MAX1174BEUP [MAXIM]

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range; 14位, 135ksps ,单电源ADC,双极性模拟输入范围
MAX1174BEUP
型号: MAX1174BEUP
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

14-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range
14位, 135ksps ,单电源ADC,双极性模拟输入范围

转换器 模数转换器 光电二极管 信息通信管理
文件: 总15页 (文件大小:298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2736; Rev 0; 1/03  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
General Description  
Features  
The MAX1156/MAX1158/MAX1174 14-bit, low-power,  
successive-approximation analog-to-digital converters  
(ADCs) feature automatic power-down, a factory-  
trimmed internal clock, and a byte-wide parallel inter-  
face. The devices operate from a single +4.75V to  
+5.25V analog supply and feature a separate digital  
supply input for direct interface with +2.7V to +5.25V  
digital logic.  
Byte-Wide Parallel Interface  
Analog Input Voltage Range: ±±1Vꢀ ±ꢁVꢀ 1 to ±1V  
Single +4.7ꢁV to +ꢁ.2ꢁV Analog Supply Voltage  
Interface with +2.7V to +ꢁ.2ꢁV Digital Logic  
±±LSB IꢂL ꢃ(aꢄx  
±±LSB DꢂL ꢃ(aꢄx  
The MAX1156 accepts a 0 to +10V analog input volt-  
age range. The MAX1158 accepts a 10V bipolar ana-  
log input voltage range, while the MAX1174 accepts a  
5V bipolar analog input voltage range. All devices  
consume no more than 26.5mW at a sampling rate of  
135ksps when using an external reference, and 31mW  
when using the internal +4.096V reference.  
AutoShutdown™ reduces supply current to 0.4mA (typ)  
at 10ksps.  
Low Supply Current ꢃ(aꢄx  
2.9(A ꢃEꢄternal Referencex  
3.8(A ꢃInternal Referencex  
ꢁµA AutoShutdown Mode  
S(all Footprint  
21-Pin TSSOP Package  
The MAX1156/MAX1158/MAX1174 are ideal for high-  
performance, battery-powered, data-acquisition appli-  
cations. Excellent AC performance (THD = -100dB) and  
DC accuracy ( 1ꢀSB ꢁIꢀ) make the MAX1156/  
MAX1158/MAX1174 ideal for industrial process control,  
instrumentation, and medical applications.  
Ordering Information  
IꢂPUT  
VOLTAGE  
RAꢂGE  
PIꢂ-  
PACKAGE  
PART  
TEMP RAꢂGE  
MAX±±ꢁ6ACUP  
0°C to +70°C  
0°C to +70°C  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
0 to +10V  
0 to +10V  
0 to +10V  
0 to +10V  
The MAX1156/MAX1158/MAX1174 are available in a  
20-pin TSSOP package and are fully specified over the  
-40°C to +85°C extended temperature range and the  
0°C to +70°C commercial temperature range.  
MAX1156BCUP  
MAX1156AEUP -40°C to +85°C  
MAX1156BEUP -40°C to +85°C  
Ordering Information continued at end of data sheet.  
Applications  
Typical Operating Circuit  
Temperature Sensing and Monitoring  
ꢁndustrial Process Control  
ꢁ/O Modules  
+5V ANALOG +5V DIGITAL  
0.1µF  
0.1µF  
Data-Acquisition Systems  
Precision ꢁnstrumentation  
AV  
DD  
DV  
µP DATA  
BUS  
DD  
D0–D7  
OR  
ANALOG INPUT  
AIN  
D8–D13  
MAX1156  
MAX1158  
MAX1174  
EOC  
R/C  
CS  
REF  
REFADJ  
HBEN  
HIGH  
BYTE  
0.1µF  
10µF  
AGND DGND  
Pin Configuration appears at end of data sheet.  
LOW  
BYTE  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
±
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Continuous Power Dissipation (T = +70°C)  
20-Pin TSSOP (derate 10.9mW/°C above +70°C) .......879mW  
A
AGND to DGND.....................................................-0.3V to +0.3V  
AIN to AGND .....................................................-16.5V to +16.5V  
Operating Temperature Range  
MAX11_ _ _CUP..................................................0°C to +70°C  
MAX11_ _ _EUP...............................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
REF, REFADJ to AGND............................-0.3V to (AV  
+ 0.3V)  
DD  
CS, R/C, HBEN to DGND .........................................-0.3V to +6V  
D_, EOC to DGND ...................................-0.3V to (DV + 0.3V)  
DD  
Maximum Continuous Current into any Pin.........................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= +5V 5ꢀ, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
,
MAX  
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
COꢂDITIOꢂS  
MIꢂ  
TYP  
MAX  
UꢂITS  
Resolution  
RES  
DNL  
14  
-1  
-1  
-2  
Bits  
Diꢁꢁerential Nonlinearity  
No missing codes over temperature  
MAX11_ _A  
+1  
+1  
+2  
LSB  
Integral Nonlinearity  
Transition Noise  
INL  
LSB  
MAX11_ _B  
RMS noise, external reꢁerence  
Internal reꢁerence  
0.32  
0.34  
0
LSB  
RMS  
Oꢁꢁset Error  
Gain Error  
Oꢁꢁset Driꢁt  
Gain Driꢁt  
-10  
+10  
0.2  
mV  
0
ꢀFSR  
µV/°C  
16  
1
ppm/°C  
AC ACCURACY (ꢁ = 1kHz, V  
= ꢁull range, 135ksps)  
IN  
AIN  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
81  
82  
85  
85  
dB  
dB  
dB  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
AꢂALOG IꢂPUT  
THD  
-100  
103  
-86  
SFDR  
87  
MAX1156  
0
+10  
+10  
+5  
Input Range  
V
V
MAX1158  
-10  
-5  
AIN  
MAX1174  
MAX1156/MAX1174  
MAX1156  
Normal operation  
5.3  
5.3  
3.0  
7.8  
6.0  
6.9  
10  
9.2  
Shutdown mode  
Shutdown mode  
Normal operation  
Shutdown mode  
MAX1174  
Input Resistance  
R
k  
AIN  
13.0  
MAX1158  
2
_______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
ELECTRICAL CHARACTERISTICS ꢃcontinuedx  
(AV  
= DV  
= +5V 5ꢀ, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
,
MAX  
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
COꢂDITIOꢂS  
+10V  
MIꢂ  
-0.1  
-1.8  
-1.8  
-1.8  
-1.8  
TYP  
MAX  
UꢂITS  
MAX1156, 0 V  
+2.0  
+1.2  
+1.8  
+0.4  
+1.8  
AIN  
Normal operation  
MAX1158,  
-10V V  
+10V  
Input Current  
I
AIN  
Shutdown mode  
Normal operation  
Shutdown mode  
mA  
AIN  
MAX1174,  
-5V V  
+5V  
AIN  
MAX1158, V  
operating mode  
= +10V, shutdown mode to  
AIN  
0.5  
0.7  
1.4  
Input Current Step at Power-Up  
I
mA  
pF  
PU  
MAX1174, V  
= +5V, shutdown mode to  
AIN  
1
operating mode  
Input Capacitance  
C
10  
IN  
IꢂTERꢂAL REFEREꢂCE  
REF Output Voltage  
V
4.056  
3.8  
4.096  
35  
4.136  
V
REF  
REF Output Tempco  
ppm/°C  
mA  
REF Short-Circuit Current  
EXTERꢂAL REFEREꢂCE  
I
10  
REF-SC  
REF and REFADJ Input Voltage  
Range  
4.2  
V
V
AV  
-
AV  
-
DD  
DD  
REFADJ Buꢁꢁer Disable Threshold  
REF Input Current  
0.4  
0.1  
Normal mode, ꢁ  
= 135ksps  
60  
0.1  
16  
100  
10  
SAMPLE  
I
µA  
µA  
REF  
Shutdown mode (Note 1)  
REFADJ = AV  
REFADJ Input Current  
I
REFADJ  
DD  
DIGITAL IꢂPUTS/OUTPUTS  
I
= 0.5mA, DV  
= +5.25V  
= +2.7V to +5.25V, DV  
-
DD  
SOURCE  
DD  
Output High Voltage  
Output Low Voltage  
Input High Voltage  
Input Low Voltage  
V
V
V
V
V
OH  
AV  
0.4  
DD  
I
= 1.6mA, DV  
= +5.25V  
= +2.7V to +5.25V,  
DD  
SINK  
V
0.4  
OL  
AV  
DD  
0.7 ×  
DV  
V
IH  
DD  
0.3 ×  
V
IL  
DV  
DD  
Input Leakage Current  
Input Hysteresis  
Digital input = DV  
or 0V  
-1  
+1  
µA  
V
DD  
V
0.2  
15  
HYST  
Input Capacitance  
C
pF  
µA  
pF  
IN  
Three-State Output Leakage  
Three-State Output Capacitance  
I
10  
OZ  
C
15  
OZ  
_______________________________________________________________________________________  
3
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
ELECTRICAL CHARACTERISTICS ꢃcontinuedx  
(AV  
= DV  
= +5V 5ꢀ, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
,
MAX  
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
POWER SUPPLIES  
SYMBOL  
COꢂDITIOꢂS  
MIꢂ  
TYP  
MAX  
UꢂITS  
Analog Supply Voltage  
Digital Supply Voltage  
AV  
DV  
4.75  
2.70  
5.25  
5.25  
2.9  
V
V
DD  
DD  
MAX1156  
External reꢁerence,  
135ksps  
MAX1158/MAX1174  
MAX1156  
4
5.3  
Analog Supply Current  
I
mA  
AVDD  
3.8  
Internal reꢁerence,  
135ksps  
MAX1158/MAX1174  
5.2  
0.5  
3.7  
6.2  
Shutdown mode (Note 1), digital input =  
DV or 0V  
5
µA  
Shutdown Supply Current  
I
I
DD  
SHDN  
Standby mode  
mA  
mA  
Digital Supply Current  
Power-Supply Rejection  
0.75  
DVDD  
AV  
= DV  
= +4.75V to +5.25V  
DD  
1
LSB  
DD  
TIMIꢂG CHARACTERISTICS ꢃFigures ± and 2x  
(AV  
= +4.75V to +5.25V 5ꢀ, DV  
= +2.7V to AV , external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
=
REFADJ  
DD  
DD  
DD  
REF  
REFADJ  
AV , C  
= 20pF, T = T  
to T  
.)  
DD LOAD  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
COꢂDITIOꢂS  
MIꢂ  
TYP  
MAX  
UꢂITS  
ksps  
µs  
Maximum Sampling Rate  
Acquisition Time  
135  
SAMPLE-MAX  
t
2
ACQ  
Conversion Time  
t
4.7  
µs  
CONV  
CS Pulse Width High  
t
(Note 2)  
(Note 2)  
40  
40  
60  
0
ns  
CSH  
DV  
DV  
= +4.75V to +5.25V  
DD  
DD  
CS Pulse Width Low  
t
ns  
ns  
ns  
CSL  
= +2.7V to +5.25V  
R/C to CS Fall Setup Time  
R/C to CS Fall Hold Time  
t
DS  
DH  
DV  
DV  
DV  
DV  
= +4.75V to +5.25V  
= +2.7V to +5.25V  
= +4.75V to +5.25V  
= +2.7V to +5.25V  
40  
60  
DD  
DD  
DD  
DD  
t
40  
80  
CS to Output Data Valid  
EOC Fall to CS Fall  
t
ns  
ns  
ns  
DO  
t
0
DV  
DV  
DV  
DV  
DV  
DV  
DV  
= +4.75V to +5.25V  
= +2.7V to +5.25V  
= +4.75V to +5.25V  
= +2.7V to +5.25V  
= +4.75V to +5.25V  
= +2.7V to +5.25V  
40  
80  
40  
80  
40  
80  
DD  
DD  
DD  
DD  
DD  
DD  
CS Rise to EOC Rise  
t
EOC  
Bus Relinquish Time  
t
ns  
ns  
BR  
HBEN Transition to Output Data  
Valid  
t
1
DO  
ꢂote ±: Maximum speciꢁication is limited by automated test equipment.  
ꢂote 2: To ensure best perꢁormance, ꢁinish reading the data and wait t beꢁore starting a new acquisition.  
BR  
4
_______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Typical Operating Characteristics  
(AV  
= DV  
= +5V, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , C  
= 20pF, T = T  
MIN  
to  
DD  
DD  
REF  
REFADJ  
REFADJ  
DD LOAD  
A
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.) (Typical Application Circuit)  
A
SUPPLY CURRENT (AV + DV  
DD  
)
DD  
INL vs. CODE  
DNL vs. CODE  
MAX1156/58/74 toc02  
vs. TEMPERATURE  
MAX1156/58/74 toc01  
2.5  
1.0  
0.8  
4.80  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
4.45  
4.40  
2.0  
1.5  
5.25V  
5.0V  
0.6  
1.0  
0.4  
0.5  
0.2  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
4.75V  
= 135ksps  
f
SAMPLE  
SHUTDOWN MODE  
BETWEEN CONVERSIONS  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
0
2000 4000 6000 8000 10000 12000 14000 16000  
CODE  
80  
-40  
-20  
0
20  
40  
60  
TEMPERATURE (°C)  
SUPPLY CURRENT (AV + DV  
DD  
)
SHUTDOWN CURRENT (AV + DV )  
DD DD  
DD  
vs. SAMPLE RATE  
vs. TEMPERATURE  
OFFSET ERROR vs. TEMPERATURE  
10  
1
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
8
NO CONVERSIONS  
STANDBY MODE  
6
4
MAX1174  
0.1  
2
0
SHUTDOWN MODE  
0.01  
0.001  
-2  
-4  
-6  
-8  
-10  
MAX1158  
MAX1156  
V
= 0V  
AIN  
0.0001  
0.01  
0.1  
1
10  
100  
1000  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
SAMPLE RATE (ksps)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INTERNAL REFERENCE  
vs. TEMPERATURE  
GAIN ERROR vs. TEMPERATURE  
FFT AT 1kHz  
0.20  
0.15  
0.10  
0.05  
0
4.136  
4.126  
4.116  
4.106  
4.096  
4.086  
4.076  
4.066  
4.056  
0
-20  
f
= 131ksps  
SAMPLE  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-0.05  
-0.10  
-0.15  
-0.20  
-40  
-20  
0
20  
40  
60  
80  
0
10  
20  
30  
40  
50  
60  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= +5V, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , C  
= 20pF, T = T  
to  
MIN  
DD  
DD  
REF  
REFADJ  
REFADJ  
DD LOAD  
A
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.) (Typical Application Circuit)  
A
SINAD vs. FREQUENCY  
SFDR vs. FREQUENCY  
THD vs. FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
= 131ksps  
f
= 131ksps  
SAMPLE  
SAMPLE  
f
= 131ksps  
SAMPLE  
1
10  
100  
1
10  
FREQUENCY (kHz)  
100  
1
10  
FREQUENCY (kHz)  
100  
FREQUENCY (kHz)  
Pin Description  
PIꢂ  
1
ꢂAME  
D4/D12  
D5/D13  
D6/0  
FUꢂCTIOꢂ  
Three-State Digital Data Output  
2
Three-State Digital Data Output. D13 is the MSB.  
Three-State Digital Data Output  
3
4
D7/0  
Three-State Digital Data Output  
Read/Convert Input. Power up and put the MAX1156/MAX1158/MAX1174 in acquisition mode by  
holding R/C low during the ꢁirst ꢁalling edge oꢁ CS. During the second ꢁalling edge oꢁ CS, the level on  
R/C determines whether the reꢁerence and reꢁerence buꢁꢁer power down or remain on aꢁter  
conversion. Set R/C high during the second ꢁalling edge oꢁ CS to power down the reꢁerence and  
buꢁꢁer, or set R/C low to leave the reꢁerence and buꢁꢁer powered up. Set R/C high during the third  
ꢁalling edge oꢁ CS to put valid data on the bus.  
5
R/C  
6
7
EOC  
End oꢁ Conversion. EOC drives low when conversion is complete.  
Analog Supply Input. Bypass with a 0.1µF capacitor to AGND.  
Analog Ground. Primary analog ground (star ground).  
Analog Input  
AV  
DD  
8
AGND  
AIN  
9
10  
AGND  
Analog Ground. Connect pin 10 to pin 8.  
Reꢁerence Buꢁꢁer Output. Bypass REFADJ with a 0.1µF capacitor to AGND ꢁor internal reꢁerence  
11  
12  
REFADJ  
REF  
mode. Connect REFADJ to AV  
to select external reꢁerence mode.  
DD  
Reꢁerence Input/Output. Bypass REF with a 10µF capacitor to AGND ꢁor internal reꢁerence mode.  
External reꢁerence input when in external reꢁerence mode.  
6
_______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Pin Description (continued)  
PIꢂ  
ꢂAME  
FUꢂCTIOꢂ  
High-Byte Enable Input. Used to multiplex the 14-bit conversion result.  
1: Most signiꢁicant byte available on the data bus.  
13  
HBEN  
0: Least signiꢁicant byte available on the data bus.  
Convert Start. The ꢁirst ꢁalling edge oꢁ CS powers up the device and enables acquire mode when R/C  
is low. The second ꢁalling edge oꢁ CS starts conversion. The third ꢁalling edge oꢁ CS loads the result  
onto the bus when R/C is high.  
14  
CS  
15  
16  
17  
18  
19  
20  
DGND  
Digital Ground  
DV  
Digital Supply Voltage. Bypass with a 0.1µF capacitor to DGND.  
Three-State Digital Data Output. D0 is the LSB.  
Three-State Digital Data Output  
DD  
D0/D8  
D1/D9  
D2/D10  
D3/D11  
Three-State Digital Data Output  
Three-State Digital Data Output  
Analog Input  
DV  
DD  
Input Scaler  
The MAX1156/MAX1158/MAX1174 have an input  
scaler, which allows conversion oꢁ true bipolar input  
voltages and input voltages greater than the power  
supply, while operating ꢁrom a single +5V analog sup-  
ply. The input scaler attenuates and shiꢁts the analog  
input to match the input range oꢁ the internal DAC. The  
MAX1156 has a unipolar input voltage range oꢁ 0 to  
+10V. The MAX1158 input voltage range is 10V while  
the MAX1174 input voltage range is 5V. Figure 4  
shows the equivalent input circuit oꢁ the MAX1156/  
MAX1158/MAX1174. This circuit limits the current going  
into or out oꢁ AIN to less than 1.8mA.  
1mA  
DOD13  
DOD13  
C
= 20pF  
C
= 20pF  
LOAD  
1mA  
LOAD  
DGND  
DGND  
a) HIGH-Z TO V  
,
OH  
b) HIGH-Z TO V ,  
OL  
V
V
TO V , AND  
OL  
OH  
OH  
V
OH  
V
OL  
TO V , AND  
TO HIGH-Z  
OL  
TO HIGH-Z  
Figure 1. Load Circuits  
Track and Hold (T/H)  
In track mode, the internal hold capacitor acquires the  
analog signal (see Figure 4). In hold mode, the T/H  
switches open and the capacitive DAC samples the  
analog input. During the acquisition, the analog input  
Detailed Description  
Converter Operation  
The MAX1156/MAX1158/MAX1174 use a successive-  
approximation (SAR) conversion technique with an  
inherent track-and-hold (T/H) stage to convert an ana-  
log input into a 14-bit digital output. Parallel outputs  
provide a high-speed interꢁace to microprocessors  
(µPs). The Functional Diagram shows a simpliꢁied inter-  
nal architecture oꢁ the MAX1156/MAX1158/MAX1174.  
Figure 3 shows a typical application circuit ꢁor the  
MAX1156/MAX1158/MAX1174.  
(AIN) charges capacitor C  
. The acquisition ends  
HOLD  
on the second ꢁalling edge oꢁ CS. At this instant, the  
T/H switches open. The retained charge on C rep-  
HOLD  
resents a sample oꢁ the input. In hold mode, the capac-  
itive DAC adjusts during the remainder oꢁ the  
conversion time to restore node T/H OUT to zero within  
the limits oꢁ 14-bit resolution. Force CS low to put valid  
data on the bus aꢁter conversion is complete.  
_______________________________________________________________________________________  
7
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
t
t
CSH  
CSL  
CS  
R/C  
t
ACQ  
REF POWER-  
DOWN CONTROL  
t
t
t
t
DV  
EOC  
DH  
DS  
EOC  
t
t
DO  
CONV  
HBEN  
t
t
t
DO1  
BR  
DO  
HIGH-Z  
HIGH-Z  
D7/D15D0/D8  
HIGH/LOW  
BYTE VALID  
HIGH/LOW  
BYTE VALID  
Figure 2. MAX1156/MAX1158/MAX1174 Timing Diagram  
Power-Down Modes  
Select standby mode or shutdown mode with the R/C  
bit during the second ꢁalling edge oꢁ CS (see the  
Selecting Standby or Shutdown Mode section). The  
MAX1156/MAX1158/MAX1174 automatically enter  
either standby mode (reꢁerence and buꢁꢁer on) or shut-  
down (reꢁerence and buꢁꢁer oꢁꢁ) aꢁter each conversion,  
depending on the status oꢁ R/C during the second  
ꢁalling edge oꢁ CS.  
+5V ANALOG +5V DIGITAL  
0.1µF  
0.1µF  
AV  
DV  
DD  
DD  
µP DATA  
BUS  
D0D7  
ANALOG INPUT  
AIN  
OR  
Internal Clock  
The MAX1156/MAX1158/MAX1174 generate an internal  
conversion clock to ꢁree the microprocessor ꢁrom the  
burden oꢁ running the SAR conversion clock. Total con-  
D8D13  
MAX1156  
MAX1158  
MAX1174  
EOC  
R/C  
CS  
REF  
version time (t  
) aꢁter entering hold mode (second  
CONV  
REFADJ  
ꢁalling edge oꢁ CS) to end oꢁ conversion (EOC) ꢁalling is  
HBEN  
4.7µs (max).  
HIGH  
BYTE  
0.1µF  
10µF  
AGND DGND  
Applications Information  
LOW  
BYTE  
Starting a Conversion  
CS and R/C control acquisition and conversion in the  
MAX1156/MAX1158/MAX1174 (see Figure 2). The ꢁirst  
ꢁalling edge oꢁ CS powers up the device and puts it in  
acquire mode iꢁ R/C is low. The convert start is ignored  
iꢁ R/C is high. The MAX1156/MAX1158/MAX1174 need  
Figure 3. Typical Application Circuit for the MAX1156/MAX1158/  
MAX1174  
at least 12ms (C  
= 0.1µF, C  
= 10µF) ꢁor the  
REF  
REFADJ  
internal reꢁerence to wake up and settle beꢁore starting  
the conversion, iꢁ powering up ꢁrom shutdown.  
8
_______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
REF  
MAX1156  
MAX1158/MAX1174  
R1  
3.4k  
R1  
3.4kΩ  
C
C
HOLD  
30pF  
HOLD  
30pF  
R2  
161Ω  
R2  
161Ω  
TRACK  
S1  
TRACK  
S1  
AIN  
AIN  
T/H OUT  
T/H OUT  
R3  
R3  
HOLD  
HOLD  
TRACK  
HOLD  
S2  
TRACK  
HOLD  
S2  
S3  
POWER-  
DOWN  
R2 = 7.85k(MAX1158)  
OR 3.92k(MAX1156/MAX1174)  
S1, S2 = T/H SWITCH  
S3 = POWER-DOWN  
R3 = 5.45k(MAX1158)  
(MAX1158/MAX1174 ONLY)  
OR 17.79k(MAX1156/MAX1174)  
Figure 4. Equivalent Input Circuit  
Standby Mode  
Selecting Standby or Shutdown Mode  
The MAX1156/MAX1158/MAX1174 have a selectable  
standby or low-power shutdown mode. In standby  
mode, the ADCs internal reꢁerence and reꢁerence  
buꢁꢁer do not power down between conversions, elimi-  
nating the need to wait ꢁor the reꢁerence to power up  
beꢁore perꢁorming the next conversion. Shutdown mode  
powers down the reꢁerence and reꢁerence buꢁꢁer aꢁter  
completing a conversion. The reꢁerence and reꢁerence  
While in standby mode, the supply current is less than  
3.7mA (typ). The next ꢁalling edge oꢁ CS with R/C low  
causes the MAX1156/MAX1158/MAX1174 to exit stand-  
by mode and begin acquisition. The reꢁerence and reꢁ-  
erence buꢁꢁer remain active to allow quick turn-on time.  
Shutdown Mode  
In shutdown mode, the reꢁerence and reꢁerence buꢁꢁer  
are shut down between conversions. Shutdown mode  
reduces supply current to 0.5µA (typ) immediately aꢁter  
the conversion. The next ꢁalling edge oꢁ CS with R/C  
low causes the reꢁerence and buꢁꢁer to wake up and  
enter acquisition mode. To achieve 14-bit accuracy,  
buꢁꢁer require a minimum oꢁ 12ms (C  
= 0.1µF,  
REFADJ  
C
REF  
= 10µF) to power up and settle ꢁrom shutdown.  
The state oꢁ R/C at the second ꢁalling edge oꢁ CS  
selects which power-down mode the MAX1156/  
MAX1158/MAX1174 enter upon conversion completion.  
Holding R/C low causes the MAX1156/MAX1158/  
MAX1174 to enter standby mode. The reꢁerence and  
buꢁꢁer are leꢁt on aꢁter the conversion completes. R/C  
high causes the MAX1156/MAX1158/MAX1174 to enter  
shutdown mode and power down the reꢁerence and  
buꢁꢁer aꢁter conversion (see Figures 5 and 6). Set the  
voltage at R/C high during the second ꢁalling edge oꢁ  
CS to realize the lowest current operation.  
allow 12ms (C  
= 0.1µF, C  
= 10µF) ꢁor the  
REF  
REFADJ  
internal reꢁerence to wake up.  
Internal and External Reference  
Internal Reference  
The internal reꢁerence oꢁ the MAX1156/MAX1158/  
MAX1174 is internally buꢁꢁered to provide +4.096V out-  
put at REF. Bypass REF to AGND and REFADJ to  
AGND with 10µF and 0.1µF, respectively. Sink or  
source current at REFADJ to make ꢁine adjustments to  
the internal reꢁerence. The input impedance oꢁ REFADJ  
is nominally 5k. Use the circuit oꢁ Figure 7 to adjust  
the internal reꢁerence to 1.5ꢀ.  
_______________________________________________________________________________________  
9
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
DATA  
OUT  
DATA  
OUT  
ACQUISITION  
CONVERSION  
ACQUISITION  
CONVERSION  
CS  
CS  
R/C  
R/C  
EOC  
EOC  
REF AND  
BUFFER  
POWER  
REF AND  
BUFFER  
POWER  
Figure 6. Selecting Shutdown Mode  
Figure 5. Selecting Standby Mode  
External Reference  
HBEN toggles the output between the high/low byte.  
The low byte is loaded onto the output bus when HBEN  
is low and the high byte is on the bus when HBEN is  
high. The two MSBs oꢁ the high byte are always zero.  
An external reꢁerence can be placed at either the input  
(REFADJ) or the output (REF) oꢁ the MAX1156/  
MAX1158/MAX1174s internal buꢁꢁer ampliꢁier. Using  
the buꢁꢁered REFADJ input makes buꢁꢁering the exter-  
nal reꢁerence unnecessary. The input impedance oꢁ  
REFADJ is typically 5k. The internal buꢁꢁer output  
must be bypassed at REF with a 10µF capacitor.  
Transfer Function  
Figures 8, 9, and 10 show the MAX1156/MAX1158/  
MAX1174 output transꢁer ꢁunctions. The MAX1158 and  
MAX1174 outputs are coded in oꢁꢁset binary, while the  
MAX1156 is coded in standard binary.  
Connect REFADJ to AV  
to disable the internal buꢁꢁer.  
DD  
Directly drive REF using an external 3.8V to 4.2V reꢁer-  
ence. During conversion, the external reꢁerence must  
be able to drive 100µA oꢁ DC load current and have an  
output impedance oꢁ 10or less.  
Input Buffer  
Most applications require an input buꢁꢁer ampliꢁier to  
achieve 14-bit accuracy and prevent loading the  
source. Switch the channels immediately aꢁter acquisi-  
tion, rather than near the end oꢁ or aꢁter a conversion,  
when the input signal is multiplexed. This allows more  
time ꢁor the input buꢁꢁer ampliꢁier to respond to a large  
step-change in input signal. The input ampliꢁier must  
have a high enough slew rate to complete the required  
output voltage change beꢁore the beginning oꢁ the  
acquisition time. Figure 11 shows an example oꢁ this  
circuit using the MAX427.  
For optimal perꢁormance, buꢁꢁer the reꢁerence through  
an op amp and bypass REF with a 10µF capacitor.  
Consider the MAX1156/MAX1158/MAX1174s equiva-  
lent input noise (0.32LSB) when choosing a reꢁerence.  
Reading the Conversion Result  
EOC is provided to ꢁlag the microprocessor when a  
conversion is complete. The ꢁalling edge oꢁ EOC sig-  
nals that the data is valid and ready to be output to the  
bus. D0D13 are the parallel outputs oꢁ the  
MAX1156/MAX1158/MAX1174. These three-state out-  
puts allow ꢁor direct connection to a microcontroller I/O  
bus. The outputs remain high-impedance during acqui-  
sition and conversion. Data is loaded onto the output  
bus with the third ꢁalling edge oꢁ CS with R/C high (aꢁter  
Figures 12a and 12b show how the MAX1158 and  
MAX1174 analog input current varies depending on  
whether the chip is operating or powered down. The  
part is ꢁully powered down between conversions iꢁ the  
voltage at R/C is set high during the second ꢁalling  
edge oꢁ CS. The input current abruptly steps to the  
powered up value at the start oꢁ acquisition. This step  
in the input current can disrupt the ADC input, depend-  
ing on the driving circuits output impedance at high  
ꢁrequencies. Iꢁ the driving circuit cannot ꢁully settle by  
t
). Bringing CS high ꢁorces the output bus back to  
DO  
high impedance. The MAX1156/MAX1158/MAX1174  
then wait ꢁor the next ꢁalling edge oꢁ CS to start the next  
conversion cycle (see Figure 2).  
±1 ______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
MAX1156  
INPUT RANGE = 0 TO +10V  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
11 1111 1111 1111  
11 1111 1111 1110  
11 1111 1111 1101  
MAX1156  
MAX1158  
MAX1174  
+5V  
68k  
100kΩ  
REFADJ  
FULL-SCALE RANGE  
(FSR) = +10V  
FSR x V  
REF  
0.1µF  
1LSB =  
150kΩ  
00 0000 0000 0011  
00 0000 0000 0010  
00 0000 0000 0001  
00 0000 0000 0000  
16384 x 4.096  
0
1
2
3
16383  
16382 16384  
INPUT VOLTAGE (LSB)  
Figure 8. MAX1156 Transfer Function  
Figure 7. MAX1156/MAX1158/MAX1174 Reference Adjust  
Circuit  
MAX1158  
MAX1174  
INPUT RANGE = -10V TO +10V  
INPUT RANGE = -5V TO +5V  
OUTPUT CODE  
OUTPUT CODE  
11 1111 1111 1111  
FULL-SCALE  
TRANSITION  
FULL-SCALE  
TRANSITION  
11 1111 1111 1111  
11 1111 1111 1110  
11 1111 1111 1101  
11 1111 1111 1110  
11 1111 1111 1101  
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
FULL-SCALE RANGE  
(FSR) = +20V  
FULL-SCALE RANGE  
(FSR) = +10V  
FSR x V  
FSR x V  
REF  
REF  
1LSB =  
1LSB =  
00 0000 0000 0011  
00 0000 0000 0010  
00 0000 0000 0001  
00 0000 0000 0000  
00 0000 0000 0011  
00 0000 0000 0010  
00 0000 0000 0001  
00 0000 0000 0000  
16384 x 4.096  
16384 x 4.096  
-8192 -8190  
0
+8190 +8192  
+8191  
-8192 -8190  
0
+8190 +8192  
+8191  
-8191 -8189  
-1  
+1  
-8191 -8189  
-1  
+1  
INPUT VOLTAGE (LSB)  
INPUT VOLTAGE (LSB)  
Figure 10. MAX1174 Transfer Function  
Figure 9. MAX1158 Transfer Function  
the end oꢁ acquisition, the accuracy oꢁ the system can  
be compromised. To avoid this situation, increase the  
acquisition time, use a driving circuit that can settle  
ADC package. Use separate analog and digital ground  
planes with only one point connecting the two ground  
systems (analog and digital) as close to the device as  
possible.  
within t  
, or leave the MAX1158/MAX1174 powered  
ACQ  
up by setting the voltage at R/C low during the second  
ꢁalling edge oꢁ CS.  
Route digital signals ꢁar away ꢁrom sensitive analog and  
reꢁerence inputs. Iꢁ digital lines must cross analog lines,  
do so at right angles to minimize coupling digital noise  
onto the analog lines. Iꢁ the analog and digital sections  
share the same supply, isolate the digital and analog  
Layout, Grounding, and Bypassing  
For best perꢁormance, use printed circuit boards. Do  
not run analog and digital lines parallel to each other,  
and do not layout digital signal paths underneath the  
______________________________________________________________________________________ ±±  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
MAX1174  
ANALOG INPUT CURRENT  
vs. ANALOG INPUT VOLTAGE  
REF  
1.5  
MAX1156  
MAX1158  
MAX1174  
**  
1.0  
0.5  
0
SHUTDOWN  
MODE  
ANALOG  
INPUT  
*
MAX427  
AIN  
-0.5  
-1.0  
-1.5  
STANDBY  
MODE  
*MAX1156 ONLY.  
**MAX1158/MAX1174 ONLY.  
-5.0  
-2.5  
0
2.5  
5.0  
ANALOG INPUT VOLTAGE (V)  
Figure 11. MAX1156/MAX1158/MAX1174 Fast-Settling Input  
Buffer  
Figure 12a. MAX1174 Analog Input Current  
supply by connecting them with a low value (10)  
resistor or ꢁerrite bead.  
MAX1158  
ANALOG INPUT CURRENT  
vs. ANALOG INPUT VOLTAGE  
1.5  
The ADC is sensitive to high-ꢁrequency noise on the  
AV  
supply. Bypass AV  
to AGND with a 0.1µF  
DD  
DD  
capacitor in parallel with a 1µF to 10µF low-ESR capacitor  
with the smallest capacitor closest to the device. Keep  
capacitor leads short to minimize stray inductance.  
1.0  
Definitions  
0.5  
0
SHUTDOWN  
MODE  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation oꢁ the values  
on an actual transꢁer ꢁunction ꢁrom a straight line. This  
straight line can be either a best-straight-line ꢁit or a line  
drawn between the endpoints oꢁ the transꢁer ꢁunction,  
once oꢁꢁset and gain errors have been nulliꢁied. The  
static linearity parameters ꢁor the MAX1156/MAX1158/  
MAX1174 are measured using the endpoint method.  
STANDBY  
MODE  
-0.5  
-1.0  
-1.5  
-10  
-5  
0
5
10  
ANALOG INPUT VOLTAGE (V)  
Differential Nonlinearity  
Diꢁꢁerential nonlinearity (DNL) is the diꢁꢁerence between  
an actual step-width and the ideal value oꢁ 1LSB. A  
DNL error speciꢁication oꢁ 1LSB guarantees no missing  
codes and a monotonic transꢁer ꢁunction.  
Figure 12b. MAX1158 Analog Input Current  
±2 ______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
zation noise only. With an input range equal to the ꢁull-  
scale range oꢁ the ADC, calculate the eꢁꢁective number  
oꢁ bits as ꢁollows:  
Signal-to-Noise Ratio  
For a waveꢁorm perꢁectly reconstructed ꢁrom digital  
samples, signal-to-noise ratio (SNR) is the ratio oꢁ the  
ꢁull-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
noise error only and results directly ꢁrom the ADCs res-  
olution (N bits):  
SINAD1.76  
ENOB=  
6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio oꢁ the RMS  
sum oꢁ the ꢁirst ꢁive harmonics oꢁ the input signal to the  
ꢁundamental itselꢁ. This is expressed as:  
SNR = (6.02 × N + 1.76) dB  
where N = 14 bits.  
In reality, there are other noise sources besides quanti-  
zation noise; thermal noise, reꢁerence noise, clock jitter,  
etc. SNR is computed by taking the ratio oꢁ the RMS  
signal to the RMS noise, which includes all spectral  
components minus the ꢁundamental, the ꢁirst ꢁive har-  
monics, and the DC oꢁꢁset.  
2
2
2
2
V
+ V + V + V  
3 4 5  
2
THD = 20 × log  
V
1
where V is the ꢁundamental amplitude and V through  
V are the 2nd- through 5th-order harmonics.  
1
2
5
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio oꢁ the  
ꢁundamental input ꢁrequencys RMS amplitude to the  
RMS equivalent oꢁ all the other ADC output signals.  
Spurious-Free Dynamic Range  
Spurious-ꢁree dynamic range (SFDR) is the ratio oꢁ the  
RMS amplitude oꢁ the ꢁundamental (maximum signal  
component) to the RMS value oꢁ the next largest ꢁre-  
quency component.  
Signal  
(Noise+Distortion)  
RMS  
SINAD(dB) = 20 × log  
RMS  
Effective Number of Bits  
Eꢁꢁective number oꢁ bits (ENOB) indicates the global  
accuracy oꢁ an ADC at a speciꢁic input ꢁrequency and  
sampling rate. An ideal ADCs error consists oꢁ quanti-  
______________________________________________________________________________________ ±3  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Functional Diagram  
REFADJ  
HBEN  
AV AGND DV DGND  
DD  
DD  
5k  
REFERENCE  
8 BITS  
8 BITS  
OUTPUT  
REGISTERS  
D0D7  
OR  
D8D13  
REF  
INPUT  
SCALER  
CAPACITIVE  
DAC  
AIN  
MAX1156  
MAX1158  
MAX1174  
AGND  
SUCCESSIVE-  
CLOCK  
APPROXIMATION  
REGISTER AND  
CONTROL LOGIC  
EOC  
CS  
R/C  
Pin Configuration  
Ordering Information (continued)  
IꢂPUT  
VOLTAGE  
RAꢂGE  
TOP VIEW  
PIꢂ-  
PACKAGE  
PART  
TEMP RAꢂGE  
D4/D12  
D5/D13  
D6/0  
1
2
20 D3/D11  
19  
18  
D2/D10  
D1/D9  
MAX±±ꢁ8ACUP  
0°C to +70°C  
0°C to +70°C  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
10V  
10V  
10V  
10V  
5V  
3
MAX1158BCUP  
D7/0  
4
17 D0/D8  
16  
MAX1158AEUP -40°C to +85°C  
MAX1158BEUP -40°C to +85°C  
MAX1156  
MAX1158  
MAX1174  
5
R/C  
DV  
DD  
EOC  
6
15 DGND  
MAX±±74ACUP  
0°C to +70°C  
0°C to +70°C  
7
14  
13  
12  
11  
AV  
DD  
CS  
MAX1174BCUP  
5V  
8
AGND  
AIN  
HBEN  
REF  
MAX1174AEUP -40°C to +85°C  
MAX1174BEUP -40°C to +85°C  
5V  
9
5V  
10  
AGND  
REFADJ  
TSSOP  
Chip Information  
TRANSISTOR COUNT: 15,383  
PROCESS: BiCMOS  
±4 ______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Package Information  
(The package drawing(s) in this data sheet may not reꢁlect the most current speciꢁications. For the latest package outline inꢁormation,  
go to www.(aꢄi(-ic.co(/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ ±ꢁ  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark oꢁ Maxim Integrated Products.  

相关型号:

MAX1174BEUP+

ADC, Successive Approximation, 14-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, BICMOS, PDSO20, 4.40 MM, TSSOP-20
MAXIM

MAX1174BEUP+T

暂无描述
MAXIM

MAX1174BEUP-T

ADC, Successive Approximation, 14-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, BICMOS, PDSO20, 4.40 MM, TSSOP-20
MAXIM

MAX1175

14-Bit.135ksps.Single-Supply ADCs with Bipolar Analog Input Range
MAXIM

MAX1175ACUI

Analog to Digital Converter
MAXIM

MAX1175ACUI-T

ADC, Successive Approximation, 14-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO28, 4.40 MM, TSSOP-28
MAXIM

MAX1175AEUI

Analog to Digital Converter
MAXIM

MAX1175AEUI+

ADC, Successive Approximation, 14-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO28, 4.40 MM, TSSOP-28
MAXIM

MAX1175BCUI

Analog to Digital Converter
MAXIM

MAX1175BCUI+

ADC, Successive Approximation, 14-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO28, 4.40 MM, TSSOP-28
MAXIM

MAX1175BCUI+T

暂无描述
MAXIM

MAX1175BCUI-T

ADC, Successive Approximation, 14-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO28, 4.40 MM, TSSOP-28
MAXIM