MAX1168CEEG+ [MAXIM]

暂无描述;
MAX1168CEEG+
型号: MAX1168CEEG+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

转换器
文件: 总30页 (文件大小:460K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2956; Rev 0; 8/03  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
General Description  
Features  
The MAX1167/MAX1168 low-power, multichannel, 16-  
bit analog-to-digital converters (ADCs) feature a suc-  
cessive-approximation ADC, integrated +4.096V  
reference, a reference buffer, an internal oscillator,  
automatic power-down, and a high-speed SPI™/  
QSPI™/MICROWIRE™-compatible interface. The  
MAX1167/MAX1168 operate with a single +5V analog  
supply and feature a separate digital supply, allowing  
direct interfacing with +2.7V to +5.5V digital logic.  
o 16-Bit Resolution, 1 ꢀLB ꢁDꢀ ꢂ(max  
o +5V Lingle-Lupply Opermtion  
o Adjustmble ꢀogic ꢀevel ꢂ+2.7V to +5.25Vx  
o Input Voltmge Rmnge: 0 to V  
REF  
o Internml ꢂ+4.096Vx or Eaternml ꢂ+3.8V to AV  
x
ꢁꢁ  
Reference  
o Internml Trmck/Hold, 4MHz Input Bmndwidth  
o Internml or Eaternml Clock  
The MAX1167/MAX1168 consume only 2.9mA (AV  
=
DD  
DV = +5V) at 200ksps when using an external reference.  
DD  
AutoShutdown™ reduces the supply current to 145µA at  
10ksps and to less than 10µA at reduced sampling rates.  
o LPI/QLPI/MICROWIRE-Co(pmtible Leriml  
Interfmce, MAX1168 Perfor(s ꢁLP-Initimted  
Conversions  
The MAX1167 includes a 4-channel input multiplexer, and  
the MAX1168 accepts up to eight analog inputs.  
In addition, digital signal processor (DSP)-initiated con-  
versions are simplified with the DSP frame-sync input and  
output featured in the MAX1168. The MAX1168 includes  
a data-bit transfer input to select between 8-bit-wide or  
16-bit-wide data-transfer modes. Both devices feature a  
scan mode that converts each channel sequentially or  
one channel continuously.  
o 8-Bit-Wide or 16-Bit-Wide ꢁmtm-Trmnsfer Mode  
ꢂMAX1168 Onlyx  
o 4-Chmnnel ꢂMAX1167x or 8-Chmnnel ꢂMAX1168x  
Input Mua  
Lcmn Mode Lequentimlly Converts Multiple  
Chmnnels or One Chmnnel Continuously  
o ꢀow Power  
Excellent dynamic performance and low power, com-  
bined with ease of use and an integrated reference, make  
the MAX1167/MAX1168 ideal for control and data-acqui-  
sition operations or for other applications with demanding  
power consumption and space requirements. The  
MAX1167 is available in a 16-pin QSOP package and the  
MAX1168 is available in a 24-pin QSOP package. Both  
devices are guaranteed over the commercial (0°C to  
+70°C) and extended (-40°C to +85°C) temperature  
ranges. Use the MAX1168 evaluation kit to evaluate the  
MAX1168.  
2.9(A mt 200ksps  
1.45(A mt 100ksps  
145µA mt 10ksps  
0.6µA in Full Power-ꢁown Mode  
o L(mll Pmckmge Lize  
16-Pin QLOP ꢂMAX1167x  
24-Pin QLOP ꢂMAX1168x  
Ordering Information  
Applications  
PID-  
IDꢀ  
PART  
TEMP RADGE  
Motor Control  
PACKAGE ꢂꢀLBx  
Industrial Process Control  
Industrial I/O Modules  
MAX1167ACEE  
MAX1167BCEE  
MAX1167CCEE  
MAX1167AEEE*  
MAX1167BEEE*  
MAX1167CEEE*  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
1.2  
2
3
Data-Acquisition Systems  
Thermocouple Measurements  
Accelerometer Measurements  
1.2  
2
3
*Future product—contact factory for availability.  
SPI/QSPI are trademarks of Motorola, Inc.  
Ordering Information continued at end of data sheet.  
Pin Configurations appear at end of data sheet.  
MICROWIRE is a trademark of National Semiconductor Corp.  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
ABLOꢀUTE MAXIMUM RATIDGL  
AV  
DV  
to AGND .........................................................-0.3V to +6V  
to DGND.........................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
DD  
DD  
A
16-Pin QSOP (derate 8.3mW/°C above +70°C)...........667mW  
24-Pin QSOP (derate 9.5mW/°C above +70°C)...........762mW  
Operating Temperature Ranges  
DGND to AGND.....................................................-0.3V to +0.3V  
AIN_, REF, REFCAP to AGND..................-0.3V to (AV + 0.3V)  
DD  
SCLK, CS, DSEL, DSPR, DIN to DGND ...................-0.3V to +6V  
DOUT, DSPX, EOC to DGND...................-0.3V to (DV + 0.3V)  
Maximum Current into Any Pin............................................50mA  
MAX116_ _ CE_ ..................................................0°C to +70°C  
MAX116_ _ EE_ ...............................................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢀECTRICAꢀ CHARACTERILTICL  
(AV  
= DV  
= +4.75V to +5.25V, f  
= 4.8MHz external clock (50% duty cycle), 24 clocks/conversion (200ksps), external V  
DD  
DD  
A
SCLK REF  
= +4.096V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
ꢁC ACCURACY (Note 1)  
Resolution  
LYMBOꢀ  
CODꢁITIODL  
MID  
TYP  
MAX  
UDITL  
16  
Bits  
LSB  
MAX116_A  
MAX116_B  
MAX116_C  
1.5  
2.0  
3.0  
2
3
6
Relative Accuracy (Note 2)  
INL  
MAX116_A  
(16 bit, no missing codes over temperature)  
1
+1.75  
-1.0  
MAX116_B  
(16 bit, no missing codes over temperature)  
Differential Nonlinearity  
Transition Noise  
DNL  
LSB  
MAX116_C  
(15 bit, no missing codes over temperature)  
2
External reference  
Internal reference  
0.7  
0.8  
0.1  
0.01  
1
RMS  
noise  
LSB  
RMS  
Offset Error  
Gain Error  
Offset Drift  
Gain Drift  
10  
mV  
(Note 3)  
(Note 3)  
0.2  
%FSR  
ppm/°C  
ppm/°C  
1.2  
ꢁYDAMIC LPECIFICATIODL ꢂ1kHz sine wmve, 4.096V x (Note 1)  
P-P  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
86  
86  
88.5  
88.5  
-100  
101  
4
dB  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Full-Power Bandwidth  
THD  
-90  
dB  
SFDR  
92  
dB  
-3dB point  
SINAD > 85dB  
(Note 4)  
MHz  
kHz  
dB  
Full-Linear Bandwidth  
10  
Channel-to-Channel Isolation  
96  
2
_______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
EꢀECTRICAꢀ CHARACTERILTICL ꢂcontinuedx  
(AV  
= DV  
= +4.75V to +5.25V, f  
= 4.8MHz external clock (50% duty cycle), 24 clocks/conversion (200ksps), external V  
DD  
DD  
A
SCLK REF  
= +4.096V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
LYMBOꢀ  
CODꢁITIODL  
MID  
TYP  
MAX  
UDITL  
CODVERLIOD RATE  
Internal clock, no data transfer,  
single conversion (Note 5)  
5.52  
3.75  
7.07  
Conversion Time  
t
µs  
CONV  
External clock  
Acquisition Time  
t
(Note 6)  
729  
0.1  
ns  
ACQ  
External clock, data transfer and conversion  
External clock, data transfer only  
Internal clock  
4.8  
9
Serial Clock Frequency  
f
MHz  
SCLK  
Internal Clock Frequency  
Aperture Delay  
f
3.2  
4.0  
15  
MHz  
ns  
INTCLK  
t
AD  
Aperture Jitter  
t
<50  
ps  
AJ  
8-bit-wide data-transfer mode  
16-bit-wide data-transfer mode  
4.17  
200.00  
150.00  
3.125  
Internal clock, single conversion, 8-bit-wide  
data-transfer mode  
89  
68  
Internal clock, single conversion, 16-bit-  
wide data-transfer mode  
Sample Rate (Note 7)  
f
ksps  
S
Internal clock, scan mode, 8-bit-wide data-  
transfer mode (four conversions)  
103  
82  
External clock, scan mode, 16-bit-wide  
data-transfer mode (four conversions)  
Duty Cycle  
45  
0
55  
%
ADAꢀOG IDPUT ꢂAID_x  
Input Range  
V
_
V
V
AIN  
REF  
Input Capacitance  
C
_
45  
pF  
AIN  
EXTERDAꢀ REFEREDCE  
Input Voltage Range  
V
I
3.8  
AV  
V
REF  
DD  
V
_ = 0  
110  
0.1  
0.1  
AIN  
Input Current  
µA  
SCLK idle  
CS = DV , SCLK idle  
REF  
DD  
IDTERDAꢀ REFEREDCE  
Reference Voltage  
V
4.056  
4.096  
13  
4.136  
V
REFIN  
Reference Short-Circuit Current  
I
mA  
REFSC  
Reference Temperature  
Coefficient  
25  
5
ppm/°C  
Reference Wake-Up Time  
t
V
= 0  
REF  
ms  
RWAKE  
_______________________________________________________________________________________  
3
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
EꢀECTRICAꢀ CHARACTERILTICL ꢂcontinuedx  
(AV  
= DV  
= +4.75V to +5.25V, f  
= 4.8MHz external clock (50% duty cycle), 24 clocks/conversion (200ksps), external V  
DD  
DD  
A
SCLK REF  
= +4.096V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
LYMBOꢀ  
CODꢁITIODL  
MID  
TYP  
MAX  
UDITL  
ꢁIGITAꢀ IDPUTL ꢂLCꢀK, CS, ꢁLEꢀ, ꢁLPR, ꢁIDx ꢂꢁV  
= +2.7V to +5.25Vx  
ꢁꢁ  
0.7 ×  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
DV  
DD  
0.3 ×  
V
IL  
DV  
DD  
Input Leakage Current  
Input Hysteresis  
I
Digital inputs = 0 to DV  
0.1  
0.2  
15  
1
µA  
V
IN  
DD  
V
HYST  
Input Capacitance  
C
pF  
IN  
ꢁIGITAꢀ OUTPUT ꢂꢁOUT, ꢁLPX, EOCx ꢂꢁV  
= +2.7V to +5.25Vx  
ꢁꢁ  
DV  
0.4  
-
DD  
Output High Voltage  
Output Low Voltage  
V
I
= 0.5mA  
V
V
OH  
SOURCE  
I
I
= 10mA, DV  
= +4.75V to +5.25V  
= +2.7V to +5.25V  
0.8  
SINK  
DD  
V
OL  
= 1.6mA, DV  
0.4  
10  
SINK  
DD  
Tri-State Output Leakage Current  
Tri-State Output Capacitance  
POWER LUPPꢀIEL  
I
CS = DV  
CS = DV  
0.1  
15  
µA  
pF  
L
DD  
DD  
C
OUT  
Analog Supply  
AV  
DV  
4.75  
2.70  
5.25  
5.25  
2.9  
V
V
DD  
Digital Supply  
DD  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
200ksps  
2.0  
2.9  
200ksps  
100ksps  
10ksps  
1ksps  
3.8  
1.0  
2.0  
Analog Supply Current (Note 8)  
I
mA  
AVDD  
0.1  
1.1  
0.01  
1.01  
0.87  
0.45  
0.045  
0.005  
1.3  
100ksps  
DOUT =  
all zeros  
Digital Supply Current  
I
mA  
mA  
DVDD  
10ksps  
1ksps  
Internal reference and  
reference buffer on  
between conversions  
1.01  
0.43  
CS = DV  
SCLK = 0,  
DIN = 0,  
,
DD  
I
+
AVDD  
Power-Down Supply Current  
I
DVDD  
Internal reference on,  
reference buffer off  
between conversions  
DSPR = DV  
DD  
4
_______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
EꢀECTRICAꢀ CHARACTERILTICL ꢂcontinuedx  
(AV  
= DV  
= +4.75V to +5.25V, f  
= 4.8MHz external clock (50% duty cycle), 24 clocks/conversion (200ksps), external V  
DD  
DD  
A
SCLK REF  
= +4.096V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
LYMBOꢀ  
CODꢁITIODL  
CS = DV , SCLK = 0, DIN = 0,  
MID  
TYP  
MAX  
UDITL  
I
+
AVDD  
DD  
Shutdown Supply Current  
0.6  
10  
µA  
dB  
I
DSPR = DV , full power-down  
DD  
DVDD  
AV  
= DV  
= 4.75V to 5.25V, full-scale  
DD  
DD  
Power-Supply Rejection Ratio  
PSRR  
63  
input (Note 9)  
TIMIDG CHARACTERILTICL ꢂFigures 1, 2, 8, mnd 16x  
(AV  
= ꢁV  
= +4.096V, T = T  
= +4.75V to +5.25V, f  
= 4.8MHz external clock (50% duty cycle), 24 clocks/conversion (200ksps), external  
ꢁꢁ  
ꢁꢁ  
SCLK  
V
REF  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
LYMBOꢀ  
CODꢁITIODL  
External clock (Note 6)  
MID  
TYP  
MAX  
UDITL  
ns  
Acquisition Time  
t
729  
ACQ  
SCLK to DOUT Valid  
CS Fall to DOUT Enable  
CS Rise to DOUT Disable  
CS Pulse Width  
t
C
C
C
= 30pF  
= 30pF  
= 30pF  
50  
80  
80  
ns  
DO  
DOUT  
DOUT  
DOUT  
t
ns  
DV  
t
ns  
TR  
t
100  
100  
ns  
CSW  
SCLK rise  
CS to SCLK Setup  
CS to SCLK Hold  
t
ns  
ns  
ns  
CSS  
SCLK fall (DSP)  
SCLK rise  
t
0
CSH  
SCLK fall (DSP)  
Conversion  
Data transfer  
Conversion  
Data transfer  
93  
50  
SCLK High Pulse Width  
t
Duty cycle 45% to 55%  
Duty cycle 45% to 55%  
CH  
93  
SCLK Low Pulse Width  
SCLK Period  
t
ns  
ns  
ns  
CL  
CP  
DS  
50  
t
t
209  
SCLK rise  
DIN to SCLK Setup  
50  
0
SCLK fall (DSP)  
SCLK rise  
DIN to SCLK Hold  
t
ns  
DH  
SCLK fall (DSP)  
CS Falling to DSPR Rising  
t
100  
100  
0
ns  
ns  
ns  
DF  
DSPR to SCLK Falling Setup  
DSPR to SCLK Falling Hold  
t
FSS  
FSH  
t
_______________________________________________________________________________________  
5
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
TIMIDG CHARACTERILTICL ꢂFigures 1, 2, 8, mnd 16x  
(AV  
= +4.75V to +5.25V, ꢁV  
= +2.7V to +5.25V, f  
= 4.8MHz external clock (50% duty cycle), 24 clocks/conversion  
DD  
ꢁꢁ  
SCLK  
(200ksps), external V  
= +4.096V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
REF  
A
MIN  
PARAMETER  
Acquisition Time  
LYMBOꢀ  
CODꢁITIODL  
External clock (Note 6)  
MID  
TYP  
MAX  
UDITL  
ns  
t
729  
ACQ  
SCLK to DOUT Valid  
CS Fall to DOUT Enable  
CS Rise to DOUT Disable  
CS Pulse Width  
t
C
C
C
= 30pF  
= 30pF  
= 30pF  
100  
100  
80  
ns  
DO  
DOUT  
DOUT  
DOUT  
t
ns  
DV  
t
ns  
TR  
t
100  
100  
ns  
CSW  
SCLK rise  
CS to SCLK Setup  
CS to SCLK Hold  
t
ns  
ns  
ns  
CSS  
SCLK fall (DSP)  
SCLK rise  
t
0
CSH  
SCLK fall (DSP)  
Conversion  
Data transfer  
Conversion  
Data transfer  
93  
93  
SCLK High Pulse Width  
t
Duty cycle 45% to 55%  
Duty cycle 45% to 55%  
CH  
93  
SCLK Low Pulse Width  
SCLK Period  
t
ns  
ns  
ns  
CL  
CP  
DS  
93  
t
t
209  
SCLK rise  
DIN to SCLK Setup  
100  
0
SCLK fall (DSP)  
SCLK rise  
DIN to SCLK Hold  
t
ns  
DH  
SCLK fall (DSP)  
CS Falling to DSPR Rising  
DSPR to SCLK Falling Setup  
DSPR to SCLK Falling Hold  
t
100  
100  
0
ns  
ns  
ns  
DF  
t
FSS  
FSH  
t
Dote 1: AV  
= DV  
= +5.0V.  
DD  
DD  
Dote 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after full-scale range has been  
calibrated.  
Dote 3: Offset and reference errors nulled.  
Dote 4: DC voltage applied to on channel, and a full-scale 1kHz sine wave applied to off channels.  
Dote 5: Conversion time is measured from the rising edge of the 8th external SCLK pulse to EOC transition minus t  
in 8-bit data-  
ACQ  
transfer mode.  
Dote 6: See Figures 10 and 17.  
-1  
) where: n  
1
Dote 7: f  
= 4.8MHz, f  
= 4.0MHz. Sample rate is calculated with the formula f = n (n / f  
+ n / f  
s
1
2
3
SCLK  
INTCLK  
SCLK  
INTCLK  
= number of scans, n = number of SCLK cycles, and n = number of internal clock cycles (see Figures 1114).  
2
3
Dote 8: Internal reference and buffer are left on between conversions.  
Dote 9: Defined as the change in the positive full scale caused by a 5% variation in the nominal supply voltage.  
6
_______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
Typical Operating Characteristics  
(AV  
= DV  
= +5V, f  
= 4.8MHz, C  
= 30pF, external V  
= +4.096V, T = +25°C, unless otherwise noted.)  
DD  
DD  
SCLK  
DOUT  
REF A  
INL vs. CODE  
DNL vs. CODE  
FFT AT f = 1kHz  
AIN  
20  
1.5  
1.0  
0.5  
0
1.5  
1.0  
0.5  
0
0
-20  
-40  
-60  
-80  
-0.5  
-1.0  
-1.5  
-0.5  
-1.0  
-1.5  
-100  
-120  
-140  
-160  
0
16384  
32768  
CODE  
49152  
65536  
0
16384  
32768  
CODE  
49152  
65536  
0
20  
40  
60  
80  
100  
FREQUENCY (kHz)  
SINAD vs. FREQUENCY  
SFDR vs. FREQUENCY  
THD vs. FREQUENCY  
100  
90  
120  
100  
80  
60  
40  
20  
0
0
f
= 200kbps  
SAMPLE  
-20  
-40  
80  
70  
60  
50  
40  
30  
20  
10  
0
-60  
-80  
-100  
-120  
f
= 200kbps  
f
= 200ksps  
SAMPLE  
SAMPLE  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
(INTERNAL REFERENCE)  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
(EXTERNAL REFERENCE)  
SUPPLY CURRENT vs. CONVERSION RATE  
(EXTERNAL CLOCK)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
DV = AV = +5V  
DD  
OUT  
DD  
T
= +85°C  
= +70°C  
DV = +5V  
DD  
= 200ksps  
A
DV = +5V  
DD  
= 200ksps  
D
= ALL ZEROS  
f
S
T
A
= +70°C  
f
S
EXTERNAL CLOCK  
SPI MODE  
T
A
T
A
= +85°C  
T
A
= +25°C  
T
A
= +25°C  
I , INT REF  
AVDD  
T
A
= 0°C  
T = 0°C  
A
I
, EXT REF  
AVDD  
I
DVDD  
T
A
= -40°C  
T
A
= -40°C  
-0.5  
0
20 40 60 80 100 120 140 160 180 200  
CONVERSION RATE (ksps)  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
AV (V)  
DD  
AV (V)  
DD  
_______________________________________________________________________________________  
7
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= +5V, f  
= 4.8MHz, C  
= 30pF, external V  
= +4.096V, T = +25°C, unless otherwise noted.)  
DD  
DD  
SCLK  
DOUT  
REF A  
POWER-DOWN SUPPLY CURRENT  
POWER-DOWN SUPPLY CURRENT  
DIGITAL SUPPLY CURRENT  
vs. DIGITAL SUPPLY VOLTAGE  
vs. AV SUPPLY VOLTAGE  
vs. DV SUPPLY VOLTAGE  
DD  
DD  
(INTERNAL REFERENCE)  
(INTERNAL REFERENCE)  
MAX1167/68 toc11  
MAX1167/68 toc12  
2.6  
2.2  
1.8  
1.4  
1.0  
0.6  
0.2  
0.58  
0.57  
0.56  
0.55  
0.54  
0.53  
0.52  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
1.03  
1.02  
1.01  
1.00  
0.99  
AV = +5V  
DV = +5V  
DD  
= 0  
DD  
AV = +5V  
DD  
V
V
S
IL  
IH  
= DV  
DD  
f
= 200ksps  
DOUT = 1010...1010  
DOUT = 0000...0000  
I
AVDD  
I
AVDD  
I
DVDD  
I
DVDD  
2.70  
3.21  
3.72  
4.23  
4.74  
5.25  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
2.70  
3.21  
3.72  
4.23  
4.74  
5.25  
DV (V)  
DD  
AV (V)  
DD  
DV (V)  
DD  
SHUTDOWN SUPPLY CURRENT  
SHUTDOWN SUPPLY CURRENT  
vs. DV SUPPLY VOLTAGE  
vs. AV SUPPLY VOLTAGE  
DD  
DD  
(EXTERNAL REFERENCE)  
(EXTERNAL REFERENCE)  
MAX1167/68 toc14  
MAX1167/68 toc13  
0.7  
0.43  
0.42  
0.41  
0.40  
0.39  
0.38  
0.37  
0.58  
0.57  
0.56  
0.55  
0.54  
0.53  
0.52  
0.54  
0.50  
0.46  
0.42  
0.38  
0.34  
0.30  
AV = +5V  
DD  
DV = +5V  
DD  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
I
AVDD  
I
DVDD  
I
AVDD  
I
DVDD  
2.70  
3.21  
3.72  
4.23  
4.74  
5.25  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
DV (V)  
DD  
AV (V)  
DD  
POWER-DOWN SUPPLY CURRENT  
vs. TEMPERATURE (INTERNAL REFERENCE)  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE (EXTERNAL REFERENCE)  
MAX1167/68 toc15  
MAX1167/68 toc16  
0.58  
1.04  
0.58  
0.57  
0.56  
0.55  
0.54  
0.53  
0.52  
0.45  
0.43  
0.41  
0.39  
0.37  
0.35  
DV = AV = +5V  
DV = AV = +5V  
DD DD  
DD  
DD  
0.57  
0.56  
0.55  
0.54  
0.53  
0.52  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
I
AVDD  
I
AVDD  
I
I
DVDD  
DVDD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= +5V, f  
= 4.8MHz, C  
= 30pF, external V  
= +4.096V, T = +25°C, unless otherwise noted.)  
DD  
DD  
SCLK  
DOUT  
REF A  
OFFSET ERROR vs. TEMPERATURE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
GAIN ERROR vs. SUPPLY VOLTAGE  
200  
150  
200  
100  
0
0.05  
0.04  
0.03  
0.02  
0.01  
0
V
REF  
= +4.096V  
V
REF  
= +4.096V  
V
REF  
= +4.096V  
100  
50  
-100  
-200  
-300  
-400  
0
-50  
-100  
-150  
-0.01  
-0.02  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
TEMPERATURE (°C)  
AV (V)  
DD  
AV (V)  
DD  
CHANNEL-TO-CHANNEL ISOLATION  
vs. FREQUENCY  
INTERNAL +4.096V REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
4.104  
4.100  
4.096  
4.092  
4.088  
0
0
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
V
= +4.096V  
REF  
DV = +5V  
DD  
T
A
= +85°C  
-20  
-40  
-60  
T
A
= +70°C  
T
A
= +25°C  
-80  
T
A
= -40°C  
T = 0°C  
A
-100  
-120  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
0
20  
40  
60  
80  
100  
-40  
-15  
10  
35  
60  
85  
AV (V)  
DD  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
INTERNAL REFERENCE VOLTAGE  
vs. REF LOAD  
INTERNAL CLOCK CONVERSION TIME  
(8th RISING SCLK TO FALLING EOC)  
EXTERNAL REFERENCE INPUT CURRENT  
vs. EXTERNAL REFERENCE VOLTAGE  
160  
140  
120  
100  
80  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
70  
60  
50  
40  
30  
20  
10  
0
8-BIT DATA-TRANSFER MODE  
60  
V
f
= 0  
SCLK  
AIN  
= 4.8MHz  
16-BIT DATA-TRANSFER MODE  
53  
AV = DV = +5V  
DD  
DD  
f
= 4.8MHz  
SCLK  
46  
44  
39  
38  
199ksps, EXTERNAL CLOCK  
33  
31  
28  
24  
60  
22  
87.19ksps, INTERNAL CLOCK  
f
= 0  
17  
17  
SCLK  
40  
INTERNAL REFERENCE MODE  
12  
10  
LOAD APPLIED TO REF  
6
20  
C
= 1µF  
REF  
0
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
(V)  
0
2
4
6
8
10  
12  
14  
1
2
3
4
5
6
7
8
V
REF  
I
(mA)  
NUMBER OF SCAN-MODE CONVERSIONS  
REF  
_______________________________________________________________________________________  
9
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
Pin Description  
PID  
DAME  
DOUT  
SCLK  
DIN  
FUDCTIOD  
MAX1167  
MAX1168  
Serial Data Output. Data changes state on SCLKs falling edge in SPI/QSPI/MICROWIRE  
mode and on SCLKs rising edge in DSP mode (MAX1168 only). DOUT is high impedance  
when CS is high.  
1
3
Serial Clock Input. SCLK drives the conversion process in external clock mode and clocks  
data out.  
2
3
4
4
5
6
Serial Data Input. Use DIN to communicate with the command/configuration/control  
register. In SPI/QSPI/MICROWIRE mode, the rising edge of SCLK clocks in data at DIN. In  
DSP mode, the falling edge of SCLK clocks in data at DIN.  
End-of-Conversion Output. In internal clock mode, a logic low at EOC signals the end of a  
conversion with the result available at DOUT. In external clock mode, EOC remains high.  
EOC  
5
6
7
8
7
8
AIN0  
AIN1  
AIN2  
AIN3  
Analog Input 0  
Analog Input 1  
Analog Input 2  
Analog Input 3  
9
10  
Reference Voltage Input/Output. V  
with a 10µF capacitor. Bypass with a 1µF (min) capacitor when using internal reference.  
sets the analog voltage range. Bypass to AGND  
REF  
9
15  
16  
REF  
Reference Bypass Capacitor Connection. Bypass to AGND with a 0.1µF capacitor when  
using internal reference. Internal reference and buffer shut down in external reference mode.  
10  
REFCAP  
11  
12  
13  
17  
18  
19  
AGND  
AGND  
Analog Ground. Connect to pin 18 (MAX1168) or pin 12 (MAX1167).  
Primary Analog Ground (Star Ground). Power return for AV  
.
DD  
AV  
Analog Supply Voltage. Bypass to AGND with a 0.1µF capacitor.  
DD  
Active-Low Chip-Select Input. Forcing CS high places the MAX1167/MAX1168 in shutdown  
with a typical supply current of 0.6µA. In SPI/QSPI/MICROWIRE mode, a high-to-low  
transition on CS activates normal operating mode. In DSP mode, after the initial CS  
transition from high to low, CS can remain low for the entire conversion process (see the  
Operating Modes section).  
14  
20  
CS  
15  
16  
21  
22  
DGND  
DV  
Digital Ground  
Digital Supply Voltage. Bypass to DGND with a 0.1µF capacitor.  
DD  
DSP Frame-Sync Receive Input. A frame-sync pulse received at DSPR initiates a  
conversion. Connect to logic high when using SPI/QSPI/MICROWIRE mode.  
1
2
DSPR  
DSEL  
Data-Bit Transfer-Select Input. Logic low on DSEL places the device in 8-bit-wide data-  
transfer mode. Logic high places the device in 16-bit-wide data-transfer mode. Do not  
leave DSEL unconnected.  
11  
12  
AIN4  
AIN5  
Analog Input 4  
Analog Input 5  
10 ______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
Pin Description (continued)  
PID  
DAME  
FUDCTIOD  
MAX1167  
MAX1168  
13  
AIN6  
AIN7  
Analog Input 6  
Analog Input 7  
14  
23  
24  
DSP Frame-Sync Transmit Output. A frame-sync pulse at DSPX notifies the DSP that the  
MSB data is available at DOUT. Leave DSPX unconnected when not in DSP mode.  
DSPX  
N.C.  
No Connection. Not internally connected.  
DV  
DD  
DV  
DD  
1mA  
1mA  
DOUT  
DOUT  
DOUT  
1mA  
DOUT  
C
LOAD  
= 30pF  
C
LOAD  
= 30pF  
C
LOAD  
= 30pF  
C = 30pF  
LOAD  
1mA  
DGND  
a) V TO HIGH-Z  
DGND  
b) V TO HIGH-Z  
DGND  
a) V TO V  
DGND  
b) HIGH-Z TO V AND V TO V  
OL  
OH  
OL  
OH  
OL  
OL  
OH  
Figure 1. Load Circuits for DOUT Enable Time and SCLK-to-  
DOUT Delay Time  
Figure 2. Load Circuits for DOUT Disable Time  
In SPI/QSPI/MICROWIRE mode, a falling edge on CS  
wakes the analog circuitry and allows SCLK to clock in  
data. Acquisition and conversion are initiated by SCLK.  
The conversion result is available at DOUT in unipolar  
serial format. DOUT is held low until data becomes  
available (MSB first) on the 8th falling edge of SCLK  
when in 8-bit transfer mode, and on the 16th falling  
edge when in 16-bit transfer mode (see the Operating  
Modes section). Figure 8 shows the detailed SPI/QSPI/  
MICROWIRE serial-interface timing diagram.  
Detailed Description  
The MAX1167/MAX1168 low-power, multichannel, 16-bit  
ADCs feature a successive-approximation ADC, auto-  
matic power-down, integrated +4.096V reference, and a  
high-speed SPI/QSPI/MICROWIRE-compatible interface.  
A DSPR input and DSPX output allow the MAX1168 to  
communicate with digital signal processors (DSPs) with  
no external glue logic. The MAX1167/MAX1168 operate  
with a single +5V analog supply and feature a separate  
digital supply, allowing direct interfacing with +2.7V to  
+5.5V digital logic.  
In external clock mode, the MAX1168 also interfaces  
with DSPs. In DSP mode, a frame-sync pulse from the  
DSP initiates a conversion that is driven by SCLK. The  
MAX1168 formats a frame-sync pulse to notify the DSP  
that the conversion results are available at DOUT in  
MSB-first, unipolar, serial-data format. Figure 16 shows  
the detailed DSP serial-interface timing diagram (see the  
Operating Modes section).  
Figures 3 and 4 show the functional diagrams of the  
MAX1167/MAX1168, and Figures 5 and 6 show the  
MAX1167/MAX1168 in a typical operating circuit. The  
serial interface simplifies communication with micro-  
processors (µPs).  
In external reference mode, the MAX1167/MAX1168  
have two power modes: normal mode and shutdown  
mode. Driving CS high places the MAX1167/MAX1168 in  
shutdown mode, reducing the supply current to 0.6µA  
(typ). Pull CS low to place the MAX1167/MAX1168 in  
normal operating mode. The internal reference mode  
offers software-programmable, power-down options as  
shown in Table 5.  
Analog Input  
Figure 7 illustrates the input-sampling architecture of  
the ADC. The voltage applied at REF or the internal  
+4.096V reference sets the full-scale input voltage.  
______________________________________________________________________________________ 11  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
AV  
DV  
REFCAP  
DD  
DD  
REFERENCE  
BUFFER  
REF  
AGND  
MAX1167  
AIN0  
AIN1  
ANALOG-INPUT  
MULTIPLEXER  
COMPARATOR  
DAC  
AIN2  
AIN3  
AZ  
RAIL  
ANALOG-SWITCH FINE TIMING  
BIAS  
SCLK  
SUCCESSIVE-APPROXIMATION  
REGISTER  
MULTIPLEXER  
OUTPUT  
DOUT  
EOC  
OSCILLATOR  
ACCUMULATOR  
CONTROL  
CS  
MEMORY  
INPUT REGISTER  
DIN  
AGND  
DGND  
Figure 3. MAX1167 Functional Diagram  
Track/Hold (T/H)  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signals source impedance is high,  
the acquisition time lengthens and more time must be  
allowed between conversions. The acquisition time  
In track mode, the analog signal is acquired on the  
internal hold capacitor. In hold mode, the T/H switches  
open and the capacitive digital-to-analog converter  
(DAC) samples the analog input.  
(t  
) is the maximum time the device takes to acquire  
ACQ  
During the acquisition, the analog input (AIN_) charges  
the signal. Use the following formula to calculate acqui-  
sition time:  
capacitor C  
. At the end of the acquisition interval  
DAC  
the T/H switches open. The retained charge on C  
represents a sample of the input.  
DAC  
t
= 11(R + R + R  
) 45pF + 0.3µs  
ACQ  
S
IN  
DS(ON)  
In hold mode, the capacitive DAC adjusts during the  
remainder of the conversion cycle to restore node  
ZERO to zero within the limits of 16-bit resolution. At the  
end of the conversion, force CS high and then low to  
reset the T/H switches back to track mode (AIN_),  
where R = 340, R = the input signals source  
IN  
S
impedance, R  
= 60, and t  
is never less  
ACQ  
DS(ON)  
than 729ns. A source impedance of less than 200Ω  
does not significantly affect the ADCs performance.  
where C  
charges to the input signal again.  
DAC  
12 ______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
AV  
DV  
REFCAP  
DD  
DD  
REFERENCE  
BUFFER  
REF  
MAX1168  
AGND  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
ANALOG-INPUT  
MULTIPLEXER  
COMPARATOR  
DAC  
AIN5  
AIN6  
AZ  
RAIL  
AIN7  
ANALOG-SWITCH FINE TIMING  
BIAS  
SCLK  
SUCCESSIVE-APPROXIMATION  
REGISTER  
MULTIPLEXER  
OUTPUT  
DOUT  
OSCILLATOR  
ACCUMULATOR  
CS  
DSEL  
DSPR  
EOC  
DSPX  
CONTROL  
MEMORY  
INPUT REGISTER  
DIN  
AGND  
DGND  
Figure 4. MAX1168 Functional Diagram  
The MAX1168 features a 16-bit-wide data-transfer  
mode that includes a longer acquisition time (11.5  
clock cycles). Longer acquisition times are useful in  
applications with input source resistances greater than  
1k. Noise increases when using large source resis-  
tances. To improve the input signal bandwidth under  
AC conditions, drive AIN_ with a wideband buffer  
(>10MHz) that can drive the ADCs input capacitance  
and settle quickly.  
periodic signals with bandwidths exceeding the ADCs  
sampling rate by using undersampling techniques. To  
avoid aliasing of unwanted, high-frequency signals into  
the frequency band of interest, use anti-alias filtering.  
Analog Input Protection  
Internal protection diodes, which clamp the analog  
input to AV  
or AGND, allow the input to swing from  
DD  
(AGND - 0.3V) to (AV  
+ 0.3V) without damaging the  
DD  
device. If the analog input exceeds 300mV beyond the  
supplies, limit the input current to 10mA.  
Input Bandwidth  
The ADCs input-tracking circuitry has a 4MHz small-  
signal bandwidth, making possible the digitization of  
high-speed transient events and the measurement of  
______________________________________________________________________________________ 13  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
CS  
SCLK  
DSPX  
CS  
AIN0  
AIN1  
AIN2  
AIN3  
SCLK  
DSPX  
CS  
SCLK  
DOUT  
CS  
AIN0  
AIN1  
AIN2  
AIN3  
ANALOG  
INPUTS  
SCLK  
DOUT  
EOC  
ANALOG  
INPUTS  
DOUT  
EOC  
DOUT  
EOC  
AIN4  
AIN5  
AIN6  
EOC  
DIN  
DIN  
AIN7  
DIN  
MAX1167  
DIN  
REF  
MAX1168  
16  
8
DSEL  
DSPR  
1µF  
AGND  
AGND  
DGND  
AV  
DD  
+5V  
+5V  
REF  
1µF  
0.1µF  
AGND  
AGND  
DGND  
AV  
DD  
+5V  
+5V  
DV  
DD  
REFCAP  
0.1µF  
0.1µF  
0.1µF  
DV  
DD  
REFCAP  
0.1µF  
0.1µF  
GND  
GND  
Figure 5. MAX1167 Typical Operating Circuit  
Figure 6. MAX1168 T ypical Operating Circuit  
In addition to the standard 3-wire serial interface modes,  
the MAX1168 includes a DSPR input and a DSPX output  
for communicating with DSPs in external clock mode and  
a DSEL input to determine 8-bit-wide or 16-bit-wide data-  
transfer mode. When not using the MAX1168 in the DSP  
REF  
MUX  
R
DSON  
CAPACITIVE  
DAC  
TRACK  
HOLD  
AIN_  
ZERO  
C
MUX  
C
DAC  
interface mode, connect DSPR to DV  
and leave DSPX  
DD  
R
IN  
unconnected.  
AGND  
HOLD  
C
SWITCH  
Command/Configuration/Control Register  
Table 1 shows the contents of the command/configura-  
tion/control register and the state of each bit after initial  
power-up. Tables 26 define the control and configuration  
of the device for each bit. Cycling the power supplies  
resets the command/configuration/control register to the  
power-on-reset default state.  
TRACK  
AUTOZERO  
RAIL  
Figure 7. Equivalent Input Circuit  
Initialization After Power-Up  
A logic high on CS places the MAX1167/MAX1168 in  
the shutdown mode chosen by the power-down bits,  
and places DOUT in a high-impedance state. Drive CS  
low to power up and enable the MAX1167/MAX1168  
before starting a conversion. In internal reference  
mode, allow 5ms for the shutdown internal reference  
and/or buffer to wake and stabilize before starting a  
conversion. In external reference mode (or if the inter-  
nal reference is already on), no reference settling time  
is needed after power-up.  
Digital Interface  
The MAX1167/MAX1168 feature an SPI/QSPI/  
MICROWIRE-compatible, 3-wire serial interface. The  
MAX1167 digital interface consists of digital inputs CS,  
SCLK, and DIN and outputs DOUT and EOC. The  
MAX1167 operates in the following modes:  
SPI interface with external clock  
SPI interface with internal clock  
SPI interface with internal clock and scan mode  
Tmble 1. Co((mnd/Configurmtion/Control Register  
BIT7 ꢂMLBx  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0 ꢂꢀLBx  
COMMADꢁ  
CH LEꢀ2  
CH LEꢀ1 CH LEꢀ0  
LCAD1  
LCAD0  
REF/Pꢁ_LEꢀ1  
REF/Pꢁ LEꢀ0  
IDT/EXT CꢀK  
POWER-UP  
STATE  
0
0
0
0
0
1
1
0
14 ______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
Tmble 2. Chmnnel Lelect  
Tmble 3. MAX1167 Lcmn Mode, Internml  
Clock Only  
BIT7  
BIT6  
BIT5  
CHADDEꢀ  
AID_  
CH LEꢀ2  
CH LEꢀ1  
CH LEꢀ0  
BIT4  
BIT3  
ACTIOD  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
LCAD1 LCAD0  
Single channel, no scan  
0
0
Sequentially scan channels 0 through N  
(N 3)  
0
1
Sequentially scan channels 2 through N  
(2 N 3)  
1
1
0
1
Scan channel N four times  
Tmble 4. MAX1168 Lcmn Mode, Internml  
Clock Only ꢂDot for ꢁLP Modex  
BIT4  
BIT3  
ACTIOD  
LCAD1 LCAD0  
Single channel, no scan  
0
0
Sequentially scan channels 0 through N  
(N 7)  
0
1
Sequentially scan channels 4 through N  
(4 N 7)  
1
1
0
1
Scan channel N eight times  
Tmble 5. Power-ꢁown Modes  
BIT2  
BIT1  
TYPICAꢀ  
LUPPꢀY  
CURREDT  
TYPICAꢀ WAKE-  
UP TIME  
REFEREDCE MOꢁE  
ꢂIDTERDAꢀ REFEREDCEx  
REFEREDCE  
REF/Pꢁ_  
LEꢀ1  
REF/Pꢁ  
LEꢀ0  
ꢂC  
= 1µFx  
REF  
Internal reference and reference buffer on  
between conversions  
0
0
0
1
Internal  
Internal  
1mA  
NA  
Internal reference and reference buffer off  
between conversions  
0.6µA  
5ms  
Internal reference on, reference buffer off  
between conversions  
1
1
0
1
Internal  
External  
0.43mA  
0.6µA  
5ms  
NA  
Internal reference and buffer always off  
Tmble 6. Clock Modes  
BIT0  
CꢀOCK MOꢁE  
IDT/EXT  
CꢀK  
0
1
External clock  
Internal clock  
______________________________________________________________________________________ 15  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
t
CSW  
CS  
• • •  
• • •  
t
t
CP  
t
CSS  
CSH  
t
CL  
t
CH  
SCLK  
t
DS  
t
DH  
DIN  
• • •  
• • •  
t
t
TR  
DO  
t
DV  
DOUT  
Figure 8. Detailed SPI Interface Timing  
when in SPI/QSPI/MICROWIRE mode and on the falling  
edge of DSPR when in DSP mode. Allow 5ms for the  
internal reference to rise and settle when powering up  
CS  
from a complete shutdown (V  
= 0, C  
= 1µF).  
REF  
REF  
COMPLETE CONVERSION SEQUENCE  
The internal reference stays on and the buffer is shut off  
on the rising edge of CS when bit 2 = 1 and bit 1 = 0.  
The MAX1167/MAX1168 enter this mode on the rising  
edge of CS. The buffer wakes up on the falling edge of  
CS when in SPI/QSPI/MICROWIRE mode and on the ris-  
ing edge of DSPR when in DSP mode. Allow 5ms for  
DOUT  
CONVERSION 0  
CONVERSION 1  
POWERED UP  
POWERED UP  
POWERED DOWN  
V
to settle when powering up from a complete shut-  
REF  
down (V  
= 0, C  
= 1µF). V  
is always equal  
REFCAP  
Figure 9. Shutdown Sequence  
REF  
REF  
to +4.096V in this mode.  
Set both bit 2 and bit 1 to 1 to turn off the reference and  
reference buffer to allow connection of an external ref-  
erence. Using an external reference requires no extra  
wake-up time.  
Power-Down Modes  
Table 5 shows the MAX1167/MAX1168 power-down  
modes. Three internal reference modes and one exter-  
nal reference mode are available. Select power-down  
modes by writing to bits 2 and 1 in the command/con-  
figuration/control register. The MAX1167/MAX1168  
enter the selected power-down mode on the rising  
edge of CS.  
Operating Modes  
External Clock 8-Bit-Wide Data-Transfer Mode  
(MAX1167 and MAX1168)  
Force DSPR high and DSEL low (MAX1168) for SPI/  
QSPI/MICROWIRE interface mode. The falling edge of  
CS wakes the analog circuitry and allows SCLK to clock  
in data. Ensure the duty cycle on SCLK is between 45%  
and 55% when operating at 4.8MHz (the maximum  
clock frequency). For lower clock frequencies, ensure  
the minimum high and low times are at least 93ns.  
External-clock-mode conversions with SCLK rates less  
The internal reference stays on when CS is pulled high,  
if bits 2 and 1 are set to zero. This mode allows for the  
fastest turn-on time.  
Setting bit 2 = 0 and bit 1 = 1 turns both the reference  
and reference buffer off when CS is brought high. This  
mode achieves the lowest supply current. The refer-  
ence and buffer wake up on the falling edge of CS  
16 ______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
CS  
1
16  
24  
8
SCLK  
DIN  
MSB  
LSB  
0
MSB  
LSB  
DOUT  
DSPR*  
DSEL*  
ADC  
STATE  
t
IDLE  
t
CONV  
ACQ  
*MAX1168 ONLY  
Figure 10. SPI External Clock Mode, 8-Bit Data-Transfer Mode, Conversion Timing  
than 125kHz can reduce accuracy due to leakage of the  
sampling capacitor. DOUT changes from high-Z to logic  
low after CS is brought low. Input data latches on the  
rising edge of SCLK. The first SCLK rising edge begins  
loading data into the command/configuration/control  
register from DIN. The devices select the proper chan-  
nel for conversion on the rising edge of the 3rd SCLK  
cycle. Acquisition begins immediately thereafter and  
ends on the falling edge of the 6th clock cycle. The  
MAX1167/MAX1168 sample the input and begin conver-  
sion on the falling edge of the 6th clock cycle. Setup  
and configuration of the MAX1167/MAX1168 complete  
on the rising edge of the 8th clock cycle. The conver-  
sion result is available (MSB first) at DOUT on the falling  
edge of the 8th SCLK cycle. To read the entire conver-  
sion result, 16 SCLK cycles are needed. Extra clock  
pulses, occurring after the conversion result has been  
clocked out and prior to the rising edge of CS, cause  
zeros to be clocked out of DOUT. The MAX1167/  
MAX1168 external clock 8-bit-wide data-transfer mode  
requires 24 SCLK cycles for completion (Figure 10).  
External Clock 16-Bit-Wide Data-Transfer Mode  
(MAX1168 Only)  
Force DSPR high and DSEL high for SPI/QSPI/  
MICROWIRE interface mode. Logic high at DSEL allows  
the MAX1168 to transfer data in 16-bit-wide words. The  
acquisition time is extended an extra eight SCLK cycles  
in the 16-bit-wide data-transfer mode. The falling edge of  
CS wakes the analog circuitry and allows SCLK to clock  
in data. Ensure the duty cycle on SCLK is between 45%  
and 55% when operating at 4.8MHz (the maximum clock  
frequency). For lower clock frequencies, ensure that the  
minimum high and low times are at least 93ns. External-  
clock-mode conversions with SCLK rates less than  
125kHz can reduce accuracy due to leakage of the sam-  
pling capacitor. DOUT changes from high-Z to logic low  
after CS is brought low. Input data latches on the rising  
edge of SCLK. The first SCLK rising edge begins loading  
data into the command/configuration/control register from  
DIN. The devices select the proper channel for conver-  
sion and begin acquisition on the rising edge of the 3rd  
SCLK cycle. Setup and configuration of the MAX1168  
completes on the rising edge of the 8th clock cycle.  
Acquisition ends on the falling edge of the 14th SCLK  
cycle. The MAX1168 samples the input and begins con-  
version on the falling edge of the 14th clock cycle. The  
conversion result is available (MSB first) at DOUT on the  
falling edge of the 16th SCLK cycle. To read the entire  
conversion result, 16 SCLK cycles are needed. Extra  
clock pulses, occurring after the conversion result has  
been clocked out and prior to the rising edge of CS,  
cause zeros to be clocked out of DOUT.  
Force CS high after the conversion result is read. For  
maximum throughput, force CS low again to initiate the  
next conversion immediately after the specified mini-  
mum time (t  
). Forcing CS high in the middle of a  
CSW  
conversion immediately aborts the conversion and  
places the MAX1167/MAX1168 in shutdown.  
_______________________________________________________________________________________ 17  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
CS  
1
16  
24  
32  
8
SCLK  
DIN  
MSB  
LSB  
0
X
X
X
X
X
X
X
X
MSB  
LSB  
DOUT  
DSPR  
DSEL  
ADC  
STATE  
t
t
IDLE  
ACQ  
CONV  
,
X = DON T CARE  
Figure 11. SPI External Clock Mode, 16-Bit Data-Transfer Mode, Conversion Timing (MAX1168 Only)  
CS  
1
9
16  
24  
8
SCLK  
2
6
25  
INTERNAL  
CLK  
• • •  
MSB  
LSB  
1
DIN  
MSB  
LSB  
DOUT  
EOC  
X
ADC  
STATE  
t
POWER-DOWN  
,
t
CONV  
ACQ  
IDLE  
X = DON T CARE  
DSPR = DV , DSEL = GND (MAX1168 ONLY)  
DD  
Figure 12. SPI Internal Clock Mode, 8-Bit Data-Transfer Mode, Conversion Timing  
The MAX1168 external clock 16-bit-wide data-transfer  
mode requires 32 SCLK cycles for completion (Figure 11).  
register begins reading DIN on the first SCLK rising edge  
and ends on the rising edge of the 8th SCLK cycle. The  
MAX1167/MAX1168 select the proper channel for con-  
version on the rising edge of the 3rd SCLK cycle. The  
internal oscillator activates 125ns after the rising edge of  
the 8th SCLK cycle. Turn off the external clock while the  
internal clock is on. Turning off SCLK ensures the lowest  
noise performance during acquisition. Acquisition begins  
on the 2nd rising edge of the internal clock and ends on  
the falling edge of the 6th internal clock cycle. Each bit  
of the conversion result shifts into memory as it becomes  
available. The conversion result is available (MSB first) at  
DOUT on the falling edge of EOC. The internal oscillator  
and analog circuitry are shut down on the high-to-low  
EOC transition. Use the EOC high-to-low transition as the  
signal to restart the external clock (SCLK). To read the  
Force CS high after the conversion result is read. For  
maximum throughput, force CS low again to initiate the  
next conversion immediately after the specified mini-  
mum time (t  
). Forcing CS high in the middle of a  
CSW  
conversion immediately aborts the conversion and  
places the MAX1168 in shutdown.  
Internal Clock 8-Bit-Wide Data-Transfer and  
Scan Mode (MAX1167 and MAX1168)  
Force DSPR high and DSEL low (MAX1168) for the SPI/  
QSPI/MICROWIRE interface mode. The falling edge of  
CS wakes the analog circuitry and allows SCLK to clock  
in data (Figure 12). DOUT changes from high-Z to logic  
low after CS is brought low. Input data latches on the ris-  
ing edge of SCLK. The command/configuration/control  
18 ______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
CS  
1
8
9
16  
17  
24  
32  
• • •  
• • •  
SCLK  
2
13  
32  
INTERNAL  
CLK  
• • •  
• • •  
DIN  
DOUT  
EOC  
DATA  
X X X X X X X X  
MSB  
LSB  
X
ADC  
STATE  
CONFIGURATION  
t
ACQ  
t
POWER-DOWN  
CONV  
,
X = DON T CARE  
DSPR = DSEL = DV  
DD  
Figure 13. SPI Internal Clock Mode,16-Bit Data-Transfer Mode, Conversion Timing (MAX1168 Only)  
CS  
1
8
9
40  
• • •  
SCLK  
26  
30  
2
6
24  
48  
INTERNAL  
CLK  
• • •  
• • •  
MSB  
LSB  
1
DIN  
DOUT  
EOC  
MSB  
LSB  
• • •  
X
ADC  
STATE  
CONFIGURATION  
,
t
t
ACQ  
t
t
POWER-DOWN  
ACQ  
CONV  
CONV  
X = DON T CARE  
DSPR = DV , DSEL = GND (MAX1168 ONLY)  
DD  
Figure 14. SPI Internal Clock Mode, 8-Bit Data-Transfer Mode, Scan Mode for Two Conversions, Conversion Timing  
entire conversion result, 16 SCLK cycles are needed.  
Extra clock pulses, occurring after the conversion result  
has been clocked out and prior to the rising edge of  
CS, cause the conversion result to be shifted out again.  
The MAX1167/MAX1168 internal clock 8-bit-wide data-  
transfer mode requires 24 external clock cycles and 25  
internal clock cycles for completion.  
Scan mode allows multiple channels to be scanned  
consecutively or one channel to be scanned eight  
times. Scan mode can only be enabled when using the  
MAX1167/MAX1168 in the internal clock mode. Enable  
scanning by setting bits 4 and 3 in the command/con-  
figuration/control register (see Tables 3 and 4). In scan  
mode, conversion results are stored in memory until the  
completion of the last conversion in the sequence.  
Upon completion of the last conversion in the  
sequence, EOC transitions from high to low to indicate  
the end of the conversion and shuts down the internal  
oscillator. Use the EOC high-to-low transition as the sig-  
nal to restart the external clock (SCLK). DOUT provides  
the conversion results in the same order as the channel  
conversion process. The MSB of the first conversion is  
available at DOUT on the falling edge of EOC (Figure 14).  
Force CS high after the conversion result is read. For  
maximum throughput, force CS low again to initiate the  
next conversion immediately after the specified mini-  
mum time (t  
). Forcing CS high in the middle of a  
CSW  
conversion immediately aborts the conversion and  
places the MAX1167/MAX1168 in shutdown.  
______________________________________________________________________________________ 19  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
CS  
48  
17  
1
8
9
16  
• • •  
• • •  
• • •  
SCLK  
32  
34  
45  
64  
2
13  
INTERNAL  
CLK  
• • •  
• • •  
• • •  
• • •  
DATA  
X X X X X X X X  
DIN  
LSB  
MSB  
• • •  
X
DOUT  
EOC  
ADC  
STATE  
t
t
t
t
POWER-DOWN  
ACQ  
ACQ  
,
CONV  
CONV  
X = DON T CARE  
Figure 15. SPI Internal Clock Mode, 16-Bit Data-Transfer Mode, Scan Mode for Two Conversions, Conversion Timing (MAX1168 Only)  
t
CSW  
CS  
...  
...  
t
DF  
t
FSS  
DSPR  
t
FSH  
t
CSS  
t
CSH  
t
t
CH  
CL  
SCLK  
DIN  
...  
...  
t
t
DS  
CP  
t
DH  
t
t
TR  
DO  
t
DV  
...  
DOUT  
Figure 16. Detailed DSP-Interface Timing (MAX1168 Only)  
Internal Clock 16-Bit-Wide Data-Transfer and Scan  
Mode (MAX1168 Only)  
conversion on the rising edge of the 3rd SCLK cycle.  
The internal oscillator activates 125ns after the rising  
edge of the 16th SCLK cycle. Turn off the external clock  
while the internal clock is on. Turning off SCLK ensures  
lowest noise performance during acquisition.  
Acquisition begins on the 2nd rising edge of the inter-  
nal clock and ends on the falling edge of the 18th inter-  
nal clock cycle. Each bit of the conversion result shifts  
into memory as it becomes available. The conversion  
result is available (MSB first) at DOUT on the falling  
edge of EOC. The internal oscillator and analog circuitry  
Force DSPR high and DSEL low for the SPI/QSPI/  
MICROWIRE interface mode. The falling edge of CS  
wakes the analog circuitry and allows SCLK to clock in  
data (Figure 13). DOUT changes from high-Z to logic  
low after CS is brought low. Input data latches on the  
rising edge of SCLK. The command/configuration/con-  
trol register begins reading DIN on the first SCLK rising  
edge and ends on the rising edge of the 8th SCLK  
cycle. The MAX1168 selects the proper channel for  
20 ______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
CS  
DSPR  
16  
24  
1
8
SCLK  
DIN  
MSB  
LSB  
0
MSB  
LSB  
DOUT  
DSPX  
ADC  
STATE  
IDLE  
t
t
ACQ  
CONV  
Figure 17. DSP External Clock Mode, 8-Bit Data-Transfer Mode, Conversion Timing (MAX1168 Only)  
CS  
DSPR  
1
16  
24  
32  
8
SCLK  
DIN  
MSB  
LSB  
0
X
X
X
X
X
X
X
X
LSB  
MSB  
DOUT  
DSPX  
ADC  
STATE  
t
t
IDLE  
ACQ  
CONV  
,
X = DON T CARE  
Figure 18. DSP External Clock Mode, 16-Bit Data-Transfer Mode, Conversion Timing (MAX1168 Only)  
are shut down on the EOC high-to-low transition. Use  
the EOC high-to-low transition as the signal to restart  
the external clock (SCLK). To read the entire conver-  
sion result, 16 SCLK cycles are needed. Extra clock  
pulses, occurring after the conversion result has been  
clocked out and prior to the rising edge of CS, cause  
the conversion result to be shifted out again. The  
MAX1168 internal-clock 16-bit-wide data-transfer mode  
requires 32 external clock cycles and 32 internal clock  
cycles for completion.  
Force CS high after the conversion result is read. For  
maximum throughput, force CS low again to initiate the  
next conversion immediately after the specified mini-  
mum time (t  
). Forcing CS high in the middle of a  
CSW  
conversion immediately aborts the conversion and  
places the MAX1168 in shutdown.  
Scan mode allows multiple channels to be scanned  
consecutively or one channel to be scanned eight  
times. Scan mode can only be enabled when using the  
MAX1168 in internal clock mode. Enable scanning by  
______________________________________________________________________________________ 21  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
rates less than 125kHz can reduce accuracy due to  
leakage of the sampling capacitor. The input data  
OUTPUT CODE  
1111...111  
latches on the falling edge of SCLK. The command/  
configuration/control register starts reading data in on  
the falling edge of the first SCLK cycle immediately fol-  
lowing the falling edge of the frame sync pulse and  
ends on the falling edge of the 8th SCLK cycle. The  
MAX1168 selects the proper channel for conversion on  
the falling edge of the 3rd clock cycle and begins  
acquisition. Acquisition continues until the rising edge  
of the 7th clock cycle. The MAX1168 samples the input  
on the rising edge of the 7th clock cycle. On the rising  
edge of the 8th clock cycle, the MAX1168 outputs a  
frame sync pulse at DSPX. The frame sync pulse alerts  
the DSP that the conversion results are about to be out-  
put at DOUT (MSB first) starting on the rising edge of  
the 9th clock pulse. To read the entire conversion  
result, 16 SCLK cycles are needed. Extra clock pulses,  
occurring after the conversion result has been clocked  
out and prior to the next rising edge of DSPR, cause  
zeros to be clocked out of DOUT. The MAX1168 exter-  
nal clock, DSP 8-bit-wide data-transfer mode requires  
24 clock cycles to complete.  
FULL-SCALE  
TRANSITION  
1111...110  
1111...101  
FS = V  
REF  
V
REF  
1 LSB =  
65,536  
0000...011  
0000...010  
0000...001  
0000...000  
0
1
2
3
FS  
FS - 3/2 LSB  
INPUT VOLTAGE (LSB)  
Figure 19. Unipolar Transfer Function, Full Scale (FS) = V  
Zero Scale (ZS) = GND  
,
REF  
Begin a new conversion by sending a new frame sync  
pulse to DSPR followed by new configuration data.  
Send the new DSPR pulse immediately after reading  
the conversion result to realize maximum throughput.  
Sending a new frame sync pulse in the middle of a con-  
version immediately aborts the current conversion and  
begins a new one. A rising edge on CS in the middle of  
a conversion aborts the current conversion and places  
the MAX1168 in shutdown.  
setting bits 4 and 3 in the command/configuration/con-  
trol register (see Tables 3 and 4). In scan mode, conver-  
sion results are stored in memory until the completion of  
the last conversion in the sequence. Upon completion of  
the last conversion in the sequence, EOC transitions  
from high to low to indicate the end of the conversion  
and shuts down the internal oscillator. Use the EOC  
high-to-low transition as the signal to restart the external  
clock (SCLK). DOUT provides the conversion results in  
the same order as the channel conversion process. The  
MSB of the first conversion is available at DOUT on the  
falling edge of EOC. Figure 15 shows the timing  
diagram for 16-bit-wide data transfer in scan mode.  
DSP 16-Bit-Wide Data-Transfer Mode (External  
Clock Mode, MAX1168 Only)  
Figure 16 shows the DSP-interface timing diagram.  
Logic low at DSPR on the falling edge of CS enables  
DSP interface mode. After the MAX1168 enters DSP  
mode, CS can remain low for the duration of the con-  
version process and each subsequent conversion. The  
acquisition time is extended an extra eight SCLK cycles  
in the 16-bit-wide data-transfer mode. Drive DSEL high  
to select the 16-bit-wide data-transfer mode. A sync  
pulse from the DSP at DSPR wakes the analog circuitry  
and allows SCLK to clock in data (Figure 18). The  
frame sync pulse also alerts the MAX1168 that incom-  
ing data is about to be sent to DIN. Ensure the duty  
cycle on SCLK is between 45% and 55% when operat-  
ing at 4.8MHz (the maximum clock frequency). For  
lower clock frequencies, ensure the minimum high and  
low times are at least 93ns. External-clock-mode con-  
versions with SCLK rates less than 125kHz can reduce  
accuracy due to leakage of the sampling capacitor.  
DSP 8-Bit-Wide Data-Transfer Mode (External Clock  
Mode, MAX1168 Only)  
Figure 16 shows the DSP-interface timing diagram.  
Logic low at DSPR on the falling edge of CS enables  
DSP interface mode. After the MAX1168 enters DSP  
mode, CS can remain low for the duration of the conver-  
sion process and each subsequent conversion. Drive  
DSEL low to select the 8-bit data-transfer mode. A sync  
pulse from the DSP at DSPR wakes the analog circuitry  
and allows SCLK to clock in data (Figure 17). The frame  
sync pulse alerts the MAX1168 that incoming data is  
about to be sent to DIN. Ensure the duty cycle on SCLK  
is between 45% and 55% when operating at 4.8MHz  
(the maximum clock frequency). For lower clock fre-  
quencies, ensure the minimum high and low times are at  
least 93ns. External clock mode conversions with SCLK  
22 ______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
I/O  
SCK  
CS  
I/O  
SK  
SI  
CS  
SCLK  
DOUT  
SCLK  
DOUT  
MISO  
V
MICROWIRE  
SPI  
DD  
MAX1167  
MAX1168  
MAX1167  
MAX1168  
SS  
Figure 20a. SPI Connections  
Figure 20b. MICROWIRE Connections  
1ST BYTE READ  
4
2ND BYTE READ  
12  
1
6
8
16  
SCLK  
CS  
0
0
0
0
0
0
0
0
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
DOUT*  
MSB  
*WHEN CS IS HIGH, DOUT = HIGH-Z  
3RD BYTE READ  
20  
24  
HIGH-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
Figure 20c. SPI/MICROWIRE Interface Timing Sequence (CPOL = CPHA = 0)  
The input data latches on the falling edge of SCLK. The  
command/configuration/control register starts reading  
data in on the falling edge of the first SCLK cycle immedi-  
ately following the falling edge of the frame sync pulse  
and ends on the falling edge of the 16th SCLK cycle. The  
MAX1168 selects the proper channel for conversion on  
the falling edge of the 3rd clock cycle and begins acqui-  
sition. Acquisition continues until the rising edge of the  
15th clock cycle. The MAX1168 samples the input on the  
rising edge of the 15th clock cycle. On the rising edge of  
the 16th clock cycle, the MAX1168 outputs a frame sync  
pulse at DSPX. The frame sync pulse alerts the DSP that  
the conversion results are about to be output at DOUT  
(MSB first) starting on the rising edge of the 17th clock  
pulse. To read the entire conversion result, 16 SCLK  
cycles are needed. Extra clock pulses, occurring after the  
conversion result has been clocked out and prior to the  
next rising edge of DSPR, cause zeros to be clocked out  
of DOUT. The MAX1168 external clock, DSP 16-bit-wide  
data-transfer mode requires 32 clock cycles to complete.  
Begin a new conversion by sending a new frame sync  
pulse to DSPR followed by new configuration data.  
Send the new DSPR pulse immediately after reading  
the conversion result to realize maximum throughput.  
Sending a new frame sync pulse in the middle of a con-  
version immediately aborts the current conversion and  
begins a new one. A rising edge on CS in the middle of  
a conversion aborts the current conversion and places  
the MAX1168 in shutdown.  
Output Coding and Transfer Function  
The data output from the MAX1167/MAX1168 is straight  
binary. Figure 19 shows the nominal transfer function.  
Code transitions occur halfway between successive  
integer LSB values (V  
= +4.096V, and 1 LSB =  
REF  
+62.5µV or 4.096V / 65,536V).  
______________________________________________________________________________________ 23  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
Tmble 7. ꢁetmiled LLPCOD Register Contents  
CODTROꢀ BIT  
LETTIDGL  
LYDCHRODOUL LERIAꢀ-PORT CODTROꢀ REGILTER ꢂLLPCODx  
WCOL  
BIT7  
BIT6  
X
X
Write Collision Detection Bit  
SSPOV  
Receive Overflow Detection Bit  
Synchronous Serial-Port Enable Bit:  
0: Disables serial port and configures these pins as I/O port pins.  
1: Enables serial port and configures SCK, SDO, and SCI pins as serial  
port pins.  
SSPEN  
BIT5  
1
CKP  
SSPM3  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
0
0
0
0
1
Clock Polarity Select Bit. CKP = 0 for SPI master-mode selection.  
SSPM2  
Synchronous Serial-Port Mode Select Bit. Sets SPI master mode and  
selects f  
= f  
OSC  
/ 16.  
SSPM1  
CLK  
SSPM0  
X = Dont care.  
When using the internal clock mode, the internal oscilla-  
tor controls the acquisition and conversion processes,  
while the external oscillator shifts data in and out of the  
MAX1167/MAX1168. Turn off the external clock (SCLK)  
when the internal clock is on to realize lowest noise per-  
formance. The internal clock remains off in external  
clock mode.  
Applications Information  
Internal Reference  
The internal bandgap reference provides a buffered  
+4.096V. Bypass REFCAP with a 0.1µF capacitor to  
AGND and REF with a 1µF capacitor to AGND. For best  
results, use low-ESR, X5R/X7R ceramic capacitors.  
Allow 5ms for the reference and buffer to wake up from  
full power-down (see Table 5).  
Input Buffer  
Most applications require an input-buffer amplifier to  
achieve 16-bit accuracy. The input amplifier must have  
a slew rate of at least 2V/µs and a unity-gain bandwidth  
of at least 10MHz to complete the required output-volt-  
age change before the end of the acquisition time.  
External Reference  
The MAX1167/MAX1168 accept an external reference  
with a voltage range between +3.8V and AV . Connect  
DD  
the external reference directly to REF. Bypass REF to  
AGND with a 10µF capacitor. When not using a low-ESR  
bypass capacitor, use a 0.1µF ceramic capacitor in paral-  
lel with the 10µF capacitor. Noise on the reference  
degrades conversion accuracy.  
At the beginning of the acquisition, the internal sam-  
pling capacitor array connects to AIN_ (the amplifier  
input), causing some disturbance on the output of the  
buffer. Ensure the sampled voltage has settled before  
the end of the acquisition time.  
The input impedance at REF is 37kfor DC currents.  
During a conversion, the external reference at REF  
must deliver 118µA of DC load current and have an out-  
put impedance of 10or less.  
For optimal performance, buffer the reference through  
an op amp and bypass the REF input. Consider the  
CS  
SCK  
CS  
SCLK  
DOUT  
equivalent input noise (40µV  
) of the MAX1167/  
RMS  
MISO  
QSPI  
V
DD  
MAX1168 when choosing a reference.  
MAX1167  
MAX1168  
Internal/External Oscillator  
Select either an external (0.1MHz to 4.8MHz) or the  
internal 4MHz (typ) clock to perform conversions  
(Table 6). The external clock shifts data in and out of  
the MAX1167/MAX1168 in either clock mode.  
SS  
Figure 21a. QSPI Connections  
24 ______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
Tmble 8. ꢁetmiled LLPLTAT Register Contents  
CODTROꢀ BIT  
LETTIDGL  
LYDCHRODOUL LERIAꢀ-PORT LTATUL REGILTER ꢂLLPLTATx  
SPI Data-Input Sample Phase. Input data is sampled at the middle of  
the data output time.  
SMP  
BIT7  
BIT6  
0
1
SPI Clock Edge-Select Bit. Data is transmitted on the rising edge of the  
serial clock.  
CKE  
D/A  
P
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
X
X
X
X
X
X
Data Address Bit  
Stop Bit  
S
Start Bit  
R/W  
UA  
BF  
Read/Write Bit Information  
Update Address  
Buffer-Full Status Bit  
X = Dont care.  
24  
1
4
6
8
12  
16  
20  
SCLK  
CS  
HIGH-Z  
D15 D14 D13 D12 D11 D10 D9  
MSB  
D8  
D7  
D6  
D5 D4  
D3  
D2  
D1  
D0  
DOUT*  
LSB  
SAMPLING INSTANT  
*WHEN CS IS HIGH, DOUT = HIGH-Z  
Figure 21b. QSPI Interface Timing Sequence (External Clock, 8-Bit Data Transfer, CPOL = CPHA = 0)  
Digital Noise  
Digital noise can couple to AIN_ and REF. The conversion  
clock (SCLK) and other digital signals active during input  
acquisition contribute noise to the conversion result.  
Noise signals, synchronous with the sampling interval,  
result in an effective input offset. Asynchronous signals  
produce random noise on the input, whose high-frequen-  
cy components can be aliased into the frequency band  
of interest. Minimize noise by presenting a low imped-  
ance (at the frequencies contained in the noise signal) at  
the inputs. This requires bypassing AIN_ to AGND, or  
buffering the input with an amplifier that has a small-sig-  
nal bandwidth of several megahertz (doing both is prefer-  
able). AIN has a typical bandwidth of 4MHz.  
reduce linearity errors due to finite amplifier gain, use  
amplifier circuits with sufficient loop gain at the fre-  
quencies of interest.  
DC Accuracy  
To improve DC accuracy, choose a buffer with an offset  
much less than the MAX1167/MAX1168soffset ( 10mV  
max for +5V supply), or whose offset can be trimmed  
while maintaining stability over the required temperature  
range.  
V
V
DD  
DD  
SCLK  
DOUT  
CS  
SCK  
SDI  
I/O  
Distortion  
Avoid degrading dynamic performance by choosing an  
amplifier with distortion much less than the total har-  
monic distortion of the MAX1167/MAX1168 at the fre-  
quencies of interest (THD = -100dB at 1kHz). If the  
chosen amplifier has insufficient common-mode rejec-  
tion, which results in degraded THD performance, use  
the inverting configuration (positive input grounded) to  
eliminate errors from this source. Low-temperature-  
coefficient, gain-setting resistors reduce linearity errors  
caused by resistance changes due to self-heating. To  
PIC16/17  
MAX1167  
MAX1168  
GND  
Figure 22a. SPI-Interface Connection for a PIC16/PIC17  
______________________________________________________________________________________ 25  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
1ST BYTE READ  
4
2ND BYTE READ  
12  
1
6
8
16  
SCLK  
CS  
0
0
0
0
0
0
0
0
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D15  
DOUT*  
MSB  
*WHEN CS IS HIGH, DOUT = HIGH-Z  
3RD BYTE READ  
20  
24  
HIGH-Z  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
LSB  
Figure 22b. SPI Interface Timing with PIC16/PIC17 in Master Mode (CKE = 1, CKP = 0, SMP = 0, SSPM3 - SSPM0 = 0001)  
QSPI Interface  
Using the high-speed QSPI interface with CPOL = 0 and  
CPHA = 0, the MAX1167/MAX1168 support a maximum  
SCLK  
EXTERNAL  
CLOCK  
f
of 4.8MHz. Figure 21a shows the MAX1167/  
MAX1168 connected to a QSPI master, and Figure 21b  
shows the associated interface timing.  
SCLK  
TFS  
SCLK  
DSPR  
DSPX  
DIN  
PIC16 with SSP Module and PIC17  
Interface  
The MAX1167/MAX1168 are compatible with a  
PIC16/PIC17 controller (µC), using the synchronous seri-  
al-port (SSP) module.  
RFS  
DSP  
MAX1168  
DT  
DR  
DOUT  
CS  
FL1  
To establish SPI communication, connect the controller  
as shown in Figure 22a and configure the PIC16/PIC17  
as system master by initializing its synchronous serial-  
port control register (SSPCON) and synchronous serial-  
port status register (SSPSTAT) to the bit patterns shown  
in Tables 7 and 8.  
Figure 23. DSP Interface Connection  
Serial Interfaces  
SPI and MICROWIRE Interfaces  
When using the SPI (Figure 20a) or MICROWIRE (Figure  
20b) interfaces, set CPOL = 0 and CPHA = 0. Drive CS  
low to power on the MAX1167/MAX1168 before starting a  
conversion (Figure 20c). Three consecutive 8-bit-wide  
readings are necessary to obtain the entire 16-bit result  
from the ADC. DOUT data transitions on the serial clocks  
falling edge. The first 8-bit-wide data stream contains all  
leading zeros. The 2nd 8-bit-wide data stream contains  
the MSB through D6. The 3rd 8-bit-wide data stream con-  
tains D5 through D0 followed by S1 and S0.  
In SPI mode, the PIC16/PIC17 µCs allow 8 bits of data to  
be synchronously transmitted and received simultane-  
ously. Three consecutive 8-bit-wide readings (Figure  
22b) are necessary to obtain the entire 16-bit result from  
the ADC. DOUT data transitions on the serial clocks  
falling edge and is clocked into the µC on SCLKs rising  
edge. The first 8-bit-wide data stream contains all zeros.  
The 2nd 8-bit-wide data stream contains the MSB  
through D6. The 3rd 8-bit-wide data stream contains bits  
D5 through D0 followed by S1 and S0.  
26 ______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
EFFECTIVE NUMBER OF BITS (ENOB)  
16  
AIN_  
+5V  
CS  
SCLK  
DOUT  
CS  
AIN_  
REF  
14  
12  
SCLK  
DOUT  
1µF  
AV  
DD  
MAX1167  
MAX1168  
10  
8
0.1µF  
10Ω  
6
AGND  
AGND  
DGND  
DV  
DD  
4
0.1µF  
2
f
= 200ksps  
SAMPLE  
0
0.1  
1
10  
100  
GND  
FREQUENCY (kHz)  
Figure 25. Powering AV  
and DV  
from a Single Supply  
Figure 24. Effective Bits vs. Frequency  
DD  
DD  
Aperture Definitions  
DSP Interface  
Aperture jitter (t ) is the sample-to-sample variation in  
The DSP mode of the MAX1168 only operates in exter-  
nal clock mode. Figure 23 shows a typical DSP interface  
connection to the MAX1168. Use the same oscillator as  
the DSP to provide the clock signal for the MAX1168.  
The DSP provides the falling edge at CS to wake the  
MAX1168. The MAX1168 detects the state of DSPR on  
the falling edge of CS (Figure 17). Logic low at DSPR  
places the MAX1168 in DSP mode. After the MAX1168  
enters DSP mode, CS can be left low. A frame sync  
pulse from the DSP to DSPR initiates a conversion. The  
MAX1168 sends a frame sync pulse from DSPX to the  
DSP signaling that the MSB is available at DOUT. Send  
another frame sync pulse from the DSP to DSPR to  
begin the next conversion. The MAX1168 does not oper-  
ate in scan mode when using DSP mode.  
AJ  
the time between samples. Aperture delay (t ) is the  
AD  
time between the falling edge of the sampling clock  
and the instant when the actual sample is taken.  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of the  
full-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
noise error only and results directly from the ADCs res-  
olution (N bits):  
SNR = (6.02 N + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. The  
static linearity parameters for the MAX1167/MAX1168  
are measured using the end-point method.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequencys RMS amplitude to the  
RMS equivalent of all the other ADC output signals:  
SINAD (dB) = 20 log [Signal  
/ (Noise +  
RMS  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step-width and the ideal value of 1 LSB. A  
DNL error specification of 1 LSB guarantees no miss-  
ing codes and a monotonic transfer function.  
Distortion)  
]
RMS  
______________________________________________________________________________________ 27  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADCs error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the ENOB as follows:  
Supplies, Layout, Grounding, and  
Bypassing  
Use printed circuit (PC) boards with separate analog  
and digital ground planes. Do not use wire-wrap  
boards. Connect the two ground planes together at the  
MAX1167/MAX1168 AGND terminal. Isolate the digital  
supply from the analog with a low-value resistor (10)  
or ferrite bead when the analog and digital supplies  
come from the same source (Figure 25).  
ENOB = (SINAD - 1.76) / 6.02  
Figure 24 shows the ENOB as a function of the  
MAX1167/MAX1168sinput frequency.  
Constraints on sequencing the power supplies and  
inputs are as follows:  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
Apply AGND before DGND.  
Apply AIN_ and REF after AV  
and AGND are  
DD  
present.  
2
2
2
2
DV  
is independent of the supply sequencing.  
V
+V +V +V  
3 4 5  
DD  
(
)
2
THD = 20 × log  
Ensure that digital return currents do not pass through  
the analog ground and that return-current paths are low  
impedance. A 5mA current flowing through a PC board  
ground trace impedance of only 0.05creates an error  
voltage of about 250µV and a 4 LSB error with a +4.096V  
full-scale system.  
V
1
where V is the fundamental amplitude and V through  
V are the 2nd- through 5th-order harmonics.  
1
2
5
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next-largest fre-  
quency component.  
The board layout should ensure that digital and analog  
signal lines are kept separate. Do not run analog and dig-  
ital lines (especially the SCLK and DOUT) parallel to one  
another. If one must cross another, do so at right angles.  
The ADCs high-speed comparator is sensitive to high-  
frequency noise on the AV  
power supply. Bypass an  
DD  
excessively noisy supply to the analog ground plane  
with a 0.1µF capacitor in parallel with a 1µF to 10µF  
low-ESR capacitor. Keep capacitor leads short for best  
supply-noise rejection.  
28 ______________________________________________________________________________________  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
Ordering Information (continued)  
Chip Information  
TRANSISTOR COUNT: 20,760  
PID-  
IDꢀ  
PART  
TEMP RADGE  
PACKAGE ꢂꢀLBx  
PROCESS: BiCMOS  
MAX1168ACEG  
MAX1168BCEG  
MAX1168CCEG  
MAX1168AEEG*  
MAX1168BEEG*  
MAX1168CEEG*  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
24 QSOP  
24 QSOP  
24 QSOP  
24 QSOP  
24 QSOP  
24 QSOP  
1.5  
2
3
1.5  
2
3
*Future productcontact factory for availability.  
Pin Configurations  
TOP VIEW  
DOUT  
1
DSPR  
DSEL  
DOUT  
SCLK  
DIN  
1
2
3
4
5
6
7
8
9
24 N.C.  
16 DV  
DD  
23 DSPX  
SCLK  
DIN  
2
3
4
5
6
7
8
15 DGND  
14 CS  
22 DV  
DD  
21 DGND  
20 CS  
EOC  
AIN0  
AIN1  
AIN2  
AIN3  
MAX1167  
13 AV  
DD  
MAX1168  
12 AGND  
11 AGND  
10 REFCAP  
EOC  
19 AV  
DD  
AIN0  
AIN1  
AIN2  
18 AGND  
17 AGND  
16 REFCAP  
15 REF  
9
REF  
QLOP  
AIN3 10  
AIN4 11  
AIN5 12  
14 AIN7  
13 AIN6  
QLOP  
______________________________________________________________________________________ 29  
Multichannel, 16-Bit, 200ksps Analog-to-Digital  
Converters  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.(mai(-ic.co(/pmckmges.)  
PACKAGE OUTLINE, QSOP .150", .025" LEAD PITCH  
1
21-0055  
E
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
30 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1168CEEG+T

ADC, Successive Approximation, 16-Bit, 1 Func, 8 Channel, Serial Access, BICMOS, PDSO24, 0.150 INCH, 0.025 INCH PITCH, MO-137AE, QSOP-24
MAXIM

MAX1168CEEG-T

ADC, Successive Approximation, 16-Bit, 1 Func, 8 Channel, Serial Access, BICMOS, PDSO24, 0.150 INCH, 0.025 INCH PITCH, MO-137AE, QSOP-24
MAXIM

MAX1168EVC16

MAX1168 Evaluation Kit/Evaluation System
MAXIM

MAX1168EVKIT

MAX1168 Evaluation Kit/Evaluation System
MAXIM

MAX1168EVKIT/EVSYS

Evaluation Kit/Evaluation System for the MAX1068/MAX1168
MAXIM

MAX1169

58.6ksps.16-Bit.2-Wire Serial ADC in a 14-Pin TSSOP
MAXIM

MAX1169ACUD

58.6ksps, 16-Bit, 2-Wire Serial ADC in a 14-Pin TSSOP
MAXIM

MAX1169ACUD+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO14, 4.40 MM, TSSOP-14
MAXIM

MAX1169ACUD+T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO14, 4.40 MM, TSSOP-14
MAXIM

MAX1169ACUD-T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO14, 4.40 MM, TSSOP-14
MAXIM

MAX1169AEUD

58.6ksps, 16-Bit, 2-Wire Serial ADC in a 14-Pin TSSOP
MAXIM

MAX1169AEUD+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO14, 4.40 MM, TSSOP-14
MAXIM