs. PGA GAIN SETTING  
RMS  
DATA  
RATE  
(sps)  
1
2
4
8
16  
32  
64  
128  
LP  
LN  
LP  
LN  
LP  
LN  
LP  
LN  
LP  
LN  
LP  
LN  
LP  
LN  
LP  
LN  
50  
0.81  
0.88  
1.18  
1.24  
1.38  
1.38  
1.63  
1.79  
2.12  
2.38  
3.21  
3.76  
4.41  
5.18  
7.34  
0.58 0.38 0.27 0.18 0.13 0.10 0.07 0.09 0.07 0.08 0.06 0.08 0.06 0.08 0.06  
0.63 0.48 0.34 0.21 0.15 0.12 0.09 0.09 0.07 0.08 0.06 0.08 0.05 0.08 0.05  
0.84 0.61 0.44 0.30 0.21 0.17 0.12 0.12 0.08 0.09 0.07 0.09 0.07 0.10 0.07  
0.89 0.59 0.42 0.31 0.22 0.18 0.13 0.12 0.08 0.10 0.07 0.10 0.07 0.10 0.07  
0.99 0.68 0.49 0.35 0.25 0.21 0.15 0.15 0.10 0.12 0.08 0.11 0.08 0.11 0.08  
0.99 0.72 0.52 0.39 0.28 0.23 0.16 0.16 0.11 0.13 0.09 0.12 0.09 0.12 0.09  
1.16 0.85 0.61 0.45 0.32 0.27 0.19 0.19 0.14 0.16 0.12 0.15 0.11 0.16 0.11  
1.28 0.93 0.66 0.48 0.34 0.29 0.21 0.21 0.15 0.18 0.13 0.17 0.12 0.18 0.13  
1.51 1.10 0.79 0.61 0.43 0.36 0.26 0.27 0.20 0.24 0.17 0.23 0.16 0.23 0.16  
1.70 1.25 0.89 0.69 0.49 0.41 0.29 0.31 0.22 0.27 0.19 0.26 0.18 0.26 0.19  
2.29 1.67 1.19 0.89 0.64 0.56 0.40 0.41 0.29 0.36 0.26 0.35 0.25 0.35 0.25  
2.69 1.95 1.39 1.04 0.74 0.65 0.47 0.48 0.34 0.43 0.30 0.41 0.29 0.42 0.30  
3.15 2.28 1.63 1.25 0.89 0.78 0.55 0.58 0.41 0.51 0.36 0.49 0.35 0.49 0.35  
3.70 2.68 1.91 1.48 1.06 0.91 0.65 0.69 0.49 0.60 0.43 0.58 0.41 0.59 0.42  
5.24 3.83 2.73 2.08 1.48 1.29 0.92 0.98 0.70 0.86 0.61 0.81 0.58 0.83 0.59  
62.5  
100  
125  
200  
250  
400  
500  
800  
1,000  
1,600  
2,000  
3,200  
4,000  
6,400  
12,800 10.84 7.74 5.59 3.99 3.01 2.15 1.85 1.32 1.37 0.98 1.23 0.88 1.17 0.83 1.16 0.83  
LP = Low Power, LN = Low Noise  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Table 3. Noise vs. PGA Mode and Gain (Continuous Conversion)  
CONTINUOUS CONVERSION MODE  
INPUT-REFERRED NOISE VOLTAGE (µV  
) vs. PGA GAIN SETTING  
RMS  
DATA  
RATE  
(sps)  
1
2
4
8
16  
32  
64  
128  
LP  
LN  
LP  
LN  
LP  
LN  
LP  
LN  
LP  
LN  
LP  
LN  
LP  
LN  
LP  
LN  
15.6  
31.2  
0.45 0.32 0.20 0.14 0.11 0.08 0.06 0.04 0.04 0.03 0.03 0.02 0.03 0.02 0.03 0.02  
0.58 0.41 0.26 0.18 0.13 0.10 0.08 0.06 0.05 0.04 0.04 0.03 0.04 0.03 0.04 0.03  
0.68 0.48 0.34 0.25 0.18 0.13 0.10 0.07 0.07 0.05 0.06 0.04 0.06 0.04 0.06 0.04  
0.86 0.61 0.44 0.32 0.23 0.16 0.14 0.10 0.10 0.07 0.08 0.06 0.08 0.06 0.08 0.06  
1.14 0.82 0.56 0.40 0.30 0.22 0.18 0.13 0.14 0.10 0.11 0.08 0.11 0.08 0.11 0.08  
1.47 1.05 0.76 0.54 0.41 0.29 0.25 0.18 0.19 0.13 0.16 0.11 0.16 0.11 0.16 0.11  
1.99 1.42 1.03 0.73 0.56 0.40 0.35 0.25 0.26 0.19 0.23 0.16 0.21 0.15 0.22 0.16  
2.73 1.95 1.40 1.00 0.76 0.54 0.47 0.34 0.36 0.26 0.31 0.22 0.30 0.21 0.30 0.21  
3.68 2.63 1.86 1.33 1.03 0.73 0.64 0.45 0.49 0.35 0.42 0.30 0.40 0.28 0.41 0.29  
4.57 3.26 2.36 1.69 1.30 0.93 0.81 0.58 0.61 0.43 0.53 0.38 0.52 0.37 0.52 0.37  
5.22 3.73 2.66 1.90 1.48 1.06 0.93 0.67 0.68 0.49 0.61 0.44 0.58 0.41 0.60 0.43  
7.60 5.50 4.00 2.86 2.20 1.57 1.34 0.96 1.00 0.71 0.86 0.61 0.86 0.61 0.86 0.61  
62.5  
125  
250  
500  
1000  
2000  
4000  
8000  
16000  
32000  
64000  
13.6 9.79  
6.1  
4.36 3.25 2.32 1.93 1.38 1.38 0.98 1.20 0.86 1.22 0.87 1.16 0.83  
LP = Low Power, LN = Low Noise  
and continuous operation versus data rate, PGA gain, and  
power mode.  
out on the falling edge of SCLK. SCLK remains low when  
not active.  
DIN (Serial Data Input)  
Serial Interface  
Data present on DIN is clocked into internal registers on  
the rising edge of SCLK.  
The MAX11254 interface is fully compatible with SPI,  
QSPI™, and MICROWIRE®-standard serial interfaces.  
The SPI interface provides access to on-chip registers  
that are 8 bits to 24 bits wide. The interface consists of  
the standard SPI signals CSB, SCLK, DIN and DOUT. An  
additional RDYB output signals data availability.  
DOUT (Serial Data Output)  
The DOUT pin is actively driven when CSB is low and  
high impedance when CSB is high. Data is shifted out on  
DOUT on the falling edge of SCLK.  
CSB (Chip Select)  
RDYB (Data Ready)  
CSB is an active-low chip-select input to communicate  
with the MAX11254. CSB transitioning from low to high  
is used to reset the SPI interface. When CSB is low, data  
is clocked into the device from DIN on the rising edge of  
SCLK. Data is clocked out of DOUT on the falling edge of  
SCLK. When CSB is high, SCLK and DIN are ignored and  
DOUT is high impedance, allowing DOUT to be shared  
with other devices.  
RDYB indicates the ADC conversion status and the avail-  
ability of the conversion result. When RDYB is low, a  
conversion result is available. When RDYB is high, a con-  
version is in progress and the data for the current conver-  
sion is not available. RDYB is driven high after a complete  
read of the data register. RDYB resets to high four master  
clock cycles prior to the next DATA register update.  
If data was read, then RDYB transitions from high to  
low at the output data rate. If the previous data was not  
read, then the RDYB transitions from low to high for four  
master clock cycles and then transitions from high to low.  
SCLK (Serial Clock)  
The SCLK is used to synchronize data communication  
between the host device and the MAX11254.Data is  
shifted in on the rising edge of SCLK and data is shifted  
QSPI is a trademark of Motorola, Inc.  
MICROWIRE is a registered trademark of National  
Semiconductor Corporation.  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
In continuous mode, RDYB remains high for the first four  
conversion results and on the 5th result, RDYB goes low.  
8 SCLKs for register access byte and 24 SCLKs (data  
bits to be written). If only 15 SCLKs were issued out of  
the 32 expected, the register value will not be updated.  
At least 16 SCLKs are required to update the MSB byte.  
For example, when the user issues a write command for  
a 24-bit register write and terminates after 16 SCLKs, only  
the MSB byte, bits 23 to 16 of the register are updated.  
Bits 15 to 0 retain the old value of the register.  
For sequencer mode 2 and sequencer mode 3, the  
RDYB behavior for a multichannel conversion can be  
controlled by the SEQ:RDYBEN bit. The default value  
of SEQ:RDYBEN is ‘0’. When set to ‘0’, RDYB behaves  
the same for multichannel conversion and single chan-  
nel operation. The RDYB toggles high to low after each  
channel is ready to update its corresponding data register.  
After the channel data is read, the RDYB will reset back  
to ‘1’. If the channel data is not read and the next chan-  
nel is ready to update its data, the RDYB will toggle low  
to high four cycles before the data update (similar to a  
single channel operation), and then toggle high to low  
indicating the new channel’s conversion data is available.  
If ‘N’ channels are enabled, RDYB will toggle high to low  
‘N’ times. If SEQ:RDYBEN is set to ‘1’, the RDYB event  
for each channel is suppressed. The RDYB toggles high  
to low when the last channel is ready to update its corre-  
sponding data register and a single high to low transition  
happens.  
SPI Incomplete Read Command Termination  
The SPI interface stays in read mode for as long as CSB  
stays low independent of the number of SCLKs issued.  
The CSB pin must be toggled high to remove the device  
from the bus and reset the internal SPI controller. Any  
activity on the DIN pin is ignored while in the register read  
mode. The read operation is terminated if the CSB pin is  
toggled high before the maximum number of SCLKs is  
issued.  
When reading from DATA registers, the behavior of RDYB  
will depend on how many bits are read. If at least 23 bits  
are read, the read operation is complete and RDYB resets  
to high. If the user reads less than 23 bits, internally the  
logic considers the read incomplete, and RDYB stays low.  
The user can initiate a new read within the same conver-  
sion cycle; however, the new 24-bit read must complete  
before the next DATA register update.  
The STAT:SRDY[5:0] bits get set to ‘1’ when their corre-  
sponding channel finishes converting, irrespective of the  
RDYBEN setting for sequencer modes 2 and 3. The con-  
version status is available by reading the STAT:MSTAT bit.  
This stays high as long as the modulator is converting.  
SPI Timing Characteristics  
See Figure 4 for timing of RDYB.  
The SPI timing diagrams illustrating command byte and  
register access operations are shown in Figure 5 to  
Figure 8. The MAX11254 timing allows for the input data  
to be changed by the user at both rising and falling edges  
of SCLK. The data read out by the device on SCLK falling  
edges can be sampled by the user on subsequent rising  
or falling edges.  
SPI Incomplete Write Command Termination  
In case of register writes, the register values get updated  
every 8th clock cycle with a byte of data starting from  
the MSB. A minimum of 16 SCLKs are needed to write  
the first byte of data in a multibyte register or for an 8-bit  
register. For example, a 24-bit register write requires  
CONVERT COMMANDS  
CSB/SCLK/DIN  
N × tCNV  
N × tCNV  
SCYCLE=’1',  
CONTSC=’0'  
RDYB  
DATA not retrieved  
DATA  
RETRIEVED  
tCNV  
SCYCLE=’1',  
CONTSC=’1'  
RDYB  
5 tCNV  
tCNV  
SCYCLE=’0',  
CONTSC=’x'  
RDYB  
Figure 4. Timing of RDYB in All Conversion Configurations: Single-Cycle, Single-Cycle Continuous and Continuous. In sequencer  
mode 1 and in sequencer modes 2 and 3, with SEQ:RDYBEN=’0’ N = 1. In sequencer modes 2 and 3 with SEQ:RDYBEN=’1’ N =  
number of active channels.  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
SPI COMMAND WRITE BYTE  
RDYB  
CSB  
‘X’  
tCSW  
tCSS0  
tCSH1  
tCH  
tCL  
tCP  
tCSS1  
SCLK  
DIN  
1
8
tDH  
tDS  
MODE MODE RATE RATE RATE RATE  
‘X’  
‘1’  
‘0’  
1
0
3
2
1
0
tDOD  
tDOE  
HIGH-Z  
HIGH-Z  
DOUT  
‘X’  
Figure 5. SPI Command Byte Timing Diagram  
SPI 8b REGISTER WRITE  
RDYB  
‘X’  
tCSW  
tCSS0  
tCSH1  
CSB  
tCH  
tCL  
tCP  
tCSS1  
SCLK  
DIN  
1
8
16  
tDH  
tDS  
‘X’  
‘1’ ‘1’ RS4 RS3 RS2 RS1 RS0 ‘0’ D7 D6 D5 D4 D3 D2 D1 D0  
‘X’  
tDOD  
tDOE  
HIGH-Z  
HIGH-Z  
DOUT  
‘X’  
Figure 6. SPI Register Write Timing Diagram  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
SPI 8b REGISTER READ  
RDYB  
‘X’  
tCSW  
tCSS0  
tCSH1  
CSB  
SCLK  
DIN  
tCH  
tCL  
tCP  
tCSS1  
1
8
16  
18b data  
‘X’  
tDS  
tDH  
‘X’  
‘1’ ‘1’ RS4 RS3 RS2 RS1 RS0 ‘1’ ‘X’ ‘X’ ‘X’ ‘X’ ‘X’ ‘X’ ‘X’ ‘X’  
tDOT tDOH  
D7 D6 D5 D4 D3 D2 D1 D0  
tDOD  
HIGH-Z  
tDOE  
HIGH-Z  
DOUT  
‘X’  
Figure 7. SPI Register Read Timing Diagram. For read patterns, the user may latch the MAX11254 output data on either rising edges  
(9–16) running at minimum latency or falling edges 9–16 running at increased latency.  
SPI 24B DATA READ  
RDYB  
tCSW  
tR1  
tCSS0  
tCSH1  
CSB  
SCLK  
DIN  
tCH  
tCL  
tCP  
9
tCSS1  
1
8
31  
24b data  
tDS  
tDH  
‘X’  
‘1’ ‘1’ ‘0’ ‘0’ ‘1’ ‘1’ ‘0’ ‘1’  
tDOE  
tDOT  
tDOH  
tDOD  
HIGH-Z  
HIGH-Z  
DOUT  
‘X’  
MSB  
LSB  
Figure 8. SPI DATA Readout Timing Diagram  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Modes and Registers  
Channel Sequencing  
The MAX11254 interface operates in two fundamental  
modes, either to issue a conversion command or to  
access registers. The mode of operation is selected by a  
command byte. Every SPI transaction to the MAX11254  
starts with a command byte. The command byte begins  
with the MSB (B7) set to ‘1’. The next bit (B6) determines  
whether a conversion command is sent or register read/  
write access is requested.  
Changing SEQUENCER Modes  
Mode Exit (See Table 8. Register Map for Register  
Definitions)  
To exit any of the three sequencer modes at any time  
program the following sequence:  
1) Issue a power-down command to exit the conver-  
sion process to STANDBY or SLEEP, as defined in  
CTRL1:PD[1:0]:  
a. Write a conversion command byte (see Table 4.  
Command Byte Definition) and set MODE[1:0] of the  
During a register read/write access, hold CSB low for the  
entire read or write operation and pull CSB high at the  
end of the command. For example, if the command is to  
read a 24-bit data register, hold CSB low for 32 SCLK  
cycles (8 cycles for the command byte plus 24 cycles  
for the data). CSB transitions must not occur near the  
rising edge of SCLK and must conform to the setup and  
hold timing detailed in the timing section. See SPI Timing  
Requirements table.  
command byte to ‘01’  
2) Wait for STAT:PDSTAT[1:0] = ‘01’ (SLEEP) or  
STAT:PDSTAT[1:0] = ‘10’ (STANDBY).  
Note: For all sequencer modes, the default exit state  
upon completion of all conversions is SLEEP. In  
sequencer mode 1, however, continuous conversion  
operation (CTRL1:SCYCLE=’0’) and continuous sin-  
gle-cycle conversion operation (CTRL1:SCYCLE=’1’  
and CTRL1:CONTSC=’1’) are running continuously  
and must be terminated with the Mode Exit sequence.  
Command Byte  
The conversion command sets the mode of operation  
(conversion, calibration, or power-down) as well as the  
conversion speed of the MAX11254. The register read/  
write command specifies the register address as well as  
the direction of the access (read or write).  
Table 4. Command Byte Definition  
B7 (MSB)  
B6  
0
B5  
MODE1  
RS4  
B4  
MODE0  
RS3  
B3  
B2  
B1  
B0  
Conversion Command  
Register Read/Write  
1
1
RATE3  
RS2  
RATE2  
RS1  
RATE1  
RS0  
RATE0  
R/W  
1
Table 5. Command Byte Decoding  
BIT NAME  
DESCRIPTION  
The MODE bits are used to set the functional operation of the MAX11254 according to the following decoding.  
MODE1  
MODE0  
DESCRIPTION  
0
0
1
1
0
1
0
1
Unused  
MODE[1:0]  
Power-down performed based on the CTRL1:PD[1:0] setting  
Calibration performed based on the CTRL1:CAL[1:0] setting  
Sequencer mode. The operation is based on the configuration of the SEQ register  
RATE[3:0]  
RS[4:0]  
These bits determine the conversion speed of the MAX11254. The decoding is shown in Table 1.  
Register address as shown in Table 8.  
The R/W bit enables either a read or a write access to the address specified in RS[4:0]. If R/W is set to ‘0’, then data  
is written to the register. If the R/W bit is set to ‘1’, then data is read from the register.  
R/W  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
g. Set register GPO_DIR and, if desired, GPIO_CTRL  
to enable or disable the desired GPO and GPIO  
pins  
Mode Change  
To change sequencer modes or to update the SEQ regis-  
ter, program the following sequence:  
2) Write a conversion command (see Table 4, Command  
Byte Definition).  
1) Perform Sequencer Mode Exit (see the Mode Exit  
section).  
a. Set data rate using bits RATE[3:0] of the command  
byte  
2) Set up the following registers: SEQ, CTRL1.  
a. Set SEQ:MODE[1:0] to select the new sequencer  
mode  
b. Set MODE[1:0] of the command byte to ‘11’ for  
sequencer mode  
b. Set CTRL1:PD[1:0] to STANDBY or SLEEP state  
to set the desired exit state if a conversion com-  
mand with MODE[1:0] set to ‘01’ is issued during  
the conversion.  
3) Monitor RDYB for availability of conversion results in  
the DATA register (See Figure 4 for RDYB timing).  
Mode Exit  
3) Write the command byte (see Table 4).  
1) In single-cycle conversion mode (CTRL1:SCYCLE  
=’1’) the sequencer exits into SLEEP state.  
a. Set MODE[1:0] of the command byte to ‘11’  
(sequencer mode)  
2) In continuous conversion mode (CTRL1: SCYCLE=’0’  
or (CTRL:SCYCLE=’1’ and CTRL1:CONTSC =’1’)),  
conversions continue nonstop until the mode is exited.  
To interrupt and exit continuous conversion or con-  
tinuous single-cycle conversion follow the Changing  
SEQUENCER Modes—Mode Exit section to put  
the part into STANDBY or SLEEP state based on  
CTRL1:PD[1:0] set in step 1(f) of Mode Entry section.  
4) Wait for STAT:PDSTAT[1:0] = ‘00’ to confirm conversion  
mode.  
SEQUENCER MODE 1—Single-Channel Conver-  
sion with GPO Control and MUX Delays  
This mode is used for single-channel conversions where  
the sequencer is disabled. Figure 9 illustrates the timing.  
To support high-impedance source networks, the conver-  
sion delay (SEQ:MDREN) feature must be enabled. The  
states of the GPO and GPIO pins are configured using the  
GPO_DIR and GPIO_CTRL registers and can be modi-  
fied anytime during mode 1 operation. The values of the  
CHMAP0/CHMAP1 registers and DELAY:GPO[7:0] bits  
are ignored in this mode.  
Changing Input Channel During Continuous  
Single-Cycle Conversion in Mode 1  
1) Issue a conversion command with MODE[1:0] set  
to ‘01’ to exit the conversion process to STANDBY  
or SLEEP state (see the Changing SEQUENCER  
Modes—Mode Exit section).  
2) Monitor STAT:PDSTAT = ‘10’ or ‘01’ to confirm exit to  
STANDBY or SLEEP state.  
Programming Sequence  
Mode Entry  
1) Set up the following registers: SEQ, DELAY, CTRL1,  
GPO_DIR, GPIO_CTRL.  
3) Set SEQ:MUX[2:0] to select the new channel for con-  
version  
4) Write a conversion command (see Table 4) and set  
MODE[1:0] of command byte to ‘11’  
a. SEQ:MODE[1:0] = ‘00’ for sequencer mode 1  
SEQUENCER MODE 2 – Multichannel Scan with  
GPO Control and MUX Delays  
b. SEQ:MUX[2:0] to select the channel for conversion  
c. Enable SEQ:MDREN to delay conversion start to  
allow for input settling. Set DELAY:MUX[7:0] to the  
desired conversion delay  
This mode is used to sequentially convert a programmed  
set of channels in a preset order. Figure 10 illustrates the  
timing.  
d. Set CTRL1:SCYCLE for either single cycle (no  
latency) or continuous conversion  
The states of the GPO and GPIO pins are configured  
using the GPO_DIR and GPIO_CTRL registers and can  
be modified anytime during mode 2 operation. In mode  
2, register bits CHMAP0:CHn_ORD[2:0], CHMAP1:CHn_  
ORD[2:0], CHMAP0:CHn_EN, and CHMAP1:CHn_EN  
are used to select channels and conversion order.  
e. If single-cycle conversion is selected, set  
CTRL1:CONTSC to ‘1’ if continuous single-cycle  
conversion is desired  
f. Set CTRL1:PD[1:0] to STANDBY or SLEEP state to  
set the desired exit state if a conversion command  
with MODE[1:0] set to ‘01’ is issued during the  
conversion  
Bits  
DELAY:GPO[7:0],  
CHMAP0:CHn_GPO[2:0],  
CHMAP0:CHn_GPOEN, CHMAP1:CHn_GPO[2:0], and  
CHMAP1:CHn_GPOEN are ignored in this mode. The bit  
CTRL1:CONTSC is ignored and bit CTRL1:SCYCLE = ‘0’  
is invalid in this mode.  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
SEQUENCER MODE 1  
CHANNEL CONVERSION  
DEL  
SEQ:MDREN • DELAY:MUX  
SEQ:MUX[2:0]  
Figure 9. Sequencer Mode 1 Timing Diagram  
SEQUENCER MODE 2  
CHANNEL  
CONVERSION  
CHANNEL  
CONVERSION  
CHANNEL  
CONVERSION  
CHANNEL  
CONVERSION  
CHANNEL  
CONVERSION  
CHANNEL  
CONVERSION  
DEL  
DEL  
DEL  
DEL  
DEL  
DEL  
SEQ:MDREN •  
DELAY:MUX  
SEQ:MDREN •  
DELAY:MUX  
SEQ:MDREN •  
DELAY:MUX  
SEQ:MDREN •  
DELAY:MUX  
SEQ:MDREN •  
DELAY:MUX  
SEQ:MDREN •  
DELAY:MUX  
CHANMAP:ORD[2:0] = 001  
CHANMAP:ORD[2:0] = 010  
CHANMAP:ORD[2:0] = 011  
CHANMAP:ORD[2:0] = 100  
CHANMAP:ORD[2:0] = 101  
CHANMAP:ORD[2:0] = 110  
Figure 10. Sequencer Mode 2 Timing Diagram  
b. Set MODE[1:0] of the command byte to ‘11’  
Programming Sequence  
Mode Entry  
1) Set up the following registers: SEQ, CHMAP0,  
CHMAP1, DELAY, GPO_DIR, GPIO_CTRL, CTRL1  
3) Monitor RDYB (if SEQ:RDYBEN=’0’) and bits  
STAT:SRDY[5:0] for availability of per channel conver-  
sion results in DATA[x] registers.  
Mode Exit  
a. SEQ:MODE[1:0] = ‘01’ for sequencer mode 2  
1) This mode exits to SLEEP state upon completion of  
sequencing all channels  
b. If desired set SEQ:RDYBEN to ‘1’ to signal data  
ready only when all channel conversions are com-  
pleted  
2) To interrupt current sequencing perform mode exit,  
see the Changing SEQUENCER Modes—Mode Exit  
section. This device is put in STANDBY or SLEEP  
state based on CTRL1:PD[1:0] set in step 1(e) of  
Mode Entry section.  
c. Enable SEQ:MDREN to delay conversion start to  
allow for input settling. Set DELAY:MUX[7:0] to the  
desired conversion delay  
d. Set CHMAP0 and CHMAP1 to select the channels  
and channel order for conversion  
SEQUENCER MODE 3 – Scan, With Sequenced  
GPO Controls  
e. Set CTRL1:PD[1:0] to STANDBY or SLEEP state  
to set the desired exit state if a conversion com-  
mand with MODE[1:0] set to ‘01’ is issued during  
the conversion  
This mode is used to sequentially convert a programmed  
set of channels in a preset order and sequence the  
GPO/GPIO pins concurrently. The GPO/GPIO pins are  
used to bias external circuitry such as bridge sensors;  
the common reference (GPOGND) is typically ground.  
After all channel conversions have completed, the  
MAX11254 automatically powers down into SLEEP mode.  
Figure 11 illustrates the Sequencer Mode 3 timing dia-  
gram for a three-channel scan. As long as CTRL3:GPO_  
MODE is set to ‘1’, registers GPO_DIR and GPIO_CTRL  
are ignored in this mode, as the GPO/GPIO pins are  
controlled by the sequencer.  
f. Set register GPO_DIR and GPIO_CTRL to enable or  
disable the desired GPO and GPIO pins  
g. Set CTRL1:SCYCLE = ‘1’ for single-cycle conver-  
sion mode  
2) Write a conversion command (see Table 4).  
a. Set data rate using bits RATE[3:0] of the command  
byte  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
If CTRL3:GPO_MODE is set to ‘0’, the GPO/GPIO pins  
are directly controlled by the GPO_DIR and GPIO_CTRL  
registers and are not controlled by the sequencer.  
g. Set CTRL1:PD[1:0] to STANDBY or SLEEP state to  
set the desired exit state if a conversion command with  
MODE[1:0] set to ‘01’ is issued during the conversion  
h. Set CTRL1:SCYCLE = ‘1’ for single conversion  
mode  
Programming Sequence  
Mode Entry  
1) Set up the following registers: SEQ, CHMAP0,  
2) Write the conversion command (see Table 4)  
CHMAP1, DELAY, CTRL1, CTRL3  
a. Set the data rate using bits RATE[3:0] of the com-  
mand byte  
a. SEQ:MODE[1:0]=’10’ for sequencer mode 3  
b. Set MODE[1:0] of command byte to ‘11’  
b. If desired, set SEQ:RDYBEN to ‘1’ to signal data  
ready only when all channel conversions are com-  
pleted  
3) Monitor RDYB (if SEQ:RDYBEN = ‘0’) and bits  
STAT:SRDY[5:0] for availability of per channel con-  
version results in DATA[x] registers.  
c. Enable SEQ:MDREN if conversion start  
is to be delayed to allow for input settling. Set  
DELAY:MUX[7:0] to the desired conversion delay  
Mode Exit  
1) This mode exits to SLEEP state upon completion of  
sequencing all channels and GPO/GPIO pins.  
d. Set CTRL3:GPO_MODE to ‘1’ to enable GPO/  
GPIO sequencing  
2) To interrupt the current sequencing, perform mode  
exit. See the Changing SEQUENCER Modes—Mode  
Exit section. This puts the part in STANDBY or  
SLEEP state based on CTRL1:PD[1:0] set in step  
1(g) of Mode Entry.  
e. Set CHMAP0 and CHMAP1 to enable the chan-  
nels for conversion and to set the channel con-  
version order. Map the corresponding GPO/GPIO  
pins to a channel.  
f. Enable SEQ:GPODREN to add  
a
delay  
The bit CTRL1:CONTSC is ignored and bit  
CTRL1:SCYCLE = ‘0’ is invalid in this mode.  
before the multiplexer selects this channel  
for conversion. Set DELAY:GPO to a delay  
value sufficient for the bias to settle.  
SEQUENCER MODE 3 TIMING  
MUX SELECTS CHANNEL  
DEL1 – PROGRAMMED DELAY USING BITS  
CONVERSION  
STARTS  
CONVERSION  
ENDS  
DELAY:GPO[7:0] TO PROVIDE SUFFICIENT  
SETTLING TIME FOR THE SENSOR BEFORE THE  
FIRST CHANNEL IS CONVERTED.  
GPO/GPIO ACTIVATED  
DEL1  
SCAN  
CHANNEL #1  
DEL2  
TCONVERT  
DEL2 – PROGRAMMED DELAY USING BITS  
DELAY:MUX[7:0] FOR SENSOR AND ANALOG  
INPUT SETTLING AFTER THE MULTIPLIER  
SELECTS THE CHANNEL FOR CONVERSION.  
SEQ:MDREN • DELAY:MUX  
CHANMAP:ORD[2:0] = 001  
(TCONVERT AND DEL1)  
END TRIGGER  
DELAY:GPO  
MUX SELECTS CHANNEL  
CONVERSION  
STARTS  
CONVERSION  
ENDS  
GPO/GPIO  
ACTIVATED  
DEL2  
TCONVERT  
SCAN  
CHANNEL #2  
CHANMAP:ORD[2:0]  
= 010  
(TCONVERT AND DEL1)  
END TRIGGER  
MUX SELECTS CHANNEL  
CONVERSION  
STARTS  
CONVERSION  
ENDS  
GPO/GPIO  
ACTIVATED  
DEL2  
TCONVERT  
SCAN  
CHANNEL #3  
CHANMAP:ORD[2:0] = 011  
Figure 11. Sequencer Mode 3 Timing Diagram for a Three-Channel Scan  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
STAT:GPOERR is set when more than one input chan-  
nel is mapped to the same GPO/GPIO pin.  
Operating Examples—From Full Power-Down to  
Mode 3  
In this example, channels 0, 1, and 2 are configured for  
conversion in mode 3. Channel 0 is configured last in the  
scan order and the GPIO0 is mapped to this channel.  
Channel 1 is configured first in the scan order and GPO1  
is mapped to this channel. Channel 2 is configured sec-  
ond in the scan order and GPO0 is mapped to this chan-  
nel. Channels 0, 1, and 2 are enabled for scan and GPO/  
GPIO switching is also enabled. The RDYBEN is not set  
which generates a RDYB transition after each channel is  
converted. The PGA is configured for a gain of 128 and  
the data rate is 6,400sps in single-cycle mode. The MUX  
delays are enabled for all used channels and the GPO/  
GPIO delays are disabled. Reference SPI Command  
Sequence section.  
STAT:ORDERR is set when CHn_ORD is set  
as ‘000’ or ‘111’ and channel n is enabled using  
CHMAPx:CHn_EN.  
Supplies and Power-On Sequence  
The MAX11254 requires two power supplies, AVDD and  
DVDD. These power supplies can be sequenced in any  
order. The analog supply (AVDD) powers the analog  
inputs and the modulator. The DVDD supply powers the  
SPI interface. The low-voltage core logic can either be  
powered by the integrated LDO (default) or via DVDD.  
Figure 12 shows the two possible schemes. CAPREG  
denotes the internally generated supply voltage. If the  
LDO is used, the DVDD operating voltage range is from  
2.0V to 3.6V. If the core logic is directly powered by DVDD  
(DVDD and CAPREG connected togeter), the DVDD  
operating voltage range is from 1.7V to 2.0V.  
Error Checking Sequencer Mode 3  
The MAX11254 perform checks on registers CHMAP0  
and CHMAP1. Error flags are set when invalid values are  
set:  
DVDD OPERATING BETWEEN 2.0V TO 3.6V  
LDO ENABLED (SET CTRL2:LDOEN = ‘1’) AND BYPASS  
CAPREG TO DGND WITH 220nF  
DVDD OPERATING BETWEEN 1.7V TO 2.0V  
LDO DISABLED (SET CTRL2:LDOEN = ‘0’) AND  
CONNECT CAPREG TO DVDD AT BOARD LEVEL  
AVDD  
DVDD  
AVDD  
DVDD  
LDO  
LDO  
MAX11254  
MAX11254  
DIGITAL  
INTERFACE  
INPUTS  
AND  
OUTPUTS  
DIGITAL  
INTERFACE  
INPUTS  
AND  
OUTPUTS  
ANALOG  
ANALOG  
2V DIGITAL  
LOGIC  
2V DIGITAL  
LOGIC  
CAPREG  
CAPREG  
220nF  
0603  
X7R  
DGND  
Figure 12. MAX11254 Digital Power Architecture  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
SPI Command Sequence  
SPI Transactions  
Description  
CSB=0; SPI=0xD012; CSB=1;  
Write to SEQ register  
Set MUX to 0b000, MODE to 0b10, GPODREN to  
0b0, MDREN to 0b1, RDYBEN to 0b0  
CSB=0; SPI=0xCAF000; CSB=1;  
CSB=0; SPI=0xC65C; CSB=1;  
Write to DELAY register  
Set MUX[7:0] to 0xF0, GPO[7:0] to 0x00  
Write to CTRL3 register  
Set GPO_MODE to 0b1, all others to the  
default value;  
CSB=0; SPI=0xCE0B274F; CSB=1  
Write to CHMAP0 register  
CH2=0x0B: CH2_GPO=0b00, CH2_ORD=0b010,  
CH2_EN=0b1, CH2_GPOEN=0b1  
CH1=0x27: CH1_GPO=0b01, CH1_ORD=0b001,  
CH1_EN=0b1, CH1_GPOEN=0b1  
CH0=0x4F: CH0_GPO=0b10,  
CH0_ORD=0b011, CH0_EN=0b1, CH0_GPOEN=0b1  
CSB=0; SPI=0xC43F; CSB=1;  
Write to CTRL2 register  
set PGA gain to 0b111, LDOEN=0b1,  
LPMODE=0b1, PGAEN=0b1;  
CSB=0; SPI=0xBE; CSB=1;  
Wait  
Convert using sequencer mode, data rate  
selected is 6,400 sps;  
RDYB negative edge transition from ‘1’ to  
‘0’ indicates conversion completed and  
DATA register ready for read  
CSB=0; SPI=0xD3000000; CSB=1;  
Wait  
Read register DATA1;  
RDYB negative edge transition from ‘1’ to  
‘0’ indicates conversion completed and  
DATA register ready for read  
CSB=0; SPI=0xD5000000; CSB=1;  
Wait  
Read register DATA2  
RDYB negative edge transition from ‘1’ to  
‘0’ indicates conversion completed and  
DATA register ready for read  
CSB=0; SPI=0xD1000000; CSB=1;  
STOP  
Read register DATA0;  
Mode activity is completed. The MAX11254  
powers down into SLEEP state waiting for  
the next command  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Power-On Reset and Undervoltage Lockout  
Reset  
A global power-on reset (POR) is triggered until AVDD,  
DVDD, and CAPREG cross a minimum threshold voltage  
(V ), as shown in Figure 13.  
LH  
Hardware Reset Using RSTB  
The MAX11254 features an active-low RSTB pin to per-  
form a hardware reset. Pulling the RSTB pin low stops  
any conversion in progress, reconfigures the internal  
registers to the power-on reset state and resets all digital  
filter states to zero. After the reset cycle is completed, the  
MAX11254 remains in STANDBY state and awaits further  
commands.  
To prevent ambiguous power-supply conditions from  
causing erratic behavior, voltage detectors monitor AVDD,  
DVDD, and CAPREG and hold the MAX11254 in reset  
when supplies fall below V  
(see Figure 13). The ana-  
HL  
log undervoltage lockout (AVDD UVLO) prevents the  
ADC from converting when AVDD falls below V . The  
HL  
Software Reset  
CAPREG UVLO resets and prevents the low-voltage  
The host can issue a software reset to restore the default  
state of the MAX11254. A software reset sets the interface  
registers back into their default states and resets the inter-  
nal state machines. However, a software reset does not  
emulate the complete POR or hardware reset sequence.  
digital logic from operating at voltages below V . DVDD  
HL  
UVLO thresholds supersede CAPREG thresholds when  
CAPREG is externally driven. Figure 14 shows a flow dia-  
gram of the POR sequence. Glitches on supplies AVDD,  
DVDD, and CAPREG for durations shorter than T are  
P
suppressed without triggering POR or UVLO. For glitch  
durations longer than T , POR is triggered within T  
seconds. See the Electrical Characteristics table for val-  
Two SPI transactions are required to issue a software  
reset: First set CTRL1:PD[1:0] to ‘11’ (RESET). Then  
issue a conversion command with MODE[1:0] set to ‘01’.  
P
DEL  
ues of V , V , T , and T  
.
DEL  
LH HL  
P
To confirm the completion of the reset operation,  
STAT:PDSTAT and STAT:INRESET must be monitored.  
Power-On Reset Timing  
Power-on reset is triggered during power-up and under-  
voltage conditions as described above. Completion of the  
POR process is monitored by polling STAT:PDSTAT[1:0]  
= ‘10’ for STANDBY state (see Figure 15).  
Figure 16 shows the state transition for the RESET com-  
mand and the relative timing of STAT register update.  
During reset, INRESET = ’1’ and PDSTAT= ‘11’. The  
SPI interface cannot be written until MAX11254 enters  
STANDBY state where PDSTAT = ‘10’. To confirm com-  
pletion of the RESET command, monitor for INRESET =  
‘0’ and PDSTAT = ‘10’.0 Table 6 summarizes the maxi-  
mum delay for reset operation.  
AVDD  
VLH  
DVDD  
VHYS  
VHL  
CAPREG  
TP  
TDEL  
TP  
TDEL  
PORB  
Figure 13. Undervoltage Lockout Characteristic Voltage Levels and Timing  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Table 6. Maximum Delay Time for Mode Transitions  
MAX11254  
STATE BEFORE  
MAXIMUM  
DELAY TIME TO STATE AFTER  
NEXT STATE  
MAX11254  
COMMAND  
ISSUED*  
COMMAND INTERPRETATION  
COMMAND  
COMMAND  
RESET  
Command ignored  
0
0
RESET  
SLEEP  
SLEEP  
SLEEP  
Command ignored  
STANDBY  
MAX11254 powers down into SLEEP mode  
20ms  
Issue a conversion command and then monitor  
STAT:PDSTAT[1:0] for change of mode; then send  
conversion command with MODE[1:0] set to ‘01’  
STANDBY (fast)  
15µs  
SLEEP  
SLEEP  
Calibration stops, MAX11254 powers down into  
SLEEP mode  
Calibration  
Conversion  
3µs  
3µs  
SLEEP  
SLEEP  
Conversion stops, MAX11254 powers down into  
SLEEP mode  
Mode change from SLEEP to conversion  
SAT: PDSTAT changes to ‘00’  
SLEEP  
T
+ 3µs  
+ 3µs  
Conversion  
PUPSLP  
CONVERT  
STANDBY  
STANDBY  
RESET  
STANDBY to conversion  
Command ignored  
T
Conversion  
RESET  
PUPSBY  
0
SLEEP  
MAX11254 changes to STANDBY  
20ms  
STANDBY  
Issue a conversion command and then monitor  
STAT:PDSTAT[1:0] for change of mode; then send  
conversion command with MODE[1:0] set to ‘01’  
SLEEP (fast)  
85µs  
STANDBY  
STANDBY  
Calibration  
Conversion  
RESET  
Command ignored  
0
3µs  
3µs  
0
STANDBY  
STANDBY  
STANDBY  
RESET  
Calibration stops  
Conversion stops  
Command ignored  
SLEEP  
Command ignored  
0
SLEEP  
RESET  
STANDBY  
Calibration  
Conversion  
OFF  
Register values reset to default  
Calibration stops, register values reset to default  
Conversion stops, register values reset to default  
From complete power-down to STANDBY mode  
From any state to STANDBY mode  
28ms  
6µs  
6µs  
10ms  
10ms  
STANDBY  
STANDBY  
STANDBY  
STANDBY  
STANDBY  
POR  
RSTB  
Any  
*The commands are defined as follows:  
SLEEP: Set CTRL1:PD[1:0] to ‘01’; issue a conversion command with MODE[1:0] set to ‘01’  
STANDBY: Set CTRL1:PD[1:0] to ‘10’; issue a conversion command with MODE[1:0] set to ‘01’  
RESET: Set CTRL1:PD[1:0] to ‘11’; issue a conversion command with MODE[1:0] set to ‘01’  
CONVERT: Any conversion command with MODE[1:0] set to ‘11’  
POR: Power-on reset during initial power-up or UVLO  
RSTB: Hardware reset with RSTB pin  
See the Electrical Characteristics for T  
PUPSLP  
and T  
PUPSBY  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
POWER-ON  
NO  
NO  
NO  
AVDD UVLO  
TRIGGERED?  
CAPREG UVLO  
TRIGGERED?  
DVDD UVLO  
TRIGGERED?  
YES  
YES  
YES  
POWER-ON  
RESET FOR 2V  
DIGITAL LOGIC  
POWER-ON RESET  
FOR DIGITAL LOGIC  
AND INTERFACE  
ANALOG  
RESET  
OSCILLATOR  
RESET  
Figure 14. MAX11254 UVLO and POR Flow Diagram  
OUT OF POWER-ON RESET  
SERIAL  
IN POWER-ON RESET  
INTERFACE  
READ ONLY  
SERIAL INTERFACE AVAILABLE FOR BOTH READ AND WRITE  
VDVDD  
‘10’ (STANDBY)  
‘11’  
STAT:PDSTAT=’XX’  
Figure 15. Power-On Reset and PDSTAT Timing  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
STANDBY STATE TO SLEEP STATE (FAST)  
1) Set CTRL1:PD[1:0] = ‘01’ for STANDBY state.  
2) Set SEQ:MODE[1:0] = ‘00’ for sequencer mode 1  
Power-Down States  
To reduce overall power consumption, the MAX11254  
features two power-down states: STANDBY and SLEEP.  
In SLEEP mode all circuitry is powered down, and the  
supply currents are reduced to leakage currents. In  
STANDBY mode the internal LDO and a low-frequency  
oscillator are powered up to enable fast start-up. After  
POR or a hardware reset the MAX11254 is in STANDBY  
mode until a command is issued.  
3) Issue a conversion command with MODE[1:0] set to  
‘11’.  
4) Monitor STAT:PDSTAT[1:0] = ‘00’ for active state.  
5) Write the conversion command with MODE[1:0] set to  
‘01’.  
6) Monitor STAT:PDSTAT = ‘01’ for completion.  
Changing Power-Down States  
Mode transition times are dependent on the current mode  
of operation. STAT:PDSTAT is updated at the end of all  
mode changes and is a confirmation of a completed trans-  
action. The MAX11254 does not use a command FIFO or  
queue. The user must confirm the completed transaction  
by polling STAT:PDSTAT after the expected delay, as  
described in Table 6. Once the transition is complete, it is  
safe to send the next command.  
Calibration  
Two types of calibration are available: self calibration  
and system calibration. Self calibration is used to reduce  
the MAX11254’s gain and offset errors during changing  
operating conditions such as supply voltages, ambi-  
ent temperature, and time. System calibration is used  
to reduce the gain and offset error of the entire signal  
path. This enables calibration of board level components  
and the integrated PGA. System calibration requires the  
MAX11254’s inputs to be reconfigured for zero scale and  
full scale during calibration. The GPO/GPIO pins can be  
used for this purpose. See Figure 17 for details of the  
calibration signal flow.  
Verify that STAT:PDSTAT indicates the desired state  
before issuing a conversion command.  
Writes to any CTRL register during a conversion aborts  
the conversion and returns the MAX11254 to STANDBY  
state.  
The calibration coefficients are stored in the registers  
SCOC, SCGC, SOC and SGC. Data written to these  
registers is stored within the SPI domain and copied to  
internal registers before a conversion starts to process  
the raw data (see Figure 17). An internal or system cali-  
bration only updates the internal register values and does  
not alter the contents stored in the SPI domain. The bit  
CTRL3:CALREGSEL decides whether the internal con-  
tents or the contents stored in the SPI domain are read  
back during a read access of these registers.  
SLEEP STATE TO STANDBY STATE (FAST)  
1) Set CTRL1:PD[1:0] = ‘10’ for STANDBY state.  
2) Set SEQ:MODE[1:0] = ‘00’ for sequencer mode 1  
3) Issue a conversion command with MODE[1:0] set to  
‘11’.  
4) Monitor STAT:PDSTAT[1:0] = ‘00’ for active state.  
5) Write the conversion command with MODE[1:0] set to  
‘01’.  
6) Monitor STAT:PDSTAT = ‘10’ for completion.  
SERIAL INTERFACE IS  
AVAIABLE FOR BOTH  
READ AND WRITE  
SERIAL INTERFACE IS READ  
ONLY DURING THIS PERIOD  
COMMAND LATCHED  
RESET COMMAND  
STAT:INRESET  
IDLE  
‘10’  
‘11’  
STAT:PDSTAT = ‘00’/’10'  
Figure 16. STAT:INRESET and STAT:PDSTAT Timing  
Maxim Integrated  
31  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
RAW RESULT  
SPI BLOCK  
CAL BLOCK  
F
NOSCO=0  
T
SCOC  
SUBTRACT  
SCOC_INTERNAL  
24  
24  
24  
24  
F
F
F
NOSCG=0  
T
SCGC  
MULTIPLY  
SCGC_INTERNAL  
NOSYSO=0  
T
SOC  
SUBTRACT  
SOC_INTERNAL  
NOSYSG=0  
T
SGC  
MULTIPLY  
SGC_INTERNAL  
F
FINAL  
RESULT  
UNIPOLAR  
DATA  
T
STATUS REG  
x2  
LIMITER  
Figure 17. Calibration Flow Diagram  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Bits NOSCO, NOSCG, NOSYSO, NOSYSG enable or  
disable the use of the individual calibration coefficients  
during data processing. See Figure 17, Calibration Flow  
Diagram.  
to ‘10’ (calibration). The system offset calibration requires  
100ms to complete.  
To perform a system full-scale calibration, the inputs must  
be configured for full scale. The input full-scale value does  
not necessarily need to be equal to V  
since the input  
REF  
Self-Calibration  
voltage range of the calibration registers can scale up  
or down appropriately within the range of the calibration  
registers.  
The self-calibration is an internal operation and does not  
disturb the analog inputs. The self-calibration command  
can only be issued in sequencer mode 1 (SEQ:MODE[1:0]  
= ‘00’). Self-calibration is accomplished in two indepen-  
dent phases, offset and gain. The first phase disconnects  
the inputs to the modulator and shorts them together  
internally to develop a zero-scale signal. A conversion  
is then completed and the results are post-processed to  
generate an offset coefficient which cancels all internally  
generated offsets. The second phase connects the inputs  
to the reference to develop a full-scale signal. A conver-  
sion is then completed and the results are post-processed  
to generate a full-scale coefficient, which scales the  
converters full-scale analog range to the full-scale digital  
range.  
A system full-scale calibration is started as follows: Set  
CTRL1:CAL[1:0] to ‘10’ (system full-scale calibration).  
Then issue a conversion command with the MODE[1:0]  
bits set to ‘10’ (calibration). The system full-scale calibra-  
tion requires 100ms to complete.  
The GPO/GPIO pins can be used during a system cali-  
bration.  
All four calibration registers (SOC, SGC, SCOC, and  
SCGC) can be written by the host to store special calibra-  
tion values. The new values will be copied to the internal  
registers at the beginning of a new conversion.  
GPIOs  
The entire self-calibration sequence requires two inde-  
pendent conversions, one for offset and one for full scale.  
The conversion rate is 50sps in the single-cycle mode.  
This rate provides the lowest noise and most accurate  
calibrations.  
The MAX11254 provides two general-purpose input/out-  
put ports that are programmable through the GPIO_CTRL  
register. Enable the GPIO pins by setting bits GPIO1_EN  
and GPIO0_EN, respectively. Set the DIR bits to select  
the pins to be configured as inputs or outputs. All pins are  
inputs by default. When programmed as output, set the  
DIO bits to set the pin state to ‘0’ or ‘1’.  
The self-calibration operation excludes the PGA. A sys-  
tem level calibration is available in order to calibrate the  
PGA signal path.  
Conversion Synchronization Using SYNC Pin  
and External Clock  
Aself-calibration is started as follows: Set CTRL1:CAL[1:0]  
to ‘00’ (self-calibration). Then issue a conversion com-  
mand with the MODE[1:0] bits set to ‘10’ (calibration). A  
self-calibration requires 200ms to complete.  
The SYNC pin—in conjunction with an external clock—  
can be used to synchronize the data conversions to  
external events. Set GPIO_CTRL:GPIO1_EN to ‘0’ and  
GPI_CTRL:GPIO0_EN to ‘0’ to configure the GPIO1/  
SYNC and GPIO0/CLK pins. Configure sync mode by set-  
ting CTRL3:SYNC_MODE to ‘1’ and external clock mode  
by setting CTRL2:EXTCLK to ‘1’.  
System Calibration  
This mode is used when calibration of board level compo-  
nents and the integrated PGA is required. The system cal-  
ibration command is only available in sequencer mode 1.  
A system calibration requires the input to be configured  
to the proper level for calibration. The offset and full-scale  
system calibrations are, therefore, performed using sepa-  
rate commands. The channel selected in the SEQ:MUX  
bits is used for system calibrations.  
The synchronization mode is used to detect if the cur-  
rent conversions are synchronized to a continuous pulse  
signal with a period greater than the data rate. Ideally,  
the frequency of the synchronization signal is an integer  
multiple of the conversion rate. The synchronization mode  
records the number of device master clock cycles between  
a RDYB assertion and the rising edge of the next SYNC  
pulse. At the following SYNC pulse, the number of master  
clock cycles between a RDYB assertion and the rising  
edge of the SYNC pulse is evaluated again and com-  
pared to the recorded value. If the new number of master  
clock cycles differs by more than one from the recorded  
To perform a system offset calibration, the inputs must be  
configured for zero scale. The inputs do not necessarily  
need to be shorted to 0V as any voltage within the range  
of the calibration registers can be nulled in this calibration.  
A system offset calibration is started as follows: Set  
CTRL1:CAL[1:0] to ‘01’ (system offset calibration). Then  
issue a conversion command with the MODE[1:0] bits set  
Maxim Integrated  
33  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
value, the conversion in progress is stopped, the digital  
filter contents are reset, and a new conversion starts.  
As the digital filter is reset, the full digital filter latency is  
required before valid results are available. If the new mas-  
ter clock count is within the ±1 count limit, the conversions  
continue uninterrupted.  
Components of the ADC  
Modulator  
MODULATOR DIGITAL OVERRANGE  
The output of the SINC filter is monitored for overflow.  
When SINC filter overflow is detected, the STAT:DOR bit  
is set to ‘1’ and a default value is loaded into the DATA  
register depending on the polarity of the overload. A  
positive overrange causes 0x7FFFFF to be written to the  
DATA register. A negative overrange causes 0x800000 to  
be written to the DATA register. See Table 7.  
Figure 18 shows the timing relationship between the  
MAX11254 master clock and the SYNC signal. Due to  
startup delays, any SYNC pulses before the first RDYB  
assertion (low-going edge) are ignored. The first rising  
edge on the SYNC pin after a RDYB assertion establishes  
the relationship between the SYNC signal and the conver-  
sion timing.  
MODULATOR ANALOG OVERRANGE  
The modulator analog overrange is used to signal the user  
that the input analog voltage has exceeded preset limits  
defined by the modulator operating range. These limits  
Table 7. Analog Overrange Behavior for Different Operating Conditions and Modes  
STAT REGISTER  
INPUT VOLTAGE  
AOR  
DOR  
DATA  
RESULT  
-V  
< V < V  
0
1
1
1
1
0
0
0
1
1
REF  
IN  
REF  
V
< V < V  
RESULT  
REF  
IN  
OVRRNG  
-V  
< V < -V  
RESULT  
OVRRNG  
IN  
REF  
V
> V  
0x7FFFFF  
IN  
IN  
OVRRNG  
V
< -V  
0x800000  
OVRRNG  
The DATA values shown are for bipolar ranges with two’s complement number format. V  
is the overrange volt-  
OVRRNG  
age value typically > 120% of V  
.
REF  
FIRST VALID  
SYNC  
> 2 x t  
> 2 x t  
CLK  
IGNORED  
CLK  
SYNC SIGNAL  
RDYB  
CLK  
FIRST  
CONVERSION  
READY  
N
N’  
...  
t
CLK  
DEVICE INITIATES A RESET AND RESTARTS CONVERSIONS WHEN N AND N’ DIFFER BY  
MORE THAN ±1CLK COUNT. OTHERWISE CONVERSIONS CONTINUE UNINTERRUPTED.  
Figure 18. Timing Relationship between SYNC Signal, External Clock and RDYB  
Maxim Integrated  
34  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
SINC5 FILTER, NORMAL MODE  
REJECTION DATA RATE 64000.0sps  
SINC5 FILTER, NORMAL MODE REJECTION  
SINGLE CYCLE DATA RATE 4000.0sps  
0
-10  
0
-10  
-20  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
-200  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
-200  
0
2
4
6
8
10  
12  
0
1
2
3
4
5
6
x 104  
FREQUENCY (Hz)  
x 104  
FREQUENCY (Hz)  
Figure 19. Digital Filter Frequency Response for 64ksps  
Continuous Data Rate and 12.8ksps Single-Cycle Data Rate  
Figure 20. Digital Filter Frequency Response for 4ksps Single-  
Cycle Data Rate  
are approximately 120% of the applied reference voltage.  
When analog overrange is detected the STAT:AOR bit is  
set to ‘1’ after DATA is updated. The AOR bit will always  
correspond to the current value in the DATA register. See  
Table 7.  
Split Supplies  
The MAX11254 supports unipolar and split analog power  
supplies for input range flexibility. Using a split analog  
supply enables sampling below ground reference. The  
true bipolar input range is up to ±1.8V. See Figure 3 for  
analog input voltage range for both unipolar and split  
supplies.  
SINC Filter  
The digital filter is a mode-configurable digital filter and  
decimator that processes the data stream from the fourth  
order delta-sigma modulator and implements a fifth order  
SINC function with an averaging function to produce a  
24-bit wide data stream.  
Sensor Fault Detection  
The MAX11254 includes a 1µA current source and a  
1µA current sink. The source pulls current from AVDD to  
AIN_P and sink from AIN_N to AVSS. The currents are  
enabled by register bit CTRL3:CSSEN. These currents  
are used to detect damaged sensors in either open or  
shorted state. The current sources and sinks are func-  
tional over the normal input operating voltage range, as  
specified.  
The SINC filter allows the MAX11254 to achieve very  
high SNR. The bandwidth of the fifth order SINC filter  
is approximately twenty percent of the data rate. See  
Figures 19 and 20 for the filter response of 64ksps and  
4ksps, respectively. See Figure 21 for the bandwidth of  
the individual signal stages.  
These currents are used to test sensors for functional  
operation before taking measurements on that input  
channel. With the source and sink enabled, the currents  
flow into the external sensor circuit and measurement  
of the input voltage is used to diagnose sensor faults. A  
full-scale reading could indicate a sensor is open circuit  
or overloaded or that the ADC’s reference is absent. If a  
zero-scale is read back, this may indicate the sensor is  
short-circuited.  
Applications Information  
Connecting an External 1.8V Supply to DVDD  
for Digital I/O and Digital Core  
The voltage range of the DVDD I/O supply is specified  
from 2.0V to 3.6V if the internal LDO is used to power the  
digital core. If a lower I/O supply voltage is desired, the  
internal LDO can be disabled, and DVDD and CAPREG  
can be connected together as shown in Figure 22. In this  
mode of operation, DVDD can vary from 1.7V to 2.0V. The  
internal LDO must be disabled by setting CTRL2:LDOEN to ‘0’.  
Maxim Integrated  
35  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
G=128  
PGA  
24  
N
ANALOG  
FILTER  
DELTA-SIGMA  
ADC  
DIGITAL  
FILTER  
Sn = 5nV/√Hz  
N
BW3  
BW3  
BW3  
NEB3  
FDATA  
NEB1 = /2 x BW3  
BW3 NEB  
NEB2 = /2 x BW3  
BW3 NEB  
10nF 23k 36k  
1nF 230k 361k  
100pF 2.3M 3.6M  
NEB3 = 0.215 x FDATA  
64ksps = 13.2kHz  
10nF 21k 33k  
1nF 69k 108k  
100pF 73k 115k  
Figure 21. Signal Path Block Diagram Including Bandwidth of Each Stage  
2.7V TO 3.6V  
REF  
1.7V TO 2.0V  
10nF  
1µF  
1µF  
X7R  
REFN REFP  
AIN0P  
AVDD  
DVDD  
1nF  
C0G  
RSTB  
CSB  
AIN0N  
SCLK  
DIN  
MAX11254  
µC  
DOUT  
AIN5P  
RDYB  
1nF  
C0G  
AIN5N  
GPO0 GPO1 GPOGND CAPP CAPN CAPREG AVSS  
DGND  
1nF  
C0G  
Figure 22. Application Diagram for 1.8V DVDD  
Maxim Integrated  
36  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Register Map  
Legend:  
CNV IN PROGRESS column – behavior during conversion:  
CNV – Normal read/write activities are available.  
CS – Writes to these registers immediately abort conversion in progress and the MAX11254 enters STANDBY state.  
IG – No changes, write is ignored.  
RETENTION column – behavior during SLEEP mode:  
R – The value of the register is retained.  
M – Only bits in < > are retained. Others are cleared.  
The address column shows the register address as used in the command byte definition (see Table 4).  
Maxim Integrated  
37  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Table 8. Register Map  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
INRESET  
REFDET  
RATE2  
<SRDY5>  
ORDERR  
RATE1  
<SRDY4>  
GPOERR  
RATE0  
<SRDY3>  
ERROR  
<PDSTAT1>  
U/B  
<SRDY2>  
SYSGOR  
<PDSTAT0>  
FORMAT  
PGAG2  
<SRDY1>  
DOR  
<SRDY0>  
AOR  
STAT  
R
M
0
SCANERR  
RATE3  
CAL1  
MSTAT  
SCYCLE  
PGAG1  
NOSCG  
DIO1  
<RDY>  
CONTSC  
PGAG0  
NOSCO  
DIO0  
CTRL1  
CTRL2  
CTRL3  
R/W  
R/W  
R/W  
CS  
CS  
R
R
R
R
1
2
3
4
CAL0  
PD1  
PD0  
EXTCLK  
CSSEN  
LDOEN  
LPMODE  
PGAEN  
NOSYSG  
DIR0  
CS  
GPO_MODE SYNC_MODE CALREGSEL  
GPIO0_EN DIR1  
NOSYSO  
GPIO_CTRL R/W  
CNV  
GPIO1_EN  
MUX[7:0]  
GPO[7:0]  
DELAY  
R/W  
R/W  
IG  
IG  
R
5
CH5_GPO1 CH5_ GPO0  
CH4_GPO1 CH4_ GPO0  
CH3_GPO1 CH3_GPO0  
CH2_GPO1 CH2_GPO0  
CH1_GPO1 CH1_GPO0  
CH0_GPO1 CH0_GPO0  
CH5_ORD2  
CH4_ORD2  
CH3_ORD2  
CH2_ORD2  
CH1_ORD2  
CH0_ORD2  
MODE1  
CH5_ORD1  
CH4_ORD1  
CH3_ORD1  
CH2_ORD1  
CH1_ORD1  
CH0_ORD1  
MODE0  
CH5_ORD0  
CH4_ORD0  
CH3_ORD0  
CH2_ORD0  
CH1_ORD0  
CH0_ORD0  
GPODREN  
CH5_EN  
CH4_EN  
CH3_EN  
CH2_EN  
CH1_EN  
CH0_EN  
MDREN  
GPO1  
CH5_GPOEN  
CH4_GPOEN  
CH3_GPOEN  
CH2_GPOEN  
CH1_GPOEN  
CH0_GPOEN  
RDYBEN  
CHMAP1  
R
6
CHMAP0  
R/W  
IG  
R
7
SEQ  
GPO_DIR  
SOC  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
CNV  
CNV  
IG  
R
R
R
R
R
R
R
R
R
R
R
R
8
MUX2  
MUX1  
MUX0  
9
GPO0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
D[23:0]  
SGC  
IG  
D[23:0]  
D[23:0]  
D[23:0]  
D[23:0]  
D[23:0]  
D[23:0]  
D[23:0]  
D[23:0]  
D[23:0]  
SCOC  
SCGC  
DATA0  
DATA1  
DATA2  
DATA3  
DATA4  
DATA5  
IG  
IG  
R
R
R
R
R
Maxim Integrated  
38  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Register Definitions  
STAT: Status Register (Read)  
BIT NAME  
INRESET  
0
SRDY5  
0
SRDY4  
0
SRDY3  
0
SRDY2  
0
SRDY1  
0
SRDY0  
0
DEFAULT  
0
BIT NAME  
SCANERR  
0
REFDET  
1
ORDERR  
0
GPOERR  
0
ERROR  
0
SYSGOR  
0
DOR  
0
AOR  
0
DEFAULT  
BIT NAME  
RATE3  
0
RATE2  
0
RATE1  
0
RATE0  
0
PDSTAT1  
0
PDSTAT0  
0
MSTAT  
0
RDY  
0
DEFAULT  
This register provides the functional status of the MAX11254.  
BIT NAME  
DESCRIPTION  
This bit is set to ‘1’ to indicate that the MAX11254 is in reset.  
INRESET  
This bit is set to ‘1’ in sequencer modes 2 and 3 to indicate that a new conversion result is available from the  
channel indicated by the SRDY bit position. A complete read of the DATA register associated with the SRDY bit  
will reset the bit to ‘0’. At the start of a scan mode these bits are reset to ‘0’.  
SRDY[5:0]  
This bit is set to ‘1’ if sequencer mode 2 or 3 is selected and no channels or invalid channel numbers (‘000’ or  
‘111’) are enabled in the CHMAP1 or CHMAP0 register. Until SCANERR is cleared, conversion commands are  
aborted.  
SCANERR  
REFDET  
This bit is set to ‘1’ if a proper reference voltage is detected and ‘0’ if a proper reference voltage is missing. In  
SLEEP or STANDBY mode the value of this bit is ‘0’. The trigger level for this bit is V  
< 0.35V. This error  
REF  
does not inhibit normal operation and is intended for status only. The value of this status bit is valid within 30µs  
after a conversion start command and is invalid when not in conversion.  
This bit is set to ‘1’ if two or more CHX_ORD bits decode to the same scan sequence order and are also  
enabled. This bit is also set to ‘1’ in the case when a channel is enabled for scan with CHX_EN=’1’ and CHX_  
ORD[2:0] = ‘000’ or ‘111’. The CHX_ORD[2:0] values of ‘000’ and ‘111’ are not allowed as order of an enabled  
channel. The allowable orders are ‘001’, ‘010’, ‘011’, ‘100’, ‘101’, ‘110’. The MAX11254 remains in STANDBY  
state until this error is removed. The channel order must be strictly sequential and no missing numbers are  
allowed. For instance, if 4 channels are enabled then the order must be ‘001’, ‘010’, ‘011’, ‘100’. Any other  
order is flagged as ORDERR and the MAX11254 remains in STANDBY mode.  
ORDERR  
This bit is set to ‘1’ if more than one input channel is mapped to the same GPO/GPIO pin, and CHX_GPOEN  
is enabled for more than one channel. The MAX11254 remains in STANDBY state until this error is removed.  
GPOERR  
ERROR  
This bit is set to ‘1’ to indicate invalid configuration states. This bit is set if CAL[1:0] is programmed to ‘11’  
which is an invalid state. This bit is set if CTRL1:SCYCLE = ‘0’ for scan modes 2 and 3. This error puts the  
MAX11254 into STANDBY mode.  
Maxim Integrated  
39  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
STAT: Status Register (Read) (continued)  
BIT NAME  
DESCRIPTION  
This bit is set to ‘1’ to indicate that a system gain calibration results in an overrange condition of the calibration  
coefficient. The SCGC calibration coefficient is set to the maximum value of 1.9999999.  
SYSGOR  
DOR  
This bit is set to ‘1’ to indicate that the conversion result has exceeded the maximum or minimum value of the  
converter and that the result has been clipped or limited to the maximum or minimum value. When set to ‘0’  
the conversion result is within the full-scale range of the inputs.  
This bit is set to ‘1’ to indicate that the modulator detected an analog overrange condition by having the input  
signal level greater than the reference voltage. This check for overrange includes the PGA gain.  
AOR  
These bits indicate the conversion rate that corresponds to the result in the DATA registers or the rate that was  
used for calibration coefficient calculation. The corresponding RATE[3:0] is only valid until the DATA registers  
are read. The decoding of RATE[3:0] is shown in Table 1.  
RATE[3:0]  
These bits indicate the state of the MAX11254. See Table 6 for transition times.  
PDSTAT1  
PDSTAT0  
DESCRIPTION  
0
0
1
1
0
1
0
1
CONVERSION  
SLEEP  
PDSTAT[1:0]  
STANDBY (default)  
RESET  
This bit is set to ‘1’ to indicate when a signal measurement is in progress. This indicates that a conversion,  
self-calibration, or system calibration is in progress and that the modulator is busy. When the modulator is not  
converting, this bit will be set to ‘0’.  
MSTAT  
RDY  
This bit is set to ‘1’ to indicate that a new conversion result is available in sequencer mode 1. A complete read  
of the corresponding DATA register will reset this bit to ‘0’. This bit is invalid in sequencer mode 2 or 3. The  
function of this bit is redundant and is duplicated by the RDYB pin.  
Maxim Integrated  
40  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
CTRL1: Control Register 1 (Read/Write)  
Default = 0x02l  
BIT NAME  
CAL1  
0
CAL0  
0
PD1  
0
PD0  
0
U/B  
FORMAT  
0
SCYCLE  
1
CONTSC  
0
DEFAULT  
0
This register controls the selection of operational modes and configurations.  
BIT NAME  
DESCRIPTION  
The calibration bits control the type of calibration performed when a calibration command byte is issued:  
CAL1  
CAL0  
DESCRIPTION  
0
0
1
1
0
1
0
1
Performs a self-calibration  
CAL[1:0]  
Performs a system-level offset calibration  
Performs a system-level full-scale calibration  
Reserved. Do not use.  
Selects the power-down state to be executed. The MAX11254 enters the selected power-down state  
after a conversion command with MODE[1:0] set to ‘01’ is written. The state is decoded as below:  
PD1  
PD0  
DESCRIPTION  
0
0
1
1
0
1
0
1
NOP (default)  
SLEEP  
PD[1:0]  
STANDBY  
RESET  
The ‘unipolar/bipolar’ bit controls the input range. A ‘1’ selects unipolar input range and a ‘0’ selects  
bipolar input range.  
U/B  
The ‘format’ bit controls the digital format of the bipolar range data. A ‘0’ selects two’s complement and  
a ‘1’ selects offset binary format of the bipolar range. The data for unipolar range is always formatted  
in offset binary format.  
FORMAT  
The ‘single-cycle’ bit selects either no-latency single conversion mode or continuous conversion in  
sequencer mode 1. A ‘1’ selects single-cycle mode where a no-latency conversion is followed by a  
power-down to SLEEP mode. A ‘0’ selects continuous conversion mode with a latency of 5 conversion  
cycles for filtering. The RDYB pin goes low when valid/settled data is available. Only SCYCLE = ‘1’ is  
valid in sequencer mode 2 and 3.  
SCYCLE  
CONTSC  
The ‘continuous single-cycle’ bit selects between single or continuous conversions while operating  
in single-cycle mode in sequencer mode 1. A ‘1’ selects continuous conversions and a ‘0’ selects a  
single conversion.  
Maxim Integrated  
41  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
CTRL2: Control Register 2 (Read/Write)  
Default = 0x20  
BIT NAME  
EXTCLK  
0
CSSEN  
0
LDOEN  
1
LPMODE  
0
PGAEN  
0
PGAG2  
0
PGAG1  
0
PGAG0  
0
DEFAULT  
This register controls the selection and configuration of optional functions.  
BIT NAME  
DESCRIPTION  
External clock mode is enabled by setting this bit to ‘1’. In this mode, the internal oscillator is bypassed  
and the GPIO0/CLK pin is configured as external clock input.  
EXTCLK  
Setting this bit to ‘1’ enables the current source and current sink on the analog inputs to detect sensor  
opens or shorts.  
CSSEN  
LDOEN  
Set this bit to ‘1’ to enable the internal LDO. Set this bit to ‘0’ when driving the CAPREG pin externally  
with a 1.8V supply. When driving the CAPREG pin with external supply, the user must ensure that the  
CAPREG pin is connected to the DVDD pin.  
PGA low-power mode is enabled by setting this bit to ‘1’. The PGA operates with reduced power  
consumption and reduced performance. The LPMODE does not affect power or performance when  
the PGA is not enabled.  
LPMODE  
PGAEN  
The PGA enable bit controls the operation of the PGA. A ‘1’ enables and a ‘0’ disables the PGA.  
The ‘PGA’ bits control the PGA gain. The PGA gain is set by:  
PGA2  
PGA1  
PGA0  
DESCRIPTION  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Gain = 1  
Gain = 2  
Gain = 4  
Gain = 8  
Gain = 16  
Gain = 32  
Gain = 64  
Gain = 128  
PGA[2:0]  
Maxim Integrated  
42  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
CTRL3: Control Register 3 (Read/Write)  
Default = 0x1C  
BIT NAME  
GPO_MODE  
0
SYNC_MODE  
0
CALREGSEL  
1
NOSYSG  
1
NOSYSO  
1
NOSCG  
0
NOSCO  
0
DEFAULT  
This register is used to control the operation and calibration of the MAX11254.  
BIT NAME  
DESCRIPTION  
The value of this bit controls the GPO mode for sequencer mode 3. When set to ‘1’, the GPO and the  
GPIO pins are sequenced based on the channel mapping in the CHMAP1 and CHMAP0 registers.  
When set to ‘0’, the GPO and GPIO pins are directly controlled by the GPO_DIR and GPIO_CTRL  
registers, respectively, during conversion or STANDBY state. This bit has no effect in sequencer  
modes 1 and 2.  
GPO_MODE  
This bit controls sync mode (see the Conversion Synchronization Using Sync Pin and External Clock  
section). When set to ‘1’, the synchronization mode is enabled, when set to ‘0’ it is disabled.  
SYNC_MODE  
CALREGSEL  
This bit controls which calibration value is read during a calibration register inquiry. Set this bit to ‘1’ to  
read back the interface value. Set this bit to ‘0’ to read back the internal register value.  
The ‘no system gain’ bit controls the use of the system gain calibration coefficient. Set this bit to ‘1’  
to disable the use of the system gain value when computing the final offset and gain corrected data  
value. Set this bit to ‘0’ to enable the use of the system gain value when computing the final offset and  
gain corrected data value.  
NOSYSG  
NOSYSO  
NOSCG  
NOSCO  
The ‘no system offset’ bit controls the use of the system offset calibration coefficient. Set this bit to ’1’  
to disable the use of the system offset value when computing the final offset and gain corrected data  
value. Set this bit to ‘0’ to enable the use of the system offset value when computing the final offset  
and gain corrected data value.  
The ‘no self-calibration gain’ bit controls the use of the self-calibration gain calibration coefficient. Set  
this bit to ‘1’ to disable the use of the self-calibration gain value when computing the final offset and  
gain corrected data value. Set this bit to ‘0’ to enable the use of the self-calibration gain value when  
computing the final offset and gain corrected data value.  
The ‘no self-calibration offset’ bit controls the use of the self-calibration offset calibration coefficient.  
Set this bit to ‘1’ to disable the use of the self-calibration offset value when computing the final offset  
and gain corrected data value. Set this bit to ‘0’ to enable the use of the self-calibration offset value  
when computing the final offset and gain corrected data value.  
Maxim Integrated  
43  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
GPIO_CTRL: GPIO Control Register (Read/Write)  
Default = 0x4x  
BIT NAME  
GPIO1_EN  
0
GPIO0_EN  
1
DIR1  
0
DIR0  
0
DIO1  
X
DIO0  
X
DEFAULT  
This register controls the direction and values of the general-purpose I/O (GPIO) pins.  
BIT NAME  
DESCRIPTION  
This bit selects the functionality of the GPIO1/SYNC pin. Set this bit to ‘1’ to use the pin as GPIO, or  
set the bit to ‘0’ to use the pin as SYNC input.  
GPIO1_EN  
This bit selects the functionality of the GPIO0/CLK pin. Set this bit to ‘1’ to use the pin as GPIO, or set  
the bit to ‘0’ to use the pin as external clock input.  
GPIO0_EN  
The ‘direction’ bits configure the GPIO pins either as input or output. DIR1 corresponds to GPIO1,  
while DIR0 controls GPIO0. Set the DIR bit to ‘1’ to configure the GPIO pin as output. The output  
value of the GPIO pin is determined by the value of the DIO bit. Set the DIR bit to ‘0’ to configure the  
associated GPIO pin as input. The logic input value of the GPIO pin can be read back from the DIO bit.  
DIR[1:0]  
The ‘data input/output’ bits reflect the status of the GPIO pins. DIO1 corresponds to GPIO1, while  
DIO0 corresponds to GPIO0. If the GPIO pin is configured as output, the pin is driven to the logic value  
of DIO. If the GPIO pin is configured as input, DIO reflects the logic value seen at the pin.  
DIO[1:0]  
DELAY: Delay Register (Read/Write)  
Default = 0x0000  
BIT NAME  
MUX[7:0]  
0x00  
GPO[7:0]  
0x00  
DEFAULT  
BIT NAME  
DESCRIPTION  
Used to program the mux delay. The mux delay ranges from 4µs to 1.02ms. The default value of 0x00  
corresponds to no delay. 1 LSB = 4µs of delay.  
MUX[7:0]  
Used to program the GPO/GPIO delay. The GPO/GPIO delay ranges from 20µs to 5.1ms. The default  
value of 0x00 corresponds to no delay. 1 LSB = 20µs of delay.  
GPO[7:0]  
Maxim Integrated  
44  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
CHMAP1: Channel Map Register (Read/Write)  
Default = 0x00_0000  
BIT NAME  
DEFAULT  
BIT NAME  
DEFAULT  
BIT NAME  
DEFAULT  
CH5_GPO1 CH5_GPO0 CH5_ORD2 CH5_ORD1 CH5_ORD0  
CH5_EN  
CH5_GPOEN  
0
0
0
0
0
0
0
CH4_GPO1 CH4_GPO0 CH4_ORD2 CH4_ORD1 CH4_ORD0  
CH4_EN  
CH4_GPOEN  
0
0
0
0
0
0
CH3_EN  
0
0
CH3_GPO1 CH3_GPO0 CH3_ORD2 CH3_ORD1 CH3_ORD0  
CH3_GPOEN  
0
0
0
0
0
0
CHMAP0: Channel Map Register (Read/Write)  
Default = 0x00_0000  
BIT NAME  
DEFAULT  
BIT NAME  
DEFAULT  
BIT NAME  
DEFAULT  
CH2_GPO1 CH2_GPO0 CH2_ORD2 CH2_ORD1  
CH2_ORD0  
CH2_EN  
CH2_GPOEN  
0
0
0
0
0
0
0
CH1_GPO1 CH1_GPO0 CH1_ORD2 CH1_ORD1  
CH1_ORD0  
CH1_EN  
CH1_GPOEN  
0
0
0
0
0
0
CH0_EN  
0
0
CH0_GPO1 CH0_GPO0 CH0_ORD2 CH0_ORD1  
CH0_ORD0  
0
CH0_GPOEN  
0
0
0
0
0
These registers are used to enable channels for scan, enable GPO/GPIO pins for scan, program the channel scan order, and pair  
the GPO/GPIO pins with its associated channel. These registers cannot be written during an active conversion.  
BIT NAME  
DESCRIPTION  
Used to map which GPO or GPIO pin is activated when this channel is selected. The STAT:GPOERR  
flag is set if more than one input channel is mapped to the same GPO/GPIO pin. The decoding is as  
follows:  
CHX_GPO1 CHX_GPO0  
DESCRIPTION  
CHX_GPO[1:0]  
0
0
1
1
0
1
0
1
GPO0  
GPO1  
GPIO0  
GPIO1  
Defines the order during scan when the channel is enabled. The CHX_ORD[2:0] values of ‘000’ and ‘111’  
are not allowed for the order of an enabled channel. The allowable orders are ‘001’, ‘010’, ‘011’, ‘100’,  
‘101’, ‘110’ representing first, second, third channel to be scanned, and so on. The value of ‘000’ is a  
default value and the value of ‘111’ is greater than the number of scannable channels. A value greater  
than the number of enabled channels is invalid and will set an error condition at STAT:ORDERR. Setting  
a channel’s order to ‘000’ or ‘111’ and enabling it will set the STAT:ORDERR flag in the STAT register.  
If sequencer mode 3 is selected, and more channels are enabled for sequencing than available GPO/  
GPIO pins, then the sequence order of the channels for which a GPO/GPIO pin is enabled must be  
lower than for the channels which do not have a GPO/GPIO pin mapped to them.  
CHX_ORD[2:0]  
CHX_EN  
Set this bit to ‘1’ to enable scanning of this channel. Set this bit to ‘0’ to disable scanning of this channel.  
Used to enable activation of the GPO/GPIO pins when this channel is selected during scan. Set this bit  
to ‘1’ to enable. Set this bit to ‘0’ to disable.  
CHX_GPOEN  
Maxim Integrated  
45  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
SEQ: Sequencer Register (Read/Write)  
Default = 0x00  
BIT NAME  
MUX2  
0
MUX1  
0
MUX0  
0
MODE1  
0
MODE0  
0
GPODREN  
0
MDREN  
0
RDYBEN  
0
DEFAULT  
This register is used to control the operation of the sequencer when enabled.  
BIT NAME  
DESCRIPTION  
Binary channel selection for sequencer mode 1. Valid channels are from 000 (channel 0) to 101  
(channel 5).  
MUX[2:0]  
Sequencer mode is decoded as shown in the following table:  
MODE1  
MODE0  
DESCRIPTION  
0
0
1
1
0
1
0
1
Sequencer Mode 1  
Sequencer Mode 2  
Sequencer Mode 3  
Reserved. Do not use.  
MODE[1:0]  
GPO/GPIO delay enable. Enables operation of the GPO/GPIO switch delay. When enabled, the  
channel selection is delayed. The value of the delay is set by the DELAY:GPO bits.  
GPODREN  
MDREN  
MUX delay enable. Enables the timer setting in the DELAY:MUX register to delay the conversion start  
of the selected channel.  
Ready Bar enable. When this bit is ‘1’ the RDYB is inhibited from asserting in sequencer mode 2 and  
3 until all channels are converted  
RDYBEN  
GPO_DIR: GPO Direct Access Register (Read/Write)  
Default = 0x00  
BIT NAME  
GPO1  
0
GPO0  
0
DEFAULT  
This register is used to turn on and off the general-purpose outputs directly after an associated bit is written except when  
CTRL3:GPO_MODE=’1’ during sequencer mode 3. When operating in sequencer mode 1 or 2, the activation of the GPOs is  
immediate upon setting a bit to ’1’, and the deactivation of the GPOs is immediate upon setting the bit to ‘0’. In SLEEP state, the  
values in this register do not control the state of the GPOs, as they all are deactivated. The register is writeable, but the values will  
not control the GPOs in SLEEP mode. In STANDBY state when CTRL3:GPO_MODE=’0’, this register accepts writes and updates  
the state of the GPOs immediately after the value of a bit changes. Writes to this register are ignored when operating in mode 3 when  
CTRL3:GPO_MODE=’1’. This register is enabled during system offset calibration, system gain calibration and self-calibration modes.  
Maxim Integrated  
46  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
SOC: System Offset Calibration Register (Read/Write)  
Default = 0x00_0000  
BIT NAME  
B23  
0
B22  
0
B21  
0
….  
….  
B3  
0
B2  
0
B1  
0
B0  
0
DEFAULT  
The system offset calibration register is a 24-bit read/write register. The data written/read to/from this register is clocked in/out MSB  
first. This register holds the system offset calibration value. The format is in two’s complement binary format. A system calibration  
does not overwrite the SOC register.  
The readback value of this register depends on CTRL3:CALREGSEL. A ‘1’ reads back the user programmed value. A ‘0’ reads back  
the results of an internal register as described in CTRL3:CALREGSEL. The internal register can only be read during conversion.  
The system offset calibration value is subtracted from each conversion result—provided the NOSYSO bit in the CTRL3 register is  
set to ‘0’. The system offset calibration value is subtracted from the conversion result after self-calibration but before system gain  
correction. It is also applied prior to the 1x or 2x scale factor associated with bipolar and unipolar modes. When a system offset  
calibration is in progress, this register is not writable by the user.  
SGC: System Gain Calibration Register (Read/Write)  
Default = 0x7F_FFFF  
BIT NAME  
B23  
0
B22  
1
B21  
1
….  
….  
B3  
1
B2  
1
B1  
1
B0  
1
DEFAULT  
The system gain calibration register is a 24-bit read/write register. The data written/read to/from this register is clocked in/out MSB  
first. This register holds the system gain calibration value. The format is unsigned 24-bit binary. A system calibration does not  
overwrite the SGC register.  
The readback value of this register depends on CTRL3:CALREGSEL. A ‘1’ reads back the user programmed value. A ‘0’ reads back  
the results of an internal register as described in CTRL3:CALREGSEL. The internal register can only be read during conversion.  
The system gain calibration value is used to scale the offset corrected conversion result—provided the NOSYSG bit in the CTRL3  
register is set to ‘0’. The system gain calibration value scales the offset corrected result by up to 2x or can correct a gain error of  
approximately -50%. The amount of positive gain error that can be corrected is determined by modulator overload characteristics,  
which may be as much as +25%. When a system gain calibration is in progress, this register is not writable by the user.  
Maxim Integrated  
47  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
SCOC: Self-Calibration Offset Calibration Register (Read/Write)  
Default = 0x00_0000  
BIT NAME  
B23  
0
B22  
0
B21  
0
….  
….  
B3  
0
B2  
0
B1  
0
B0  
0
DEFAULT  
The self-calibration offset register is a 24-bit read/write register. The data written/read to/from this register is clocked in/out MSB  
first. This register holds the self-calibration offset value. The format is always in two’s complement binary format. An internal self-  
calibration does not overwrite the SCOC register.  
The readback value of this register depends on CTRL3:CALREGSEL. A ‘1’ reads back the user programmed value. A ‘0’ reads back  
the results of an internal register as described in CTRL3:CALREGSEL. The internal register can only be read during conversion.  
The self-calibration offset value is subtracted from each conversion result—provided the NOSCO bit in the CTRL3 register is set to  
‘0’. The self-calibration offset value is subtracted from the conversion result before the self-calibration gain correction and before the  
system offset and gain correction. It is also applied prior to the 2x scale factor associated with unipolar mode. When a self-calibration  
is in progress, this register is not writable by the user.  
SCGC: Self-Calibration Gain Calibration Register (Read/Write)  
Default = 0xBF_851B  
BIT NAME  
B23  
1
B22  
0
B21  
1
….  
….  
B3  
1
B2  
0
B1  
1
B0  
1
DEFAULT  
The self-calibration gain register is a 24-bit read/write register. The data written/read to/from this register is clocked in/out MSB first.  
This register holds the self-calibration gain value. The format is unsigned 24-bit binary. An internal self- calibration does not overwrite  
the SCGC register.  
The readback value of this register depends on CTRL3:CALREGSEL. A ‘1’ reads back the user programmed value. A ‘0’ reads back  
the results of an internal register as described in CTRL3:CALREGSEL. The internal register can only be read during conversion.  
The self-calibration gain calibration value is used to scale the self-calibration offset corrected conversion result before the system offset  
and gain calibration values have been applied – provided the NOSCG bit in the CTRL3 register is set to ‘0’. The self-calibration gain  
calibration value scales the self-calibration offset corrected conversion result by up to 2x or can correct a gain error of approximately  
–50%. The gain will be corrected to within 2 LSB. When a self- calibration is in progress, this register is not writable by the user.  
Maxim Integrated  
48  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
DATA[5:0]: Data Registers (Read Only)  
Default = 0x00_0000  
BIT NAME  
D23  
0
D22  
0
D21  
0
D3  
0
D2  
0
D1  
0
D0  
0
DEFAULT  
Each data register holds the conversion result for the corresponding channel. DATA0 is the data register for channel 0, DATA1 is  
for channel 1, etc.  
Each data register is a 24-bit read-only register. Any attempt to write data to this location will have no effect. The data read from  
these registers is clocked out MSB first. The result is stored in a format according to the FORMAT bit in the CTRL1 register. The data  
format while in unipolar mode is always offset binary. In offset binary format the most negative value is 0x000000, the midscale value  
is 0x800000 and the most positive value is 0xFFFFFF. In bipolar mode if the FORMAT bit = ‘1’ then the data format is offset binary. If  
the FORMAT bit = ‘0’, then the data format is two’s complement. In two’s complement the negative full-scale value is 0x800000, the  
midscale is 0x000000 and the positive full scale is 0x7FFFFF. Any input exceeding the available input range is limited to the minimum  
or maximum data value.  
Maxim Integrated  
49  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Ordering Information  
Chip Information  
PROCESS: CMOS  
PART  
TEMP RANGE  
PIN-PACKAGE  
32 TQFN-EP*  
32 TQFN-EP*  
32 TQFN-EP*  
32 TQFN-EP*  
MAX11254ATJ+  
MAX11254ATJ+T  
MAX11254ATJ/V+  
MAX11254ATJ/V+T  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*EP = Exposed pad.  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
PART  
PACKAGE TYPE  
32 TQFN  
PACKAGE CODE  
T3255+4  
OUTLINE NO.  
21-0140  
LAND PATTERN NO.  
90-0012  
MAX11254ATJ+  
MAX11254ATJ/V+  
32 TQFN  
T3255+4  
21-0140  
90-0012  
Maxim Integrated  
50  
www.maximintegrated.com  
MAX11254  
24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA,  
Delta-Sigma ADC with SPI Interface  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
3/15  
Initial release  
4/15  
Revised Typical Operating Characteristics section  
10, 11  
Adding MAX11254ATJ/V+ as future product to Ordering Information table.  
Updated Package Information table  
2
8/17  
50  
3
4
5
3/18  
9/18  
9/18  
Updated Ordering Information table  
Updated Benefits and Features section  
Updated Applications section  
50  
1
1
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2018 Maxim Integrated Products, Inc.  
51  

相关型号:

MAX11254ATJ/V+T

24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA, Delta-Sigma ADC with SPI Interface
MAXIM

MAX11254ATJT

Longer Battery Life for Portable Applications
MAXIM

MAX11254_V01

24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA, Delta-Sigma ADC with SPI Interface
MAXIM

MAX11259AWX+T

ADC, Delta-Sigma, 24-Bit, 1 Func, 6 Channel, Serial Access, CMOS, PBGA36, WLP-36
MAXIM

MAX1125AIBH

8-Bit, 300Msps Flash ADC
MAXIM

MAX1125AIBH-T

ADC, Flash Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CMOS, CQCC44, MO-047AC, CERQUAD-44
MAXIM

MAX1125AIDO

8-Bit, 300Msps Flash ADC
MAXIM

MAX1125BIBH

8-Bit, 300Msps Flash ADC
MAXIM

MAX1125BIBH-T

ADC, Flash Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CMOS, CQCC44, MO-047AC, CERQUAD-44
MAXIM

MAX1125BIDO

8-Bit, 300Msps Flash ADC
MAXIM

MAX1126

Quad, 12-Bit, 40Msps, 1.8V ADC with Serial LVDS Outputs
MAXIM

MAX11262

500ksps Throughput Rates Without Pipeline
MAXIM