MAX1162BEUB-T [MAXIM]

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO10, MO-187CBA, USOP-10;
MAX1162BEUB-T
型号: MAX1162BEUB-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO10, MO-187CBA, USOP-10

信息通信管理 光电二极管 转换器
文件: 总18页 (文件大小:223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2525; Rev 1; 4/10  
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
MAX162  
General Description  
Features  
The MAX1162 low-power, 16-bit analog-to-digital con-  
verter (ADC) features a successive-approximation ADC,  
automatic power-down, fast 1.1µs wakeup, and a high-  
speed SPI™/QSPI™/MICROWIRE™-compatible inter-  
face. The MAX1162 operates with a single +5V analog  
supply and features a separate digital supply, allowing  
direct interfacing with +2.7V to +5.25V digital logic.  
o 16-Bit Resolution, No Missing Codes  
o +5V Single-Supply Operation  
o Adjustable Logic Level (+2.7V to +5.25V)  
o Input-Voltage Range: 0 to V  
REF  
o Internal Track/Hold, 4MHz Input Bandwidth  
o SPI/QSPI/MICROWIRE-Compatible Serial Interface  
o Small 10-Pin µMAX or 10-Pin DFN Package  
At the maximum sampling rate of 200ksps, the  
MAX1162 consumes typically 2.75mA. Power con-  
sumption is typically 13.75mA (AV  
= DV  
= +5V) at  
DD  
DD  
a 200ksps (max) sampling rate. AutoShutdown™  
reduces supply current to 140µA at 10ksps and to less  
than 10µA at reduced sampling rates.  
o Low Power  
2.75mA at 200ksps  
140µA at 10ksps  
Excellent dynamic performance and low power, com-  
bined with ease of use and small package size (10-pin  
0.1µA in Power-Down Mode  
®
µMAX and 10-pin DFN) make the MAX1162 ideal for  
battery-powered and data-acquisition applications or  
for other circuits with demanding power consumption  
and space requirements.  
Ordering Information  
TEMP  
PIN-  
INL  
PART  
RANGE  
PACKAGE  
(LSB)  
Applications  
MAX1162BCUB+  
MAX1162BC_B*  
MAX1162CCUB+  
MAX1162CC_B*  
MAX1162BEUB+  
MAX1162BE_B*  
MAX1162CEUB+  
MAX1162CE_B*  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
10 µMAX  
10 DFN  
10 µMAX  
10 DFN  
10 µMAX  
10 DFN  
10 µMAX  
10 DFN  
2
2
Motor Control  
4
Industrial Process Control  
Industrial I/O Modules  
4
2.5  
2.5  
4
Data-Acquisition Systems  
Thermocouple Measurements  
Accelerometer Measurements  
Portable- and Battery-Powered Equipment  
4
*Future product—contact factory for DFN package availability.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Pin Configuration  
TOP VIEW  
Functional Diagram appears at end of data sheet.  
REF  
1
2
3
4
5
10 AIN  
AV  
DD  
9
8
7
6
AGND  
DV  
MAX1162  
AGND  
DD  
CS  
DGND  
DOUT  
SPI and QSPI are trademarks of Motorola, Inc.  
SCLK  
MICROWIRE is a trademark of National Semiconductor Corp.  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
µMAX/DFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
ABSOLUTE MAXIMUM RATINGS  
AV  
DV  
to AGND .........................................................-0.3V to +6V  
to DGND.........................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
10-Pin µMAX (derate 5.6mW/°C above +70°C)..........444mW  
Operating Temperature Ranges  
DD  
DD  
DGND to AGND.....................................................-0.3V to +0.3V  
AIN, REF to AGND ...................................-0.3V to (AV + 0.3V)  
SCLK, CS to DGND..................................................-0.3V to +6V  
MAX1162_CUB .................................................0°C to +70°C  
MAX1162_EUB ..............................................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
DOUT to DGND .......................................-0.3V to (DV + 0.3V)  
DD  
Maximum Current Into Any Pin ...........................................50mA  
MAX162  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV = DV = +4.75V to +5.25V, f  
= 4.8MHz (50% duty cycle), 24 clocks/conversion (200ksps), V  
= +4.096V, C = 4.7µF,  
REF  
DD  
DD  
SCLK  
REF  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (Note 1)  
Resolution  
16  
-2.5  
-2  
Bits  
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
= -40°C  
= 0°C  
+2.5  
+2  
MAX1162B  
MAX1162C  
MAX1162B  
= +85°C  
= -40°C  
= 0°C  
-2  
+2  
Relative Accuracy (Note 2)  
INL  
LSB  
-4  
+4  
-4  
+4  
= +85°C  
= -40°C  
= 0°C  
-4  
+4  
NMC*  
NMC*  
NMC*  
-2  
2
1.75  
1.75  
+2  
= +85°C  
= -40°C  
= 0°C  
Differential Nonlinearity  
DNL  
LSB  
MAX1162C  
RMS noise  
(Note 3)  
-2  
+2  
= +85°C  
-2  
+2  
Transition Noise  
Offset Error  
Gain Error  
0.65  
0.1  
LSB  
RMS  
1
mV  
0.002  
0.4  
0.01  
%FSR  
ppm/oC  
ppm/oC  
Offset Drift  
Gain Drift  
(Note 3)  
0.2  
*NMC = No missing code.  
_______________________________________________________________________________________  
2
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
MAX162  
ELECTRICAL CHARACTERISTICS (continued)  
(AV = DV = +4.75V to +5.25V, f  
= 4.8MHz (50% duty cycle), 24 clocks/conversion (200ksps), V  
= +4.096V, C = 4.7µF,  
REF  
DD  
DD  
SCLK  
REF  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DYNAMIC SPECIFICATIONS (1kHz sine wave, 4.096V  
P-  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Full-Power Bandwidth  
Full-Linear Bandwidth  
CONVERSION RATE  
Conversion Time  
SINAD  
SNR  
86  
87  
89.5  
90  
dB  
dB  
THD  
-90  
dB  
SFDR  
92  
103  
4
dB  
-3dB point  
MHz  
kHz  
SINAD > 86dB  
10  
t
(Note 4)  
5
240  
4.8  
µs  
MHz  
ns  
CONV  
Serial Clock Frequency  
Aperture Delay  
f
0.1  
SCLK  
t
15  
AD  
Aperture Jitter  
t
<50  
ps  
AJ  
Sample Rate  
f
f
/ 24  
200  
ksps  
µs  
S
SCLK  
Track/Hold Acquisition Time  
ANALOG INPUT (AIN)  
Input Range  
t
1.1  
0
ACQ  
V
V
V
AIN  
REF  
Input Capacitance  
C
40  
pF  
AIN  
REF  
REF  
EXTERNAL REFERENCE  
Input-Voltage Range  
V
3.8  
AV  
V
DD  
V
V
= +4.096V, f  
= 4.8MHz  
SCLK  
100  
0.01  
0.01  
REF  
REF  
Input Current  
I
= +4.096V, SCLK idle  
µA  
CS = DV , SCLK idle  
DD  
DIGITAL INPUTS (SCLK, CS)  
0.7 x  
Input High Voltage  
V
DV  
DV  
= +2.7V to +5.25V  
= +2.7V to +5.25V  
V
V
IH  
DD  
DD  
DV  
DD  
0.3 x  
DV  
Input Low Voltage  
V
IL  
DD  
Input Leakage Current  
Input Hysteresis  
I
V
= 0 to DV  
0.1  
0.2  
15  
1
µA  
V
IN  
IN  
DD  
V
HYST  
Input Capacitance  
C
pF  
IN  
DIGITAL OUTPUT (DOUT)  
DV  
0.25V  
-
DD  
Output High Voltage  
Output Low Voltage  
V
I
= 0.5mA, DV = +2.7V to +5.25V  
DD  
V
V
OH  
SOURCE  
I
I
= 10mA, DV  
= +4.75V to +5.25V  
= +2.7V to +5.25V  
0.7  
0.4  
SINK  
DD  
V
OL  
= 1.6mA, DV  
SINK  
DD  
Three-State Output Leakage  
Current  
I
CS = DV  
CS = DV  
0.1  
15  
10  
µA  
pF  
L
DD  
DD  
Three-State Output Capacitance  
C
OUT  
_______________________________________________________________________________________  
3
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
ELECTRICAL CHARACTERISTICS (continued)  
(AV = DV = +4.75V to +5.25V, f  
= 4.8MHz (50% duty cycle), 24 clocks/conversion (200ksps), V  
= +4.096V, C = 4.7µF,  
REF  
DD  
DD  
SCLK  
REF  
T
A
= T  
to T , unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLIES  
Analog Supply  
AV  
DV  
4.75  
2.7  
5.25  
5.25  
3.25  
V
V
DD  
Digital Supply  
DD  
MAX162  
200ksps  
100ksps  
10ksps  
1ksps  
2.75  
1.4  
Analog Supply Current  
Digital Supply Current  
I
CS = DGND  
mA  
mA  
AVDD  
0.14  
0.014  
0.6  
200ksps  
100ksps  
10ksps  
1ksps  
1.0  
10  
CS = DGND,  
DOUT = all  
zeros  
0.3  
I
DVDD  
0.03  
0.003  
I
+
AVDD  
Shutdown Supply Current  
CS = DV , SCLK = idle  
0.1  
68  
µA  
dB  
DD  
I
DVDD  
AV  
= DV  
= +4.75V to +5.25V, full-scale  
DD  
DD  
Power-Supply Rejection Ratio  
PSRR  
input (Note 5)  
TIMING CHARACTERISTICS (Figures 1, 2, 3, and 6)  
(AV  
= DV  
= +4.75V to +5.25V, f  
= 4.8MHz (50% duty cycle), 24 clocks/conversion (200ksps), V  
= +4.096V, T = T  
REF A MIN  
DD  
DD  
SCLK  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Acquisition Time  
t
1.1  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ACQ  
SCLK to DOUT Valid  
CS Fall to DOUT Enable  
CS Rise to DOUT Disable  
CS Pulse Width  
t
C
C
C
= 50pF  
= 50pF  
= 50pF  
50  
80  
80  
DO  
DOUT  
DOUT  
DOUT  
t
DV  
t
TR  
t
50  
CSW  
CS Fall to SCLK Rise Setup  
CS Rise to SCLK Rise Hold  
SCLK High Pulse Width  
SCLK Low Pulse Width  
SCLK Period  
t
100  
CSS  
CSH  
t
0
t
65  
65  
CH  
t
CL  
CP  
t
208  
4
_______________________________________________________________________________________  
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
MAX162  
TIMING CHARACTERISTICS (Figures 1, 2, 3, and 6)  
(AV  
= +4.75V to +5.25V, DV  
= +2.7V to +5.25V, f  
= 4.8MHz (50% duty cycle), 24 clocks/conversion (200ksps), V  
=
DD  
DD  
SCLK  
REF  
+4.096V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
Acquisition Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µs  
t
1.1  
ACQ  
SCLK to DOUT Valid  
CS Fall to DOUT Enable  
CS Rise to DOUT Disable  
CS Pulse Width  
t
C
C
C
= 50pF  
= 50pF  
= 50pF  
100  
100  
80  
ns  
DO  
DOUT  
DOUT  
DOUT  
t
ns  
DV  
t
ns  
TR  
t
50  
ns  
CSW  
CS Fall to SCLK Rise Setup  
CS Rise to SCLK Rise Hold  
SCLK High Pulse Width  
SCLK Low Pulse Width  
SCLK Period  
t
100  
ns  
CSS  
CSH  
t
0
ns  
t
65  
65  
ns  
CH  
t
ns  
CL  
t
208  
ns  
CP  
Note 1: AV  
= DV  
= +5V.  
DD  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 3: Offset and reference errors nulled.  
Note 4: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.  
Note 5: Defined as the change in positive full scale caused by a 5% variation in the nominal supply voltage.  
Typical Operating Characteristics  
(AV  
= DV  
= +5V, f  
= 4.8MHz, C  
= 50pF, C  
= 4.7µF, V  
= +4.096V, T = +25°C, unless otherwise noted.)  
DD  
DD  
SCLK  
LOAD  
REF  
REF A  
DNL vs. OUTPUT CODE  
INL vs. OUTPUT CODE  
MAX1162 FFT  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0
-20  
-40  
-60  
-80  
-0.5  
-1.0  
-1.5  
-0.5  
-1.0  
-1.5  
-2.0  
-100  
-120  
-140  
-2.0  
0
13107 26214 39322 52429 65536  
OUTPUT CODE  
0
13107 26214 39322 52429 65536  
OUTPUT CODE  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= +5V, f  
= 4.8MHz, C  
= 50pF, C  
= 4.7µF, V  
= +4.096V, T = +25°C, unless otherwise noted.)  
DD  
DD  
SCLK  
LOAD  
REF  
REF A  
THD vs. FREQUENCY  
SFDR vs. FREQUENCY  
SINAD vs. FREQUENCY  
0
-10  
120  
110  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-20  
-30  
MAX162  
-40  
80  
-50  
70  
-60  
60  
-70  
50  
-80  
40  
-90  
30  
-100  
-110  
-120  
20  
10  
0
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. CONVERSION RATE  
SUPPLY CURRENT  
vs. TEMPERATURE  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
10  
1
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.1  
0.01  
0.001  
0
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
0.01  
0.1  
1
10  
100  
1000  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
CONVERSION RATE (kHz)  
TEMPERATURE (°C)  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
20  
18  
16  
14  
12  
10  
8
150  
125  
100  
75  
50  
6
4
25  
2
0
0
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
6
_______________________________________________________________________________________  
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
MAX162  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= +5V, f  
= 4.8MHz, C  
= 50pF, C  
= 4.7µF, V = +4.096V, T = +25°C, unless otherwise noted.)  
REF A  
DD  
DD  
SCLK  
LOAD  
REF  
OFFSET ERROR  
vs. ANALOG SUPPLY VOLTAGE  
OFFSET ERROR VS. TEMPERATURE  
1000  
1000  
800  
600  
800  
600  
400  
400  
200  
200  
0
0
-200  
-400  
-600  
-800  
-1000  
-200  
-400  
-600  
-800  
-1000  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
GAIN ERROR  
vs. ANALOG SUPPLY VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
0.020  
0.015  
0.010  
0.005  
0
0.020  
0.015  
0.010  
0.005  
0
-0.005  
-0.010  
-0.015  
-0.020  
-0.005  
-0.010  
-0.015  
-0.020  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
7
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
Pin Description  
PIN  
NAME  
FUNCTION  
External Reference Voltage Input. Sets the analog voltage range. Bypass to AGND with a 4.7µF  
capacitor.  
1
REF  
2
AV  
Analog +5V Supply Voltage. Bypass to AGND (pin 3) with a 0.1µF capacitor.  
Analog Ground. Connect pins 3 and 9 together. Place star ground at pin 3.  
DD  
3, 9  
AGND  
Active-Low Chip-Select Input. Forcing CS high places the MAX1162 in shutdown with a typical  
current of 0.1µA. A high-to-low transition on CS activates normal operating mode and initiates a  
conversion.  
MAX162  
4
CS  
Serial Clock Input. SCLK drives the conversion process and clocks out data at data rates up to  
4.8MHz.  
5
6
SCLK  
Serial Data Output. Data changes state on SCLK’s falling edge. DOUT is high impedance when CS  
is high.  
DOUT  
DGND  
7
8
Digital Ground  
DV  
Digital Supply Voltage. Bypass to DGND with a 0.1µF capacitor.  
Analog Input  
DD  
10  
AIN  
During the acquisition, the analog input (AIN) charges  
Detailed Description  
capacitor C  
. The acquisition interval ends on the  
DAC  
The MAX1162 includes an input track-and-hold (T/H)  
and successive-approximation register (SAR) circuitry  
to convert an analog input signal to a digital 16-bit out-  
put. Figure 4 shows the MAX1162 in its simplest config-  
uration. The serial interface requires only three digital  
lines (SCLK, CS, and DOUT) and provides an easy  
interface to microprocessors (µPs).  
falling edge of the sixth clock cycle (Figure 6). At this  
instant, the T/H switches open. The retained charge on  
DAC  
C
represents a sample of the input.  
In hold mode, the capacitive digital-to-analog converter  
(DAC) adjusts during the remainder of the conversion  
cycle to restore node ZERO to zero within the limits of  
16-bit resolution. At the end of the conversion, force CS  
The MAX1162 has two power modes: normal and shut-  
down. Driving CS high places the MAX1162 in shut-  
down, reducing the supply current to 0.1µA (typ), while  
pulling CS low places the MAX1162 in normal operating  
mode. Falling edges on CS initiate conversions that are  
driven by SCLK. The conversion result is available at  
DOUT in unipolar serial format. The serial data stream  
consists of eight zeros followed by the data bits (MSB  
first). Figure 3 shows the interface timing diagram.  
high and then low to reset the input side of the C  
DAC  
to the input  
switches back to AIN, and charge C  
signal again.  
DAC  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens and more time must be  
allowed between conversions. The acquisition time  
(t  
ACQ  
) is the maximum time the device takes to acquire  
Analog Input  
Figure 5 illustrates the input sampling architecture of  
the ADC. The voltage applied at REF sets the full-scale  
input voltage.  
the signal. Use the following formula to calculate acqui-  
sition time:  
t
= 13(R + R ) x 35pF  
S IN  
ACQ  
where R = 800, R = the input signal’s source  
IN  
S
ACQ  
Track-and-Hold (T/H)  
In track mode, the analog signal is acquired on the  
internal hold capacitor. In hold mode, the T/H switches  
open and the capacitive DAC samples the analog input.  
impedance, and t  
is never less than 1.1µs. A  
source impedance less than 1kdoes not significantly  
affect the ADC’s performance.  
To improve the input signal bandwidth under AC condi-  
tions, drive AIN with a wideband buffer (>4MHz) that can  
drive the ADC’s input capacitance and settle quickly.  
8
_______________________________________________________________________________________  
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
MAX162  
V
V
DD  
DD  
1mA  
1mA  
DOUT  
1mA  
DOUT  
DOUT  
1mA  
DOUT  
C
LOAD  
= 50pF  
C
LOAD  
= 50pF  
C
LOAD  
= 50pF  
C
LOAD  
= 50pF  
DGND  
a) V TO HIGH-Z  
DGND  
DGND  
DGND  
b) HIGH-Z TO V AND V TO V  
b) V TO HIGH-Z  
a) V TO V  
OL  
OH  
OL  
OH  
OL  
OH  
OL  
Figure 1. Load Circuits for DOUT Enable Time and SCLK to  
DOUT Delay Time  
Figure 2. Load Circuits for DOUT Disable Time  
CS  
t
CSW  
t
t
CH  
CL  
t
t
CSS  
CSH  
SCLK  
t
CP  
t
DO  
t
TR  
t
DV  
DOUT  
TIMING NOT TO SCALE.  
Figure 3. Detailed Serial Interface Timing  
Input Bandwidth  
The ADC’s input tracking circuitry has a 4MHz small-  
signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. To avoid aliasing of  
unwanted high-frequency signals into the frequency  
band of interest, use anti-alias filtering.  
AIN  
REF  
CS  
SCLK  
DOUT  
CS  
SCLK  
DOUT  
AIN  
REF  
AV  
V
4.7µF  
MAX1162  
+5V  
+5V  
DD  
0.1µF  
Analog Input Protection  
Internal protection diodes, which clamp the analog  
DV  
DD  
AGND  
DGND  
input to AV  
AGND - 0.3V to AV  
device.  
or AGND, allow the input to swing from  
DD  
0.1µF  
+ 0.3V, without damaging the  
DD  
GND  
If the analog input exceeds 300mV beyond the sup-  
plies, limit the input current to 10mA.  
Figure 4. Typical Operating Circuit  
_______________________________________________________________________________________  
9
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
Digital Interface  
Initialization after Power-Up and  
REF  
Starting a Conversion  
TRACK  
The digital interface consists of two inputs, SCLK and  
CAPACITIVE DAC  
AIN  
ZERO  
CS, and one output, DOUT. A logic high on CS places  
the MAX1162 in shutdown (AutoShutdown) and places  
DOUT in a high-impedance state. A logic low on CS  
places the MAX1162 in the fully powered mode.  
C
SWITCH  
3pF  
C
32pF  
HOLD  
DAC  
R
IN  
800  
GND  
MAX162  
TRACK  
To start a conversion, pull CS low. A falling edge on CS  
initiates an acquisition. SCLK drives the A/D conversion  
and shifts out the conversion results (MSB first) at DOUT.  
HOLD  
AUTO-ZERO  
RAIL  
Timing and Control  
Conversion-start and data-read operations are con-  
trolled by the CS and SCLK digital inputs (Figures 6  
and 7). Ensure that the duty cycle on SCLK is between  
40% and 60% at 4.8MHz (the maximum clock frequen-  
cy). For lower clock frequencies, ensure that the mini-  
mum high and low times are at least 65ns.  
Conversions with SCLK rates less than 100kHz can  
result in reduced accuracy due to leakage.  
Figure 5. Equivalent Input Circuit  
SCLK begins shifting out the data (MSB first) after the  
falling edge of the 8th SCLK pulse. Twenty-four falling  
clock edges are needed to shift out the eight leading  
zeros and 16 data bits. Extra clock pulses occurring  
after the conversion result has been clocked out, and  
prior to the rising edge of CS, produce trailing zeros at  
DOUT and have no effect on the converter operation.  
Note: Coupling between SCLK and the analog  
inputs (AIN and REF) may result in an offset.  
Variations in frequency, duty cycle, or other aspects  
of the clock signal’s shape result in changing offset.  
A CS falling edge initiates an acquisition sequence.  
The analog input is stored in the capacitive DAC,  
DOUT changes from high impedance to logic low, and  
the ADC begins to convert after the sixth clock cycle.  
SCLK drives the conversion process and shifts out the  
conversion result on DOUT.  
Force CS high after reading the conversion’s LSB to  
reset the internal registers and place the MAX1162 in  
shutdown. For maximum throughput, force CS low  
again to initiate the next conversion immediately after  
the specified minimum time (t  
).  
CSW  
Note: Forcing CS high in the middle of a conversion  
immediately aborts the conversion and places the  
MAX1162 in shutdown.  
CS  
24  
1
4
6
8
12  
16  
D8  
20  
D4  
SCLK  
DOUT  
t
t
CL  
CSS  
t
CSH  
t
CH  
D12 D11 D10 D9  
D7  
D6  
D5  
D3  
D2  
D1  
D0  
D15 D14 D13  
t
t
ACQ  
t
DV  
DO  
t
TR  
Figure 6. External Timing Diagram  
10 ______________________________________________________________________________________  
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
MAX162  
COMPLETE CONVERSION SEQUENCE  
CS  
DOUT  
CONVERSION 0  
POWERED UP  
CONVERSION 1  
POWERED UP  
POWERED DOWN  
TIMING NOT TO SCALE.  
Figure 7. Shutdown Sequence  
Output Coding and  
Transfer Function  
OUTPUT CODE  
The data output from the MAX1162 is binary and Figure  
8 depicts the nominal transfer function. Code transitions  
occur halfway between successive-integer LSB values  
FULL-SCALE  
TRANSITION  
11 . . . 111  
11 . . . 110  
11 . . . 101  
(V  
= 4.096V and 1LSB = 63µV or 4.096V/65536).  
Applications Information  
External Reference  
REF  
The MAX1162 requires an external reference with a  
+3.8V and AV voltage range. Connect the external  
FS = V  
1LSB =  
REF  
V
65536  
DD  
REF  
reference directly to REF. Bypass REF to AGND (pin 3)  
with a 4.7µF capacitor. When not using a low-ESR  
bypass capacitor, use a 0.1µF ceramic capacitor in  
parallel with the 4.7µF capacitor. Noise on the refer-  
ence degrades conversion accuracy.  
00 . . . 011  
00 . . . 010  
00 . . . 001  
00 . . . 000  
The input impedance at REF is 40kfor DC currents.  
During a conversion the external reference at REF must  
deliver 100µA of DC load current and have an output  
impedance of 10or less.  
For optimal performance, buffer the reference through  
an op amp and bypass the REF input. Consider the  
0
1
2
3
FS  
FS - 3/2LSB  
INPUT VOLTAGE (LSB)  
Figure 8. Unipolar Transfer Function, Full Scale (FS) = V  
Zero Scale (ZS) = GND  
,
REF  
MAX1162’s equivalent input noise (38µV  
choosing a reference.  
) when  
RMS  
At the beginning of the acquisition, the internal sampling  
capacitor array connects to AIN (the amplifier output),  
causing some output disturbance. Ensure that the sampled  
voltage has settled before the end of the acquisition time.  
Input Buffer  
Most applications require an input buffer amplifier to  
achieve 16-bit accuracy. If the input signal is multi-  
plexed, switch the input channel immediately after acqui-  
sition, rather than near the end of or after a conversion  
(Figure 9). This allows the maximum time for the input  
buffer amplifier to respond to a large step change in the  
input signal. The input amplifier must have a slew rate of  
at least 2V/µs to complete the required output-voltage  
change before the beginning of the acquisition time.  
Digital Noise  
Digital noise can couple to AIN and REF. The conver-  
sion clock (SCLK) and other digital signals active dur-  
ing input acquisition contribute noise to the conversion  
result. Noise signals synchronous with the sampling  
interval result in an effective input offset. Asynchronous  
signals produce random noise on the input, whose  
high-frequency components can be aliased into the fre-  
______________________________________________________________________________________ 11  
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
A0  
A1  
IN1  
IN2  
4-TO-1  
MUX  
MAX1162  
IN3  
IN4  
AIN  
CS  
MAX162  
OUT  
CLK  
CS  
ACQUISITION  
CONVERSION  
A0  
A1  
CHANGE MUX INPUT HERE  
TIMING NOT TO SCALE.  
Figure 9. Change Multiplexer Input Near Beginning of Conversion to Allow Time for Slewing and Settling  
quency band of interest. Minimize noise by presenting  
DC Accuracy  
a low impedance (at the frequencies contained in the  
noise signal) at the inputs. This requires bypassing AIN  
to AGND, or buffering the input with an amplifier that  
has a small-signal bandwidth of several MHz, or prefer-  
ably both. AIN has 4MHz (typ) of bandwidth.  
To improve DC accuracy, choose a buffer with an offset  
much less than the MAX1162’s offset (1mV (max) for +5V  
supply), or whose offset can be trimmed while maintain-  
ing stability over the required temperature range.  
Serial Interfaces  
The MAX1162’s interface is fully compatible with SPI,  
QSPI, and MICROWIRE standard serial interfaces.  
Distortion  
Avoid degrading dynamic performance by choosing an  
amplifier with distortion much less than the MAX1162’s  
total harmonic distortion (THD = -102dB at 1kHz) at fre-  
quencies of interest. If the chosen amplifier has insuffi-  
cient common-mode rejection, which results in degraded  
THD performance, use the inverting configuration (posi-  
tive input grounded) to eliminate errors from this source.  
Low temperature-coefficient, gain-setting resistors reduce  
linearity errors caused by resistance changes due to self-  
heating. To reduce linearity errors due to finite amplifier  
gain, use amplifier circuits with sufficient loop gain at the  
frequencies of interest.  
If a serial interface is available, establish the CPU’s ser-  
ial interface as master, so that the CPU generates the  
serial clock for the MAX1162. Select a clock frequency  
between 100kHz and 4.8MHz:  
1) Use a general-purpose I/O line on the CPU to pull  
CS low.  
2) Activate SCLK for a minimum of 24 clock cycles.  
The serial data stream of eight leading zeros fol-  
lowed by the MSB of the conversion result begins at  
the falling edge of CS. DOUT transitions on SCLK’s  
falling edge and the output is available in MSB-first  
12 ______________________________________________________________________________________  
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
MAX162  
format. Observe the SCLK to DOUT valid timing  
characteristic. Clock data into the µP on SCLK’s ris-  
ing edge.  
SPI and MICROWIRE Interfaces  
When using the SPI (Figure 10a) or MICROWIRE  
(Figure 10b) interfaces, set CPOL = 0 and CPHA = 0.  
Conversion begins with a falling edge on CS (Figure  
10c). Three consecutive 8-bit readings are necessary  
to obtain the entire 16-bit result from the ADC. DOUT  
data transitions on the serial clock’s falling edge. The  
first 8-bit data stream contains all leading zeros. The  
second 8-bit data stream contains the MSB through D8.  
The third 8-bit data stream contains D7 through D0.  
3) Pull CS high at or after the 24th falling clock edge. If  
CS remains low, trailing zeros are clocked out after  
the least significant bit (D0 = LSB).  
4) With CS high, wait at least 50ns (t  
) before start-  
CSW  
ing a new conversion by pulling CS low. A conver-  
sion can be aborted by pulling CS high before the  
conversion ends. Wait at least 50ns before starting a  
new conversion.  
QSPI Interface  
Using the high-speed QSPI interface with CPOL = 0  
and CPHA = 0, the MAX1162 supports a maximum  
Data can be output in three 8-bit sequences or continu-  
ously. The bytes contain the results of the conversion  
padded with eight leading zeros before the MSB. If the  
serial clock has not been idled after the LSB (D0) and  
CS has been kept low, DOUT sends trailing zeros.  
f
of 4.8MHz. Figure 11a shows the MAX1162 con-  
SCLK  
nected to a QSPI master and Figure 11b shows the  
associated interface timing.  
I/O  
SK  
SI  
CS  
I/O  
SCK  
CS  
SCLK  
DOUT  
SCLK  
DOUT  
MISO  
MICROWIRE  
V
DD  
SPI  
MAX1162  
MAX1162  
SS  
Figure 10a. SPI Connections  
Figure 10b. MICROWIRE Connections  
1ST BYTE READ  
4
2ND BYTE READ  
12  
1
6
8
16  
SCLK  
CS  
0
0
0
0
0
0
0
0
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
DOUT*  
MSB  
*WHEN CS IS HIGH, DOUT = HIGH-Z  
3RD BYTE READ  
20  
24  
HIGH-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TIMING NOT TO SCALE.  
LSB  
Figure 10c. SPI/MICROWIRE Interface Timing Sequence (CPOL = CPHA = 0)  
______________________________________________________________________________________ 13  
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
CS  
SCK  
CS  
SCLK  
DOUT  
MISO  
QSPI  
V
DD  
MAX1162  
SS  
MAX162  
Figure 11a. QSPI Connections  
24  
1
4
6
8
12  
16  
20  
SCLK  
CS  
END OF  
ACQUISITION  
HIGH-Z  
D15 D14 D13 D12 D11 D10 D9  
MSB  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DOUT*  
LSB  
*WHEN CS IS HIGH, DOUT = HIGH-Z  
Figure 11b. QSPI Interface Timing Sequence (CPOL = CPHA = 0)  
PIC16 with SSP Module and  
PIC17 Interface  
V
V
DD  
DD  
The MAX1162 is compatible with a PIC16/PIC17 micro-  
controller (µC) using the synchronous serial-port (SSP)  
module.  
SCLK  
DOUT  
CS  
SCK  
SDI  
I/O  
To establish SPI communication, connect the controller  
as shown in Figure 12a. Configure the PIC16/PIC17 as  
system master, by initializing its synchronous serial-port  
control register (SSPCON) and synchronous serial-port  
status register (SSPSTAT) to the bit patterns shown in  
Tables 1 and 2.  
PIC16/17  
MAX1162  
GND  
In SPI mode, the PIC16/PIC17 µC allows 8 bits of data  
to be synchronously transmitted and received simulta-  
Figure 12a. SPI Interface Connection for a PIC16/PIC17  
Table 1. Detailed SSPCON Register Contents  
MAX1162  
SETTINGS  
CONTROL BIT  
SYNCHRONOUS SERIAL-PORT CONTROL REGISTER (SSPCON)  
WCOL  
BIT7  
BIT6  
X
X
Write Collision Detection Bit  
SSPOV  
Receive Overflow Detect Bit  
Synchronous Serial-Port Enable Bit:  
SSPEN  
BIT5  
1
0: Disables serial port and configures these pins as I/O port pins.  
1: Enables serial port and configures SCK, SDO, and SCI pins as serial port pins.  
CKP  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
0
0
0
0
1
Clock Polarity Select Bit. CKP = 0 for SPI master mode selection.  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
Synchronous Serial-Port Mode Select Bit. Sets SPI master mode and selects  
f
= f  
/ 16.  
CLK  
OSC  
14 ______________________________________________________________________________________  
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
MAX162  
Table 2. Detailed SSPSTAT Register Contents  
MAX1162  
SETTINGS  
CONTROL BIT  
SYNCHRONOUS SERIAL-PORT CONTROL REGISTER (SSPSTAT)  
SMP  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
0
1
X
X
X
X
X
X
SPI Data Input Sample Phase. Input data is sampled at the middle of the data output time.  
CKE  
SPI Clock Edge Select Bit. Data is transmitted on the rising edge of the serial clock.  
D/A  
Data Address Bit  
Stop Bit  
P
S
Start Bit  
R/W  
Read/Write Bit Information  
Update Address  
Buffer Full Status Bit  
UA  
BF  
X = Don’t care.  
1ST BYTE READ  
2ND BYTE READ  
12  
16  
SCLK  
CS  
0
0
0
0
0
0
0
0
D7  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
DOUT*  
MSB  
*WHEN CS IS HIGH, DOUT = HIGH-Z  
3RD BYTE READ  
20  
24  
HIGH-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TIMING NOT TO SCALE.  
LSB  
Figure 12b. SPI Interface Timing with PIC16/PIC17 in Master Mode (CKE = 1, CKP = 0, SMP = 0, SSPM3 - SSPM0 = 0001)  
neously. Three consecutive 8-bit readings (Figure 12b)  
are necessary to obtain the entire 16-bit result from the  
ADC. DOUT data transitions on the serial clock’s falling  
edge and is clocked into the µC on SCLK’s rising edge.  
The first 8-bit data stream contains all zeros. The sec-  
ond 8-bit data stream contains the MSB through D8.  
The third 8-bit data stream contains bits D7 through D0.  
tion, once offset and gain errors have been nulled. The  
static linearity parameters for the MAX1162 are mea-  
sured using the endpoint method.  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1LSB. A  
DNL error specification of 1LSB guarantees no missing  
codes and a monotonic transfer function.  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-fit straight line fit or a  
line drawn between the endpoints of the transfer func-  
Aperture Definitions  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between samples. Aperture delay (t ) is the  
AD  
time between the falling edge of the sampling clock  
and the instant when the actual sample is taken.  
______________________________________________________________________________________ 15  
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
ENOB = (SINAD - 1.76) / 6.02  
ENOB vs. INPUT FREQUENCY  
Figure 13 shows the effective number of bits as a func-  
tion of the MAX1162’s input frequency.  
16  
14  
12  
10  
8
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
MAX162  
6
2
2
2
2
V
+ V + V + V  
3 4 5  
2
4
THD = 20×log  
V
1
2
0
where V is the fundamental amplitude and V through  
V are the 2nd- through 5th-order harmonics.  
1
2
0.1  
1
10  
100  
5
INPUT FREQUENCY (kHz)  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest fre-  
quency component.  
Figure 13. Effective Number of Bits vs. Input Frequency  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of the  
full-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
noise error only and results directly from the ADCs res-  
olution (N bits):  
Supplies, Layout, Grounding,  
and Bypassing  
Use PC boards with separate analog and digital  
ground planes. Do not use wire-wrap boards. Connect  
the two ground planes together at the MAX1162 (pin 3).  
Isolate the digital supply from the analog with a low-  
value resistor (10) or ferrite bead when the analog  
and digital supplies come from the same source  
(Figure 14).  
SNR = (6.02 x N + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all the other ADC output signals,  
excluding the DC offset.  
AIN  
REF  
CS  
SCLK  
DOUT  
CS  
AIN  
REF  
AV  
SCLK  
DOUT  
V
4.7µF  
MAX1162  
+5V  
DD  
Signal  
RMS  
10Ω  
SINAD(dB) = 20 × log  
Noise + Distortion  
(
)
RMS  
0.1µF  
DV  
DD  
AGND  
DGND  
Effective Number of Bits  
Effective number of bits (ENOB) indicate the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC error consists of quantiza-  
tion noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
of bits as follows:  
0.1µF  
GND  
Figure 14. Powering AV  
and DV  
from a Single Supply  
DD  
DD  
16 ______________________________________________________________________________________  
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
MAX162  
Constraints on sequencing the power supplies and  
inputs are as follows:  
Functional Diagram  
• Apply AGND before DGND.  
DV  
DD  
AV  
DD  
• Apply AIN and REF after AV  
are present.  
and AGND  
DD  
• DV  
is independent of the supply sequencing.  
DD  
REF  
AIN  
Ensure that digital return currents do not pass through  
the analog ground and that return-current paths are low  
impedance. A 5mA current flowing through a PC board  
ground trace impedance of only 0.05Ω creates an error  
voltage of about 250µV, 4LSB error with a +4V full-  
scale system.  
OUTPUT  
BUFFER  
16-BIT SAR  
ADC  
TRACK AND  
HOLD  
DOUT  
AGND  
SCLK  
CONTROL  
The board layout should ensure that digital and analog  
signal lines are kept separate. Do not run analog and  
digital (especially the SCLK and DOUT) lines parallel to  
one another. If one must cross another, do so at right  
angles.  
CS  
MAX1162  
The ADCs high-speed comparator is sensitive to high-  
DGND  
frequency noise on the AV  
power supply. Bypass an  
DD  
excessively noisy supply to the analog ground plane  
with a 0.1µF capacitor in parallel with a 1µF to 10µF  
low-ESR capacitor. Keep capacitor leads short for best  
supply-noise rejection.  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package draw-  
ings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
10 µMAX  
U10-2  
21-0061  
______________________________________________________________________________________ 17  
16-Bit, +5V, 200ksps ADC with 10µA  
Shutdown  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
7/02  
4/10  
Initial release  
Changed analog supply current and added lead-free information  
1, 3, 5  
MAX162  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1162BEUB/V+

ADC, Successive Approximation
MAXIM

MAX1162BE_B

16-Bit, +5V, 200ksps ADC with 10レA Shutdown
MAXIM

MAX1162CCUB

16-Bit, +5V, 200ksps ADC with 10レA Shutdown
MAXIM

MAX1162CCUB

1-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, SERIAL ACCESS, PDSO10, MO-187CBA, USOP-10
ROCHESTER

MAX1162CCUB+

16-Bit, +5V, 200ksps ADC with 10μA Shutdown
MAXIM

MAX1162CCUB-T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO10, MO-187CBA, USOP-10
MAXIM

MAX1162CC_B

16-Bit, +5V, 200ksps ADC with 10レA Shutdown
MAXIM

MAX1162CEUB

16-Bit, +5V, 200ksps ADC with 10レA Shutdown
MAXIM

MAX1162CEUB+

16-Bit, +5V, 200ksps ADC with 10μA Shutdown
MAXIM

MAX1162CEUB+T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO10, MO-187CBA, USOP-10
MAXIM

MAX1162CEUB-T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO10, MO-187CBA, USOP-10
MAXIM

MAX1162CE_B

16-Bit, +5V, 200ksps ADC with 10レA Shutdown
MAXIM