MAX11327ATJ+ [MAXIM]

1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with Post-Mux External Signal Conditioning Access;
MAX11327ATJ+
型号: MAX11327ATJ+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with Post-Mux External Signal Conditioning Access

转换器
文件: 总37页 (文件大小:1801K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
General Description  
Benefits and Features  
The MAX11321–MAX11328 are 12-/10-bit with external  
reference and 500kHz, full-linear-bandwidth, high-speed,  
low-power, serial-output successive approximation reg-  
ister (SAR) analog-to-digital converters (ADCs). The  
MAX11321–MAX11328 provide external access to the  
output of the integrated mux and ADC input, to simplify  
conditioning. The MAX11321–MAX11328 include both  
internal and external clock modes. These devices feature  
scan mode in both internal and external clock modes. The  
internal clock mode features internal averaging to increase  
SNR. The external clock mode features the SampleSetK  
technology, a user-programmable analog input channel  
sequencer. The SampleSet approach provides greater  
sequencing flexibility for multichannel applications while  
alleviating significant microcontroller or DSP (controlling  
unit) communication overhead.  
S Highly Integrated Precision ADC Saves Space  
While Retaining Flexibility  
±± ꢀSꢁ IꢂꢀL ±± ꢀSꢁ DꢂꢀL ꢂo ꢃissing Codes  
70dꢁ SIꢂAD at ±00kHz  
±ꢃsps Conversion Rate with ꢂo Pipeline Delay  
S
Analog ꢃultiplexer with True Differential Track/Hold:  
Any Combination of Single-EndedL Differential and  
Pseudo-Differential Input Pin Pairs Allowed  
±6-/8-/4-Channel Single-Ended  
±2-/8-/4-Channel Fully-Differential Pairs  
±5-/8-/4-Channel Pseudo-Differential Relative to  
a Common Input  
S Two Software-Selectable ꢁipolar Input Ranges:  
±ꢄ +/2L ±ꢄ  
+
REF  
REF  
S External Differential Reference (±ꢄ to ꢄ  
S 32-PinL 5mm x 5mm TQFꢂ Package  
)
DD  
External pins provide access to the output of the  
multiplexer and ADC inputs to simplify multichannel sig-  
nal conditioning. The internal clock mode features an inte-  
grated FIFO allowing data to be sampled at high speeds  
and then held for readout at any time or at a lower clock  
rate. Internal averaging is also supported in internal clock  
mode improving SNR for noisy input signals. The devices  
feature analog input channels that can be configured to  
be single-ended inputs, fully differential pairs, or pseudo-  
differential inputs with respect to one common input. The  
MAX11321–MAX11328 operate from a 2.35V to 3.6V sup-  
ply and consume only 5.4mW at 1Msps.  
S SampleSet™ Technology ꢁrings Extreme  
Flexibility to Program Input Configurations Per  
Channel and Sampling Sequence to Optimize  
Interface to the ꢃicrocontroller  
User-Defined Channel Sequence with ꢃaximum  
ꢀength of 256  
Scan ꢃodesL Internal AveragingL and Internal Clock  
±6-Entry First-In/First-Out (FIFO)  
S Post-ꢃux Signal Access Allows for External  
Signal Conditioning ꢁetween the ꢃux and the  
ADC Even for Differential Signals  
The MAX11321–MAX11328 include AutoShutdownK,  
fast wake-up, and a high-speed 3-wire serial interface.  
The devices feature full power-down mode for optimal  
power management. The 48MHz, 3-wire serial interface  
Externally Accessible ꢃultiplex Output and ADC Input  
S ꢀow-Power Consumption Extends ꢁattery ꢀife for  
Portable Applications  
M
directly connects to SPI, QSPIK, and MICROWIRE  
±.5ꢄ to 3.6ꢄ Digital I/O Supply ꢄoltage  
2.35ꢄ to 3.6ꢄ Supply ꢄoltage  
5.4mW at ±ꢃsps with 3ꢄ Supplies  
2μA Full-Shutdown Current  
devices without external logic.  
Excellent dynamic performance, low voltage, low power,  
ease of use, and small package size make these convert-  
ers ideal for portable battery-powered data-acquisition  
applications, and for other applications that demand low  
power consumption and small space.  
S Easy to Interface with ꢃost ꢃicrocontrollers  
±6ꢃHzL 3-Wire SPI-/QSPI-/ꢃICROWIRE-/DSP-  
Compatible Serial Interface  
The MAX11321–MAX11328 are available in 32-pin, 5mm  
x 5mm, TQFN packages and operate over the -40NC to  
+125NC temperature range.  
Applications  
High-Speed Data  
Medical Instrumentation  
Acquisition Systems  
SampleSet and AutoShutdown are trademarks of Maxim  
Integrated Products, Inc.  
QSPI is a trademark of Motorola, Inc.  
MICROWIRE is a registered trademark of National Semiconductor  
Corp.  
Battery-Powered  
Instruments  
High-Speed Closed-Loop  
Systems  
Portable Systems  
Industrial Control Systems  
Ordering Information appears at end of data sheet.  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-6467; Rev 1; 12/14  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
AꢁSOꢀUTE ꢃAXIꢃUꢃ RATIꢂGS  
DD  
V
to GND.............................................................-0.3V to +4V  
Continuous Power Dissipation (T = +70NC)  
A
AOP, AON, AIP, AIN, OVDD, AIN0–AIN13, CNVST/AIN14, REF+,  
REF-/AIN15 to GND....................................... -0.3V to the lower of  
TQFN (derate 34.4mW/NC above +70NC)..................2758mW  
Operating Temperature Range........................ -40NC to +125NC  
Junction Temperature .....................................................+150NC  
Storage Temperature Range............................ -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
(V  
+ 0.3V) and +4V  
DD  
CS, SCLK, DIN, DOUT, EOC TO GND .......-0.3V to the lower of  
(V + 0.3V) and +4V  
OVDD  
DGND to GND......................................................-0.3V to +0.3V  
Input/Output Current (all pins) ...........................................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional opera-  
tion of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERꢃAꢀ CHARACTERISTICS (ꢂote ±)  
TQFN  
Junction-to-Ambient Thermal Resistance (B )...........29NC/W  
JA  
Junction-to-Case Thermal Resistance (B )...............1.7NC/W  
JC  
ꢂote ±: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
EꢀECTRICAꢀ CHARACTERISTICS (ꢃAX±±322/ꢃAX±±325/ꢃAX±±328)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAꢃETER  
DC ACCURACY (ꢂotes 3 and 4)  
Resolution  
SYꢃꢁOꢀ  
COꢂDITIOꢂS  
ꢃIꢂ  
TYP  
ꢃAX  
UꢂITS  
RES  
INL  
12 bit  
12  
Bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
Q1.0  
Q1.0  
Q3.0  
Q5.5  
DNL  
No missing codes  
(Note 5)  
LSB  
1.2  
0.02  
Q2  
LSB  
Gain Error  
LSB  
Offset Error Temperature Coefficient  
OE  
GE  
ppm/NC  
TC  
Gain Temperature Coefficient  
Channel-to-Channel Offset Matching  
Line Rejection  
Q0.8  
Q0.5  
0.3  
ppm/NC  
LSB  
TC  
PSR  
(Note 6)  
Q2  
LSB/V  
DYꢂAꢃIC PERFORꢃAꢂCE (±00kHzL Input Sine Wave) (ꢂotes 3 and 7)  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
70  
70  
71.9  
72.3  
dB  
dB  
Total Harmonic Distortion  
(Up to the 5th Harmonic)  
THD  
-83  
-76  
dB  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
SFDR  
IMD  
77  
84  
-85  
30  
5
dB  
dB  
f = 99.2432kHz, f = 69.2139kHz  
1
2
-3dB  
Full-Power Bandwidth  
Full-Linear Bandwidth  
MHz  
MHz  
-0.1dB  
SINAD ≥ 70dB  
0.5  
Maxim Integrated  
2
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
EꢀECTRICAꢀ CHARACTERISTICS (ꢃAX±±322/ꢃAX±±325/ꢃAX±±328) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAꢃETER  
SYꢃꢁOꢀ  
COꢂDITIOꢂS  
ꢃIꢂ  
TYP  
ꢃAX  
UꢂITS  
-0.5dB below full-scale of 99.2432kHz  
sine wave input to the channel being  
sampled, apply full-scale 69.2139kHz  
sine wave signal to all 15 nonselected  
input channels.  
Crosstalk  
-88  
dB  
COꢂꢄERSIOꢂ RATE  
Power-Up Time  
t
Conversion cycle, external clock  
Internally clocked (Note 8)  
2
Cycles  
ns  
PU  
Acquisition Time  
t
156  
5.9  
ACQ  
µs  
Conversion Time  
t
CONV  
Externally clocked, f  
16 cycles (Note 8)  
= 16MHz,  
SCLK  
1000  
0.16  
ns  
External Clock Frequency  
Aperture Delay  
f
16  
MHz  
ns  
SCLK  
8
Aperture Jitter  
RMS  
30  
ps  
AꢂAꢀOG IꢂPUT  
Unipolar, (single ended and pseudo-  
differential)  
0
V
REF+  
Input Voltage Range  
V
V
INA  
Range bit set to 0  
Range bit set to 1  
-V  
/2  
V
/2  
Bipolar  
(Note 9)  
REF+  
REF+  
-V  
V
REF+  
REF+  
Absolute Input Voltage Range  
Static Input Leakage Current  
AIN+, AIN- relative to GND  
= V , GND  
-0.1  
V
+ 0.1  
V
REF+  
I
V
-0.1  
Q1.5  
FA  
ILA  
AIN  
DD  
During acquisition time;  
RANGE bit = 0 (Note 10)  
15  
Input Capacitance  
C
pF  
AIN  
During acquisition time;  
RANGE bit = 1 (Note 10)  
7.5  
EXTERꢂAꢀ REFEREꢂCE IꢂPUT  
REF- Input Voltage Range  
V
-0.3  
1
+1  
V
V
REF-  
REF+ Input Voltage Range  
V
V
+ 50mV  
REF+  
DD  
V
V
= 2.5V, f  
= 2.5V, f  
= 1Msps  
= 0Msps  
36.7  
0.1  
REF+  
SAMPLE  
REF+ Input Current  
I
FA  
REF+  
REF+  
SAMPLE  
DIGITAꢀ IꢂPUTS (SCꢀKL DIꢂL CSL CNVST)  
V
OVDD  
Input Voltage Low  
Input Voltage High  
Input Hysteresis  
V
V
V
IL  
O0.25  
V
OVDD  
V
IH  
O0.75  
V
OVDD  
V
mV  
HYST  
O0.15  
Maxim Integrated  
3
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
EꢀECTRICAꢀ CHARACTERISTICS (ꢃAX±±322/ꢃAX±±325/ꢃAX±±328) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAꢃETER  
Input Leakage Current  
Input Capacitance  
SYꢃꢁOꢀ  
COꢂDITIOꢂS  
= 0V or V  
ꢃIꢂ  
TYP  
Q0.09  
3
ꢃAX  
UꢂITS  
FA  
I
V
Q1.0  
IN  
AIN  
DD  
C
pF  
IN  
DIGITAꢀ OUTPUTS (DOUTL EOC)  
V
OVDD  
Output Voltage Low  
V
I
I
= 200FA  
V
V
OL  
SINK  
O0.15  
V
OVDD  
Output Voltage High  
V
= 200FA  
SOURCE  
OH  
O0.85  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREꢃEꢂTS  
Positive Supply Voltage  
I
-0.3  
4
Q1.5  
FA  
CS = V  
CS = V  
L
DD  
C
pF  
OUT  
DD  
V
2.35  
1.5  
3.0  
3.0  
1.8  
1
3.6  
3.6  
2.5  
V
V
DD  
Digital I/O Supply Voltage  
V
OVDD  
f
f
= 1Msps  
SAMPLE  
SAMPLE  
Positive Supply Current  
I
= 0Msps (1Msps devices)  
mA  
DD  
Full shutdown  
0.0015 0.006  
V
= 3V,  
DD  
5.4  
Normal mode  
(External  
Reference)  
f
= 1Msps  
SAMPLE  
V
= 2.35V,  
DD  
3.8  
2.6  
1.6  
f
= 1Msps  
SAMPLE  
mW  
V
= 3V,  
DD  
Power Dissipation  
f
= 1Msps  
SAMPLE  
AutoStandby  
V
= 2.35V,  
DD  
f
= 1Msps  
SAMPLE  
V
= 3V  
4.5  
2.1  
Full/  
AutoShutdown  
DD  
DD  
FW  
V
= 2.35V  
TIꢃIꢂG CHARACTERISTICS (Figure ±) (ꢂote ±±)  
SCLK Clock Period  
SCLK Duty Cycle  
t
Externally clocked conversion  
62.4  
40  
4
ns  
%
CP  
CH  
t
60  
16.5  
15  
V
V
= 1.5V to 2.35V  
= 2.35V to 3.6V  
C
10pF  
=
OVDD  
OVDD  
LOAD  
SCLK Fall to DOUT Transition  
t
ns  
DOT  
4
16th SCLK Fall to DOUT Disable  
14th SCLK Fall to DOUT Disable  
SCLK Fall to DOUT Enable  
DIN to SCLK Rise Setup  
t
C
C
C
= 10pF, channel ID on  
= 10pF, channel ID off  
= 10pF  
15  
ns  
ns  
ns  
ns  
ns  
DOD  
LOAD  
LOAD  
LOAD  
16  
t
14  
DOE  
t
4
1
DS  
SCLK Rise to DIN Hold  
t
DH  
Maxim Integrated  
4
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
EꢀECTRICAꢀ CHARACTERISTICS (ꢃAX±±322/ꢃAX±±325/ꢃAX±±328) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAꢃETER  
CS Fall to SCLK Fall Setup  
SCLK Fall to CS Fall Hold  
CNVST Pulse Width  
SYꢃꢁOꢀ  
COꢂDITIOꢂS  
ꢃIꢂ  
4
TYP  
ꢃAX  
UꢂITS  
ns  
t
CSS  
t
1
ns  
CSH  
t
See Figure 6  
See Figure 7, f  
5
ns  
CSW  
CS or CNVST Rise to EOC Low  
(Note 6)  
t
= 1Msps  
SAMPLE  
5.3  
6.2  
Fs  
CNV_INT  
t
5
ns  
CS Pulse Width  
CSBW  
EꢀECTRICAꢀ CHARACTERISTICS (ꢃAX±±32±/ꢃAX±±324/ꢃAX±±327)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAꢃETER  
DC ACCURACY (ꢂotes 3 and 4)  
Resolution  
SYꢃꢁOꢀ  
COꢂDITIOꢂS  
ꢃIꢂ  
TYP  
ꢃAX  
UꢂITS  
RES  
INL  
10 bit  
10  
Bits  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
0.4  
0.4  
1.2  
1.5  
DNL  
No missing codes  
(Note 5)  
0.7  
0
Gain Error  
Offset Error Temperature  
Coefficient  
OE  
GE  
2
0.8  
0.5  
0.2  
ppm/NC  
ppm/NC  
LSB  
TC  
TC  
Gain Temperature Coefficient  
Channel-to-Channel Offset  
Matching  
Line Rejection  
PSR  
(Note 6)  
1.0  
-75  
LSB/V  
DYꢂAꢃIC PERFORꢃAꢂCE (±00kHzL Input Sine Wave) (ꢂotes 3 and 7)  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
61  
61  
61.5  
61.5  
dB  
dB  
Total Harmonic Distortion  
(Up to the 5th Harmonic)  
THD  
-82.5  
dB  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
SFDR  
IMD  
76  
83.4  
-83  
30  
dB  
dB  
f = 99.2432kHz, f = 69.2139kHz  
1
2
-3dB  
MHz  
MHz  
MHz  
Full-Power Bandwidth  
Full-Linear Bandwidth  
-0.1dB  
5
SINAD ≥ 61dB  
0.5  
Maxim Integrated  
5
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
EꢀECTRICAꢀ CHARACTERISTICS (ꢃAX±±32±/ꢃAX±±324/ꢃAX±±327) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAꢃETER  
SYꢃꢁOꢀ  
COꢂDITIOꢂS  
ꢃIꢂ  
TYP  
ꢃAX  
UꢂITS  
-0.5dB below full-scale of 99.2432kHz  
sine-wave input to the channel being  
sampled; apply full-scale 69.2139kHz sine  
wave signal to all 15 nonselected  
input channels  
Crosstalk  
-88  
dB  
COꢂꢄERSIOꢂ RATE  
Power-Up Time  
t
Conversion cycle, external clock  
2
Cycles  
ns  
PU  
Acquisition Time  
t
156  
5.9  
ACQ  
Internally clocked, f  
(Note 8)  
= 1Msps,  
= 16MHz,  
SAMPLE  
µs  
ns  
Conversion Time  
t
CONV  
Externally clocked, f  
16 cycles (Note 8)  
SCLK  
1000  
0.16  
External Clock Frequency  
Aperture Delay  
f
16  
MHz  
ns  
SCLK  
8
Aperture Jitter  
RMS  
30  
ps  
AꢂAꢀOG IꢂPUT  
Unipolar (single-ended and pseudo  
differential)  
0
V
REF+  
Input Voltage Range  
V
V
-V  
REF+  
/2  
+V  
INA  
REF+  
/2  
RANGE bit set to 0  
Bipolar (Note 9)  
RANGE bit set to 1  
-V  
+V  
REF+  
REF+  
V
+ 0.1  
REF+  
Absolute Input Voltage Range  
Static Input Leakage Current  
AIN+, AIN- relative to GND  
-0.1  
V
I
V
= V , GND  
-0.1  
1.5  
FA  
ILA  
AIN_  
DD  
During acquisition time,  
RANGE bit = 0 (Note 10)  
15  
Input Capacitance  
C
pF  
AIN  
During acquisition time,  
RANGE bit = 1 (Note 10)  
7.5  
EXTERꢂAꢀ REFEREꢂCE IꢂPUT  
REF- Input Voltage Range  
V
-0.3  
1
+1  
V
V
REF-  
V
DD  
REF+ Input Voltage Range  
REF+ Input Current  
V
REF+  
+50mV  
V
V
= 2.5V, f  
= 2.5V, f  
= 1Msps  
= 0Msps  
36.7  
0.1  
FA  
FA  
REF+  
REF+  
SAMPLE  
I
REF+  
SAMPLE  
DIGITAꢀ IꢂPUTS (SCꢀKL DIꢂL CSL CNVST)  
V
OVDD  
Input Voltage Low  
V
V
IL  
O0.25  
Maxim Integrated  
6
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
EꢀECTRICAꢀ CHARACTERISTICS (ꢃAX±±32±/ꢃAX±±324/ꢃAX±±327) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAꢃETER  
Input Voltage High  
SYꢃꢁOꢀ  
COꢂDITIOꢂS  
ꢃIꢂ  
TYP  
ꢃAX  
UꢂITS  
V
OVDD  
O0.75  
V
V
IH  
V
OVDD  
Input Hysteresis  
V
mV  
HYST  
O0.15  
0.09  
3
Input Leakage Current  
I
V
= 0V or V  
1.0  
FA  
IN  
AIN_  
DD  
Input Capacitance  
C
pF  
IN  
DIGITAꢀ OUTPUTS (DOUTL EOC)  
V
OVDD  
Output Voltage Low  
Output Voltage High  
V
I
I
= 200FA  
V
V
OL  
SINK  
O0.15  
V
OVDD  
V
= 200FA  
SOURCE  
OH  
O0.85  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREꢃEꢂTS  
Positive Supply Voltage  
I
-0.3  
4
1.5  
FA  
CS = V  
CS = V  
L
DD  
C
pF  
OUT  
DD  
V
2.35  
1.5  
3.0  
3.0  
1.8  
1
3.6  
3.6  
2.5  
V
V
DD  
Digital I/O Supply Voltage  
V
OVDD  
f
f
= 1Msps  
SAMPLE  
SAMPLE  
Positive Supply Current  
I
= 0Msps (1Msps devices)  
mA  
DD  
Full shutdown  
0.0015 0.006  
V
= 3V,  
DD  
5.4  
Normal mode  
(external  
reference)  
f
= 1Msps  
SAMPLE  
V
= 2.35V,  
DD  
3.8  
2.6  
1.6  
f
= 1Msps  
SAMPLE  
mW  
V
= 3V,  
DD  
Power Dissipation  
f
= 1Msps  
SAMPLE  
AutoStandby  
V
= 2.35V,  
DD  
f
= 1Msps  
SAMPLE  
V
= 3V  
4.5  
2.1  
Full/  
AutoShutdown  
DD  
DD  
FW  
V
= 2.35V  
TIꢃIꢂG CHARACTERISTICS (Figure ±) (ꢂote ±±)  
SCLK Clock Period  
SCLK Duty Cycle  
t
Externally clocked conversion  
62.4  
40  
4
ns  
%
CP  
CH  
t
60  
16.5  
15  
V
V
= 1.5V to 2.35V  
= 2.35V to 3.6V  
C
10pF  
=
OVDD  
LOAD  
SCLK Fall to DOUT Transition  
t
ns  
DOT  
4
OVDD  
16th SCLK Fall to DOUT Disable  
14th SCLK Fall to DOUT Disable  
SCLK Fall to DOUT Enable  
t
C
C
C
= 10pF, channel ID on  
= 10pF, channel ID off  
= 10pF  
15  
ns  
ns  
ns  
DOD  
LOAD  
LOAD  
LOAD  
16  
t
14  
DOE  
Maxim Integrated  
7
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
EꢀECTRICAꢀ CHARACTERISTICS (ꢃAX±±32±/ꢃAX±±324/ꢃAX±±327) (continued)  
(V  
= 2.35V to 3.6V, V  
= 1.5V to 3.6V, f  
= 1Msps, f  
= 16MHz, 50% duty cycle, V  
= V , T = -40NC to +125NC,  
DD  
OVDD  
SAMPLE  
SCLK  
REF+ DD A  
unless otherwise noted. Typical values are at T = +25NC.) (Note 2)  
A
PARAꢃETER  
DIN to SCLK Rise Setup  
SCLK Rise to DIN Hold  
SYꢃꢁOꢀ  
COꢂDITIOꢂS  
ꢃIꢂ  
4
TYP  
ꢃAX  
UꢂITS  
ns  
t
DS  
t
1
ns  
DH  
t
t
4
ns  
CS Fall to SCLK Fall Setup  
SCLK Fall to CS Fall Hold  
CNVST Pulse Width  
CSS  
1
ns  
CSH  
CSW  
t
See Figure 6  
5
ns  
CS or CNVST Rise to EOC Low  
(Note 7)  
t
See Figure 7, f  
= 1Msps  
5.3  
6.2  
Fs  
CNV_INT  
SAMPLE  
t
5
ns  
CS Pulse Width  
CSBW  
ꢂote 2: Limits are 100% production tested at T = +25NC. Limits over the operating temperature range are guaranteed by design.  
A
Parts are tested with MUX externally connected to the ADC input.  
ꢂote 3: Channel ID disabled.  
ꢂote 4: Tested in single-ended mode.  
ꢂote 5: Offset nulled.  
ꢂote 6: Line rejection D(D  
) with V  
= 2.35V to 3.6V and V  
= 2.35V.  
OUT  
DD  
REF+  
ꢂote 7: Tested and guaranteed with fully differential input.  
ꢂote 8: Conversion time is defined as the number of clock cycles multiplied by the clock period with a 50% duty cycle.  
Maximum conversion time: 4.73Fs + N x 16 x t  
OSC_MAX  
t
= 88.2ns, t  
= 75ns.  
OSC_MAX  
OSC_TYP  
ꢂote 9: The operational input voltage range for each individual input of a differentially configured pair is from V  
to GND. The  
DD  
operational input voltage difference is from -V  
ꢂote ±0: See Figure 3 (Equivalent Input Circuit).  
ꢂote ±±: Guaranteed by characterization.  
/2 to +V  
/2 or -V  
to +V  
.
REF+  
REF+  
REF+  
REF+  
t
CSBW  
CS  
t
t
t
CP  
CSH  
CSS  
t
CH  
1ST  
CLOCK  
SCLK  
16TH  
CLOCK  
t
DH  
t
DS  
t
DOT  
DIN  
t
DOD  
t
DOE  
DOUT  
Figure 1. Detailed Serial-Interface Timing Diagram  
Maxim Integrated  
8
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Typical Operating Characteristics  
(MAX11322ATJ+/MAX11325ATJ+/MAX11328ATJ+, T = +25°C, unless otherwise noted.)  
A
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
OFFSET ERROR  
vs. TEMPERATURE  
1.0  
0.8  
1.0  
0.5  
0
3
2
f
= 1Msps  
f
= 1Msps  
SAMPLE  
SAMPLE  
0.6  
0.4  
1
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1  
-2  
-3  
-0.5  
-1.0  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
DIGITAL OUTPUT CODE (DECIMAL)  
DIGITAL OUTPUT CODE (DECIMAL)  
HISTOGRAM FOR 30,000  
CONVERSIONS  
SNR AND SINAD  
vs. ANALOG INPUT FREQUENCY  
GAIN ERROR  
vs. TEMPERATURE  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5,000  
0
3
2
74.0  
73.5  
73.0  
72.5  
72.0  
71.5  
71.0  
f
= 1Msps  
f
= 1Msps  
SAMPLE  
SAMPLE  
30,000 CODE HITS  
1
SNR  
0
-1  
-2  
-3  
SINAD  
0
2046 2047 2048 2049 2050  
OUTPUT CODE (DECIMAL)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
0
20  
40  
60  
(kHz)  
80  
100  
f
IN  
THD vs. ANALOG INPUT FREQUENCY  
SFDR vs. ANALOG INPUT FREQUENCY  
-80  
-85  
-90  
-95  
96  
f
= 1Msps  
f
= 1Msps  
SAMPLE  
SAMPLE  
94  
92  
90  
88  
86  
84  
82  
80  
0
20  
40  
60  
(kHz)  
80  
100  
0
20  
40 60  
f (kHz)  
IN  
80  
100  
f
IN  
Maxim Integrated  
9
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Typical Operating Characteristics (continued)  
(MAX11322ATJ+/MAX11325ATJ+/MAX11328ATJ+, T = +25°C, unless otherwise noted.)  
A
SNR vs. INPUT RESISTANCE  
SINAD vs. INPUT RESISTANCE  
THD vs. INPUT RESISTANCE  
73.0  
72.5  
72.0  
71.5  
71.0  
73  
72  
71  
70  
-70  
-75  
-80  
-85  
-90  
f
= 1Msps  
= 100kHz  
SAMPLE  
BUFFER BETWEEN AOP AND AIP  
BUFFER BETWEEN AON AND AIN  
f
IN  
BUFFER BETWEEN AOP AND AIP  
BUFFER BETWEEN AON AND AIN  
AOP SHORTED TO AIP  
AON SHORTED TO AIN  
AOP SHORTED TO AIP  
AON SHORTED TO AIN  
AOP SHORTED TO AIP  
AON SHORTED TO AIN  
BUFFER BETWEEN AOP AND AIP  
BUFFER BETWEEN AON AND AIN  
f
= 1Msps  
= 100kHz  
f
= 1Msps  
f = 100kHz  
IN  
SAMPLE  
SAMPLE  
f
IN  
0
1000  
2000  
R
3000  
4000  
4500  
5000  
0
1000  
2000  
R
3000  
4000  
4500  
5000  
0
1000  
2000  
R
3000  
4000  
5000  
500  
1500  
2500  
3500  
500  
1500  
2500  
3500  
500  
1500  
2500  
3500  
4500  
(I)  
(I)  
(I)  
IN  
IN  
IN  
REFERENCE CURRENT  
vs. SAMPLING RATE  
100kHz SINE-WAVE INPUT  
(8192 POINT FFT PLOT)  
SFDR vs. INPUT RESISTANCE  
90  
85  
80  
75  
50  
40  
30  
20  
10  
0
0
-20  
f
= 1Msps  
SAMPLE  
f
IN  
= 100kHz  
BUFFER BETWEEN AOP AND AIP  
BUFFER BETWEEN AON AND AIN  
-40  
AHD3 = -86.69dB  
f = 300kHz  
-60  
AOP SHORTED TO AIP  
AON SHORTED TO AIN  
A
= -102.99dB  
HD2  
f = 200kHz  
-80  
-100  
-120  
f
= 1Msps  
= 100kHz  
SAMPLE  
f
IN  
0
1000  
2000  
R
3000  
4000  
3500 4500  
5000  
0
500  
1000  
0
50 100 150 200 250 300 350 400 450 500  
FREQUENCY (kHz)  
500  
1500  
2500  
f
(ksps)  
SAMPLE  
(I)  
IN  
SUPPLY CURRENT vs. TEMPERATURE  
SNR vs. REFERENCE VOLTAGE  
3.0  
2.5  
2.0  
1.5  
1.0  
74  
73  
72  
71  
70  
69  
f
= 1Msps  
SAMPLE  
V
= 3.0V  
DD  
f = 1Msps  
SAMPLE  
= 100kHz  
f
IN  
68  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
1.0  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
V
REFP  
(V)  
Maxim Integrated  
10  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Pin Configurations  
TOP VIEW  
24 23 22 21 20 19 18 17  
24 23 22 21 20 19 18 17  
16  
15  
16  
15  
DGND 25  
OVDD 26  
REF-  
DGND 25  
OVDD 26  
REF-  
CNVST  
CNVST  
14 AIN  
14 AIN  
27  
28  
29  
30  
31  
32  
27  
28  
29  
30  
31  
32  
DOUT  
EOC  
DOUT  
EOC  
AIP  
AIP  
13  
12  
13  
12  
MAX11321  
MAX11322  
MAX11324  
MAX11325  
AIN0  
AIN1  
AIN2  
AIN3  
AON  
AIN0  
AIN1  
AIN2  
AIN3  
AON  
11 AOP  
11 AOP  
10  
9
10  
9
GND  
GND  
GND  
GND  
+
+
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
TQFN  
4 CHANNEL  
TQFN  
8 CHANNEL  
TOP VIEW  
24 23 22 21 20 19 18 17  
16  
15  
DGND 25  
OVDD 26  
REF-/AIN15  
CNVST/AIN14  
14 AIN  
27  
28  
29  
30  
31  
32  
DOUT  
EOC  
AIP  
13  
12  
MAX11327  
MAX11328  
AIN0  
AIN1  
AIN2  
AIN3  
AON  
11 AOP  
10  
9
AIN13  
AIN12  
+
1
2
3
4
5
6
7
8
TQFN  
16 CHANNEL  
Maxim Integrated  
11  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Pin Description  
ꢃAX±±32±  
ꢃAX±±322  
ꢃAX±±324  
ꢃAX±±325  
ꢃAX±±327  
ꢃAX±±328  
ꢂAꢃE  
FUꢂCTIOꢂ  
(4 CHAꢂꢂEꢀ) (8 CHAꢂꢂEꢀ) (±6 CHAꢂꢂEꢀ)  
1–10, 17, 19  
5–10, 17, 19  
17, 19  
11  
GND  
AOP  
AON  
AIP  
Ground  
11  
12  
13  
14  
15  
16  
11  
12  
13  
14  
15  
16  
Positive Output from the Multiplexer  
Negative Output from the Multiplexer  
Positive Input to the ADC  
12  
13  
14  
AIN  
Negative Input to the ADC  
Active-Low Conversion Start Input  
External Differential Reference Negative Input  
CNVST  
REF-  
External Positive Reference Input. Apply a reference voltage at  
REF+. Bypass to GND with a 0.47FF capacitor.  
18  
18  
18  
REF+  
Power-Supply Input. Bypass to GND with a 10FF in parallel with  
a 0.1FF capacitors.  
20, 21  
22  
20, 21  
22  
20, 21  
22  
V
DD  
SCLK  
Serial Clock Input. Clocks data in and out of the serial interface.  
Active-Low Chip Select Input. When CS is low, the serial  
interface is enabled. When CS is high, DOUT is high impedance  
or three-state.  
23  
23  
23  
CS  
Serial Data Input. DIN data is latched into the serial interface on  
the rising edge of SCLK.  
24  
25  
26  
24  
25  
26  
24  
25  
26  
DIN  
DGND  
OVDD  
Digital I/O Ground  
Digital Power-Supply Input. Bypass to GND with a 10FF in  
parallel with a 0.1FF capacitors.  
Serial Data Output. Data is clocked out on the falling edge of  
SCLK. When CS is high, DOUT is high impedance or three-  
state.  
27  
27  
27  
DOUT  
End of Conversion Output. Data is valid after EOC is driven low  
(internal clock mode only).  
28  
28  
28  
EOC  
29–32  
AIN0–AIN3 Analog Inputs  
29–32 , 1–10  
AIN0–AIN13 Analog Inputs  
AIN0–AIN7 Analog Inputs  
29–32, 1–4  
CNVST/  
AIN14  
15  
16  
Active-Low Conversion Start Input/Analog Input 14  
REF-/AIN15 External Differential Reference Negative Input /Analog Input 15  
Exposed Pad. Connect EP directly to GND plane for guaranteed  
performance.  
EP  
Maxim Integrated  
12  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Functional Diagrams  
HIGH-INPUT IMPEDANCE  
PGA/FILTER/BUFFER  
AOP AON  
AIN AIP  
REF+ REF-  
AIN0  
AIN1  
AIN2  
AIN3  
REF+  
ADC  
REF-  
CS  
SCLK  
SINGLE-  
ENDED/  
DIFFERENTIAL  
BUS  
OSCILLATOR  
I/P  
MUX  
CS  
SCLK  
DIN  
AIN(N-1)  
AIN(N)  
CONTROL LOGIC  
AND  
SEQUENCER  
DOUT  
CNVST  
EOC  
MAX11321–MAX11328  
Maxim Integrated  
13  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Functional Diagrams (continued)  
AOP AON  
AIN AIP  
REF+ REF-  
AIN0  
AIN1  
AIN2  
AIN3  
REF+  
ADC  
REF-  
CS  
SCLK  
SINGLE-  
ENDED/  
OSCILLATOR  
DIFFERENTIAL  
BUS  
I/P  
MUX  
CS  
SCLK  
DIN  
AIN(N-1)  
AIN(N)  
CONTROL LOGIC  
AND  
SEQUENCER  
DOUT  
CNVST  
EOC  
MAX11321–MAX11328  
is also supported in this mode improving SNR for noisy  
input signals. All input channels are configurable for sin-  
gle-ended, fully differential or pseudo-differential inputs  
in unipolar or bipolar mode. The MAX11321–MAX11328  
operate from a 2.35V to 3.6V supply and consume only  
5.4mW at 1Msps.  
Detailed Description  
The MAX11321–MAX11328 are 12-/10-bit with external  
reference and industry-leading 500kHz, full linear band-  
width, high-speed, low-power, serial output successive  
approximation register (SAR) analog-to-digital converters  
(ADC). These devices feature scan mode, internal aver-  
aging to increase SNR, and AutoShutdown.  
The MAX11321–MAX11328 include AutoShutdown, fast  
wake-up, and a high-speed 3-wire serial interface. The  
devices feature full power-down mode for optimal power  
management.  
The external clock mode features the SampleSet technol-  
ogy, a user-programmable analog input channel sequenc-  
er. The user may define and load a unique sequencing  
pattern into the ADC allowing both high- and low-frequen-  
cy inputs to be converted without interface activity. This  
feature frees the controlling unit for other tasks while lower-  
ing overall system noise and power consumption.  
Data is converted from analog voltage sources in a  
variety of channel and data-acquisition configurations.  
Microprocessor (FP) control is made easy through a 3-wire  
SPI-/QSPI-/MICROWIRE-compatible serial interface.  
AOP and AON are the output pins of the internal multi-  
plexer while AIP and AIN are the ADC inputs which are all  
accessible externally through pins. This allows flexibility  
to the system designer to process all signals through one  
PGA (programmable gain amplifier), filter or gain stage  
The MAX11321–MAX11328 include internal clock. The  
internal clock mode features an integrated FIFO, allowing  
data to be sampled at high speed and then held for read-  
out at any time or at a lower clock rate. Internal averaging  
Maxim Integrated  
14  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
in single-ended or differential configuration. The external  
buffering stage should be designed to properly drive the  
input sampling network of the ADC.  
mode to generate the serial clock signal. Select the SCLK  
frequency of 48MHz or less, and set clock polarity (CPOL)  
and phase (CPHA) in the control registers to the same  
value. The MAX11321–MAX11328 operate with SCLK  
idling high, and thus operate with CPOL = CPHA = 1.  
The external buffer should also have very high input  
impedance (low-leakage current) to ensure best linearity.  
If additional signal processing is not required, connect  
AOP to AIP and AON to AIN. It is recommended to limit  
the source impedance to not affect the sampling accu-  
racy of the ADC causing degradation in linearity and total  
harmonic distortion. See the SINAD vs. Input Resistance  
graph in the Typical Operating Characteristics.  
Set CS low to latch input data at DIN on the rising edge  
of SCLK. Output data at DOUT is updated on the falling  
edge of SCLK. A high-to-low transition on CS samples  
the analog inputs and initiates a new frame. A frame is  
defined as the time between two falling edges of CS.  
There is a minimum of 16 bits per frame. The serial data  
input, DIN, carries data into the control registers clocked  
in by the rising edge of SCLK. The serial data output,  
DOUT, delivers the conversion results and is clocked out  
by the falling edge of SCLK. DOUT is a 16-bit data word  
containing a 4-bit channel address, followed by a 12-bit  
conversion result led by the MSB when CHAN_ID is set  
to 1 in the ADC Mode Control register (Figure 2a). When  
CHAN_ID is set to 1 keep the SCLK high for at least 25ns  
before the CS falling edge (Figure 2b). When CHAN_ID is  
set to 0 (external clock mode only), the 16-bit data word  
includes a leading zero and the 12-bit conversion result  
is followed by 3 trailing zeros (Figure 2c). In the 10-bit  
conversion result is followed by 5 trailing zeros.  
Input Bandwidth  
The ADC’s input-tracking circuitry features a 500MHz  
small-signal full-linear bandwidth to digitize high-speed  
transient events and measure periodic signals with  
bandwidths exceeding the ADC’s sampling rate by using  
undersampling techniques. Anti-alias filtering of the input  
signals is necessary to avoid high-frequency signals  
aliasing into the frequency band of interest.  
3-Wire Serial Interface  
The MAX11321–MAX11328 feature a serial interface  
compatible with SPI/QSPI and MICROWIRE devices. For  
SPI/QSPI, ensure the CPU serial interface runs in master  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
DIN  
DI[15] DI[14]  
DI[1] DI[0]  
DOUT  
Ch[3] Ch[2] Ch[1] Ch[0] MSB MSB-1  
LSB+1 LSB  
Figure 2a. External Clock Mode Timing Diagram with CHAN_ID=1  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
DIN  
t
> t  
QUIET SCLK  
DI[15]  
DI[1] DI[0]  
DOUT  
Ch[3] Ch[2] Ch[1] Ch[0] MSB MSB-1  
LSB+1 LSB  
Figure 2b. External Clock Mode Timing Diagram with CHAN_ID=1 for Best Performance  
Maxim Integrated  
15  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
SCLK  
DIN  
DI[15] DI[14]  
DI[1] DI[0]  
0
MSB] MSB-1 MSB-2  
LSB  
0
DOUT  
Figure 2c. External Clock Mode Timing Diagram with CHAN_ID=0  
Single-Ended, Differential,  
and Pseudo-Differential Input  
The MAX11321–MAX11328 include up to 16 analog input  
channels that can be configured on a pin-by-pin basis  
to 16 single-ended inputs, 8 fully differential pairs, or 15  
pseudo-differential inputs with respect to one common  
input (REF-/AIN15 is the common input).  
DAC  
COMPARATOR  
AIP  
HOLD  
The analog input range is 0V to V  
and pseudo-differential mode (unipolar) and QV  
in single-ended  
REF+  
AIN  
(GND)  
/2 or  
REF+  
QV  
in fully differential mode (bipolar) depending on  
REF+  
DAC  
the RANGE register settings. See Table 7 for the RANGE  
register settings.  
Unipolar mode sets the differential input range from 0  
to V . If the positive analog input swings below the  
REF+  
Figure 3. Equivalent Input Circuit  
negative analog input in unipolar mode, the digital output  
code is zero. Selecting bipolar mode sets the differential  
maximum value if the input signal exceeds this reference  
range.  
input range to QV  
RANGE register settings (Table 7).  
/2 or QV  
depending on the  
REF+  
REF+  
ADC Transfer Function  
The output format of the MAX11321–MAX11328 is straight  
binary in unipolar mode and two’s complement in bipolar  
mode. The code transitions midway between successive  
integer LSB values, such as 0.5 LSB, 1.5 LSB. Figure  
4 and Figure 5 show the unipolar and bipolar transfer  
function, respectively. Output coding is binary, with for  
In single-ended mode, the ADC always operates in uni-  
polar mode. The analog inputs are internally referenced  
to GND with a full-scale input range from 0V to V  
.
REF+  
Single-ended conversions are internally referenced to  
GND (Figure 3).  
The MAX11321–MAX11328 feature up to 15 pseudo  
differential inputs by setting the PDIFF_COM bits in the  
Unipolar register to 1 (Table 10). The 15 analog input sig-  
nals inputs are referenced to a DC signal applied to the  
REF-/AIN15.  
example, 1 LSB = V  
as the MAX11322/MAX11325/MAX11328.  
/4096 in the 12-bit devices such  
REF+  
Internal FIFO  
The MAX11321–MAX11328 contain a FIFO buffer that can  
hold up to 16 ADC results. This allows the ADC to handle  
multiple internally clocked conversions without tying up  
the serial bus. If the FIFO is filled and further conversions  
are requested without reading from the FIFO, the oldest  
ADC results are overwritten by the new ADC results. Each  
Fully Differential Reference (REF+, REF-)  
When the reference is used in fully differential mode  
(REFSEL = 1), the full-scale range is set by the difference  
between REF+ and REF-. The output code reaches its  
Maxim Integrated  
16  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
OUTPUT CODE (hex)  
OUTPUT CODE (hex)  
V
REF+  
+FS =  
7FF  
FFF  
FFE  
FFD  
FFC  
FFB  
FS = V  
ZS = 0  
1 LSB =  
REF+  
2
ZS = 0  
7FE  
-V  
REF+  
V
REF+  
-FS =  
2
V
4096  
REF+  
1 LSB =  
001  
000  
FFF  
FFE  
4096  
004  
003  
002  
001  
000  
801  
800  
0
1
2
3
4
FS  
-FS  
0
+FS  
FS -1.5 LSB  
INPUT VOLTAGE (LSB)  
-FS +0.5 LSB  
+FS -1.5 LSB  
INPUT VOLTAGE (LSB)  
Figure 4. Unipolar Transfer Function for 12-Bit Resolution  
Figure 5. Bipolar Transfer Function for 12-Bit Resolution  
result contains 2 bytes, with the MSB preceded by four  
leading channel address bits. After each falling edge of  
CS, the oldest available byte of data is available at DOUT.  
When the FIFO is empty, DOUT is zero.  
Internal Clock  
Apply a soft reset when changing from internal to exter-  
nal clock mode: RESET [1:0] = 10. The MAX11321–  
MAX11328 operate from an internal oscillator, which is  
accurate within Q15% of the 13.33MHz nominal clock  
rate. Request internally timed conversions by writing the  
appropriate sequence to the ADC Mode Control register  
(Table 2).  
External Clock  
Apply a soft reset when changing from internal to external  
clock mode: RESET [1:0] = 10. The detailed operation  
of external clock mode is dependent on the mode of  
operation selected for the device using SCAN[3:0] bit  
settings (see Table 3). In external clock mode the analog  
inputs are sampled at the falling edge of CS. Serial clock  
(SCLK) is used to perform the conversion.  
The wake-up, acquisition, conversion, and shutdown  
sequences are initiated through CNVST and are per-  
formed automatically using the internal oscillator. Results  
are added to the internal FIFO.  
With CS high, initiate a scan by setting CNVST low for  
at least 5ns before pulling it high (Figure 6). Then, the  
MAX11321–MAX11328 wake up, scan all requested  
channels, store the results in the FIFO, and shut down.  
After the scan is complete, EOC is pulled low and the  
results are available in the FIFO. Wait until EOC goes  
low before pulling CS low to communicate with the serial  
interface. EOC stays low until CS or CNVST is pulled low  
again. Do not initiate a second CNVST before EOC goes  
low; otherwise, the FIFO may become corrupted.  
Depending on the mode selected, the sequencer reads  
in the channel to be converted from the serial data input  
(DIN) at each frame (e.g. manual mode). The conversion  
results are sent to the serial output (DOUT) at the next  
frame.  
In other external clocked modes the sequence of channel  
to be converted is determined by the mode (SCAN[3:0])  
selected in Table 3. See the Applications Information for  
more detail on programming modes.  
Maxim Integrated  
17  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
UP TO N INTERNALLY  
CLOCKED ACQUISITIONS  
AND CONVERSIONS  
CNVST  
CS  
t
CSW  
EOC  
t
CNV_INT  
1
16  
1
16  
SCLK  
DIN  
SET MODE REG  
SET MODE REG  
DOUT  
INTERNAL  
OSCILLATOR ON  
READ DATA FROM FIFO  
READ DATA FROM FIFO  
SCAN OPERATION AND  
RESULTS STORED IN FIFO  
Figure 6. Internal Conversions with CNVST  
UP TO N INTERNALLY  
CLOCKED ACQUISITIONS  
AND CONVERSIONS  
t
CNV_INT  
(N = 1)  
CS  
EOC  
1
17  
1
16  
SCLK  
SET MODE REG  
SWCNV = 1  
SET MODE REG  
DIN  
DOUT  
MODE CONTROL  
INTERNAL OSCILLATOR ON  
READ DATA FROM FIFO  
SCAN OPERATION AND  
RESULTS STORED IN FIFO  
Figure 7. Internal Conversions with SWCNV  
Maxim Integrated  
18  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Repeat Mode  
Repeat scanning channel N for number of times and  
store all the conversion results in the FIFO. The number of  
scans is programmed in the ADC Configuration register.  
The repeat mode works with the internal clock only.  
Alternatively, set SWCNV to 1 in the ADC Mode Control  
register (Figure 4) to initiate conversions with CS rising  
edge instead of cycling CNVST (Table 2). For proper  
operation, CS must be held low for 17 clock cycles to  
guarantee that the device interprets the SWCNV setting.  
Wait until EOC goes low before pulling CS low to com-  
municate with the serial interface. Upon completing the  
conversion, SWCNV is reset to 0 (Figure 7).  
Custom_Int and Custom_Ext  
In Custom_Int and Custom_Ext modes, the device scans  
preprogrammed channels in ascending order. The chan-  
nels to be scanned in sequence are programmed in the  
Custom Scan0 or Custom Scan1 registers (see Table 12  
and Table 13). A new I/P MUX is selected every frame  
on the thirteenth falling edge of SCLK. Custom_Int works  
with the internal clock. Custom_Ext works with the exter-  
nal clock.  
Analog Input  
The MAX11321–MAX11328 produce a digital output that  
corresponds to the analog input voltage as long as the  
analog inputs are within the specified operating range.  
Internal protection diodes confine the analog input volt-  
age within the region of the analog power input rails  
(V , GND) and allow the analog input voltage to swing  
DD  
Standard_Int and Standard_Ext  
In Standard_Int and Standard_Ext modes, the device  
scans channels 0 through N in ascending order where  
N is the last channel specified in the ADC Mode Control  
register. A new I/P MUX is selected every frame on the  
thirteenth falling edge of SCLK. Standard_Int works with  
the internal clock. Standard_Ext works with the external  
clock.  
from GND - 0.3V to V  
device. Input voltages beyond GND - 0.3V and V  
+ 0.3V without damaging the  
DD  
+
DD  
0.3V forward bias the internal protection diodes. Limit the  
forward diode current to less than 50mA to avoid dam-  
age to the MAX11321–MAX11328.  
ECHO  
When writing to the ADC Configuration register, set  
ECHO to 1 in ADC Configuration register to echo back  
the configuration data onto DOUT at time n+1 (Figure 8,  
Table 6).  
Upper_Int and Upper_Ext  
In Upper_Int and Upper_Ext modes, the device scans  
channels N through 15/11/7/3 in ascending order where  
N is the first channel specified in the ADC Mode Control  
register. A new I/P MUX is selected every frame on the  
thirteenth falling edge of SCLK. Upper_Int works with the  
internal clock. Upper_Ext works with the external clock.  
Scan Modes  
The MAX11321–MAX11328 feature nine scan modes  
(Table 3).  
Manual Mode  
The next channel to be selected is identified in each SPI  
frame. The conversion results are sent out in the next  
frame. The manual mode works with the external clock  
only. The FIFO is unused.  
SampleSet  
The SampleSet mode of operation allows the definition  
of a unique channel sequence combination with maxi-  
mum length of 256. SampleSet is supported only in the  
external clock mode. SampleSet is ideally suited for mul-  
tichannel measurement applications where some analog  
inputs must be converted more often than others.  
t = n-1  
t = n  
t = n+1  
t = n+2  
CS  
CONFIGURATION  
DATA  
CONFIGURATION  
DATA  
CONFIGURATION  
DATA  
DIN  
TURN ON ECHO  
CONFIGURATION  
DATA  
CONFIGURATION  
DATA  
DOUT  
Figure 8. Echo Back the Configuration Data  
Maxim Integrated  
19  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
The SampleSet approach provides greater sequencing  
flexibility for multichannel applications while alleviat-  
ing significant microcontroller communication overhead.  
SampleSet technology allows the user to exploit available  
ADC input bandwidth without need for constant commu-  
nication between the ADC and controlling unit. The user  
may define and load a unique sequencing pattern into  
the ADC allowing both high- and low-frequency inputs  
to be converted appropriately without interface activity.  
With the unique sequence loaded into ADC memory, the  
pattern may be repeated indefinitely or changed at any  
time.  
For example, the maximum throughput of MAX11321–  
MAX11328 is 1Msps. Traditional ADC scan modes allow  
SampleSet REPEATS: LENGTH = 256  
SAMPLE SET  
(DEPTH = 256)  
ST  
ND  
RD  
TH  
TH  
TH  
TH  
TH  
TH  
9 CYCLE  
1
CYCLE  
2
CYCLE  
3
CYCLE  
4
CYCLE  
5
CYCLE  
6
CYCLE  
7
CYCLE  
8
CYCLE  
POTENTIAL SampleSet PATTERN  
AIN2/  
AIN2/  
AIN3  
AIN2/  
AIN3  
AIN2/  
AIN3  
CHANNEL:  
AIN0  
2
AIN1  
3
AIN0  
4
AIN1  
5
AIN0  
AIN1  
AIN3  
AIN4  
123  
AIN5  
124  
AIN6  
125  
AIN7  
126  
AIN8  
127  
AIN9  
128  
AIN10 AIN11 AIN12 AIN13 AIN14 AIN15  
129 130 131 132 133 134  
AIN0  
136  
AIN1  
137  
AIN0  
254  
AIN1  
255  
1
120  
121  
122  
135  
256  
ENTRY NO.:  
120 CONVERSIONS:  
AIN0 AND AIN1  
120 CONVERSIONS:  
AIN0 AND AIN1  
ANALOG  
INPUTS  
AIN0  
AIN1  
100kHz  
100 CYCLES  
135  
AIN2  
FULLY  
DIFFERENTIAL  
10kHz  
10 CYCLES  
1
AIN3  
122  
123  
124  
125  
256  
1kHz  
1 CYCLES  
AIN4  
AIN5  
AIN6  
t
= 1/f = 1/3Msps = 333.33ns  
S
S
AIN7  
CS  
10  
AIN8  
8
AIN0  
12  
6
14  
4
AIN9  
16  
32  
2
18  
10µs  
30  
T
S
5µs  
AIN10  
AIN11  
AIN12  
AIN13  
20  
28  
22  
f
= 100kHz  
26  
in  
24  
9
11  
AIN1  
7
13  
5
15  
3
17  
31  
19  
5µs  
10µs  
T
S
29  
21  
27  
23  
25  
Figure 9. SampleSet Use-Model Example  
Maxim Integrated  
20  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Scan Modes and Unipolar/Bipolar Setting  
When the Unipolar or Bipolar registers are configured  
as pseudo-differential or fully differential, the analog  
input pairs are repeated in this automated mode. For  
example, if N is set to 15 to scan all 16 channels and  
all analog input pairs are configured for fully-differential  
conversion, the ADC converts the channels twice. In this  
case, the user may avoid dual conversions on input pairs  
by implementing Manual mode or using Custom_Int or  
Custom_Ext scan modes and only scan even (or odd)  
channels (e.g. 0, 2, 4).  
up to 16-channel conversions in ascending order. In this  
case, the effective throughput per channel is 1Msps/16  
channel or 62.5ksps. The maximum input frequency that  
the ADC can resolve (Nyquist Theorem) is 31.25kHz.  
If all 16 channels must be measured, with some chan-  
nels having greater than 31.25kHz input frequency, the  
user must revert back to manual mode requiring con-  
stant communication on the serial interface. SampleSet  
technology solves this problem. Figure 9 provides a  
SampleSet use-model example.  
Averaging Mode  
In averaging mode, the device performs the specified  
number of conversions and returns the average for each  
requested result in the FIFO. The averaging mode works  
with internal clock only.  
Table ±. Register Access and Control  
REGISTER IDEꢂTIFICATIOꢂ CODE  
DIꢂ DATA IꢂPUTS  
REGISTER ꢂAꢃE  
ꢁIT ±5  
ꢁIT ±4  
ꢁIT ±3  
ꢁIT ±2  
ꢁIT ±±  
ꢁIT [±0:0]  
DIN  
ADC Mode Control  
ADC Configuration  
Unipolar  
0
1
1
1
1
1
1
1
1
DIN  
0
DIN  
0
DIN  
0
DIN  
0
DIN  
0
0
0
1
DIN  
Bipolar  
0
0
1
0
DIN  
RANGE  
0
0
1
1
DIN  
Custom Scan0  
Custom Scan1  
SampleSet  
0
1
0
0
DIN  
0
1
0
1
DIN  
0
1
1
0
DIN  
Reserved. Do not use.  
1
1
1
1
DIN  
Table 2. ADC ꢃode Control Register  
DEFAUꢀT  
STATE  
ꢁIT ꢂAꢃE  
ꢁIT  
FUꢂCTIOꢂ  
REG_CNTL  
SCAN[3:0]  
15  
0
Set to 0 to select the ADC Mode Control register  
ADC Scan Control register (Table 3)  
14:11  
0001  
Analog Input Channel Select register (Table 4).  
CHSEL[3:0]  
10:7  
6:5  
0000  
See Table 3 to determine which modes use CHSEL[3:0] for the channel scan  
instruction.  
RESET±  
RESET0  
FUꢂCTIOꢂ  
0
0
1
1
0
1
0
1
No reset  
RESET[1:0]  
00  
Reset the FIFO only (resets to zero)  
Reset all registers to default settings (includes FIFO)  
Unused  
Maxim Integrated  
21  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Table 2. ADC ꢃode Control Register (continued)  
DEFAUꢀT  
STATE  
ꢁIT ꢂAꢃE  
ꢁIT  
FUꢂCTIOꢂ  
Power Management Modes (Table 5). In external clock mode, PM[1:0] selects  
between normal mode and various power-down modes of operation.  
PM[1:0]  
4:3  
00  
External Clock Mode. Channel address is always present in internal clock mode.  
Set to 1, DOUT is a 16-bit data word containing a 4-bit channel address, followed by  
a 12-bit conversion result led by the MSB.  
CHAN_ID  
2
0
Set to 1 to initiate conversions with the rising edge of CS instead of cycling CNVST  
(internal clock mode only).  
This bit is used for the internal clock mode only and must be reasserted in the ADC  
mode control, if another conversion is desired.  
SWCNV  
1
0
0
0
Unused  
Table 3. ADC Scan Control  
SCAꢂ3 SCAꢂ2 SCAꢂ± SCAꢂ0  
ꢃODE ꢂAꢃE  
FUꢂCTIOꢂ  
Continue to operate in the previously selected mode. Ignore data  
on bits [10:0]. This feature is provided so that DIN can be held low  
when no changes are required in the ADC Mode Control register.  
Bits [6:3, 1] can be still written without changing the scan mode  
properties.  
0
0
0
0
0
0
0
1
Null  
The next channel to be selected is identified in each SPI frame. The  
conversion results are sent out in the next frame.  
Clock mode: External clock only  
Manual  
Channel scan/sequence: Single channel per frame  
Channel selection: See Table 4, CHSEL[3:0]  
Averaging: No  
Scans channel N repeatedly. The FIFO stores 4, 8, 12, or 16  
conversion results for channel N.  
Clock mode: Internal clock only  
0
0
0
0
1
1
0
1
Repeat  
Channel scan/sequence: Single channel per frame  
Channel selection: See Table 4, CHSEL[3:0]  
Averaging: Can be enabled  
Scans channels 0 through N. The FIFO stores N conversion results.  
Clock mode: Internal clock  
Standard_Int  
Channel scan/sequence: N channels in ascending order  
Channel selection: See Table 4, CHSEL[3:0] determines channel N  
Averaging: Can be enabled  
Maxim Integrated  
22  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Table 3. ADC Scan Control (continued)  
SCAꢂ3 SCAꢂ2 SCAꢂ± SCAꢂ0  
ꢃODE ꢂAꢃE  
FUꢂCTIOꢂ  
Scans channels 0 through N  
Clock mode: External clock only  
0
1
0
0
Standard_Ext  
Channel scan/sequence: N channels in ascending order  
Channel selection: See Table 4, CHSEL[3:0] determines channel N  
Averaging: No  
Scans channel N through the highest numbered channel. The FIFO  
stores X conversion results where:  
X = Channel 16–N  
16-channel devices  
8-channel devices  
X = Channel 8–N  
0
1
0
1
Upper_Int  
Clock mode: Internal clock only  
Channel scan/sequence: Channel N through the highest numbered  
channel in ascending order  
Channel selection: See Table 4, CHSEL[3:0] determines channel N  
Averaging: Can be enabled  
Scans channel N through the highest numbered channel  
Clock mode: External clock only  
Channel scan/sequence: Channel N through the highest numbered  
channel in ascending order  
0
0
1
1
1
1
0
1
Upper_Ext  
Channel selection: See Table 4, CHSEL[3:0] determines channel N  
Averaging: No  
Scans preprogrammed channels in ascending order. The FIFO  
stores conversion results for this unique channel sequence.  
Clock mode: Internal clock only  
Channel scan/sequence: Unique ascending channel sequence  
Maximum depth: 16 conversions  
Custom_Int  
Channel selection: See Table 12, Custom Scan0 register and Table  
13, Custom Scan1 register  
Averaging: Can be enabled  
Scans preprogrammed channels in ascending order  
Clock mode: External clock only  
Channel scan/sequence: Unique ascending channel sequence  
Maximum depth: 16 conversions  
1
0
0
0
Custom_Ext  
Channel selection: See Table 12, Custom Scan0 register and Table  
13, Custom Scan1 register  
Averaging: No  
Maxim Integrated  
23  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Table 3. ADC Scan Control (continued)  
SCAꢂ3 SCAꢂ2 SCAꢂ± SCAꢂ0  
ꢃODE ꢂAꢃE  
FUꢂCTIOꢂ  
Scans preprogrammed channel sequence with maximum length of  
256. There is no restriction on the channel pattern.  
Clock mode: External clock only  
Channel scan/sequence: Unique channel sequence  
Maximum depth: 256 conversions  
Channel Selection: See Table 4  
Averaging: No  
1
0
0
1
SampleSet  
Continue to operate in the previously selected mode. Ignore data on  
bits [10:0].  
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
Null  
Null  
Null  
Null  
Null  
Null  
Continue to operate in the previously selected mode. Ignore data on  
bits [10:0].  
Continue to operate in the previously selected mode. Ignore data on  
bits [10:0].  
Continue to operate in the previously selected mode. Ignore data on  
bits [10:0].  
Continue to operate in the previously selected mode. Ignore data on  
bits [10:0].  
Continue to operate in the previously selected mode. Ignore data on  
bits [10:0].  
Table 4. Analog Input Channel Select  
CHSEꢀ3  
CHSEꢀ2  
CHSEꢀ±  
CHSEꢀ0  
SEꢀECTED CHAꢂꢂEꢀ (ꢂ)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
Maxim Integrated  
24  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
U Full shutdown where all circuitry is shutdown.  
Register Descriptions  
U Partial shutdown where all circuitry is powered down  
The MAX11321–MAX11328 communicate between the  
internal registers and the external circuitry through the  
SPI-/QSPI-compatible serial interface. Table 1 details the  
register access and control. Table 2 through Table 14  
detail the various functions and configurations.  
except for the internal bias generator.  
AutoShutdown with External Clock Mode  
When the PM_ bits in the ADC Mode Control register are  
asserted (Table 5), the device shuts down at the rising  
edge of CS in the next frame. The device powers up  
again at the following falling edge of CS. There are two  
available options:  
For ADC mode control, set bit 15 of the register code  
identification to zero. The ADC Mode Control register  
determines when and under what scan condition the  
ADC operates.  
U AutoShutdown where all circuitry is shutdown.  
U AutoStandby where all circuitry are powered down  
To set the ADC data configuration, set the bit 15 of the  
register code identification to one.  
except for the internal bias generator.  
AutoShutdown with Internal Clock Mode  
The device shuts down after all conversions are complet-  
ed. The device powers up again at the next falling edge  
of CNVST or at the rising edge of CS after the SWCNV  
bit is asserted.  
Power-Down Mode  
The MAX11321–MAX11328 feature three power-down  
modes.  
Static Shutdown  
The devices shut down when the SPM bits in the ADC  
Configuration register are asserted (Table 6). There are  
two shutdown options:  
Table 5. Power ꢃanagement ꢃodes  
Pꢃ±  
Pꢃ0  
ꢃODE  
FUꢂCTIOꢂ  
0
0
Normal  
All circuitry is fully powered up at all times.  
The device enters full shutdown mode at the end of each conversion. All circuitry  
is powered down. The device powers up following the falling edge of CS. It takes 2  
cycles before valid conversions take place. The information in the registers is retained.  
0
1
AutoShutdown  
The device powers down all circuitry except for the internal bias generator. The part  
powers up following the falling edge of CS. It takes 2 cycles before valid conversions  
take place. The information in the registers is retained.  
1
1
0
1
AutoStandby  
Unused.  
Table 6. ADC Configuration Register  
DEFAUꢀT  
STATE  
ꢁIT ꢂAꢃE  
ꢁIT  
FUꢂCTIOꢂ  
CONFIG_SETUP  
15:11  
N/A  
Set to 10000 to select the ADC Configuration register.  
REFSEꢀ  
ꢄOꢀTAGE REFEREꢂCE  
REF- COꢂFIGURATIOꢂ  
REFSEL  
AVGON  
10  
9
0
0
0
1
External single-ended  
External differential  
AIN15 (for the 16-channel devices)  
REF-  
Set to 1 to turn averaging on. Valid for internal clock mode only.  
Set to 0 to turn averaging off.  
Maxim Integrated  
25  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Table 6. ADC Configuration Register (continued)  
DEFAUꢀT  
STATE  
ꢁIT ꢂAꢃE  
ꢁIT  
FUꢂCTIOꢂ  
Valid for internal clock mode only.  
AꢄGOꢂ ꢂAꢄG±  
ꢂAꢄG0  
FUꢂCTIOꢂ  
Performs 1 conversion for each requested  
result.  
0
1
1
1
1
X
0
0
1
1
X
Performs 4 conversions and returns the  
average for each requested result.  
0
1
0
1
NAVG[1:0]  
8:7  
00  
Performs 8 conversions and returns the  
average for each requested result.  
Performs 16 conversions and returns the  
average for each requested result.  
Performs 32 conversions and returns the  
average for each requested result.  
Scans channel N and returns 4, 8, 12, or 16 results. Valid for repeat mode only.  
ꢂSCAꢂ±  
ꢂSCAꢂ0  
FUꢂCTIOꢂ  
0
0
1
1
0
1
0
1
Scans channel N and returns 4 results.  
Scans channel N and returns 8 results.  
Scans channel N and returns 12 results.  
Scans channel N and returns 16 results.  
NSCAN[1:0]  
6:5  
00  
Static power-down modes  
SPꢃ±  
SPꢃ0  
ꢃODE  
Normal  
Full  
FUꢂCTIOꢂ  
0
0
All circuitry is fully powered up at all times.  
All circuitry is powered down. The information  
0
1
Shutdown in the registers is retained.  
SPM[1:0]  
4:3  
00  
All circuitry is powered down except for  
the reference and reference buffer. The  
information in the registers is retained.  
Partial  
Shutdown  
1
1
0
1
Reserved  
Set to 0 to disable the instruction echo on DOUT.  
ECHO  
2
0
0
Set to 1 to echo back the DIN instruction given at time = n onto the DOUT line at  
time = n + 1. It takes 1 full cycle for the echoing to begin (Figure 8).  
1:0  
Unused  
Maxim Integrated  
26  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Table 7. RAꢂGE Register (RAꢂGE Settings Only Applies to ꢁipolar Fully Differential  
Analog Input Configurations)  
DEFAUꢀT  
STATE  
ꢁIT ꢂAꢃE  
RANGE_SETUP  
RANGE0/1  
ꢁIT  
15:11  
10  
FUꢂCTIOꢂ  
N/A  
Set to 10011 to select the RANGE register  
Set to 0 for AIN0/1: +V  
Set to 1 for AIN0/1: +V  
/2, f = V  
, f = 2(V  
- V  
- V  
-
-)  
REF+  
REF+  
S
REF+  
REF+  
REF  
REF  
0
0
0
0
0
0
0
S
Set to 0 for AIN2/3: +V  
Set to 1 for AIN2/3: +V  
/2, f = V  
, f = 2(V  
- V  
- V  
-
-)  
REF+  
REF+  
S
REF+  
REF+  
REF  
REF  
RANGE2/3  
RANGE4/5  
RANGE6/7  
RANGE8/9  
RANGE10/11  
RANGE12/13  
9
8
7
6
5
4
S
Set to 0 for AIN4/5: +V  
Set to 1 for AIN4/5: +V  
/2, f = V  
, f = 2(V  
- V  
- V  
-
-)  
REF+  
REF+  
S
REF+  
REF+  
REF  
REF  
S
Set to 0 for AIN6/7: +V  
Set to 1 for AIN6/7: +V  
/2, f = V  
, f = 2(V  
- V  
- V  
-
-)  
REF+  
REF+  
S
REF+  
REF+  
REF  
REF  
S
Set to 0 for AIN8/9: +V  
Set to 1 for AIN8/9: +V  
/2, f = V  
, f = 2(V  
- V  
- V  
-
-)  
REF+  
REF+  
S
REF+  
REF+  
REF  
REF  
S
Set to 0 for AIN10/11: +V  
Set to 1 for AIN10/11: +V  
/2, f = V  
- V  
- V  
-
-)  
REF+  
REF+  
S
REF+  
REF+  
REF  
REF  
, f = 2(V  
S
Set to 0 for AIN12/13: +V  
Set to 1 for AIN12/13: +V  
/2, f = V  
- V  
- V  
-
-)  
REF+  
REF+  
S
REF+  
REF+  
REF  
REF  
, f = 2(V  
S
Set to 0 for AIN14/15: +V  
Set to 1 for AIN14/15: +V  
/2, f = V  
- V  
- V  
-
-)  
REF+  
REF+  
S
REF+  
REF+  
REF  
REF  
RANGE14/15  
3
0
, f = 2(V  
S
2:0  
000  
Unused  
Patterns are assembled in 4-bit channel identifier nib-  
bles as described in Table 4. Figure 10 presents the  
SampleSet timing diagram. Note that two CS frames are  
required to configure the SampleSet functionality. The  
first frame indicates the sequence length. The second  
frame is used to encode the channel sequence pattern.  
ADC Output as a Function  
of Unipolar and Bipolar Modes  
The ADC Scan Control register (Table 3) determines the  
ADC mode of operation. The Unipolar and Bipolar regis-  
ters in Table 10 and Table 11 determine output coding  
and whether input configuration is single-ended or fully  
differential.  
After the SampleSet register has been coded (Table 14),  
by the next falling edge of CS, the new SampleSet pattern  
is activated (Figure 10). If the pattern length is less than  
SEQ_LENGTH, the remaining channels default to AIN0. If  
the select pattern length is greater than SEQ_LENGTH,  
the additional data is ignored as the ADC waits for the ris-  
ing edge of CS. If CS is asserted in the middle of a nibble,  
the full nibble defaults to AIN0.  
Table 9 details the conversion output for analog inputs,  
AIN0 and AIN1. The truth table is consistent for any other  
valid input pairs (AINn/AINn+1). Table 8 shows the appli-  
cable input signal format with respect to analog input  
configurations.  
CHSEL[3:0] is used for MANUAL, REPEAT,  
STANDARD_EXT, STANDARD_INT, UPPER_EXT,  
UPPER_INT modes of operation. CHSCAN[15:0] is used  
for CUSTOM_EXT and CUSTOM_INT modes of operation.  
Upon receiving the SampleSet pattern, the user can  
set the ADC Mode Control register to begin the conver-  
sion process where data readout begins with the first  
SampleSet entry. While the last conversion result is read,  
the ADC can be instructed to enter AutoShutdown, if  
desired. If the user wishes to change the SampleSet  
length, a new pattern must be loaded into the ADC as  
described in Figure 10.  
SampleSet Mode of Operation  
The SampleSet register stores the unique channel  
sequence length. The sequence pattern is comprised of  
up to 256 unique single-ended and/or differential conver-  
sions with any order or pattern.  
Maxim Integrated  
27  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Table 8. Analog Input Configuration and Unipolar/ꢁipolar Waveforms  
SUPPORTED WAꢄEFORꢃS  
REFSEꢀ = 0 REFSEꢀ = ±  
AꢂAꢀOG IꢂPUT  
COꢂFIGURATIOꢂ  
UꢂIPOꢀAR/ꢁIPOꢀAR  
REGISTER SETTIꢂG  
REF+  
RANGE: 1V TO V  
REF+  
RANGE: 1V TO V  
Table 10. Unipolar Register:  
Set desired channel(s) to 0  
or PDIFF_COM to 1.  
DD  
DD  
V
IN+  
V
IN+  
Unipolar  
(Binary  
Coding)  
REF+  
REF+  
Single-  
Ended  
1V  
Counterpart Register  
REF-  
Table 11. Bipolar Register:  
Set desired channel(s) to 0.  
GND, AIN15  
PDIFF_COM = 1  
0V  
-0.3V  
REF+  
REF+  
RANGE: 1V TO V  
RANGE: 1V TO V  
DD  
DD  
V
IN+  
Table 10. Unipolar Register:  
Set desired channel(s) to 1.  
V
IN+  
Unipolar  
(Binary  
Coding)  
REF+  
REF+  
Fully  
Differential  
V
IN-  
V
IN-  
Counterpart Register  
Table 11. Bipolar Register:  
Set desired channel(s) to 0.  
V
IN-  
(DC OFFSET  
OR  
SINUSOID)  
1V  
(DC OFFSET  
OR  
SINUSOID)  
REF-  
GND  
0V  
-0.3V  
REF+  
REF+  
RANGE: 1V TO V  
RANGE: 1V TO V  
DD  
DD  
V
IN+  
Table 11. Bipolar Register:  
Set desired channel(s) to 1.  
V
IN+  
Bipolar  
(2’s  
Complement)  
REF+  
2
REF+  
REF+  
Fully  
Differential  
V
V
IN-  
IN-  
Counterpart Register  
Table 10. Unipolar Register:  
Set desired channel(s) to 0.  
1V  
REF-  
GND  
0V  
-0.3V  
Table 9. ADC Output as a Function of Unipolar/ꢁipolar Register Settings  
CHAꢂꢂEꢀ SEꢀECTIOꢂ  
ꢁIT ꢂAꢃE  
UꢂIPOꢀAR REGISTER  
UCH0/± PDIFF_COꢃ  
ꢁIPOꢀAR REGISTER  
FUꢂCTIOꢂ  
ꢁCH0/±  
0
0
1
0
0
0
0
1
0
AIN0 (binary, unipolar)  
AIN0/1 pair (two’s complement, bipolar)  
AIN0/1 pair (binary, unipolar)  
AIN0 Selection:  
CHSEL[3:0] = 0000  
CHSCAN0 = 1  
AIN0/1 pair (binary, unipolar); Unipolar register  
takes precedence  
1
0
1
X
0
0
1
1
0
0
0
X
0
1
0
AIN0 referred to REF-/AIN15 (binary, unipolar)  
AIN1 (binary, unipolar)  
AIN0/1 pair (two’s complement, bipolar)  
AIN0/1 pair (binary, unipolar)  
AIN1 Selection:  
CHSEL[3:0] = 0001  
CHSCAN1 = 1  
AIN0/1 pair (binary, unipolar), Unipolar register  
takes precedence  
1
X
0
1
1
X
AIN1 referred to REF-/AIN15 (binary, unipolar)  
Maxim Integrated  
28  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Table ±0. Unipolar Register  
DEFAUꢀT  
STATE  
ꢁIT ꢂAꢃE  
UNI_SETUP  
UCH0/1  
ꢁIT  
15:11  
10  
FUꢂCTIOꢂ  
Set to 10001 to select the Unipolar register.  
Set to 1 to configure AIN0 and AIN1 for pseudo-differential conversion.  
Set to 0 to configure AIN0 and AIN1 for single-ended conversion.  
0
Set to 1 to configure AIN2 and AIN3 for pseudo-differential conversion.  
Set to 0 to configure AIN2 and AIN3 for single-ended conversion.  
Set to 1 to configure AIN4 and AIN5 for pseudo-differential conversion.  
Set to 0 to configure AIN4 and AIN5 for single-ended conversion.  
UCH2/3  
UCH4/5  
9
8
7
6
5
4
3
0
0
0
0
0
0
0
Set to 1 to configure AIN6 and AIN7 for pseudo-differential conversion.  
Set to 0 to configure AIN6 and AIN7 for single-ended conversion.  
UCH6/7  
Set to 1 to configure AIN8 and AIN9 for pseudo-differential conversion.  
Set to 0 to configure AIN8 and AIN9 for single-ended conversion.  
Set to 1 to configure AIN10 and AIN11 for pseudo-differential conversion.  
Set to 0 to configure AIN10 and AIN11 for single-ended conversion.  
Set to 1 to configure AIN12 and AIN13 for pseudo-differential conversion.  
Set to 0 to configure AIN12 and AIN13 for single-ended conversion.  
Set to 1 to configure AIN14 and AIN15 for pseudo-differential conversion.  
Set to 0 to configure AIN14 and AIN15 for single-ended conversion.  
UCH8/9  
UCH10/11  
UCH12/13  
UCH14/15  
Set to 1 to configure AIN0–AIN14 to be referenced to one common DC voltage on  
the REF-/AIN15. Set to 0 to disable the 15:1 pseudo differential mode.  
PDIFF_COM  
2
0
1:0  
000  
Unused.  
Table ±±. ꢁipolar Register  
DEFAUꢀT  
STATE  
ꢁIT ꢂAꢃE  
BIP_SETUP  
BCH0/1  
ꢁIT  
15:11  
10  
FUꢂCTIOꢂ  
Set to 10010 to select the Bipolar register.  
Set to 1 to configure AIN0 and AIN1 for bipolar fully differential conversion.  
Set to 0 to configure AIN0 and AIN1 for unipolar conversion mod  
0
e.  
Set to 1 to configure AIN2 and AIN3 for bipolar fully differential conversion.  
Set to 0 to configure AIN2 and AIN3 for unipolar conversion mode.  
BCH2/3  
BCH4/5  
9
8
7
6
5
4
0
0
0
0
0
0
Set to 1 to configure AIN4 and AIN5 for bipolar fully differential conversion.  
Set to 0 to configure AIN4 and AIN5 for unipolar conversion mode.  
Set to 1 to configure AIN6 and AIN7 for bipolar fully differential conversion.  
Set to 0 to configure AIN6 and AIN7 for unipolar conversion mode.  
BCH6/7  
Set to 1 to configure AIN8 and AIN9 for bipolar fully differential conversion.  
Set to 0 to configure AIN8 and AIN9 for unipolar conversion mode.  
BCH8/9  
Set to 1 to configure AIN10 and AIN11 for bipolar fully differential conversion.  
Set to 0 to configure AIN10 and AIN11 for unipolar conversion mode.  
BCH10/11  
BCH12/13  
Set to 1 to configure AIN12 and AIN13 for bipolar fully differential conversion.  
Set to 0 to configure AIN12 and AIN13 for unipolar conversion mode.  
Set to 1 to configure AIN14 and AIN15 for bipolar fully differential conversion.  
Set to 0 to configure AIN14 and AIN15 for unipolar conversion mode.  
BCH14/15  
3
0
2:0  
000  
Unused.  
Maxim Integrated  
29  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Table ±2. Custom Scan0 Register  
DEFAUꢀT  
STATE  
ꢁIT ꢂAꢃE  
ꢁIT  
FUꢂCTIOꢂ  
CUST_SCAN0  
CHSCAN15  
CHSCAN14  
CHSCAN13  
CHSCAN12  
CHSCAN11  
CHSCAN10  
CHSCAN9  
CHSCAN8  
15:11  
0
Set to 10100 to select the Custom Scan0 register.  
Set to 1 to scan AIN15. Set to 0 to omit AIN15.  
Set to 1 to scan AIN14. Set to 0 to omit AIN14.  
Set to 1 to scan AIN13. Set to 0 to omit AIN13.  
Set to 1 to scan AIN12. Set to 0 to omit AIN12.  
Set to 1 to scan AIN11. Set to 0 to omit AIN11.  
Set to 1 to scan AIN10. Set to 0 to omit AIN10.  
Set to 1 to scan AIN9. Set to 0 to omit AIN9.  
Set to 1 to scan AIN8. Set to 0 to omit AIN8.  
Unused.  
10  
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2:0  
000  
Table ±3. Custom Scan± Register  
DEFAUꢀT  
STATE  
ꢁIT ꢂAꢃE  
ꢁIT  
FUꢂCTIOꢂ  
CUST_SCAN1  
CHSCAN7  
CHSCAN6  
CHSCAN5  
CHSCAN4  
CHSCAN3  
CHSCAN2  
CHSCAN1  
CHSCAN0  
15:11  
0
Set to 10101 to select the Custom Scan1 register.  
Set to 1 to scan AIN7. Set to 0 to omit AIN7.  
Set to 1 to scan AIN6. Set to 0 to omit AIN6.  
Set to 1 to scan AIN5. Set to 0 to omit AIN5.  
Set to 1 to scan AIN4. Set to 0 to omit AIN4.  
Set to 1 to scan AIN3. Set to 0 to omit AIN3.  
Set to 1 to scan AIN2. Set to 0 to omit AIN2.  
Set to 1 to scan AIN1. Set to 0 to omit AIN1.  
Set to 1 to scan AIN0. Set to 0 to omit AIN0.  
Unused.  
10  
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2:0  
000  
Table ±4. SampleSet Register  
ꢁIT ꢂAꢃE  
ꢁIT  
DEFAUꢀT STATE  
FUꢂCTIOꢂ  
SMPL_SET  
15:11  
Set to 10110 to select the SampleSet register.  
8-bit binary word indicating desired sequence length. The equation is:  
Sequence length = SEQ_LENGTH + 1  
00000000 = Sequence length = 1  
11111111 = Sequence length = 256  
Coding: Straight binary  
SEQ_LENGTH  
10:3  
2:0  
00000000  
Maximum length: 256 ADC conversions  
Unused.  
Maxim Integrated  
30  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
CS  
SCLK  
DIN  
1
16  
1
1
ENTRY 1  
ENTRY 2  
ENTRY N = (SEQ_LENGTH)  
DOUT  
WRITE SampleSet REGISTER  
DEFINE SEQ_LENGTH  
LOAD SampleSet PATTERN  
TIME BETWEEN CS FALLING AND  
RISING EDGE DEPENDS IN SEQ_LENGTH  
WRITE ADC MODE CONTROL  
OR CONTINUE WITH ADDITIONAL  
CONFIGURATION SETTINGS  
Figure 10. SampleSet Timing Diagram  
OVDD, and REF affects the ADC’s performance. Bypass  
Applications Information  
the V , OVDD, and REF to ground with 0.1FF and 10FF  
DD  
bypass capacitors. Minimize capacitor lead and trace  
lengths for best supply-noise rejection.  
How to Program Modes  
1) Configure the ADC (set the MSB on DIN to 1).  
Choosing an Input Amplifier  
It is important to match the settling time of the input  
amplifier to the acquisition time of the ADC. The conver-  
sion results are accurate when the ADC samples the  
input signal for an interval longer than the input signal’s  
worst-case settling time. By definition, settling time is the  
interval between the application of an input voltage step  
and the point at which the output signal reaches and  
stays within a given error band centered on the result-  
ing steady-state amplifier output level. The ADC input  
sampling capacitor charges during the sampling cycle,  
referred to as the acquisition period. During this acquisi-  
tion period, the settling time is affected by the input resis-  
tance and the input sampling capacitance. This error  
can be estimated by looking at the settling of an RC time  
constant using the input capacitance and the source  
impedance over the acquisition time period. Figure 13  
shows a typical application circuit. The MAX4430, offer-  
ing a settling time of 37ns at 16-bit resolution, is an excel-  
lent choice for this application.  
2) Program ADC mode control (set the MSB on DIN to 0)  
to begin the conversion process or to control power  
management features.  
If ADC mode control is written during a conversion  
sequence, the ADC finishes the present conver-  
sion and at the next falling edge of CS initiates its  
new instruction.  
If configuration data (MSB on DIN is a 1) is written  
during a conversion sequence, the ADC finishes  
the present conversion in the existing scan mode.  
However, data on DOUT is not valid in following  
frames until a new ADC mode control instruction  
is coded.  
Programming Sequence Flow Chart  
See Figure 11 for programming sequence.  
Layout, Grounding, and Bypassing  
For best performance, use PCBs with a solid ground  
plane. Ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digital  
(especially clock) lines parallel to one another or digital  
Table 15 lists serveral recommended operational ampli-  
fiers for MAX11321–MAX11328.  
lines underneath the ADC package. Noise in the V  
,
DD  
Maxim Integrated  
31  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
SELECT REFERENCE  
EXTERNAL SINGLE-ENDED  
EXTERNAL DIFFERENTIAL  
SINGLE-ENDED  
OR DIFFERENTIAL  
SELECT ADC  
CONFIGURATION REGISTER  
SET REFSEL BIT TO 1  
SELECT ADC  
CONFIGURATION REGISTER  
SET REFSEL BIT TO 0  
FIGURE OUT NUMBER  
OF CHANNELS TO USE (N)  
FOR EACH ADC CHANNEL  
SE, PsD/FD  
SINGLE-ENDED  
PSEUDO-  
DIFFERENTIAL  
FULLY-  
DIFFERENTIAL  
SINGLE-ENDED  
PSEUDO-  
DIFFERENTIAL  
UNIPOLAR OR  
BIPOLAR  
PSEUDO-DIFFERENTIAL  
SINGLE-ENDED  
BIPOLAR  
UNIPOLAR  
SELECT UNIPOLAR AND  
BIPOLAR REGISTER SET PER  
CHANNEL UCH{X}/{X+1}  
AND BCH{X}/{X+1} TO 0 FOR  
SINGLE-ENDED SELECTION  
SELECT BIPOLAR REGISTER  
SET PER CHANNEL  
BCH{X}/{X+1} TO 1  
FOR BIPOLAR FULLY  
DIFFERENTIAL  
SELECT UNIPOLAR AND  
REGISTER SET BIT PDIFF_COM  
TO 1 FOR PSEUDO-  
SELECT UNIPOLAR  
REGISTER SET PER  
CHANNEL UCH{X}/{X+1}  
TO 1 FOR UNIPOLAR  
DIFFERENTIAL SELECTION  
1
SELECT RANGE REGISTER SET PER CHANNEL  
RANGE SELECT  
PAIR RANGE{X}/{X+1} TO 1 QV  
REF+  
0
SELECT RANGE REGISTER SET PER CHANNEL  
FOR EACH ADC CHANNEL  
PAIR RANGE{X}/{X+1} TO 0 QV  
/2  
REF+  
NEXT CHANNEL  
SEE FIGURE 12  
Figure 11. ADC Programming Sequence  
Maxim Integrated  
32  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
INTERNAL  
EXTERNAL  
INTERNAL/EXTERNAL  
CLOCK  
ADC MODE CONTROL REGISTER  
YES  
NO  
SET SCAN[3:0] TO 0001  
SET CHSEL[3:0] TO CHANNEL NUMBER  
SELECT THE PM[1:0] BITS  
REPEAT  
AVERAGE  
MANUAL  
YES  
YES  
YES  
YES  
YES  
YES  
NO  
NO  
ADC CONFIGURATION REGISTER  
SET AVG ON BIT TO 1  
SET NAVG[1:0] TO N  
ADC CONFIGURATION REGISTER  
SET NSCAN[1:0] FOR SCAN COUNT  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 0100  
SET CHSEL[3:0] TO CHANNEL NUMBER  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 0010  
SET CHSEL[3:0] TO CHANNEL NUMBER  
SELECT THE RIGHT SWCNV BIT  
STANDARD-EXT  
NO  
YES  
NO  
STANDARD-INT  
AVERAGE  
YES  
NO  
ADC CONFIGURATION REGISTER  
SET AVG ON BIT TO 1  
SET NAVG[1:0] TO N  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 0110  
SET CHSEL[3:0] TO CHANNEL NUMBER  
UPPER-EXT  
NO  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 0011  
SET CHSEL[3:0] TO CHANNEL NUMBER  
SELECT THE RIGHT SWCNV BIT  
YES  
NO  
UPPER-INT  
AVERAGE  
YES  
NO  
ADC CONFIGURATION REGISTER  
SET AVG ON BIT TO 1  
SET NAVG[1:0] TO N  
SET CUSTOM Scan0 REGISTER  
SET CUSTOM Scan1 REGISTER  
CUSTOM-EXT  
NO  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 0101  
SET CHSEL[3:0] TO CHANNEL NUMBER  
SELECT THE RIGHT SWCNV BIT  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 1000  
SET CHSEL[3:0] TO CHANNEL NUMBER  
YES  
NO  
CUSTOM-INT  
AVERAGE  
YES  
NO  
ADC CONFIGURATION REGISTER  
SET AVGON BIT TO 1  
SET NAVG[1:0] TO N  
SampleSet REGISTER  
SET SEQ_DEPTH[7:0] TO SET  
CHANNEL CAPTURE DEPTH  
SampleSet  
SET CUSTOM Scan0 REGISTER  
SET CUSTOM Scan1 REGISTER  
FOLLOW SampleSet REGISTER WITH  
CHANNEL PATTERN OF THE SAME SIZE  
AS SEQUENCE DEPTH  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 0111  
SET CHSEL[3:0] TO CHANNEL NUMBER  
SELECT THE RIGHT SWCNV BIT  
ADC MODE CONTROL REGISTER  
SET SCAN[3:0] TO 1001  
SET CHSEL[3:0] TO CHANNEL NUMBER  
Figure 12. ADC Mode Select Programming Sequence  
Maxim Integrated  
33  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
U Initial voltage accuracy  
Choosing a Reference  
For devices using an external reference, the choice of the  
reference determines the output accuracy of the ADC.  
An ideal voltage reference provides a perfect initial accu-  
racy and maintains the reference voltage independent  
of changes in load current, temperature, and time. The  
following parameters need to be considered in selecting  
a reference:  
U Temperature drift  
U Current source capability  
U Current sink capability  
U Quiescent current  
U Noise. See Table 16.  
+5V  
0.1µF  
10µF  
V
V
OVDD  
DD  
100pF  
V
OVDD  
DD  
0.1µF  
10µF  
0.1µF  
10µF  
500I  
AGND  
500I  
AOP  
AON  
4
3
5
INPUT 1  
MAX11321–MAX11328  
AIN0  
10I  
AIP  
AIN  
1
MAX4430  
470pF  
470pF  
COG  
CAPACITOR  
V
DC  
SCLK  
DOUT  
SCLK  
2
-5V  
10µF  
MISO  
CPU  
AIN1  
0.1µF  
+5V  
COG  
CAPACITOR  
INPUT 2  
CS  
SS  
AIN15  
REF  
MOSI  
DIN  
GND  
10µF  
0.1µF  
10µF  
+5V  
100pF  
7
6
2
OUTF  
OUTS  
IN  
1µF  
0.1µF  
500I  
MAX6126  
0.1µF  
500I  
4
3
1
4
3
5
GNDS  
GND  
NR  
INPUT 2  
10I  
0.1µF  
1
MAX4430  
V
DC  
2
-5V  
10µF  
0.1µF  
Figure 13. Typical Application Circuit  
Maxim Integrated  
34  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
In reality, there are other noise sources besides quantiza-  
tion noise, including thermal noise, reference noise, clock  
Definitions  
jitter, etc. Therefore, SNR is computed by taking the ratio  
of the RMS signal to the RMS noise, which includes all  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
spectral components minus the fundamental, the first five  
on an actual transfer function from a straight line. This  
harmonics, and the DC offset.  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
Total Harmonic Distortion  
once offset and gain errors have been nulled. The static  
linearity parameters for the MAX11321–MAX11328 are  
measured using the end-points method.  
Total harmonic distortion (THD) is expressed as:  
2
2
2
2
5
V
+ V + V + V  
3 4  
2
THD = 20 × log  
V
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A DNL  
error specification of 1 LSB or less guarantees no miss-  
ing codes and a monotonic transfer function.  
1
where V is the fundamental amplitude, and V through V  
5
1
2
are the amplitudes of the 2nd- through 5th-order harmonics.  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest distor-  
tion component.  
Signal-to-Noise Ratio  
Signal-to-noise ratio is the ratio of the amplitude of the  
desired signal to the amplitude of noise signals at a  
given point in time. The larger the number, the better. The  
theoretical minimum analog-to-digital noise is caused by  
quantization error and results directly from the ADC’s  
resolution (N bits):  
Full-Power Bandwidth  
Full-power bandwidth is the frequency at which the input  
signal amplitude attenuates by 3dB for a full-scale input.  
SNR = (6.02 x N + 1.76) dB  
Table ±5. Recommended Input Amplifiers  
REFEREꢂCE  
MAX4430  
MAX4432  
MAX4454  
MAX4418  
MAX44263  
CHAꢂꢂEꢀS  
TYPICAꢀ APPꢀICATIOꢂ  
1
2
4
4
2
Dual supply, low noise, low distortion, high bandwidth  
Dual supply, low noise, low distortion, high bandwidth  
Low power, single, supply, low cost  
Low noise, low power, high bandwidth  
Low power, precision, CMOS input, rail-to-rail I/O  
Table ±6. Recommended References  
REFEREꢂCE  
TYPICAꢀ APPꢀICATIOꢂ  
MAX6126  
MAX6033  
MAX6043  
MAX6129B  
MAX6003  
Ultra-high precision, ultra-low noise, wide temperature range  
Ultra-high precision, low noise, low power, wide temperature range  
High precision, wide temperature range  
Low cost, ultra-low power  
Low cost, low power  
Maxim Integrated  
35  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Full-Linear Bandwidth  
Full-linear bandwidth is the frequency at which the  
signal-to-noise plus distortion (SINAD) is more than 70dB  
(MAX11322/MAX11325/MAX11328).  
Intermodulation Distortion  
Any device with nonlinearities creates distortion products  
when two sine waves at two different frequencies (f1 and  
f2) are input into the device. Intermodulation distortion  
(IMD) is the total power of the IM2 to IM5 intermodulation  
products to the Nyquist frequency relative to the total  
input power of the two input tones, f1 and f2. The indi-  
vidual input tone levels are at -6dBFS.  
Ordering Information  
PART  
PIꢂ-PACKAGE  
32 TQFN-EP*  
32 TQFN-EP*  
32 TQFN-EP*  
32 TQFN-EP*  
32 TQFN-EP*  
32 TQFN-EP*  
ꢁITS  
10  
SPEED (ꢃsps)  
ꢂO. OF CHAꢂꢂEꢀS  
ꢃAX±±32±ATJ+  
ꢃAX±±322ATJ+  
ꢃAX±±324ATJ+  
ꢃAX±±325ATJ+  
ꢃAX±±327ATJ+  
ꢃAX±±328ATJ+  
1
1
1
1
1
1
4
4
12  
10  
8
12  
8
10  
16  
16  
12  
Note: All devices are specified over the -40°C to +125°C temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Package Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE OUTꢀIꢂE  
ꢀAꢂD  
PATTERꢂ ꢂO.  
CODE  
ꢂO.  
32 TQFN-EP  
T3255+5  
2±-0±40  
90-00±3  
Maxim Integrated  
36  
MAX11321–MAX11328  
1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with  
Post-Mux External Signal Conditioning Access  
Revision History  
REꢄISIOꢂ  
ꢂUꢃꢁER  
REꢄISIOꢂ  
DATE  
PAGES  
CHAꢂGED  
DESCRIPTIOꢂ  
0
1
9/12  
Initial release  
Updated Benefits and Features section  
1
12/14  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
37  
©
2014 Maxim Integrated Products, Inc.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX11328

1Msps, 10-/12-Bit, 4-/8-/16-Channel ADCs with Post-Mux External Signal Conditioning Access
MAXIM

MAX11328ATJ+

ADC, Successive Approximation, 12-Bit, 1 Func, 16 Channel, Serial Access, 5 X 5 MM, ROHS COMPLIANT, TQFN-32
MAXIM

MAX11328ATJ+T

ADC, Successive Approximation, 12-Bit, 1 Func, 16 Channel, Serial Access, 5 X 5 MM, ROHS COMPLIANT, TQFN-32
MAXIM

MAX11329

3Msps, 12-/10-Bit, 8-/16-Channel ADCs with Post-Mux External Signal Conditioning Access
MAXIM

MAX11329ATJ

3Msps, 12-/10-Bit, 8-/16-Channel ADCs with Post-Mux External Signal Conditioning Access
MAXIM

MAX11329ATJ+

3Msps, 12-/10-Bit, 8-/16-Channel ADCs with Post-Mux External Signal Conditioning Access
MAXIM

MAX11329ATJ+T

D/A Converter,
MAXIM

MAX11329_V1

3Msps, 12-/10-Bit, 8-/16-Channel ADCs with Post-Mux External Signal Conditioning Access
MAXIM

MAX1132ACAP

Analog IC
MAXIM

MAX1132AEAP

Analog IC
MAXIM

MAX1132BCAP

16-Bit ADC, 200ksps, 5V Single-Supply with Reference
MAXIM

MAX1132BCAP

1-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO20, 5.30 MM, MO-150, SSOP-20
ROCHESTER