MAX1177BEUP-T [MAXIM]

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153AC, TSSOP-20;
MAX1177BEUP-T
型号: MAX1177BEUP-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153AC, TSSOP-20

信息通信管理 光电二极管 转换器
文件: 总13页 (文件大小:287K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2597; Rev 0; 8/03  
16-Bit, 135ksps, Single-Supply ADC  
with 0 to 10V Input Range  
General Description  
Features  
The MAX1177 is a 16-bit, low-power, successive-  
approximation analog-to-digital converter (ADC) featur-  
ing automatic power-down, a factory-trimmed internal  
clock, and a byte-wide parallel interface. The device  
operates from a single +4.75V to +5.25V analog supply  
and features a separate digital supply input for direct  
interface with +2.7V to +5.25V digital logic.  
Byte-Wide Parallel Interface  
Analog Input Voltage Range: 0 to +10V  
Single +4.75V to +5.25V Analog Supply Voltage  
Interfaces with +2.7V to +5.25V Digital Logic  
±± LSB IꢀL  
±1 LSB DꢀL  
The MAX1177 accepts an analog input voltage range  
from 0 to +10V. It consumes no more than 26.5mW at a  
sampling rate of 135ksps when using an external refer-  
ence, and 31mW when using the internal +4.096V refer-  
ence. AutoShutdown™ reduces supply current to  
0.4mA at 10ksps.  
Low Supply Current (max)  
2.9mA (External Reference)  
±.8mA (Internal Reference)  
5µA AutoShutdown Mode  
Small Footprint  
The MAX1177 is ideal for high-performance, battery-  
powered, data-acquisition applications. Excellent AC  
performance (THD = -100dB) and DC accuracy ( 3  
LSB INL) make this device ideal for industrial process  
control, instrumentation, and medical applications.  
20-Pin TSSOP Package  
Ordering Information  
The MAX1177 is available in a 20-pin TSSOP package  
and is fully specified over the -40°C to +85°C extended  
temperature range and the 0°C to +70°C commercial  
temperature range.  
PART  
TEMP RAꢀGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIꢀ-PACKAGE  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
MAX1177ACUP  
MAX1177BCUP  
MAX1177CCUP  
MAX1177AEUP  
MAX1177BEUP  
MAX1177CEUP  
Applications  
Typical Operating Circuit  
Temperature Sensing and Monitoring  
Industrial Process Control  
I/O Modules  
+5V ANALOG +5V DIGITAL  
0.1µF  
0.1µF  
Data-Acquisition Systems  
Precision Instrumentation  
AV  
DD  
DV  
µP DATA  
BUS  
DD  
D0–D7  
OR  
ANALOG INPUT  
AIN  
D8–D15  
MAX1177  
EOC  
R/C  
CS  
REF  
REFADJ  
HBEN  
HIGH  
BYTE  
0.1µF  
10µF  
AGND DGND  
Pin Configuration and Functional Diagram appear at end of  
data sheet.  
LOW  
BYTE  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
16-Bit, 135ksps, Single-Supply ADC  
with to 10V Input Range  
Continuous Power Dissipation (T = +70°C)  
TSSOP (derate 10.9mW/°C above +70°C) ..................879mW  
A
AGND to DGND.....................................................-0.3V to +0.3V  
AIN to AGND .....................................................-16.5V to +16.5V  
Operating Temperature Ranges  
MAX1177_CUP ...................................................0°C to +70°C  
MAX1177_EUP ................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
REF, REFADJ to AGND............................-0.3V to (AV  
+ 0.3V)  
DD  
CS, R/C, HBEN to DGND .........................................-0.3V to +6V  
D_, EOC to DGND ...................................-0.3V to (DV + 0.3V)  
DD  
Maximum Continuous Current into Any Pin ........................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= +5V 5ꢀ, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
,
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
RES  
COꢀDITIOꢀS  
MIꢀ  
TYP  
MAX  
UꢀITS  
Bits  
Resolution  
16  
-1  
MAX1177A  
+1  
+1.5  
+2  
No missing codes  
over temperature  
Diꢁꢁerential Nonlinearity  
DNL  
LSB  
MAX1177B  
MAX1177C  
-1.0  
-1  
MAX1177A  
MAX1177B  
MAX1177C  
-3  
+3  
Integral Nonlinearity  
Transition Noise  
INL  
LSB  
-3  
+3  
-4  
+4  
RMS noise, external reꢁerence  
Internal reꢁerence  
0.6  
0.75  
0
LSB  
RMS  
Oꢁꢁset Error  
Gain Error  
Oꢁꢁset Driꢁt  
Gain Driꢁt  
-10  
+10  
0.2  
mV  
0
ꢀFSR  
µV/°C  
16  
1
ppm/°C  
AC ACCURACY (ꢁ = 1kHz, V  
= ꢁull range, 135ksps)  
IN  
AIN  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
AꢀALOG IꢀPUT  
SINAD  
SNR  
85  
86  
90  
91  
dB  
dB  
dB  
dB  
THD  
-100  
103  
-92  
SFDR  
92  
Input Range  
V
0
10  
V
AIN  
Normal operation  
Shutdown mode  
5.3  
5.3  
-0.1  
6.9  
10  
9.2  
Input Resistance  
R
kΩ  
AIN  
Input Current  
I
0 V  
+10V  
+2.0  
mA  
pF  
AIN  
AIN  
Input Capacitance  
C
IN  
2
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADC  
with 0 to 10V Input Range  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +5V 5ꢀ, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
,
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
IꢀTERꢀAL REFEREꢀCE  
REF Output Voltage  
SYMBOL  
COꢀDITIOꢀS  
MIꢀ  
TYP  
MAX  
UꢀITS  
V
4.056  
4.096  
35  
4.136  
V
REF  
REF Output Tempco  
ppm/°C  
mA  
REF Short-Circuit Current  
EXTERꢀAL REFEREꢀCE  
I
10  
REF-SC  
REF and REFADJ Input-Voltage  
Range  
3.8  
4.2  
V
V
AV  
-
AV  
-
DD  
DD  
REFADJ Buꢁꢁer-Disable Threshold  
REF Input Current  
0.4  
0.1  
Normal mode, ꢁ  
= 135ksps  
60  
0.1  
16  
100  
10  
SAMPLE  
I
µA  
µA  
REF  
Shutdown mode (Note 1)  
REFADJ = AV  
REFADJ Input Current  
I
REFADJ  
DD  
DIGITAL IꢀPUTS/OUTPUTS  
I
= 0.5mA, DV  
= +5.25V  
= +2.7V to +5.25V, DV  
-
DD  
SOURCE  
DD  
Output High Voltage  
Output Low Voltage  
Input High Voltage  
Input Low Voltage  
V
V
V
V
V
OH  
AV  
0.4  
DD  
I
= 1.6mA, DV  
= +5.25V  
= +2.7V to +5.25V,  
DD  
SINK  
V
0.4  
OL  
AV  
DD  
0.7 ×  
DV  
V
IH  
DD  
0.3 ×  
V
IL  
DV  
DD  
Input Leakage Current  
Input Hysteresis  
Digital input = DV  
or 0V  
-1  
+1  
µA  
V
DD  
V
0.2  
15  
HYST  
Input Capacitance  
C
pF  
µA  
pF  
IN  
Tri-State Output Leakage  
Tri-State Output Capacitance  
POWER SUPPLIES  
Analog Supply Voltage  
Digital Supply Voltage  
I
10  
OZ  
C
15  
OZ  
AV  
DV  
4.75  
2.70  
5.25  
5.25  
2.9  
V
V
DD  
DD  
External reꢁerence, 135ksps  
Internal reꢁerence, 135ksps  
Analog Supply Current  
I
mA  
µA  
AVDD  
3.8  
Shutdown mode (Note 1), digital input =  
DV or 0V  
DD  
0.5  
3.7  
5
Shutdown Supply Current  
I
I
SHDN  
DVDD  
Standby mode  
mA  
mA  
Digital Supply Current  
Power-Supply Rejection  
0.75  
AV  
= DV  
= 4.75V to 5.25V  
DD  
3.5  
LSB  
DD  
_______________________________________________________________________________________  
±
16-Bit, 135ksps, Single-Supply ADC  
with to 10V Input Range  
TIMIꢀG CHARACTERISTICS (Figures 1 and 2)  
(AV  
= +4.75V to +5.25V, DV  
= +2.7V to AV , external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV  
,
DD  
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
C
LOAD  
= 20pF, T = T  
to T  
.)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
COꢀDITIOꢀS  
MIꢀ  
TYP  
MAX  
UꢀITS  
ksps  
µs  
Maximum Sampling Rate  
Acquisition Time  
135  
SAMPLE-MAX  
t
2
ACQ  
Conversion Time  
t
4.7  
µs  
CONV  
CS Pulse-Width High  
t
(Note 2)  
40  
40  
60  
0
ns  
CSH  
DV  
DV  
= 4.75V to 5.25V  
DD  
DD  
CS Pulse-Width Low (Note 2)  
R/C to CS Fall Setup Time  
R/C to CS Fall Hold Time  
t
ns  
ns  
ns  
CSL  
= 2.7V to 5.25V  
t
DS  
DH  
DV  
DV  
DV  
DV  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
40  
60  
DD  
DD  
DD  
DD  
t
40  
80  
CS to Output Data Valid  
EOC Fall to CS Fall  
t
ns  
ns  
ns  
DO  
t
0
DV  
DV  
DV  
DV  
DV  
DV  
DV  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
= 4.75V to 5.25V  
= 2.7V to 5.25V  
40  
80  
40  
80  
40  
80  
DD  
DD  
DD  
DD  
DD  
DD  
CS Rise to EOC Rise  
t
EOC  
Bus Relinquish Time  
t
ns  
ns  
BR  
HBEN Transition to Output Data  
Valid  
t
1
DO  
ꢀote 1: Maximum speciꢁication is limited by automated test equipment.  
ꢀote 2: To ensure best perꢁormance, ꢁinish reading the data and wait t beꢁore starting a new acquisition.  
BR  
Typical Operating Characteristics  
(Typical Operating Circuit, AV  
= DV  
= +5V, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV  
,
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
C
LOAD  
= 20pF. Typical values are at T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT (AV + DV  
DD  
)
DD  
DNL vs. CODE  
INL vs. CODE  
vs. TEMPERATURE  
MAX1177 toc02  
2.5  
3
2
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
5.25V  
2.0  
1.5  
1.0  
1
0.5  
5.0V  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-1  
-2  
-3  
f
= 135ksps  
SAMPLE  
SHUTDOWN MODE  
4.75V  
BETWEEN CONVERSIONS  
0
10,000 20,000 30,000 40,000 50,000 60,000  
CODE  
80  
8192  
24,576  
40,960  
57,344  
-40  
-20  
0
20  
40  
60  
CODE  
TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADC  
with 0 to 10V Input Range  
Typical Operating Characteristics (continued)  
(Typical Operating Circuit, AV  
= DV  
= +5V, external reꢁerence = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV  
,
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
C
LOAD  
= 20pF. Typical values are at T = +25°C, unless otherwise noted.)  
A
SHUTDOWN CURRENT (AV + DV  
DD  
)
DD  
SUPPLY CURRENT (AV + DV  
DD  
)
DD  
OFFSET ERROR vs. TEMPERATURE  
vs. TEMPERATURE  
vs. SAMPLE RATE  
10  
1
10  
8
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
NO CONVERSIONS  
6
4
STANDBY MODE  
0.1  
2
0
SHUTDOWN MODE  
-2  
-4  
-6  
-8  
-10  
0.01  
0.001  
0.0001  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
0.01  
0.1  
1
10  
100  
1000  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SAMPLE RATE (ksps)  
INTERNAL REFERENCE  
vs. TEMPERATURE  
GAIN ERROR vs. TEMPERATURE  
FFT AT 1kHz  
4.136  
4.126  
4.116  
4.106  
4.096  
4.086  
4.076  
4.066  
4.056  
0.20  
0.15  
0.10  
0.05  
0
0
-20  
f
= 131ksps  
SAMPLE  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-0.05  
-0.10  
-0.15  
-0.20  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
0
10  
20  
30  
40  
50  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
SINAD vs. FREQUENCY  
SFDR vs. FREQUENCY  
THD vs. FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
= 131ksps  
f
= 131ksps  
SAMPLE  
f
= 131ksps  
SAMPLE  
SAMPLE  
1
10  
FREQUENCY (kHz)  
100  
1
10  
FREQUENCY (kHz)  
100  
1
10  
100  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
16-Bit, 135ksps, Single-Supply ADC  
with to 10V Input Range  
Pin Description  
PIꢀ  
1
ꢀAME  
D4/D12  
D5/D13  
D6/D14  
D7/D15  
FUꢀCTIOꢀ  
Tri-State Digital-Data Output  
2
Tri-State Digital-Data Output  
3
Tri-State Digital-Data Output  
4
Tri-State Digital-Data Output. D15 is the MSB.  
Read/Convert Input. Power up and put the device in acquisition mode by holding R/C low during the  
ꢁirst ꢁalling edge oꢁ CS. During the second ꢁalling edge oꢁ CS, the level on R/C determines whether the  
reꢁerence and reꢁerence buꢁꢁer power down or remain on aꢁter conversion. Set R/C high during the  
second ꢁalling edge oꢁ CS to power down the reꢁerence and buꢁꢁer, or set R/C low to leave the  
reꢁerence and buꢁꢁer powered up. Set R/C high during the third ꢁalling edge oꢁ CS to put valid data on  
the bus.  
5
R/C  
6
7
EOC  
End oꢁ Conversion. EOC drives low when conversion is complete.  
Analog Supply Input. Bypass with a 0.1µF capacitor to AGND.  
Analog Ground. Primary analog ground (star ground).  
Analog Input  
AV  
DD  
8
AGND  
AIN  
9
10  
AGND  
Analog Ground. Connect pin 10 to pin 8.  
Reꢁerence Buꢁꢁer Output. Bypass REFADJ with a 0.1µF capacitor to AGND ꢁor internal reꢁerence  
11  
12  
REFADJ  
REF  
mode. Connect REFADJ to AV  
to select external reꢁerence mode.  
DD  
Reꢁerence Input/Output. Bypass REF with a 10µF capacitor to AGND ꢁor internal reꢁerence mode.  
External reꢁerence input when in external reꢁerence mode.  
High-Byte Enable Input. Used to multiplex the 16-bit conversion result.  
1: MSB available on the data bus.  
0: LSB available on the data bus.  
13  
14  
HBEN  
Convert Start. The ꢁirst ꢁalling edge oꢁ CS powers up the device and enables acquire mode when R/C  
is low. The second ꢁalling edge oꢁ CS starts the conversion. The third ꢁalling edge oꢁ CS loads the  
result onto the bus when R/C is high.  
CS  
15  
16  
17  
18  
19  
20  
DGND  
Digital Ground  
DV  
Digital Supply Voltage. Bypass with a 0.1µF capacitor to DGND.  
Tri-State Digital-Data Output. D0 is the LSB.  
Tri-State Digital-Data Output  
DD  
D0/D8  
D1/D9  
D2/D10  
D3/D11  
Tri-State Digital-Data Output  
Tri-State Digital-Data Output  
6
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADC  
with 0 to 10V Input Range  
Analog Input  
Detailed Description  
Converter Operation  
The MAX1177 uses a successive-approximation (SAR)  
conversion technique with an inherent track-and-hold  
(T/H) stage to convert an analog input into a 16-bit digital  
output. Parallel outputs provide a high-speed interꢁace to  
microprocessors (µPs). The Functional Diagram shows a  
simpliꢁied internal architecture oꢁ the MAX1177. Figure 3  
shows a typical operating circuit ꢁor the MAX1177.  
Input Scaler  
The MAX1177 has an input scaler, which allows conver-  
sion oꢁ input voltages ranging ꢁrom 0 to 10V, while oper-  
ating ꢁrom a single +5V analog supply. The input scaler  
attenuates and shiꢁts the analog input to match the input  
range oꢁ the internal digital-to-analog converter (DAC).  
Figure 4 shows the equivalent input circuit oꢁ the  
MAX1177. This circuit limits the current going into AIN to  
less than 2mA.  
Track and Hold (T/H)  
In track mode, the internal hold capacitor acquires the  
analog signal (Figure 4). In hold mode, the T/H switches  
open and the capacitive DAC samples the analog input.  
During the acquisition, the analog input (AIN) charges  
DV  
DD  
1mA  
DOD15  
DOD15  
capacitor C  
. The acquisition ends on the second  
HOLD  
ꢁalling edge oꢁ CS. At this instant, the T/H switches  
open. The retained charge on C represents a sam-  
C
LOAD  
= 20pF  
C
= 20pF  
LOAD  
1mA  
HOLD  
ple oꢁ the input. In hold mode, the capacitive DAC  
adjusts during the remainder oꢁ the conversion time to  
restore node T/H OUT to zero within the limits oꢁ 16-bit  
resolution. Force CS low to put valid data on the bus  
aꢁter conversion is complete.  
DGND  
DGND  
a) HIGH-Z TO V  
,
OH  
b) HIGH-Z TO V ,  
OL  
V
V
TO V , AND  
TO HIGH-Z  
OL  
OH  
OH  
V
OH  
V
OL  
TO V , AND  
OL  
TO HIGH-Z  
Figure 1. Load Circuits  
t
t
CSH  
CSL  
CS  
R/C  
t
ACQ  
REF POWER-  
DOWN CONTROL  
t
t
t
DS  
t
DV  
EOC  
DH  
EOC  
t
t
DO  
CONV  
HBEN  
t
t
t
DO1  
BR  
DO  
HIGH-Z  
HIGH-Z  
D7/D15D0/D8  
HIGH/LOW  
BYTE VALID  
HIGH/LOW  
BYTE VALID  
Figure 2. MAX1177 Timing Diagram  
_______________________________________________________________________________________  
7
16-Bit, 135ksps, Single-Supply ADC  
with to 10V Input Range  
Power-Down Modes  
Select standby mode or shutdown mode with the R/C  
+5V ANALOG +5V DIGITAL  
bit during the second ꢁalling edge oꢁ CS (see the  
Selecting Standby or Shutdown Mode section). The  
MAX1177 automatically enters either standby mode  
(reꢁerence and buꢁꢁer on) or shutdown (reꢁerence and  
buꢁꢁer oꢁꢁ) aꢁter each conversion, depending on the sta-  
tus oꢁ R/C during the second ꢁalling edge oꢁ CS.  
0.1µF  
0.1µF  
AV  
DD  
DV  
DD  
Internal Clock  
The MAX1177 generates an internal conversion clock to  
ꢁree the µP ꢁrom the burden oꢁ running the SAR conver-  
µP DATA  
BUS  
D0D7  
ANALOG INPUT  
AIN  
OR  
D8D15  
sion clock. Total conversion time (t  
) aꢁter entering  
CONV  
hold mode (second ꢁalling edge oꢁ CS) to end-oꢁ-con-  
version (EOC) ꢁalling is 4.7µs (max).  
MAX1177  
EOC  
REF  
Applications Information  
R/C  
CS  
Starting a Conversion  
CS and R/C control acquisition and conversion in the  
MAX1177 (Figure 2). The ꢁirst ꢁalling edge oꢁ CS powers  
up the device and puts it in acquire mode iꢁ R/C is low.  
The convert start is ignored iꢁ R/C is high. The device  
needs at least 12ms ꢁor the internal reꢁerence to wake  
REFADJ  
HBEN  
0.1µF  
10µF  
HIGH  
BYTE  
AGND DGND  
LOW  
BYTE  
up and settle beꢁore starting the conversion (C  
REFADJ  
= 0.1µF, C  
= 10µF), iꢁ powering up ꢁrom shutdown.  
REF  
Selecting Standby or Shutdown Mode  
The MAX1177 has a selectable standby or low-power  
shutdown mode. In standby mode, the ADCs internal  
reꢁerence and reꢁerence buꢁꢁer do not power down  
between conversions, eliminating the need to wait ꢁor  
the reꢁerence to power up beꢁore perꢁorming the next  
conversion. Shutdown mode powers down the reꢁer-  
ence and reꢁerence buꢁꢁer aꢁter completing a conver-  
sion. The reꢁerence and reꢁerence buꢁꢁer require a  
minimum oꢁ 12ms to power up and settle ꢁrom shut-  
Figure 3. Typical Operating Circuit for the MAX1177  
MAX1177  
R1  
3.4k  
R2  
3.92kΩ  
C
HOLD  
30pF  
161Ω  
TRACK  
S1  
AIN  
down (C  
= 0.1µF, C  
= 10µF).  
REF  
REFADJ  
T/H OUT  
The state oꢁ R/C at the second ꢁalling edge oꢁ CS  
selects which power-down mode the MAX1177 enters  
upon conversion completion. Holding R/C low causes  
the device to enter standby mode. The reꢁerence and  
buꢁꢁer are leꢁt on aꢁter the conversion completes. R/C  
high causes the MAX1177 to enter shutdown mode and  
power-down the reꢁerence and buꢁꢁer aꢁter conversion  
(Figures 5 and 6). Set the voltage at R/C high during  
the second ꢁalling edge oꢁ CS to realize the lowest cur-  
rent operation.  
R3  
17.79kΩ  
HOLD  
TRACK  
HOLD  
S2  
S1, S2 = T/H SWITCH  
R2 = 3.92kΩ  
R3 = 17.79kΩ  
Figure 4. Equivalent Input Circuit  
8
_______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADC  
with 0 to 10V Input Range  
DATA  
OUT  
DATA  
OUT  
ACQUISITION  
CONVERSION  
ACQUISITION  
CONVERSION  
CS  
CS  
R/C  
R/C  
EOC  
EOC  
REF AND  
BUFFER  
POWER  
REF AND  
BUFFER  
POWER  
Figure 6. Selecting Shutdown Mode  
Figure 5. Selecting Standby Mode  
Standby Mode  
While in standby mode, the supply current is less than  
3.7mA (typ). The next ꢁalling edge oꢁ CS with R/C low  
causes the MAX1177 to exit standby mode and begin  
acquisition. The reꢁerence and reꢁerence buꢁꢁer remain  
active to allow quick turn-on time.  
+5V  
MAX1177  
REFADJ  
68k  
Shutdown Mode  
In shutdown mode, the reꢁerence and reꢁerence buꢁꢁer  
are shut down between conversions. Shutdown mode  
reduces supply current to 0.5µA (typ) immediately aꢁter  
the conversion. The next ꢁalling edge oꢁ CS with R/C  
low causes the reꢁerence and buꢁꢁer to wake up and  
enter acquisition mode. To achieve 16-bit accuracy,  
allow 12ms ꢁor the internal reꢁerence to wake up  
100kΩ  
0.1µF  
150kΩ  
(C  
= 0.1µF, C  
= 10µF).  
REF  
REFADJ  
Figure 7. MAX1177 Reference Adjust Circuit  
Internal and External Reference  
Internal Reference  
makes buꢁꢁering the external reꢁerence unnecessary.  
The input impedance oꢁ REFADJ is typically 5k. The  
internal buꢁꢁer output must be bypassed at REF with a  
10µF capacitor.  
The internal reꢁerence oꢁ the MAX1177 is internally  
buꢁꢁered to provide +4.096V output at REF. Bypass  
REF to AGND and REFADJ to AGND with 10µF and  
0.1µF, respectively. Sink or source current at REFADJ  
to make ꢁine adjustments to the internal reꢁerence. The  
input impedance oꢁ REFADJ is nominally 5k. Use the  
circuit in Figure 7 to adjust the internal reꢁerence to  
1.5ꢀ.  
Connect REFADJ to AV  
to disable the internal buꢁꢁer.  
DD  
Directly drive REF using an external 3.8V to 4.2V reꢁer-  
ence. During conversion, the external reꢁerence must  
be able to drive 100µA oꢁ DC load current and have an  
output impedance oꢁ 10or less.  
External Reference  
An external reꢁerence can be placed at either the input  
(REFADJ) or the output (REF) oꢁ the MAX1177s internal  
buꢁꢁer ampliꢁier. Using the buꢁꢁered REFADJ input  
For optimal perꢁormance, buꢁꢁer the reꢁerence through  
an op amp and bypass REF with a 10µF capacitor.  
Consider the MAX1177s equivalent input noise (0.6  
LSB) when choosing a reꢁerence.  
_______________________________________________________________________________________  
9
16-Bit, 135ksps, Single-Supply ADC  
with to 10V Input Range  
INPUT RANGE = 0V TO +10V  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
1111 1111 1111 1111  
1111 1111 1111 1110  
1111 1111 1111 1101  
MAX1177  
AIN  
ANALOG  
INPUT  
MAX427  
FULL-SCALE RANGE (FSR) = +10V  
FSR x V  
0000 0000 0000 0011  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
REF  
1 LSB =  
65536 x 4.096  
0
1
2
3
65,535  
65,534 65,536  
INPUT VOLTAGE (LSB)  
Figure 8. MAX1177 Transfer Function  
Figure 9. MAX1177 Fast-Settling Input Buffer  
change in input signal. The input ampliꢁier must have a  
high enough slew rate to complete the required output  
voltage change beꢁore the beginning oꢁ the acquisition  
time. Figure 9 shows an example oꢁ this circuit using  
the MAX427.  
Reading the Conversion Result  
EOC is provided to ꢁlag the µP when a conversion is  
complete. The ꢁalling edge oꢁ EOC signals that the data is  
valid and ready to be output to the bus. D0D15 are the  
parallel outputs oꢁ the MAX1177. These tri-state outputs  
allow ꢁor direct connection to a microcontroller I/O bus.  
The outputs remain high impedance during acquisition  
and conversion. Data is loaded onto the output bus with  
Layout, Grounding, and Bypassing  
For best perꢁormance, use printed circuit boards. Do  
not run analog and digital lines parallel to each other,  
and do not lay out digital signal paths underneath the  
ADC package. Use separate analog and digital ground  
planes with only one point connecting the two ground  
systems (analog and digital) as close to the device as  
possible.  
the third ꢁalling edge oꢁ CS with R/C high (aꢁter t ).  
DO  
Bringing CS high ꢁorces the output bus back to high  
impedance. The MAX1177 then waits ꢁor the next ꢁalling  
edge oꢁ CS to start the next conversion cycle (Figure 2).  
HBEN toggles the output between the high/low byte. The  
low byte is loaded onto the output bus when HBEN is  
low, and the high byte is on the bus when HBEN is high.  
Route digital signals ꢁar away ꢁrom sensitive analog and  
reꢁerence inputs. Iꢁ digital lines must cross analog lines,  
do so at right angles to minimize coupling digital noise  
onto the analog lines. Iꢁ the analog and digital sections  
share the same supply, isolate the digital and analog  
supply by connecting them with a low-value (10)  
resistor or ꢁerrite bead.  
Transfer Function  
Figure 8 shows the MAX1177 output transꢁer ꢁunction.  
The output is coded in standard binary.  
Input Buffer  
Most applications require an input buꢁꢁer ampliꢁier to  
achieve 16-bit accuracy and prevent loading the  
source. When the input signal is multiplexed, switch the  
channels immediately aꢁter acquisition, rather than near  
the end oꢁ, or aꢁter, a conversion. This allows more time  
ꢁor the input buꢁꢁer ampliꢁier to respond to a large step  
The ADC is sensitive to high-ꢁrequency noise on the  
AV  
supply. Bypass AV  
to AGND with a 0.1µF  
DD  
DD  
capacitor in parallel with a 1µF to 10µF low-ESR capaci-  
tor with the smallest capacitor closest to the device.  
Keep capacitor leads short to minimize stray inductance.  
10 ______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADC  
with 0 to 10V Input Range  
Signal-to-Noise Plus Distortion  
Definitions  
Signal-to-noise plus distortion (SINAD) is the ratio oꢁ the  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation oꢁ the values  
on an actual transꢁer ꢁunction ꢁrom a straight line. This  
straight line can be either a best-straight-line ꢁit or a line  
drawn between the end points oꢁ the transꢁer ꢁunction,  
once oꢁꢁset and gain errors have been nulliꢁied. The  
static linearity parameters ꢁor the MAX1177 are mea-  
sured using the end-point method.  
ꢁundamental input ꢁrequencys RMS amplitude to the  
RMS equivalent oꢁ all the other ADC output signals:  
Signal  
(Noise+Distortion)  
RMS  
SINAD(dB) = 20 × log  
RMS  
Effective Number of Bits  
Eꢁꢁective number oꢁ bits (ENOB) indicates the global  
accuracy oꢁ an ADC at a speciꢁic input ꢁrequency and  
sampling rate. An ideal ADC error consists oꢁ quantiza-  
tion noise only. With an input range equal to the ꢁull-  
scale range oꢁ the ADC, calculate the ENOB as ꢁollows:  
Differential Nonlinearity  
Diꢁꢁerential nonlinearity (DNL) is the diꢁꢁerence between  
an actual step width and the ideal value oꢁ 1 LSB. A  
DNL error speciꢁication oꢁ 1 LSB guarantees no missing  
codes and a monotonic transꢁer ꢁunction.  
SINAD1.76  
Signal-to-Noise Ratio  
For a waveꢁorm perꢁectly reconstructed ꢁrom digital  
samples, signal-to-noise ratio (SNR) is the ratio oꢁ the  
ꢁull-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
noise error only and results directly ꢁrom the ADCs res-  
olution (N bits):  
ENOB=  
6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio oꢁ the RMS  
sum oꢁ the ꢁirst ꢁive harmonics oꢁ the input signal to the  
ꢁundamental itselꢁ. This is expressed as:  
2
2
2
2
V
+ V + V + V  
3 4 5  
2
SNR = (6.02 × N + 1.76)dB  
THD = 20 × log  
V
1
where N = 16 bits.  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reꢁerence noise, clock jitter,  
etc. The SNR is computed by taking the ratio oꢁ the  
RMS signal to the RMS noise, which includes all spec-  
tral components minus the ꢁundamental, the ꢁirst ꢁive  
harmonics, and the DC oꢁꢁset.  
where V is the ꢁundamental amplitude and V through  
5
1
2
V are the 2nd- through 5th-order harmonics.  
Spurious-Free Dynamic Range  
Spurious-ꢁree dynamic range (SFDR) is the ratio oꢁ the  
RMS amplitude oꢁ the ꢁundamental (maximum signal  
component) to the RMS value oꢁ the next-largest ꢁre-  
quency component.  
______________________________________________________________________________________ 11  
16-Bit, 135ksps, Single-Supply ADC  
with to 10V Input Range  
Functional Diagram  
REFADJ  
HBEN  
AV AGND DV DGND  
DD  
DD  
5k  
REFERENCE  
8 BITS  
8 BITS  
OUTPUT  
REGISTERS  
D0D7  
OR  
D8D15  
REF  
INPUT  
SCALER  
CAPACITIVE  
DAC  
AIN  
AGND  
MAX1177  
SUCCESSIVE-  
CLOCK  
APPROXIMATION  
REGISTER AND  
CONTROL LOGIC  
EOC  
CS  
R/C  
Pin Configuration  
Chip Information  
TRANSISTOR COUNT: 15,383  
TOP VIEW  
PROCESS: BiCMOS  
D4/D12  
D5/D13  
D6/D14  
D7/D15  
R/C  
1
2
20 D3/D11  
19  
18  
D2/D10  
D1/D9  
3
4
17 D0/D8  
16  
5
DV  
DD  
MAX1177  
EOC  
6
15 DGND  
7
14  
13  
12  
11  
AV  
CS  
DD  
8
AGND  
AIN  
HBEN  
REF  
9
10  
AGND  
REFADJ  
TSSOP  
12 ______________________________________________________________________________________  
16-Bit, 135ksps, Single-Supply ADC  
with 0 to 10V Input Range  
Package Information  
(The package drawing(s) in this data sheet may not reꢁlect the most current speciꢁications. For the latest package outline inꢁormation,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 1±  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark oꢁ Maxim Integrated Products.  

相关型号:

MAX1177CCUP

16-Bit, 135ksps, Single-Supply ADC with 0 to 10V Input Range
MAXIM

MAX1177CCUP+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153AC, TSSOP-20
MAXIM

MAX1177CCUP+T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153AC, TSSOP-20
MAXIM

MAX1177CCUP-T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153AC, TSSOP-20
MAXIM

MAX1177CEUP

16-Bit, 135ksps, Single-Supply ADC with 0 to 10V Input Range
MAXIM

MAX1177CEUP-T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153AC, TSSOP-20
MAXIM

MAX1178

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range
MAXIM

MAX1178ACUP

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range
MAXIM

MAX1178ACUP+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1178ACUP+T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1178ACUP-T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO20, 4.40 MM, MO-153, TSSOP-20
MAXIM

MAX1178AEUP

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range
MAXIM