MAX1186 [MAXIM]

Dual 10-Bit.40Msps.3V.Low-Power ADC with Internal Reference and Multiplexed Parallel Outputs ; 双10 - Bit.40Msps.3V.Low功耗ADC,内置电压基准及复用并行输出\n
MAX1186
型号: MAX1186
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual 10-Bit.40Msps.3V.Low-Power ADC with Internal Reference and Multiplexed Parallel Outputs
双10 - Bit.40Msps.3V.Low功耗ADC,内置电压基准及复用并行输出\n

文件: 总21页 (文件大小:536K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2263; Rev 0; 12/01  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
General Description  
Features  
The MAX1186 is a 3V, dual 10-bit analog-to-digital con-  
verter (ADC) featuring fully-differential wideband track-  
and-hold (T/H) inputs, driving two pipelined, nine-stage  
ADCs. The MAX1186 is optimized for low-power, high  
dynamic performance applications in imaging, instru-  
mentation, and digital communication applications. This  
ADC operates from a single 2.7V to 3.6V supply, con-  
suming only 105mW while delivering a typical signal-to-  
noise ratio (SNR) of 59.4dB at an input frequency of  
20MHz and a sampling rate of 40Msps. Digital outputs  
A and B are updated alternating on the rising (CHA)  
and the falling (CHB) edge of the clock. The T/H driven  
input stages incorporate 400MHz (-3dB) input ampli-  
fiers. The converters may also be operated with single-  
ended inputs. In addition to low operating power, the  
MAX1186 features a 2.8mA sleep mode as well as a  
1µA power-down mode to conserve power during idle  
periods.  
o Single 3V Operation  
o Excellent Dynamic Performance:  
59.4dB SNR at f = 20MHz  
IN  
72dBc SFDR at f = 20MHz  
IN  
o Low Power:  
35mA (Normal Operation)  
2.8mA (Sleep Mode)  
1µA (Shutdown Mode)  
o 0.02dB Gain and 0.25° Phase Matching  
o Wide 1V  
Differential Analog Input Voltage  
P-P  
Range  
o 400MHz, -3dB Input Bandwidth  
o On-Chip 2.048V Precision Bandgap Reference  
o Single 10-Bit Bus for Multiplexed, Digital Outputs  
o User-Selectable Output Format–Two’s  
Complement or Offset Binary  
An internal 2.048V precision bandgap reference sets  
the full-scale range of the ADCs. A flexible reference  
structure allows the use of this internal or an externally  
derived reference, if desired for applications requiring  
increased accuracy or a different input voltage range.  
o 48-Pin TQFP Package with Exposed Paddle For  
Improved Thermal Dissipation  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
The MAX1186 features parallel, multiplexed, CMOS-  
compatible three-state outputs. The digital output for-  
mat can be set to two’s complement or straight offset  
binary through a single control pin. The device provides  
for a separate output power supply of 1.7V to 3.6V for  
flexible interfacing. The MAX1186 is available in a  
7mm x 7mm, 48-pin TQFP-EP package, and is speci-  
fied for the extended industrial (-40°C to +85°C) tem-  
perature range.  
MAX1186ECM  
-40°C to +85°C  
48 TQFP-EP  
Functional Diagram appears at end of data sheet.  
Pin Configuration  
Pin-compatible, nonmultiplexed, high-speed versions of  
the MAX1186 are also available. Please refer to the  
MAX1180 data sheet for 105Msps, the MAX1181 data  
sheet for 80Msps, the MAX1182 data sheet for 65Msps,  
the MAX1183 data sheet for 40Msps, and the MAX1184  
data sheet for 20Msps. For a pin-compatible lower  
speed version (20Msps) of the MAX1186, please refer  
to the MAX1185 data sheet.  
COM  
1
2
36 D1A/B  
35 D0A/B  
34 OGND  
V
DD  
GND  
INA+  
INA-  
3
4
33 OV  
32 OV  
DD  
DD  
5
V
6
31 OGND  
30 A/B  
DD  
MAX1186  
GND  
INB-  
INB+  
GND  
7
8
29 N.C.  
Applications  
N.C.  
N.C.  
N.C.  
N.C.  
9
28  
27  
26  
25  
High-Resolution Imaging  
I/Q Channel Digitization  
Multichannel IF Sampling  
Instrumentation  
10  
11  
12  
V
DD  
CLK  
Video Application  
Ultrasound  
48 TQFP-EP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
ABSOLUTE MAXIMUM RATINGS  
V
, OV  
to GND ...............................................-0.3V to +3.6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
DD  
OGND to GND.......................................................-0.3V to +0.3V  
48-Pin TQFP (derate 12.5mW/°C above +70°C).......1000mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
INA+, INA-, INB+, INB- to GND ...............................-0.3V to V  
REFIN, REFOUT, REFP, REFN, COM,  
DD  
CLK to GND............................................-0.3V to (V + 0.3V)  
DD  
OE, PD, SLEEP, T/B, D9A/B–D0A/B,  
A/B to OGND .......................................-0.3V to (OV + 0.3V)  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3V, OV  
= 2.5V, 0.1µF and 1µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a  
DD  
DD  
10kresistor, V  
= 2V  
(differential w.r.t. COM), C = 10pF at digital outputs (Note 5), f  
= 40MHz,  
IN  
L
CLK  
P-P  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Resolution  
10  
Bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
f
f
= 7.5MHz  
0.5  
1.7  
1.0  
1.7  
2
IN  
IN  
DNL  
= 7.5MHz, no missing codes guaranteed  
0.25  
LSB  
<
1
% FS  
% FS  
Gain Error  
0
ANALOG INPUT  
Differential Input Voltage  
Range  
V
Differential or single-ended inputs  
Switched capacitor load  
1
V
V
DIFF  
Common-Mode Input Voltage  
Range  
V
/2  
DD  
0.5  
V
CM  
Input Resistance  
R
100  
5
kΩ  
IN  
IN  
Input Capacitance  
C
pF  
CONVERSION RATE  
Maximum Clock Frequency  
f
40  
MHz  
CLK  
CHA  
CHB  
5
Clock  
Cycles  
Data Latency  
5.5  
DYNAMIC CHARACTERISTICS (f  
Signal-to-Noise Ratio  
= 40MHz, 4096-point FFT)  
CLK  
f
f
f
f
f
f
= 7.5MHz, T = +25°C  
57.3  
56.8  
57  
59.5  
59.4  
59.4  
59.2  
74  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
A
SNR  
dB  
dB  
= 20MHz, T = +25°C  
A
= 7.5MHz, T = +25°C  
A
Signal-to-Noise and Distortion  
Spurious-Free Dynamic Range  
SINAD  
SFDR  
= 20MHz, T = +25°C  
56.5  
64  
A
= 7.5MHz, T = +25°C  
A
dBc  
= 20MHz, T = +25°C  
64  
72  
A
2
_______________________________________________________________________________________  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 2.5V, 0.1µF and 1µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a  
DD  
DD  
10kresistor, V  
= 2V  
(differential w.r.t. COM), C = 10pF at digital outputs (Note 5), f  
= 40MHz,  
IN  
L
CLK  
P-P  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
= 7.5MHz  
MIN  
TYP  
-74  
MAX  
UNITS  
f
f
f
f
f
f
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
Third-Harmonic Distortion  
Intermodulation Distortion  
HD3  
dBc  
= 20MHz  
-72  
= 11.6066MHz at -6.5dB FS  
= 13.3839MHz at -6.5dB FS (Note 2)  
IMD  
THD  
-76  
dBc  
dBc  
= 7.5MHz, T = +25°C  
-72  
-71  
500  
400  
1
-64  
-63  
A
Total Harmonic Distortion  
(first four harmonics)  
= 20MHz  
Small-Signal Bandwidth  
Full-Power Bandwidth  
Aperture Delay  
Input at -20dB FS, differential inputs  
Input at -0.5dB FS, differential inputs  
MHz  
MHz  
ns  
FPBW  
t
AD  
Aperture Jitter  
t
2
ps  
rms  
AJ  
Overdrive Recovery Time  
Differential Gain  
For 1.5 full-scale input  
2
ns  
1
%
Differential Phase  
Output Noise  
0.25  
0.2  
degrees  
INA+ = INA- = INB+ = INB- = COM  
LSB  
RMS  
INTERNAL REFERENCE  
2.048  
3%  
Reference Output Voltage  
REFOUT  
TC  
V
Reference Temperature  
Coefficient  
60  
ppm/°C  
REF  
Load Regulation  
1.25  
mV/mA  
BUFFERED EXTERNAL REFERENCE (V  
= 2.048V)  
REFIN  
REFIN Input Voltage  
V
2.048  
2.012  
V
V
REFIN  
Positive Reference Output  
Voltage  
V
REFP  
Negative Reference Output  
Voltage  
V
0.988  
V
REFN  
Differential Reference Output  
Voltage Range  
V  
V  
= V  
- V  
REFN  
0.98  
1.024  
>50  
1.07  
V
REF  
REF  
REFP  
REFIN Resistance  
R
MΩ  
REFIN  
_______________________________________________________________________________________  
3
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 2.5V, 0.1µF and 1µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a  
DD  
DD  
10kresistor, V  
= 2V  
(differential w.r.t. COM), C = 10pF at digital outputs (Note 5), f  
= 40MHz,  
IN  
L
CLK  
P-P  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum REFP, COM Source  
Current  
I
5
mA  
SOURCE  
Maximum REFP, COM Sink  
Current  
I
-250  
µA  
SINK  
Maximum REFN Source Current  
Maximum REFN Sink Current  
I
250  
-5  
µA  
SOURCE  
I
mA  
SINK  
UNBUFFERED EXTERNAL REFERENCE (V  
= GND, reference voltage applied to REFP, REFN, and COM)  
REFIN  
R
R
,
Measured between REFP and COM, and  
REFN and COM  
REFP  
REFP, REFN Input Resistance  
4
kΩ  
V
REFN  
Differential Reference Input  
Voltage  
1.024  
10%  
V  
V  
= V  
- V  
REFP REFN  
REF  
REF  
V
/2  
10%  
DD  
COM Input Voltage  
REFP Input Voltage  
REFN Input Voltage  
V
V
V
COM  
REFP  
REFN  
V
+
COM  
V
V  
/2  
REF  
V
-
COM  
V
V
V  
/2  
REF  
DIGITAL INPUTS (CLK, PD, OE, SLEEP, T/B)  
CLK  
0.8  
V
DD  
Input High Threshold  
V
V
IH  
PD, OE, SLEEP, T/B  
CLK  
0.8 OV  
DD  
0.2  
V
DD  
Input Low Threshold  
Input Hysteresis  
Input Leakage  
V
V
V
IL  
PD, OE, SLEEP, T/B  
0.2 OV  
DD  
V
0.1  
5
HYST  
I
V
V
= OV or V (CLK)  
5
5
IH  
IH  
IL  
DD  
DD  
µA  
pF  
I
= 0  
IL  
Input Capacitance  
C
IN  
DIGITAL OUTPUTS (D0A/BD9A/B, A/B)  
Output Voltage Low  
V
I
I
= -200µA  
0.2  
10  
V
V
OL  
SINK  
Output Voltage High  
V
= 200µA  
OV - 0.2  
DD  
OH  
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
I
OE = OV  
µA  
pF  
LEAK  
DD  
DD  
C
OE = OV  
5
OUT  
4
_______________________________________________________________________________________  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3V, OV  
= 2.5V, 0.1µF and 1µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a  
DD  
DD  
10kresistor, V  
= 2V  
(differential w.r.t. COM), C = 10pF at digital outputs (Note 5), f  
= 40MHz,  
IN  
L
CLK  
P-P  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MIN  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER REQUIREMENTS  
Analog Supply Voltage Range  
Output Supply Voltage Range  
V
2.7  
1.7  
3.0  
2.5  
35  
2.8  
1
3.6  
3.6  
50  
V
V
DD  
OV  
DD  
Operating, f  
Sleep mode  
= 20MHz at -0.5dB FS  
INA or B  
mA  
µA  
Analog Supply Current  
Output Supply Current  
Power Dissipation  
I
VDD  
Shutdown, clock idle, PD = OE = OV  
15  
DD  
Operating, C = 15pF, f  
L
-0.5dB FS  
= 20MHz at  
INA or B  
4
mA  
I
OVDD  
Sleep mode  
100  
2
µA  
Shutdown, clock idle, PD = OE = OV  
10  
DD  
Operating, f  
Sleep mode  
= 20MHz at -0.5dB FS  
105  
8.4  
3
150  
INA or B  
mW  
PDISS  
PSRR  
Shutdown, clock idle, PD = OE = OV  
45  
µW  
mV/V  
%/V  
DD  
Offset  
Gain  
0.2  
0.1  
Power-Supply Rejection Ratio  
TIMING CHARACTERISTICS  
CLK Rise to CHA Output Data  
Valid  
t
t
Figure 3 (Note 3)  
Figure 3 (Note 3)  
5
5
6
8
8
ns  
ns  
ns  
DOA  
DOB  
DA/B  
CLK Fall to CHB Output Data  
Valid  
Clock Rise/Fall to A/B Rise/Fall  
Time  
t
Output Enable Time  
Output Disable Time  
CLK Pulse Width High  
CLK Pulse Width Low  
t
Figure 4  
10  
ns  
ns  
ns  
ns  
ENABLE  
t
Figure 4  
1.5  
DISABLE  
12.5 3.8  
12.5 3.8  
t
Figure 3, clock period: 25ns  
Figure 3, clock period: 25ns  
Wake-up from sleep mode (Note 4)  
Wake-up from shutdown (Note 4)  
CH  
t
CL  
0.41  
1.5  
Wake-Up Time  
t
µs  
WAKE  
CHANNEL-TO-CHANNEL MATCHING  
Crosstalk  
f
f
f
= 20MHz at -0.5dB FS  
= 20MHz at -0.5dB FS  
= 20MHz at -0.5dB FS  
-70  
dB  
dB  
INA or B  
INA or B  
INA or B  
Gain Matching  
0.02  
0.25  
0.2  
Phase Matching  
degrees  
Note 1: SNR, SINAD, THD, SFDR, and HD3 are based on an analog input voltage of -0.5dB FS referenced to a 1.024V full-scale  
input voltage range.  
Note 2: Intermodulation distortion is the total power of the intermodulation products relative to the individual carrier. This number is  
6dB or better, if referenced to the two-tone envelope.  
Note 3: Digital outputs settle to V and V . Parameter guaranteed by design.  
IH  
IL  
Note 4: With REFIN driven externally, REFP, COM, and REFN are left floating while powered down.  
Note 5: Equivalent dynamic performance is obtainable over full OV range with reduced C .  
DD  
L
_______________________________________________________________________________________  
5
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Typical Operating Characteristics  
(V  
= 3V, OV  
= 2.5V, V  
= 2.048V, differential input at -0.5dB FS, f  
= 40.00057MHz, C 10pF, T = +25°C,  
CLK L A  
DD  
DD  
REFIN  
unless otherwise noted.)  
FFT PLOT CHA (DIFFERENTIAL INPUT,  
8192-POINT DATA RECORD)  
FFT PLOT CHA (DIFFERENTIAL INPUT,  
8192-POINT DATA RECORD)  
FFT PLOT CHB (DIFFERENTIAL INPUT,  
8192-POINT DATA RECORD)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
f
f
f
= 40.0005678MHz  
= 19.8879776MHz  
= 24.9661747MHz  
CHA  
f
f
f
= 40.0005678MHz  
= 6.1475482MHz  
= 7.5342866MHz  
CHA  
f
f
f
= 40.0005678MHz  
= 6.1475482MHz  
= 7.5342866MHz  
CLK  
INA  
INB  
CLK  
INA  
INB  
CHB  
CLK  
INA  
INB  
AINA = -0.516dB FS  
AINA = -0.552dB FS  
AINB = -0.534dB FS  
HD3  
HD3  
HD3  
HD2  
HD2  
HD2  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
TWO-TONE IMD PLOT (DIFFERENTIAL INPUT,  
SIGNAL-TO-NOISE RATIO vs.  
ANALOG INPUT FREQUENCY  
FFT PLOT CHB (DIFFERENTIAL INPUT,  
8192-POINT DATA RECORD)  
8192-POINT DATA RECORD)  
0
0
61  
60  
59  
58  
57  
56  
55  
f
f
f
= 40.0005678MHz  
= 11.606610MHz  
= 13.383979MHz  
f
f
f
= 40.0005678MHz  
= 19.8879776MHz  
= 24.9661747MHz  
CHB  
CLK  
IN1  
IN2  
CLK  
INA  
INB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
CHB  
f
IN2  
AIN = -6.5dB FS  
AINB = -0.498dB FS  
TWO-TONE ENVELOPE =  
-0.471dB FS  
CHA  
f
IN1  
HD3  
IMD3  
IMD3  
IMD2  
IMD2  
HD2  
0
2
4
6
8
10 12 14 16 18 20  
1
10  
100  
0
2
4
6
8
10 12 14 16 18 20  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
SIGNAL-TO-NOISE PLUS DISTORTION vs.  
ANALOG INPUT FREQUECNY  
TOTAL HARMONIC DISTORTION vs.  
ANALOG INPUT FREQUENCY  
SPURIOUS-FREE DYNAMIC RANGE vs.  
ANALOG INPUT FREQUENCY  
-60  
-64  
-68  
-72  
62  
60  
58  
56  
54  
80  
76  
72  
68  
64  
60  
CHB  
CHA  
CHB  
CHA  
CHA  
CHB  
-76  
-80  
1
10  
100  
1
10  
100  
1
10  
100  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Typical Operating Characteristics (continued)  
(V  
= 3V, OV  
= 2.5V, V  
= 2.048V, differential input at -0.5dB FS, f  
= 40.00057MHz, C 10pF, T = +25°C,  
CLK L A  
DD  
DD  
REFIN  
unless otherwise noted.)  
FULL-POWER INPUT BANDWIDTH vs.  
ANALOG INPUT FREQUENCY, SINGLE-ENDED  
SMALL-SIGNAL INPUT BANDWIDTH vs.  
ANALOG INPUT FREQUENCY, SINGLE-ENDED  
SIGNAL-TO-NOISE RATIO vs.  
INPUT POWER (f = 19.8879776MHz)  
IN  
6
6
65  
60  
55  
50  
45  
40  
35  
V
= 100mV  
P-P  
IN  
4
2
4
2
0
0
-2  
-4  
-6  
-8  
-2  
-4  
-6  
-8  
1
10  
100  
1000  
1
10  
100  
1000  
-20  
-16  
-12  
-8  
-4  
0
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
INPUT POWER (dB FS)  
TOTAL HARMONIC DISTORTION vs.  
SIGNAL-TO-NOISE PLUS DISTORTION vs.  
SPURIOUS-FREE DYNAMIC RANGE vs.  
INPUT POWER (f = 19.8879776MHz)  
INPUT POWER (f = 19.8879776MHz)  
INPUT POWER (f = 19.8879776MHz)  
IN  
IN  
IN  
65  
60  
55  
50  
45  
40  
35  
-55  
-60  
-65  
-70  
-75  
-80  
80  
75  
70  
65  
60  
-20  
-16  
-12  
-8  
-4  
0
-20  
-16  
-12  
-8  
-4  
0
-20  
-16  
-12  
-8  
-4  
0
INPUT POWER (dB FS)  
INPUT POWER (dB FS)  
INPUT POWER (dB FS)  
INTEGRAL NONLINEARITY  
(BEST ENDPOINT FIT)  
GAIN ERROR vs. TEMPERATURE  
DIFFERENTIAL NONLINEARITY  
EXTERNAL REFERENCE (V  
= 2.048V)  
REFIN  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
CHB  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
CHA  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
0
128 256 384 512 640 768 896 1024  
DIGITAL OUTPUT CODE  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Typical Operating Characteristics (continued)  
(V  
= 3V, OV  
= 2.5V, V  
= 2.048V, differential input at -0.5dB FS, f  
= 40.00057MHz, C 10pF, T = +25°C,  
CLK L A  
DD  
DD  
REFIN  
unless otherwise noted.)  
ANALOG SUPPLY CURRENT vs.  
ANALOG SUPPLY VOLTAGE  
ANALOG SUPPLY CURRENT vs.  
TEMPERATURE  
OFFSET ERROR vs. TEMPERATURE  
EXTERNAL REFERENCE (V  
= 2.048V)  
REFIN  
45  
43  
41  
39  
37  
35  
0.2  
42  
41  
40  
0.1  
0
39  
38  
37  
36  
-0.1  
-0.2  
-0.3  
-0.4  
CHB  
CHA  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
(V)  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
V
TEMPERATURE (°C)  
DD  
TEMPERATURE (°C)  
SFDR, SNR, THD, SINAD vs.  
CLOCK DUTY CTCLE  
ANALOG POWER-DOWN CURRENT  
vs. ANALOG POWER SUPPLY  
INTERNAL REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
80  
0.40  
0.32  
0.24  
0.16  
0.08  
0
2.0100  
2.0080  
2.0060  
2.0040  
2.0020  
2.0000  
f
= 7.5342866MHz  
INA/B  
SFDR  
OE = PD = OV  
DD  
74  
68  
62  
56  
50  
THD  
SNR  
SINAD  
20  
30  
40  
50  
60  
70  
80  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
(V)  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
(V)  
CLOCK DUTY CYCLE (%)  
V
V
DD  
DD  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
OUTPUT NOISE HISTOGRAM (DC INPUT)  
70,000  
2.014  
2.010  
2.006  
64,515  
63,000  
56,000  
49,000  
42,000  
35,000  
28,000  
21,000  
14,000  
7,000  
2.002  
1.998  
1.994  
869  
N-1  
152  
N+1  
0
0
0
-40  
-15  
10  
35  
60  
85  
N-2  
N
N+2  
TEMPERATURE (°C)  
DIGITAL OUTPUT CODE  
8
_______________________________________________________________________________________  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Pin Description  
PIN  
NAME  
FUNCTION  
1
COM  
Common-Mode Voltage Input/Output. Bypass to GND with a 0.1µF capacitor.  
Analog Supply Voltage. Bypass to GND with a capacitor combination of 2.2µF in parallel with  
0.1µF.  
2, 6, 11, 14, 15  
V
DD  
3, 7, 10, 13, 16  
GND  
INA+  
INA-  
INB-  
INB+  
CLK  
Analog Ground  
4
5
Channel A Positive Analog Input. For single-ended operation, connect signal source to INA+.  
Channel A Negative Analog Input. For single-ended operation, connect INA- to COM.  
Channel B Negative Analog Input. For single-ended operation, connect INB- to COM.  
Channel B Positive Analog Input. For single-ended operation, connect signal source to INB+.  
Converter Clock Input  
8
9
12  
T/B selects the ADC digital output format.  
High: Twos complement.  
Low: Straight offset binary.  
17  
18  
19  
20  
T/B  
SLEEP  
PD  
Sleep Mode Input.  
High: Deactivates the two ADCs, but leaves the reference bias circuit active.  
Low: Normal operation.  
Power-Down Input.  
High: Power-down mode.  
Low: Normal operation.  
Output Enable Input.  
High: Digital outputs disabled.  
Low: Digital outputs enabled.  
OE  
2129  
30  
N.C.  
A/B  
No Connection  
A/B Data Indicator. This digital output indicates CHA data (A/B = 1) or CHB data (A/B = 0) to  
be present on the output. A/B follows the external clock signal with typically 6ns delay.  
31, 34  
32, 33  
OGND  
Output Driver Ground  
Output Driver Supply Voltage. Bypass to OGND with a capacitor combination of 2.2µF in  
parallel with 0.1µF.  
OV  
DD  
Three-State Digital Output, Bit 0 (LSB). Depending on status of A/B, output data reflects  
channel A or channel B data.  
35  
D0A/B  
Three-State Digital Output, Bit 1. Depending on status of A/B, output data reflects channel A or  
channel B data.  
36  
37  
38  
39  
40  
D1A/B  
D2A/B  
D3A/B  
D4A/B  
D5A/B  
Three-State Digital Output, Bit 2. Depending on status of A/B, output data reflects channel A or  
channel B data.  
Three-State Digital Output, Bit 3. Depending on status of A/B, output data reflects channel A or  
channel B data.  
Three-State Digital Output, Bit 4. Depending on status of A/B, output data reflects channel A or  
channel B data.  
Three-State Digital Output, Bit 5. Depending on status of A/B, output data reflects channel A or  
channel B data.  
_______________________________________________________________________________________  
9
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
Three-State Digital Output, Bit 6. Depending on status of A/B, output data reflects channel A or  
channel B data.  
41  
D6A/B  
Three-State Digital Output, Bit 7. Depending on status of A/B, output data reflects channel A or  
channel B data.  
42  
43  
44  
D7A/B  
D8A/B  
D9A/B  
Three-State Digital Output, Bit 8. Depending on status of A/B, output data reflects channel A or  
channel B data.  
Three-State Digital Output, Bit 9 (MSB). Depending on status of A/B, output data reflects  
channel A or channel B data.  
Internal Reference Voltage Output. Maybe connected to REFIN through a resistor or a resistor-  
divider.  
45  
46  
47  
REFOUT  
REFIN  
REFP  
Reference Input. V  
= 2 (V  
- V  
REFN  
). Bypass to GND with a >1nF capacitor.  
REFIN  
REFP  
Positive Reference Input/Output. Conversion range is (V  
>0.1µF capacitor.  
- V  
REFN  
). Bypass to GND with a  
REFP  
Negative Reference Input/Output. Conversion range is (V  
a >0.1µF capacitor.  
- V  
REFN  
). Bypass to GND with  
REFP  
48  
REFN  
10 ______________________________________________________________________________________  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
time of 6ns and remains high when CHA data is updat-  
ed and low when CHB data is updated.  
Detailed Description  
The MAX1186 uses a nine-stage, fully-differential,  
pipelined architecture (Figure 1) that allows for high-  
speed conversion while minimizing power consumption.  
Samples taken at the inputs move progressively through  
the pipeline stages every one-half clock cycle. Including  
the delay through the output latch, the total clock-cycle  
latency is five clock cycles.  
Input Track-and-Hold (T/H) Circuits  
Figure 2 displays a simplified functional diagram of the  
input track-and-hold (T/H) circuits in both track- and hold-  
mode. In track mode, switches S1, S2a, S2b, S4a, S4b,  
S5a, and S5b are closed. The fully-differential circuits  
sample the input signals onto the two capacitors (C2a  
and C2b) through switches S4a and S4b. S2a and S2b  
set the common mode for the amplifier input, and open  
simultaneously with S1, sampling the input waveform.  
Switches S4a and S4b are then opened before switches  
S3a and S3b connect capacitors C1a and C1b to the out-  
put of the amplifier and switch S4c is closed. The result-  
ing differential voltages are held on capacitors C2a and  
C2b. The amplifiers are used to charge capacitors C1a  
and C1b to the same values originally held on C2a and  
C2b. These values are then presented to the first stage  
quantizers and isolate the pipelines from the fast-chang-  
ing inputs. The wide input bandwidth T/H amplifiers allow  
the MAX1186 to track and sample/hold analog inputs of  
high frequencies (> Nyquist). Both ADC inputs (INA+,  
INB+, INA-, and INB-) can be driven either differentially or  
single-ended. Match the impedance of INA+ and INA-,  
as well as INB+ and INB-, and set the common-mode  
1.5-bit (2-comparator) flash ADCs convert the held input  
voltages into a digital code. The digital-to-analog con-  
verters (DACs) convert the digitized results back into  
analog voltages, which are then subtracted from the  
original held input signals. The resulting error signals  
are then multiplied by two and the residues are passed  
along to the next pipeline stages, where the process is  
repeated until the signals have been processed by all  
nine stages. Digital error correction compensates for  
ADC comparator offsets in each of these pipeline  
stages and ensures no missing codes.  
Both input channels are sampled on the rising edge of  
the clock and the resulting data is multiplexed at the  
output. CHA data is updated on the rising edge (5 clock  
cycles later) and CHB data is updated on the falling  
edge (5.5 clock cycles later) of the clock signal. The A/B  
indicator follows the clock signal with a typical delay  
voltage to midsupply (V /2) for optimum performance.  
DD  
V
V
V
OUT  
V
OUT  
IN  
IN  
x2  
x2  
Σ
Σ
T/H  
T/H  
FLASH  
ADC  
FLASH  
ADC  
DAC  
DAC  
1.5 BITS  
1.5 BITS  
2-BIT FLASH  
ADC  
2-BIT FLASH  
ADC  
STAGE 1  
STAGE 2  
STAGE 8  
STAGE 9  
STAGE 1  
STAGE 2  
STAGE 8  
STAGE 9  
DIGITAL CORRECTION LOGIC  
10  
DIGITAL CORRECTION LOGIC  
10  
T/H  
T/H  
V
INB  
V
INA  
OUTPUT  
MULTIPLEXER  
10  
D0A/B–D9A/B  
Figure 1. Pipelined Architecture—Stage Blocks  
______________________________________________________________________________________ 11  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
INTERNAL  
COM  
S5a  
BIAS  
S2a  
C1a  
S3a  
S4a  
S4b  
INA+  
INA-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
CLK  
INTERNAL  
NONOVERLAPPING  
CLOCK SIGNALS  
HOLD  
HOLD  
INTERNAL  
BIAS  
TRACK  
TRACK  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
INB+  
INB-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
MAX1186  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
Figure 2. MAX1186 T/H Amplifiers  
12 ______________________________________________________________________________________  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
The MAX1186 clock input operates with a voltage thresh-  
Analog Inputs and Reference  
Configurations  
old set to V /2. Clock inputs with a duty cycle other  
DD  
than 50%, must meet the specifications for high and low  
periods as stated in the Electrical Characteristics.  
The full-scale range of the MAX1186 is determined by the  
internally generated voltage difference between REFP  
(V /2 + V  
/4) and REFN (V /2 - V /4). The  
REFIN  
DD  
REFIN  
DD  
System Timing Requirements  
Figure 3 shows the relationship between clock and ana-  
log input, A/B indicator, and the resulting CHA/CHB  
data output. CHA and CHB data are sampled on the  
rising edge of the clock signal. Following the rising  
edge of the 5th clock cycles, the digitized value of the  
original CHA sample is presented at the output. This  
followed one-half clock cycle later by the digitized  
value of the original CHB sample.  
full-scale range for both on-chip ADCs is adjustable  
through the REFIN pin, which is provided for this purpose.  
REFOUT, REFP, COM (V /2), and REFN are internally  
DD  
buffered low-impedance outputs.  
The MAX1186 provides three modes of reference operation:  
Internal reference mode  
Buffered external reference mode  
Unbuffered external reference mode  
A channel selection signal (A/B indicator) allows the user  
to determine which output data represents which input  
channel. With A/B = 1, digitized data from CHA is present  
at the output and with A/B = 0 digitized data from CHB is  
present.  
In internal reference mode, connect the internal reference  
output REFOUT to REFIN through a resistor (e.g., 10k)  
or resistor-divider, if an application requires a reduced  
full-scale range. For stability and noise filtering purposes,  
bypass REFIN with a >10nF capacitor to GND. In internal  
reference mode, REFOUT, COM, REFP, and REFN  
become low-impedance outputs.  
Digital Output Data, Output Data Format  
Selection (T/B), Output Enable (OE), Channel  
Selection (A/B)  
In buffered external reference mode, adjust the reference  
voltage levels externally by applying a stable and accu-  
rate voltage at REFIN. In this mode, COM, REFP, and  
REFN become outputs. REFOUT may be left open or con-  
nected to REFIN through a >10kresistor.  
In unbuffered external reference mode, connect REFIN to  
GND. This deactivates the on-chip reference buffers for  
REFP, COM, and REFN. With their buffers shut down,  
these nodes become high impedance and may be driven  
through separate, external reference sources.  
All digital outputs, D0A/BD9A/B (CHA or CHB data) and  
A/B are TTL/CMOS logic-compatible. The output coding  
can be chosen to be either offset binary or twos comple-  
ment (Table 1) controlled by a single pin (T/B). Pull T/B  
low to select offset binary and high to activate twos com-  
plement output coding. The capacitive load on the digital  
outputs D0A/BD9A/B should be kept as low as possible  
(<15pF), to avoid large digital currents that could feed  
back into the analog portion of the MAX1186, thereby  
degrading its dynamic performance. Using buffers on the  
digital outputs of the ADCs can further isolate the digital  
outputs from heavy capacitive loads. To further improve  
the dynamic performance of the MAX1186, small-series  
resistors (e.g., 100) may be added to the digital output  
paths, close to the MAX1186.  
Clock Input (CLK)  
The MAX1186s CLK input accepts CMOS-compatible  
clock signals. Since the interstage conversion of the  
device depends on the repeatability of the rising and  
falling edges of the external clock, use a clock with low jit-  
ter and fast rise and fall times (< 2ns). In particular, sam-  
pling occurs on the rising edge of the clock signal,  
requiring this edge to provide lowest possible jitter. Any  
significant aperture jitter would limit the SNR performance  
of the on-chip ADCs as follows:  
Figure 4 displays the timing relationship between output  
enable and data output valid as well as power-  
down/wake-up and data output valid.  
Power-Down (PD) and Sleep  
(SLEEP) Modes  
The MAX1186 offers two power-save modessleep  
and full power-down mode. In sleep mode (SLEEP = 1),  
only the reference bias circuit is active (both ADCs are  
disabled), and current consumption is reduced to  
2.8mA.  
SNR = 20 x log (1 / [2π x f x t ])  
dB  
10  
IN AJ  
where f represents the analog input frequency and t  
IN  
AJ  
is the time of the aperture jitter.  
Clock jitter is especially critical for undersampling appli-  
cations. The clock input should always be considered as  
an analog input and routed away from any analog input  
or other digital signal lines.  
To enter full power-down mode, pull PD high. With OE  
simultaneously low, all outputs are latched at the last  
value prior to the power-down. Pulling OE high, forces  
the digital outputs into a high-impedance state.  
______________________________________________________________________________________ 13  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
5 CLOCK-CYCLE LATENCY (CHA), 5.5 CLOCK-CYCLE LATENCY (CHB)  
CHA  
CHB  
t
CLK  
t
CL  
t
CH  
CLK  
t
t
DOA  
DOB  
A/B  
CHB  
D0B  
CHA  
D1A  
CHB  
CHA  
D2A  
CHB  
D2B  
CHA  
D3A  
CHB  
D3B  
CHA  
D4A  
CHB  
D4B  
CHA  
D5A  
CHB  
D5B  
CHA  
D6A  
CHB  
D6B  
t
DA/B  
D0A/BD9A/B  
D1B  
Figure 3. Timing Diagram for Multiplexed Outputs  
the amplifiers. The user may select the R  
and C  
ISO  
IN  
values to optimize the filter performance, to suit a par-  
ticular application. For the application in Figure 5, a  
R
of 50is placed before the capacitive load to pre-  
ISO  
OE  
vent ringing and oscillation. The 22pF C capacitor  
IN  
acts as a small bypassing capacitor.  
t
t
DISABLE  
ENABLE  
Using Transformer Coupling  
An RF transformer (Figure 6) provides an excellent  
solution to convert a single-ended source signal to a  
fully differential signal, required by the MAX1186 for  
optimum performance. Connecting the center tap of the  
OUTPUT  
D0A/BD9A/B  
HIGH-Z  
HIGH-Z  
VALID DATA  
transformer to COM provides a V /2 DC level shift to  
DD  
the input. Although a 1:1 transformer is shown, a step-  
up transformer may be selected to reduce the drive  
requirements. A reduced signal swing from the input  
driver, such as an op amp, may also improve the over-  
all distortion.  
Figure 4. Output Timing Diagram  
Applications Information  
Figure 5 depicts a typical application circuit containing  
two single-ended to differential converters. The internal  
In general, the MAX1186 provides better SFDR and  
THD with fully differential input signals than single-  
ended drive, especially for very high input frequencies.  
In differential input mode, even-order harmonics are  
lower as both inputs (INA+, INA- and/or INB+, INB-) are  
balanced, and each of the ADC inputs only requires  
half the signal swing compared to single-ended mode.  
reference provides a V /2 output voltage for level  
DD  
shifting purposes. The input is buffered and then split to  
a voltage follower and inverter. One lowpass filter per  
ADC suppresses some of the wideband noise associat-  
ed with high-speed operational amplifiers that follows  
14 ______________________________________________________________________________________  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Table 1. MAX1186 Output Codes For Differential Inputs  
STRAIGHT OFFSET  
DIFFERENTIAL INPUT  
VOLTAGE*  
DIFFERENTIAL  
INPUT  
TWOS COMPLEMENT  
BINARY  
T/B = 0  
T/B = 1  
V
x 511/512  
+FULL SCALE - 1LSB  
+1LSB  
11 1111 1111  
10 0000 0001  
10 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
11 1111 1111  
10 0000 0001  
10 0000 0000  
REF  
V
x 1/512  
0
REF  
Bipolar Zero  
- V  
x 1/512  
-1LSB  
REF  
-V  
x 511/512  
- FULL SCALE + 1LSB  
- FULL SCALE  
REF  
REF  
-V  
= V  
x 512/512  
- V  
REFN  
*V  
REF  
REFP  
Single-Ended AC-Coupled Input Signal  
Grounding, Bypassing, and  
Board Layout  
Figure 7 shows an AC-coupled, single-ended applica-  
tion. Amplifiers like the MAX4108 provide high speed,  
high bandwidth, low noise, and low distortion to maintain  
the integrity of the input signal.  
The MAX1186 requires high-speed board layout design  
techniques. Locate all bypass capacitors as close to  
the device as possible, preferably on the same side as  
the ADC, using surface-mount devices for minimum  
Typical QAM Demodulation Application  
The most frequently used modulation technique for digital  
communications applications is probably the Quadrature  
Amplitude Modulation (QAM). Typically found in spread-  
spectrum based systems, a QAM signal represents a  
carrier frequency modulated in both amplitude and  
phase. At the transmitter, modulating the baseband sig-  
nal with quadrature outputs, a local oscillator followed by  
subsequent up-conversion can generate the QAM signal.  
The result is an in-phase (I) and a quadrature (Q) carrier  
component, where the Q component is 90 degree phase-  
shifted with respect to the in-phase component. At the  
receiver, the QAM signal is divided down into its I and Q  
components, essentially representing the modulation  
process reversed. Figure 8 displays the demodulation  
process performed in the analog domain, using the dual  
matched 3V, 10-bit ADC MAX1186, and the MAX2451  
quadrature demodulator to recover and digitize the  
I and Q baseband signals. Before being digitized by the  
MAX1186, the mixed-down signal components may be fil-  
tered by matched analog filters, such as Nyquist or  
pulse-shaping filters. These remove any unwanted  
images from the mixing process, thereby enhancing the  
overall signal-to-noise (SNR) performance and minimizing  
intersymbol interference.  
inductance. Bypass V , REFP, REFN, and COM with  
DD  
two parallel 0.1µF ceramic capacitors and a 2.2µF  
bipolar capacitor to GND. Follow the same rules to  
bypass the digital supply (OV ) to OGND. Multilayer  
DD  
boards with separated ground and power planes pro-  
duce the highest level of signal integrity. Consider the  
use of a split ground plane arranged to match the  
physical location of the analog ground (GND) and the  
digital output driver ground (OGND) on the ADCs  
package. The two ground planes should be joined at a  
single point such that the noisy digital ground currents  
do not interfere with the analog ground plane. The ideal  
location of this connection can be determined experi-  
mentally at a point along the gap between the two  
ground planes, which produces optimum results. Make  
this connection with a low-value, surface-mount resistor  
(1to 5), a ferrite bead, or a direct short.  
Alternatively, all ground pins could share the same  
ground plane, if the ground plane is sufficiently isolated  
from any noisy, digital systems ground plane (e.g.,  
downstream output buffer or DSP ground plane). Route  
high-speed digital signal traces away from the sensitive  
analog traces of either channel. Make sure to isolate  
the analog input lines to each respective converter to  
minimize channel-to-channel crosstalk. Keep all signal  
lines short and free of 90 degree turns.  
______________________________________________________________________________________ 15  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
+5V  
0.1µF  
LOWPASS FILTER  
INA+  
MAX4108  
R
IS0  
50Ω  
0.1µF  
300Ω  
C
IN  
22pF  
0.1µF  
-5V  
600Ω  
600Ω  
300Ω  
COM  
0.1µF  
+5V  
+5V  
0.1µF  
0.1µF  
600Ω  
INPUT  
0.1µF  
0.1µF  
LOWPASS FILTER  
MAX4108  
-5V  
300Ω  
300Ω  
INA-  
MAX4108  
R
IS0  
C
IN  
22pF  
50Ω  
-5V  
+5V  
300Ω  
300Ω  
600Ω  
MAX1186  
0.1µF  
0.1µF  
LOWPASS FILTER  
INB+  
MAX4108  
-5V  
R
IS0  
0.1µF  
300Ω  
C
IN  
22pF  
50Ω  
600Ω  
600Ω  
300Ω  
0.1µF  
+5V  
+5V  
0.1µF  
0.1µF  
600Ω  
INPUT  
0.1µF  
0.1µF  
LOWPASS FILTER  
MAX4108  
-5V  
300Ω  
300Ω  
INB-  
MAX4108  
-5V  
R
IS0  
50Ω  
C
IN  
22pF  
300Ω  
300Ω  
600Ω  
Figure 5. Typical Application for Single-Ended to Differential Conversion  
16 ______________________________________________________________________________________  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
25  
INA+  
22pF  
0.1µF  
6
5
4
1
2
T1  
V
IN  
N.C.  
COM  
2.2µF  
0.1µF  
3
MINICIRCUITS  
TT16  
25Ω  
INA-  
INB+  
22pF  
22pF  
MAX1186  
25Ω  
0.1µF  
6
5
4
1
2
3
T1  
V
IN  
N.C.  
2.2µF  
0.1µF  
MINICIRCUITS  
TT16  
25Ω  
INB-  
22pF  
Figure 6. Transformer-Coupled Input Drive  
Static Parameter Definitions  
Dynamic Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. This straight  
line can be either a best straight-line fit or a line drawn  
between the endpoints of the transfer function, once  
offset and gain errors have been nullified. The static lin-  
earity parameters for the MAX1186 are measured using  
the best straight-line fit method.  
Aperture Jitter  
Figure 9 depicts the aperture jitter (t ), which is the  
AJ  
sample-to-sample variation in the aperture delay.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
falling edge of the sampling clock and the instant when  
an actual sample is taken (Figure 9).  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1LSB. A DNL  
error specification of less than 1LSB guarantees no  
missing codes and a monotonic transfer function.  
______________________________________________________________________________________ 17  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
REFP  
1kΩ  
1kΩ  
R
ISO  
50Ω  
V
IN  
0.1µF  
INA+  
COM  
INA-  
MAX4108  
C
IN  
22pF  
100Ω  
100Ω  
REFN  
0.1µF  
R
50Ω  
ISO  
C
IN  
22pF  
REFP  
MAX1186  
R
1kΩ  
ISO  
50Ω  
V
IN  
0.1µF  
INB+  
MAX4108  
C
IN  
22pF  
100Ω  
100Ω  
1kΩ  
REFN  
0.1µF  
R
ISO  
50Ω  
INB-  
C
IN  
22pF  
Figure 7: Using an Op Amp for Single-Ended, AC-Coupled Input Drive  
tion error only and results directly from the ADCs reso-  
Effective Number of Bits (ENOB)  
lution (N-Bits):  
ENOB specifies the dynamic performance of an ADC at  
a specific input frequency and sampling rate. An ideal  
ADC error consists of quantization noise only. ENOB is  
computed from:  
SNR  
= 6.02 x N + 1.76  
dB dB  
dB[max]  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
SINAD 1.76  
dB  
dB  
ENOB=  
6.02  
dB  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to all spectral components minus the fundamental  
and the DC offset.  
18 ______________________________________________________________________________________  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
MAX2451  
INA+  
INA-  
A/B  
0°  
DSP  
POST  
PROCESSING  
90°  
MAX1186  
INB+  
INB-  
CHA AND CHB DATA  
ALTERNATINGLY  
AVAILABLE ON 10-BIT,  
MULTIPLEXED  
DOWNCONVERTER  
÷
8
OUTPUT BUS  
Figure 8. Typical QAM Application, Using the MAX1186  
Total Harmonic Distortion (THD)  
THD is typically the ratio of the RMS sum of the first four  
harmonics of the input signal to the fundamental itself.  
This is expressed as:  
CLK  
2
2
2
2
V
+ V + V + V  
3 4 5  
2
ANALOG  
INPUT  
THD = 20 ×log  
10  
V
1
t
AD  
where V is the fundamental amplitude, and V through  
5
harmonics.  
t
1
2
AJ  
V
are the amplitudes of the 2nd- through 5th-order  
SAMPLED  
DATA (T/H)  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next largest spurious  
component, excluding DC offset.  
HOLD  
TRACK  
TRACK  
T/H  
Intermodulation Distortion (IMD)  
The two-tone IMD is the ratio expressed in decibels of  
either input tone to the worst 3rd-order (or higher) inter-  
modulation products. The individual input tone levels  
are at -6.5dB full scale and their envelope is at -0.5dB  
full scale.  
Figure 9. T/H Aperture Timing  
Chip Information  
TRANSISTOR COUNT: 10,811  
PROCESS: CMOS  
______________________________________________________________________________________ 19  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Functional Diagram  
V
OGND  
OV  
DD  
GND  
DD  
INA+  
PIPELINE  
ADC  
A/B  
DEC  
MUX  
T/H  
INA-  
CLK  
10  
CONTROL  
INB+  
INB-  
10  
PIPELINE  
ADC  
OUTPUT  
DRIVERS  
DEC  
T/H  
D0A/BD9A/B  
OE  
T/B  
REFERENCE  
PD  
SLEEP  
MAX1186  
REFOUT  
REFN COM REFP  
REFIN  
20 ______________________________________________________________________________________  
Dual 10-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1186ECM

Dual 10-Bit, 40Msps, 3V, Low-Power ADC with Internal Reference and Multiplexed Parallel Outputs
MAXIM

MAX1186ECM+

ADC, Flash Method, 10-Bit, 1 Func, 2 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT,ROHS COMPLIANT, MS-026ABC-HD, TQFP-48
MAXIM

MAX1186ECM+D

ADC, Flash Method, 10-Bit, 1 Func, 2 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT,ROHS COMPLIANT, MS-026ABC-HD, TQFP-48
MAXIM

MAX1186ECM+TD

ADC, Flash Method, 10-Bit, 1 Func, 2 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT,ROHS COMPLIANT, MS-026ABC-HD, TQFP-48
MAXIM

MAX1186ECM-D

ADC, Flash Method, 10-Bit, 1 Func, 2 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MS-026ABC-HD, TQFP-48
MAXIM

MAX1186ECM-T

暂无描述
MAXIM

MAX1186ECM-TD

ADC, Flash Method, 10-Bit, 1 Func, 2 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, MS-026ABC-HD, TQFP-48
MAXIM

MAX1187

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range
MAXIM

MAX1187ACUI

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range
MAXIM

MAX1187ACUI+T

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDSO28, 4.40 MM, TSSOP-28
MAXIM

MAX1187ACUI-T

暂无描述
MAXIM

MAX1187AEUI

16-Bit, 135ksps, Single-Supply ADCs with Bipolar Analog Input Range
MAXIM