MAX1191 [MAXIM]

Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC; 超低功耗, 7.5Msps ,双8位ADC
MAX1191
型号: MAX1191
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC
超低功耗, 7.5Msps ,双8位ADC

文件: 总27页 (文件大小:492K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2836; Rev 1; 9/03  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
General Description  
Features  
The MAX1191 is an ultra-low-power, dual, 8-bit,  
7.5Msps analog-to-digital converter (ADC). The device  
features two fully differential wideband track-and-hold  
(T/H) inputs. These inputs have a 440MHz bandwidth  
and accept fully differential or single-ended signals.  
The MAX1191 delivers a typical signal-to-noise and dis-  
tortion (SINAD) of 48.6dB at an input frequency of  
1.875MHz and a sampling rate of 7.5Msps while con-  
suming only 12mW. This ADC operates from a 2.7V to  
3.6V analog power supply. A separate 1.8V to 3.6V  
supply powers the digital output driver. In addition to  
ultra-low operating power, the MAX1191 features three  
power-down modes to conserve power during idle peri-  
ods. Excellent dynamic performance, ultra-low power,  
and small size make the MAX1191 ideal for applica-  
tions in imaging, instrumentation, and digital communi-  
cations.  
Ultra-Low Power  
12mW (Normal Operation: 7.5Msps)  
0.3µW (Shutdown Mode)  
Excellent Dynamic Performance  
48.7dB SNR at f = 1.875MHz  
IN  
69dBc SFDR at f = 1.875MHz  
IN  
2.7V to 3.6V Single Analog Supply  
1.8V to 3.6V TTL/CMOS-Compatible Digital  
Outputs  
Fully Differential or Single-Ended Analog Inputs  
Internal/External Reference Option  
Multiplexed CMOS-Compatible Tri-State Outputs  
28-Pin Thin QFN Package  
Evaluation Kit Available (Order MAX1193EVKIT)  
An internal 1.024V precision bandgap reference sets  
the full-scale range of the ADC to 0.512V. A flexible  
reference structure allows the MAX1191 to use its inter-  
nal reference or accept an externally applied reference  
for applications requiring increased accuracy.  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
28 Thin QFN-EP*  
(5mm x 5mm)  
The MAX1191 features parallel, multiplexed, CMOS-  
compatible tri-state outputs. The digital output format is  
offset binary. A separate digital power input accepts a  
voltage from 1.8V to 3.6V for flexible interfacing to dif-  
ferent logic levels. The MAX1191 is available in a 5mm  
× 5mm, 28-pin thin QFN package, and is specified for  
the extended industrial (-40°C to +85°C) temperature  
range.  
MAX1191ETI-T  
-40°C to +85°C  
*EP = Exposed paddle.  
Pin Configuration  
TOP VIEW  
For higher sampling frequency applications, refer to the  
MAX1195–MAX1198 dual 8-bit ADCs. Pin-compatible  
versions of the MAX1191 are also available. Refer to the  
MAX1192 data sheet for 22Msps, and the MAX1193  
data sheet for 45Msps.  
INA-  
INA+  
GND  
CLK  
D0  
D1  
D2  
1
2
3
4
5
6
7
21  
20  
19  
Applications  
Ultrasound and Medical Imaging  
IQ Baseband Sampling  
18 D3  
Battery-Powered Portable Instruments  
Low-Power Video  
MAX1191  
17  
16  
GND  
INB+  
INB-  
A/B  
D4  
WLAN, Mobile DSL, WLL Receiver  
EXPOSED PADDLE  
15 D5  
5mm x 5mm THIN QFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
ABSOLUTE MAXIMUM RATINGS  
V
, OV  
to GND ...............................................-0.3V to +3.6V  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
DD  
OGND to GND.......................................................-0.3V to +0.3V  
INA+, INA-, INB+, INB- to GND .................-0.3V to (V  
CLK, REFIN, REFP, REFN, COM to GND...-0.3V to (V  
PD0, PD1 to OGND .................................-0.3V to (OV  
Digital Outputs to OGND.........................-0.3V to (OV  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
DD  
DD  
Continuous Power Dissipation (T = +70°C)  
A
28-Pin Thin QFN (derated 20.8mW/°C above +70°C)...1667mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3.0V, OV  
= 1.8V, V  
= V  
(internal reference), C 10pF at digital outputs, f  
= 7.5MHz, C  
= C = C  
REFN COM  
DD  
DD  
REFIN  
DD  
L
CLK  
REFP  
= 0.33µF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Resolution  
8
Bits  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
INL  
0.15  
0.13  
1.00  
1.00  
4
DNL  
No missing codes over temperature  
+25°C  
Offset Error  
%FS  
<+25°C  
6
Gain Error  
Excludes REFP - REFN error  
2
%FS  
dB  
DC Gain Matching  
Gain Temperature Coefficient  
0.01  
30  
0.2  
ppm/°C  
Offset (V  
5%)  
5%)  
0.2  
DD  
Power-Supply Rejection  
LSB  
Gain (V  
0.05  
DD  
ANALOG INPUT  
Differential Input Voltage Range  
V
Differential or single-ended inputs  
Switched capacitor load  
0.512  
/ 2  
V
V
DIFF  
Common-Mode Input Voltage  
Range  
V
V
COM  
DD  
Input Resistance  
R
C
720  
5
kΩ  
IN  
Input Capacitance  
pF  
IN  
CONVERSION RATE  
Maximum Clock Frequency  
f
7.5  
MHz  
CLK  
Channel A  
Channel B  
5.0  
5.5  
Clock  
cycles  
Data Latency  
DYNAMIC CHARACTERISTICS (differential inputs, 4096 point FFT)  
f
IN  
f
IN  
f
IN  
f
IN  
= 1.875MHz  
= 3.75MHz  
= 1.875MHz  
= 3.75  
47  
47  
48.7  
48.6  
48.6  
48.5  
Signal-to-Noise Ratio  
(Note 2)  
SNR  
dB  
dB  
Signal-to-Noise and Distortion  
(Note 2)  
SINAD  
2
_______________________________________________________________________________________  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.0V, OV  
= 1.8V, V  
= V  
(internal reference), C 10pF at digital outputs, f  
= 7.5MHz, C  
= C = C  
REFN COM  
DD  
DD  
REFIN  
DD  
L
CLK  
REFP  
= 0.33µF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 1.875MHz  
MIN  
TYP  
69  
MAX  
UNITS  
f
f
f
f
59  
IN  
IN  
IN  
IN  
Spurious-Free Dynamic Range  
(Note 2)  
SFDR  
dBc  
= 3.75MHz  
= 1.875MHz  
= 3.75MHz  
68.7  
72.0  
-70.0  
Third-Harmonic Distortion  
(Note 2)  
HD3  
IMD  
IM3  
dBc  
dBc  
dBc  
dBc  
f
= 1MHz at -7dB FS, f  
at -7dB FS  
= 1.01MHz  
= 1.01MHz  
IN1  
IN2  
IN2  
Intermodulation Distortion  
Third-Order Intermodulation  
-66  
-70  
f
= 1MHz at -7dB FS, f  
IN1  
at -7dB FS  
f
f
= 1.875MHz  
= 3.75MHz  
-68.0  
-67.0  
440  
440  
1.5  
2
-57.0  
IN  
Total Harmonic Distortion  
(Note 2)  
THD  
IN  
Small-Signal Bandwidth  
Full-Power Bandwidth  
Aperture Delay  
SSBW Input at -20dB FS  
FPBW Input at -0.5dB FS  
MHz  
MHz  
ns  
t
AD  
Aperture Jitter  
t
1dB SNR degradation at Nyquist  
ps  
RMS  
AJ  
Overdrive Recovery Time  
1.5 × full-scale input  
2
ns  
INTERNAL REFERENCE (REFIN = V ; V  
, V  
, and V  
are generated internally)  
COM  
DD REFP REFN  
REFP Output Voltage  
REFN Output Voltage  
V
V
- V  
0.256  
V
V
REFP  
REFN  
COM  
- V  
-0.256  
COM  
V
/ 2  
V
/ 2  
DD  
DD  
COM Output Voltage  
V
V
/ 2  
DD  
V
V
COM  
- 0.15  
+ 0.15  
Differential Reference Output  
V
V
- V  
REFN  
0.512  
30  
REF  
REFP  
Differential Reference Output  
Temperature Coefficient  
V
ppm/°C  
REFTC  
Maximum REFP/REFN/COM  
Source Current  
I
2
2
mA  
mA  
SOURCE  
Maximum REFP/REFN/COM Sink  
Current  
I
SINK  
BUFFERED EXTERNAL REFERENCE (V  
= 1.024V, V  
, V  
, and V  
COM  
are generated internally)  
1.024  
REFIN  
REFP REFN  
REFIN Input Voltage  
V
V
REFIN  
V
/ 2  
V
/ 2  
DD  
DD  
COM Output Voltage  
V
V
/ 2  
DD  
V
V
COM  
- 0.15  
+ 0.15  
Differential Reference Output  
V
V
- V  
REFN  
0.512  
2
REF  
SOURCE  
REFP  
Maximum REFP/REFN/COM  
Source Current  
I
mA  
_______________________________________________________________________________________  
3
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.0V, OV  
= 1.8V, V  
= V  
(internal reference), C 10pF at digital outputs, f  
= 7.5MHz, C  
= C = C  
REFN COM  
DD  
DD  
REFIN  
DD  
L
CLK  
REFP  
= 0.33µF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum REFP/REFN/COM Sink  
Current  
I
2
mA  
SINK  
REFIN Input Resistance  
REFIN Input Current  
>500  
-0.7  
kΩ  
µA  
UNBUFFERED EXTERNAL REFERENCE (REFIN = GND, V  
, V  
, and V  
are applied  
COM  
REFP REFN  
REFP Input Voltage  
REFN Input Voltage  
COM Input Voltage  
V
V
- V  
0.256  
V
V
V
REFP  
REFN  
COM  
- V  
-0.256  
COM  
V
R
V
/ 2  
DD  
COM  
Differential Reference Input  
Voltage  
V
V
- V  
REFN  
0.512  
V
REF  
REFP  
REFP Input Resistance  
Measured between REFP and COM  
Measured between REFN and COM  
4
4
kΩ  
kΩ  
REFP  
REFN  
REFN Input Resistance  
R
DIGITAL INPUTS (CLK, PD0, PD1)  
0.7 x  
CLK  
V
DD  
Input High Threshold  
Input Low Threshold  
V
V
V
IH  
0.7 x  
OV  
PD0, PD1  
CLK  
DD  
0.3 x  
V
DD  
V
IL  
0.3 x  
PD0, PD1  
OV  
DD  
Input Hysteresis  
V
0.1  
5
V
HYST  
CLK at GND or V  
5
5
DD  
Digital Input Leakage Current  
DI  
µA  
pF  
IN  
PD0 and PD1 at OGND or OV  
DD  
Digital Input Capacitance  
DC  
IN  
DIGITAL OUTPUTS (D7D0, A/B)  
0.2 x  
Output Voltage Low  
Output Voltage High  
V
I
= 200µA  
SINK  
V
V
OL  
OV  
DD  
0.8 x  
OV  
V
I = 200µA  
SOURCE  
OH  
DD  
Tri-State Leakage Current  
Tri-State Output Capacitance  
POWER REQUIREMENTS  
Analog Supply Voltage  
I
5
µA  
pF  
LEAK  
C
5
OUT  
V
2.7  
1.8  
3.0  
3.6  
V
V
DD  
Digital Output Supply Voltage  
OV  
V
DD  
DD  
4
_______________________________________________________________________________________  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.0V, OV  
= 1.8V, V  
= V  
(internal reference), C 10pF at digital outputs, f  
= 7.5MHz, C  
= C = C  
REFN COM  
DD  
DD  
REFIN  
DD  
L
CLK  
REFP  
= 0.33µF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
Normal operating mode, f = 1.875MHz  
MIN  
TYP  
MAX  
UNITS  
IN  
4.0  
5.0  
at -0.5dB FS, CLK input from GND to V  
DD  
Idle mode (tri-state), f = 1.875MHz at -  
IN  
4.0  
2.2  
0.1  
1.0  
0.1  
0.1  
0.1  
mA  
0.5dB FS, CLK input from GND to V  
DD  
Analog Supply Current  
I
DD  
Standby mode, CLK input from GND to  
V
DD  
Shutdown mode, CLK = GND or V  
PD0 = PD1 = OGND  
,
DD  
5.0  
5.0  
5.0  
µA  
Normal operating mode,  
mA  
f
IN  
= 1.875MHz at -0.5dB FS, C 10pF  
L
Idle mode (tri-state), DC input, CLK =  
GND or V PD0 = OV , PD1 = OGND  
DD,  
DD  
Digital Output Supply Current  
(Note 3)  
I
ODD  
Standby mode, DC input, CLK = GND or  
PD0 = OGND, PD1 = OV  
µA  
V
DD,  
DD  
Shutdown mode, CLK = GND or V  
PD0 = PD1 = OGND  
,
DD  
TIMING CHARACTERISTICS  
CLK Rise to CHA Output Data  
Valid  
50% of CLK to 50% of data, Figure 5  
(Note 4)  
t
t
1
1
1
6
6
6
8.5  
8.5  
8.5  
ns  
ns  
ns  
DOA  
DOB  
DA/B  
CLK Fall to CHB Output Data  
Valid  
50% of CLK to 50% of data, Figure 5  
(Note 4)  
CLK Rise/Fall to A/B Rise/Fall  
Time  
50% of CLK to 50% of A/B, Figure 5  
(Note 4)  
t
PD1 Rise to Output Enable  
PD1 Fall to Output Disable  
CLK Duty Cycle  
t
PD0 = OV  
PD0 = OV  
5
5
ns  
ns  
%
%
EN  
DD  
t
DIS  
DD  
50  
10  
CLK Duty-Cycle Variation  
Wake-Up Time from Shutdown  
Mode  
t
(Note 5)  
(Note 5)  
20  
µs  
WAKE, SD  
Wake-Up Time from Standby  
Mode  
t
5.5  
2
µs  
ns  
WAKE, ST  
Digital Output Rise/Fall Time  
20% to 80%  
INTERCHANNEL CHARACTERISTICS  
f
f
= 1.875MHz at -0.5dB FS,  
= 0.3MHz at -0.5dB FS (Note 6)  
IN,X  
Crosstalk Rejection  
-75  
dB  
IN,Y  
Amplitude Matching  
Phase Matching  
f
f
= 1.875MHz at -0.5dB FS (Note 7)  
= 1.875MHz at -0.5dB FS (Note 7)  
0.03  
0.03  
dB  
IN  
Degrees  
IN  
_______________________________________________________________________________________  
5
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.0V, OV  
= 1.8V, V  
= V  
(internal reference), C 10pF at digital outputs, f  
= 7.5MHz, C  
= C = C  
REFN COM  
DD  
DD  
REFIN  
DD  
L
CLK  
REFP  
= 0.33µF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
A
Note 1: Specifications +25°C guaranteed by production test, <+25°C guaranteed by design and characterization.  
Note 2: SNR, SINAD, SFDR, HD3, and THD are based on a differential analog input voltage of -0.5dB FS referenced to the  
amplitude of the digital output. SNR and THD are calculated using HD2 through HD6.  
Note 3: The power consumption of the output driver is proportional to the load capacitance (C ).  
L
Note 4: Guaranteed by design and characterization. Not production tested.  
Note 5: SINAD settles to within 0.5dB of its typical value.  
Note 6: Crosstalk rejection is measured by applying a high-frequency test tone to one channel and a low-frequency tone to the  
second channel. FFTs are performed on each channel. The parameter is specified as power ratio of the first and second  
channel FFT test tone bins.  
Note 7: Amplitude/phase matching is measured by applying the same signal to each channel, and comparing the magnitude and  
phase of the fundamental bin on the calculated FFT.  
Typical Operating Characteristics  
(V  
= 3.0V, OV  
= 1.8V, V  
= V  
(internal reference), C 10pF at digital outputs, differential input at -0.5dB FS, f  
=
DD  
DD  
REFIN  
DD  
L
CLK  
7.500567MHz at 50% duty cycle, T = +25°C, unless otherwise noted.)  
A
FFT PLOT CHANNEL A (DIFFERENTIAL INPUTS,  
FFT PLOT CHANNEL B (DIFFERENTIAL INPUTS,  
FFT PLOT CHANNEL A (DIFFERENTIAL INPUTS,  
8192-POINT DATA RECORD)  
8192-POINT DATA RECORD)  
8192-POINT DATA RECORD)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
f
f
f
= 7.500567MHz  
= 1.000747MHz  
= 3.020553MHz  
f
f
f
= 7.500567MHz  
= 1.000747MHz  
= 3.020553MHz  
f
f
f
= 7.500567MHz  
= 3.020553MHz  
= 1.000747MHz  
CLK  
INA  
INB  
CLK  
INA  
INB  
CLK  
INA  
INB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
A
= A = -0.5dB FS  
A
INA  
= A = -0.5dB FS  
INB  
A
= A = -0.5dB FS  
INA INB  
INA  
INB  
HD3  
f
INB  
HD2  
HD2  
HD3  
HD2  
f
INA  
HD3  
f
INB  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
ANALOG INPUT FREQUENCY (MHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
ANALOG INPUT FREQUENCY (MHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
ANALOG INPUT FREQUENCY (MHz)  
FFT PLOT CHANNEL B (DIFFERENTIAL INPUTS,  
TWO-TONE IMD PLOT (DIFFERENTIAL INPUTS,  
8192-POINT DATA RECORD)  
8192-POINT DATA RECORD)  
0
0
f
f
f
= 7.500567MHz  
= 3.020553MHz  
= 1.000747MHz  
f
f
f
= 7.500567MHz  
= 1.8MHz  
= 2.3MHz  
CLK  
INA  
INB  
CLK  
IN1  
IN2  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
A
= A = -0.5dB FS  
A = -7dB FS  
INA  
INB  
IN  
f
f
IN2  
IN1  
HD2  
HD3  
f
INA  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
ANALOG INPUT FREQUENCY (MHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
ANALOG INPUT FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, OV  
= 1.8V, V  
= V  
(internal reference), C 10pF at digital outputs, differential input at -0.5dB FS, f  
=
DD  
DD  
REFIN  
DD  
L
CLK  
7.500567MHz at 50% duty cycle, T = +25°C, unless otherwise noted.)  
A
FFT PLOT CHANNEL A (SINGLE-ENDED INPUTS,  
FFT PLOT CHANNEL B (SINGLE-ENDED INPUTS,  
8192-POINT DATA RECORD)  
8192-POINT DATA RECORD)  
0
0
f
f
f
= 7.500567MHz  
= 1.000747MHz  
= 3.020553MHz  
= A = -0.5dB FS  
f
f
f
= 7.500567MHz  
= 1.000747MHz  
= 3.020553MHz  
= A = -0.5dB FS  
CLK  
INA  
INB  
CLK  
INA  
INB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
A
INA  
A
INA  
INB  
INB  
HD2  
HD3  
HD2  
HD3  
f
INA  
f
INB  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
ANALOG INPUT FREQUENCY (MHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
ANALOG INPUT FREQUENCY (MHz)  
FFT PLOT CHANNEL A (SINGLE-ENDED INPUTS,  
FFT PLOT CHANNEL B (SINGLE-ENDED INPUTS,  
8192-POINT DATA RECORD)  
8192-POINT DATA RECORD)  
0
0
f
f
f
= 7.500567MHz  
= 3.020553MHz  
= 1.000747MHz  
= A = -0.5dB FS  
f
f
f
= 7.500567MHz  
= 3.020553MHz  
= 1.000747MHz  
= A = -0.5dB FS  
CLK  
INA  
INB  
CLK  
INA  
INB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
A
INA  
A
INA  
INB  
INB  
INB  
HD3  
HD2  
f
f
HD2  
INA  
HD3  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
ANALOG INPUT FREQUENCY (MHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
ANALOG INPUT FREQUENCY (MHz)  
TWO-TONE IMD PLOT (SINGLE-ENDED INPUTS,  
8192-POINT DATA RECORD)  
0
f
f
f
= 7.500567MHz  
= 1.8MHz  
= 2.3MHz  
= -7dB FS  
CLK  
IN1  
IN2  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
A
IN  
f
f
IN2  
IN1  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
ANALOG INPUT FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, OV  
= 1.8V, V  
= V  
(internal reference), C 10pF at digital outputs, differential input at -0.5dB FS, f  
=
DD  
DD  
REFIN  
DD  
L
CLK  
7.500567MHz at 50% duty cycle, T = +25°C, unless otherwise noted.)  
A
SIGNAL-TO-NOISE AND DISTORTION  
vs. ANALOG INPUT FREQUENCY  
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
50  
49  
48  
47  
46  
45  
44  
43  
42  
50  
49  
48  
47  
46  
45  
44  
CHANNEL A  
CHANNEL B  
CHANNEL A  
43  
CHANNEL B  
42  
0
10  
100  
0
10  
100  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT FREQUENCY  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
85  
80  
75  
70  
65  
60  
55  
50  
45  
CHANNEL A  
CHANNEL B  
CHANNEL A  
CHANNEL B  
0
10  
100  
0
10  
100  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
8
_______________________________________________________________________________________  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, OV  
= 1.8V, V  
= V  
(internal reference), C 10pF at digital outputs, differential input at -0.5dB FS, f  
=
DD  
DD  
REFIN  
DD  
L
CLK  
7.500567MHz at 50% duty cycle, T = +25°C, unless otherwise noted.)  
A
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT POWER  
SIGNAL-TO-NOISE AND DISTORTION  
vs. ANALOG INPUT POWER  
60  
60  
50  
40  
30  
20  
10  
0
f
IN  
= 2.017059MHz  
f
IN  
= 2.017059MHz  
50  
40  
30  
20  
10  
0
-10  
-30  
-25  
-20  
-15  
-5  
0
-30  
-20  
-10  
0
ANALOG INPUT POWER (dB FS)  
ANALOG INPUT POWER (dB FS)  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT POWER  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT POWER  
-30  
-40  
-50  
80  
70  
60  
50  
40  
30  
f
IN  
= 2.017059MHz  
f
= 2.017059MHz  
IN  
-60  
-70  
-10  
ANALOG INPUT POWER (dB FS)  
-30  
-25  
-20  
-15  
-5  
0
-10  
ANALOG INPUT POWER (dB FS)  
-30  
-25  
-20  
-15  
-5  
0
_______________________________________________________________________________________  
9
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, OV  
= 1.8V, V  
= V  
(internal reference), C 10pF at digital outputs, differential input at -0.5dB FS, f  
=
DD  
DD  
REFIN  
DD  
L
CLK  
7.500567MHz at 50% duty cycle, T = +25°C, unless otherwise noted.)  
A
SIGNAL-TO-NOISE RATIO  
vs. SAMPLING RATE  
SIGNAL-TO-NOISE AND DISTORTION  
vs. SAMPLING RATE  
50  
50  
49  
48  
47  
46  
45  
f
IN  
= 2.017059MHz  
f
IN  
= 2.017059MHz  
49  
48  
47  
46  
45  
0
5
10  
15  
20  
0
5
10  
15  
20  
f
(MHz)  
f
(MHz)  
CLK  
CLK  
TOTAL HARMONIC DISTORTION  
vs. SAMPLING RATE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. SAMPLING RATE  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
80  
75  
70  
65  
60  
55  
50  
f
= 2.017059MHz  
f
IN  
= 2.017059MHz  
IN  
0
5
10  
15  
20  
0
5
10  
15  
20  
f
(MHz)  
f
(MHz)  
CLK  
CLK  
10 ______________________________________________________________________________________  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, OV  
= 1.8V, V  
= V  
(internal reference), C 10pF at digital outputs, differential input at -0.5dB FS, f  
=
DD  
DD  
REFIN  
DD  
L
CLK  
7.500567MHz at 50% duty cycle, T = +25°C, unless otherwise noted.)  
A
SIGNAL-TO-NOISE AND DISTORTION  
vs. CLOCK DUTY CYCLE  
SIGNAL-TO-NOISE RATIO  
vs. CLOCK DUTY CYCLE  
50  
49  
48  
47  
46  
45  
50  
f = 2.017059MHz  
IN  
f
= 2.017059MHz  
IN  
49  
48  
47  
46  
45  
40  
45  
50  
55  
60  
40  
45  
50  
55  
60  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
TOTAL HARMONIC DISTORTION  
vs. CLOCK DUTY CYCLE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK DUTY CYCLE  
-60  
-62  
-64  
-66  
-68  
-70  
-72  
-74  
-76  
-78  
-80  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
f
IN  
= 2.017059MHz  
f = 2.017059MHz  
IN  
40  
45  
50  
55  
60  
40  
45  
50  
55  
60  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
______________________________________________________________________________________ 11  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, OV  
= 1.8V, V  
= V  
(internal reference), C 10pF at digital outputs, differential input at -0.5dB FS, f  
=
DD  
DD  
REFIN  
DD  
L
CLK  
7.500567MHz at 50% duty cycle, T = +25°C, unless otherwise noted.)  
A
INTEGRAL NONLINEARITY  
DIFFERENTIAL NONLINEARITY  
0.5  
0.5  
0.4  
0.4  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
32 64 96 128 160 192 224 256  
DIGITAL OUTPUT CODE  
0
32 64 96 128 160 192 224 256  
DIGITAL OUTPUT CODE  
OFFSET ERROR  
vs. TEMPERATURE  
GAIN ERROR  
vs. TEMPERATURE  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
V
= 1.024V  
REFIN  
V
= 1.024V  
REFIN  
CHANNEL A  
CHANNEL A  
CHANNEL B  
-0.05  
-0.10  
-0.05  
-0.10  
CHANNEL B  
10  
-40  
-15  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
INPUT BANDWIDTH  
vs. ANALOG INPUT FREQUENCY  
0.5130  
0.5125  
0.5120  
0.5115  
0.5110  
0.5105  
0.5100  
0.5130  
6
4
V
DD  
= V  
V
= V  
REFIN  
DD REFIN  
SMALL-SIGNAL  
BANDWIDTH  
-20dB FS  
0.5125  
0.5120  
0.5115  
0.5110  
0.5105  
0.5100  
2
0
-2  
-4  
-6  
-8  
-10  
FULL-POWER  
BANDWIDTH  
-0.5dB FS  
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
(V)  
-40  
-15  
10  
35  
60  
85  
1
10  
100  
1000  
V
DD  
TEMPERATURE (°C)  
ANALOG INPUT FREQUENCY (MHz)  
12 ______________________________________________________________________________________  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Typical Operating Characteristics (continued)  
(V  
= 3.0V, OV  
= 1.8V, V  
= V  
(internal reference), C 10pF at digital outputs, differential input at -0.5dB FS, f  
=
DD  
DD  
REFIN  
DD  
L
CLK  
7.500567MHz at 50% duty cycle, T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. SAMPLING RATE  
SUPPLY CURRENT  
vs. INPUT FREQUENCY  
MAX1191 toc34  
7
6
5
4
3
2
1
0
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
4.3  
4.2  
4.1  
4.0  
3.9  
3.8  
f
IN  
= 2.017059MHz  
DIGITAL SUPPLY CURRENT  
ANALOG SUPPLY CURRENT  
A
B
C
0
5
10  
(MHz)  
15  
20  
0
1
2
3
4
f
CLK  
f
IN  
(MHz)  
A: ANALOG SUPPLY CURRENT (I ) - INTERNAL AND BUFFERED EXTERNAL  
DD  
REFERENCE MODES  
B: ANALOG SUPPLY CURRENT (I ) - UNBUFFERED EXTERNAL REFERENCE MODE  
DD  
C: DIGITAL SUPPLY CURRENT (I ) - ALL REFERENCE MODES  
ODD  
Pin Description  
PIN  
NAME  
INA-  
FUNCTION  
1
Channel A Negative Analog Input. For single-ended operation, connect INA- to COM.  
Channel A Positive Analog Input. For single-ended operation, connect signal source to INA+.  
Analog Ground. Connect all GND pins together.  
2
INA+  
GND  
CLK  
3, 5, 10  
4
6
7
Converter Clock Input  
INB+  
INB-  
Channel B Positive Analog Input. For single-ended operation, connect signal source to INB+.  
Channel B Negative Analog Input. For single-ended operation, connect INB- to COM.  
Converter Power Input. Connect to a 2.7V to 3.6V power supply. Bypass V  
combination of a 2.2µF capacitor in parallel with a 0.1µF capacitor.  
to GND with a  
DD  
8, 9, 28  
11  
V
DD  
OGND  
OV  
Output Driver Ground  
Output Driver Power Input. Connect to a 1.8V to V  
power supply. Bypass OV  
to GND with a  
DD  
DD  
12  
DD  
combination of a 2.2µF capacitor in parallel with a 0.1µF capacitor.  
13  
14  
15  
16  
D7  
Tri-State Digital Output. D7 is the most significant bit (MSB).  
Tri-State Digital Output  
D6  
D5  
D4  
Tri-State Digital Output  
Tri-State Digital Output  
Channel Data Indicator. This digital output indicates channel A data (A/B = 1) or channel B data  
(A/B = 0) is present on the output.  
17  
A/B  
18  
19  
20  
21  
22  
D3  
D2  
Tri-State Digital Output  
Tri-State Digital Output  
D1  
Tri-State Digital Output  
D0  
Tri-State Digital Output. D0 is the least significant bit (LSB).  
Power-Down Digital Input 1. See Table 3.  
PD1  
______________________________________________________________________________________ 13  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Pin Description (continued)  
PIN  
23  
NAME  
PD0  
FUNCTION  
Power-Down Digital Input 0. See Table 3.  
Reference Input. Internally pulled up to V  
24  
REFIN  
COM  
.
DD  
25  
Common-Mode Voltage I/O. Bypass COM to GND with a 0.33µF capacitor.  
Negative Reference I/O. Conversion range is (V  
capacitor.  
- V  
REFN  
). Bypass REFN to GND with a 0.33µF  
REFP  
26  
REFN  
Positive Reference I/O. Conversion range is (V  
capacitor.  
- V  
). Bypass REFP to GND with a 0.33µF  
REFP  
REFN  
27  
REFP  
EP  
Exposed Paddle. Internally connected to pin 3. Externally connect EP to GND.  
Detailed Description  
The MAX1191 uses a seven-stage, fully differential,  
pipelined architecture (Figure 1) that allows for high-  
speed conversion while minimizing power consump-  
tion. Samples taken at the inputs move progressively  
through the pipeline stages every half-clock cycle.  
Including the delay through the output latch, the total  
clock-cycle latency is 5 clock cycles for channel A and  
5.5 clock cycles for channel B.  
+
T/H  
x2  
-
FLASH  
ADC  
DAC  
1.5 BITS  
STAGE 1  
At each stage, flash ADCs convert the held input volt-  
ages into a digital code. The following digital-to-analog  
converter (DAC) converts the digitized result back into  
an analog voltage, which is then subtracted from the  
original held input signal. The resulting error signal is  
then multiplied by two, and the product is passed along  
to the next pipeline stage where the process is repeated  
until the signal has been processed by all stages. Digital  
error correction compensates for ADC comparator off-  
sets in each pipeline stage and ensures no missing  
codes. Figure 2 shows the MAX1191 functional diagram.  
INA+  
INA-  
STAGE 2  
STAGE 7  
T/H  
DIGITAL ERROR CORRECTION  
D0–D7  
Figure 1. Pipeline Architecture—Stage Blocks  
V
GND  
DD  
INA+  
PIPELINE  
ADC  
A
/
T/H  
/
DEC  
MAX1191  
PD0  
PD1  
POWER  
CONTROL  
INA-  
OV  
DD  
REFIN  
REFP  
COM  
REFN  
REFERENCE  
SYSTEM AND  
BIAS  
D0D7  
A/B  
/
OUTPUT  
DRIVERS  
MULTIPLEXER  
CIRCUITS  
OGND  
INB+  
PIPELINE  
ADC  
/
T/H  
/
DEC  
CLK  
TIMING  
INB-  
B
Figure 2. MAX1191 Functional Diagram  
14 ______________________________________________________________________________________  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
INTERNAL  
COM  
S5a  
BIAS  
S2a  
C1a  
S3a  
S4a  
S4b  
INA+  
INA-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
CLK  
INTERNAL  
NONOVERLAPPING  
CLOCK SIGNALS  
HOLD  
HOLD  
INTERNAL  
BIAS  
TRACK  
TRACK  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
INB+  
INB-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
MAX1191  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
Figure 3. Internal T/H Circuits  
fier input, and open simultaneously with S1, sampling  
the input waveform. Switches S4a, S4b, S5a, and S5b  
are then opened before switches S3a and S3b connect  
capacitors C1a and C1b to the output of the amplifier  
and switch S4c is closed. The resulting differential volt-  
ages are held on capacitors C2a and C2b. The ampli-  
fiers charge capacitors C1a and C1b to the same  
Input Track-and-Hold (T/H) Circuits  
Figure 3 displays a simplified functional diagram of the  
input T/H circuits. In track mode, switches S1, S2a,  
S2b, S4a, S4b, S5a, and S5b are closed. The fully dif-  
ferential circuits sample the input signals onto the two  
capacitors (C2a and C2b) through switches S4a and  
S4b. S2a and S2b set the common mode for the ampli-  
______________________________________________________________________________________ 15  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Table 1. Reference Modes  
V
REFIN  
REFERENCE MODE  
Internal reference mode. V  
each with a 0.33µF capacitor.  
is internally generated to be 0.512V. Bypass REFP, REFN, and COM  
REF  
>0.8 x V  
DD  
Buffered external reference mode. An external 1.024V 10% reference voltage is applied to  
1.024V 10%  
<0.3V  
REFIN. V is internally generated to be V /2. Bypass REFP, REFN, and COM each with a  
0.33µF capacitor. Bypass REFIN to GND with a 0.1µF capacitor.  
REF  
REFIN  
Unbuffered external reference mode. REFP, REFN, and COM are driven by external reference  
sources. V  
is the difference between the externally applied V  
and V . Bypass REFP,  
REFN  
REF  
REFP  
REFP  
COM  
REFN, and COM each with a 0.33µF capacitor.  
values originally held on C2a and C2b. These values  
are then presented to the first stage quantizers and iso-  
late the pipelines from the fast-changing inputs. The  
wide input bandwidth T/H amplifiers allow the MAX1191  
to track and sample/hold analog inputs of high frequen-  
cies (>Nyquist). Both ADC inputs (INA+, INB+, INA-,  
and INB-) can be driven either differentially or single  
ended. Match the impedance of INA+ and INA-, as well  
as INB+ and INB-, and set the common-mode voltage  
62.5µA  
MAX1191  
1.75V  
1.5V  
4kΩ  
0µA  
to midsupply (V /2) for optimum performance.  
DD  
Analog Inputs and Reference  
Configurations  
4kΩ  
The MAX1191 full-scale analog input range is  
V
REF  
with a common-mode input range of V /2 0.2V. V  
62.5µA  
DD  
and V  
REF  
. The  
REFN  
REFN  
is the difference between V  
REFP  
MAX1191 provides three modes of reference operation.  
The voltage at REFIN (V  
ation mode (Table 1).  
) sets the reference oper-  
REFIN  
1.25V  
In internal reference mode, connect REFIN to V  
or  
DD  
leave REFIN unconnected. V  
is internally generated  
REF  
to be 0.512V 3%. COM, REFP, and REFN are low-  
impedance outputs with V = V /2, V = V /2  
Figure 4. Unbuffered External Reference Mode Impedance  
COM  
= V /2 - V  
DD  
REFP  
/2. Bypass REFP,  
DD  
+ V  
/2, and V  
REF  
REFN  
DD  
REF  
V
to (V /2 +0.256V) 10%, and drive V  
to  
REFN  
REFP  
DD  
REFN, and COM each with a 0.33µF capacitor.  
(V /2 - 0.256V) 10%. Bypass REFP, REFN, and COM  
DD  
In buffered external reference mode, apply a 1.024V  
10% at REFIN. In this mode, COM, REFP, and REFN  
each with a 0.33µF capacitor.  
For detailed circuit suggestions and how to drive this  
dual ADC in buffered/unbuffered external reference  
mode, see the Applications Information section.  
are low-impedance outputs with V  
= V /2, V  
DD  
=
COM  
= V /2 - V  
DD  
REFP  
/4.  
REFIN  
V
/2 + V  
/4, and V  
DD  
REFIN  
REFN  
Bypass REFP, REFN, and COM each with a 0.33µF  
capacitor. Bypass REFIN to GND with a 0.1µF capacitor.  
Clock Input (CLK)  
CLK accepts a CMOS-compatible signal level. Since  
the interstage conversion of the device depends on the  
repeatability of the rising and falling edges of the exter-  
nal clock, use a clock with low jitter and fast rise and  
fall times (<2ns). In particular, sampling occurs on the  
rising edge of the clock signal, requiring this edge to  
In unbuffered external reference mode, connect REFIN  
to GND. This deactivates the on-chip reference buffers  
for COM, REFP, and REFN. With their buffers shut  
down, these nodes become high-impedance inputs  
(Figure 4) and can be driven through separate, external  
reference sources. Drive V  
to V /2 10%, drive  
DD  
COM  
16 ______________________________________________________________________________________  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
5 CLOCK-CYCLE LATENCY (CHA), 5.5 CLOCK-CYCLE LATENCY (CHB)  
CHA  
CHB  
t
CLK  
t
CL  
t
CH  
CLK  
t
t
DOA  
DOB  
A/B  
CHB  
D0B  
CHA  
D1A  
CHB  
CHA  
D2A  
CHB  
D2B  
CHA  
D3A  
CHB  
D3B  
CHA  
D4A  
CHB  
D4B  
CHA  
D5A  
CHB  
D5B  
CHA  
D6A  
CHB  
D6B  
t
DA/B  
D0D7  
D1B  
Figure 5. System Timing Diagram  
provide lowest possible jitter. Any significant aperture  
jitter would limit the SNR performance of the on-chip  
ADCs as follows:  
2 x V  
REF  
V
REF  
= V  
- V  
1LSB =  
REFP REFN  
256  
V
REF  
V
REF  
1111 1111  
1111 1110  
1111 1101  
1
SNR = 20 × log  
2 × π × f × t  
IN  
AJ  
where f represents the analog input frequency and  
AJ  
IN  
1000 0001  
1000 0000  
0111 1111  
t
is the time of the aperture jitter.  
(COM)  
Clock jitter is especially critical for undersampling  
applications. The clock input should always be consid-  
ered as an analog input and routed away from any ana-  
log input or other digital signal lines. The MAX1191  
clock input operates with a V /2 voltage threshold  
DD  
and accepts a 50% 10% duty cycle (see Typical  
Operating Characteristics).  
0000 0011  
0000 0010  
0000 0001  
0000 0000  
-128 -127 -126 -125  
-1  
0
+1  
+125 +126 +127 +128  
System Timing Requirements  
Figure 5 shows the relationship between the clock, ana-  
log inputs, A/B indicator, and the resulting output data.  
Channel A (CHA) and channel B (CHB) are simultane-  
ously sampled on the rising edge of the clock signal  
(CLK) and the resulting data is multiplexed at the out-  
put. CHA data is updated on the rising edge and CHB  
data is updated on the falling edge of the CLK. The A/B  
indicator follows CLK with a typical delay time of 6ns  
and remains high when CHA data is updated and low  
when CHB data is updated. Including the delay  
through the output latch, the total clock-cycle latency is  
5 clock cycles for CHA and 5.5 clock cycles for CHB.  
(COM)  
INPUT VOLTAGE (LSB)  
Figure 6. Transfer Function  
Digital Output Data (D0–D7),  
Channel Data Indicator (A/ )  
B
D0D7 and A/B are TTL/CMOS-logic compatible. The  
digital output coding is offset binary (Table 2, Figure 6).  
The capacitive load on the digital outputs D0D7  
should be kept as low as possible (<15pF) to avoid  
large digital currents feeding back into the analog por-  
tion of the MAX1191 and degrading its dynamic perfor-  
mance. Buffers on the digital outputs isolate them from  
______________________________________________________________________________________ 17  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Table 2. Output Codes vs. Input Voltage  
DIFFERENTIAL INPUT VOLTAGE  
(IN+ - IN-)  
DIFFERENTIAL INPUT  
(LSB)  
OFFSET BINARY  
(D7–D0)  
OUTPUT DECIMAL CODE  
127  
+127  
(+ full scale 1 LSB)  
1111 1111  
1111 1110  
1000 0001  
1000 0000  
0111 1111  
0000 0001  
0000 0000  
255  
254  
129  
128  
127  
1
V
×
×
×
×
REF  
128  
126  
128  
1
128  
0
+126  
(+ full scale 2 LSB)  
V
REF  
V
+1  
0 (bipolar zero)  
-1  
REF  
V
REF  
128  
1
-V  
×
REF  
128  
127  
128  
-127  
-V  
×
REF  
(- full scale + 1 LSB)  
128  
128  
-128 (- full scale)  
0
-V  
×
REF  
Table 3. Power Logic  
INTERNAL  
REFERENCE  
PD0  
PD1  
POWER MODE  
ADC  
CLOCK DISTRIBUTION  
OUTPUTS  
0
0
1
1
0
1
0
1
Shutdown  
Standby  
Off  
Off  
On  
On  
Off  
On  
On  
On  
Off  
On  
On  
On  
Tri-state  
Tri-state  
Tri-state  
On  
Idle  
Normal operating  
heavy capacitive loads. To improve the dynamic perfor-  
mance of the MAX1191, add 100resistors in series  
with the digital outputs close to the MAX1191. Refer to  
the MAX1193 Evaluation Kit schematic for an example  
of the digital outputs driving a digital buffer through  
100series resistors.  
wake-up time from shutdown mode is dominated by the  
time required to charge the capacitors at REFP, REFN,  
and COM. In internal reference mode and buffered  
external reference mode, the wake-up time is typically  
20µs. When operating in the unbuffered external refer-  
ence mode, the wake-up time is dependent on the  
external reference drivers. When the outputs transition  
from tri-state to on, the last converted word is placed  
on the digital outputs.  
Power Modes (PD0, PD1)  
The MAX1191 has four power modes that are con-  
trolled with PD0 and PD1. Four power modes allow the  
MAX1191 to efficiently use power by transitioning to a  
low-power state when conversions are not required  
(Table 3).  
In standby mode, the reference and clock distribution  
circuits are powered up, but the pipeline ADCs are  
unpowered and the outputs are in tri-state. The wake-  
up time from standby mode is dominated by the 5.5µs  
required to activate the pipeline ADCs. When the out-  
puts transition from tri-state to on, the last converted  
word is placed on the digital outputs.  
Shutdown mode offers the most dramatic power sav-  
ings by shutting down all the analog sections of the  
MAX1191 and placing the outputs in tri-state. The  
18 ______________________________________________________________________________________  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
R4  
600Ω  
R5  
600Ω  
MAX1191  
R
ISO  
22Ω  
R1  
600Ω  
INA-  
C
IN  
5pF  
V
= 0.5V TO 1.5V  
COM  
V
= 85mV  
SIG  
P-P  
R2  
300Ω  
R3  
600Ω  
R6  
600Ω  
R7  
600Ω  
COM  
A = 6V/V  
V
V
COM  
= V /2  
DD  
R8  
600Ω  
R9  
600Ω  
R
ISO  
22Ω  
INA+  
C
IN  
5pF  
R10  
600Ω  
R11  
600Ω  
RESISTOR NETWORKS  
OPERATIONAL AMPLIFIERS  
RESISTOR NETWORKS ENSURE PROPER THERMAL AND TOLERANCE  
MATCHING. FOR R1, R2, AND R3 USE A NETWORK SUCH AS VISHAY'S  
3R MODEL NUMBER 300192. FOR R4R11, USE A NETWORK SUCH AS  
VISHAY'S 4R MODEL NUMBER 300197.  
CHOOSE EITHER OF THE MAX4452/MAX4453/MAX4454 SINGLE/  
DUAL/QUAD +3V, 200MHz OP AMPS FOR USE WITH THIS CIRCUIT.  
CONNECT THE POSITIVE SUPPLY RAIL (V ) TO 3V. CONNECT THE  
CC  
NEGATIVE SUPPLY RAIL (V ) TO GROUND. DECOUPLE V WITH A  
EE  
CC  
0.1µF CAPACITOR TO GROUND.  
Figure 7. DC-Coupled Differential Input Driver  
In idle mode, the pipeline ADCs, reference, and clock  
distribution circuits are powered, but the outputs are  
forced to tri-state. The wake-up time from idle mode is  
dominated by the 5ns required for the output drivers to  
start from tri-state. When the outputs transition from tri-  
state to on, the last converted word is placed on the  
digital outputs.  
Applications Information  
The circuit of Figure 7 operates from a single 3V supply  
and accommodates a wide 0.5V to 1.5V input common-  
mode voltage range for the analog interface between  
an RF quadrature demodulator (differential, DC-cou-  
pled signal source) and a high-speed ADC.  
Furthermore, the circuit provides required SINAD and  
SFDR to demodulate a wideband (BW = 3.84MHz),  
In the normal operating mode, all sections of the  
MAX1191 are powered.  
QAM-16 communication link. R  
isolates the op amp  
ISO  
output from the ADC capacitive input to prevent ringing  
and oscillation. C filters high-frequency noise.  
IN  
______________________________________________________________________________________ 19  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
REFP  
25Ω  
INA+  
22pF  
1kΩ  
R
ISO  
50Ω  
V
IN  
0.1µF  
0.1µF  
1
2
6
5
4
T1  
INA+  
COM  
INA-  
V
IN  
MAX4108  
C
IN  
22pF  
100Ω  
100Ω  
1kΩ  
N.C.  
COM  
2.2µF  
0.1µF  
3
REFN  
0.1µF  
MINICIRCUITS  
TT1-6-KK81  
R
ISO  
50Ω  
25Ω  
25Ω  
INA-  
INB+  
C
22pF  
IN  
22pF  
22pF  
MAX1191  
REFP  
MAX1191  
R
1kΩ  
ISO  
50Ω  
V
IN  
0.1µF  
0.1µF  
1
2
3
6
5
4
T1  
INB+  
V
IN  
MAX4108  
C
IN  
22pF  
100Ω  
100Ω  
1kΩ  
N.C.  
2.2µF  
0.1µF  
REFN  
0.1µF  
MINICIRCUITS  
TT1-6-KK81  
R
ISO  
50Ω  
25Ω  
INB-  
INB-  
C
IN  
22pF  
22pF  
Figure 8. Transformer-Coupled Input Drive  
Figure 9. Using an Op Amp for Single-Ended, AC-Coupled  
Input Drive  
anced, and each of the ADC inputs only requires half  
the signal swing compared to single-ended mode.  
Using Transformer Coupling  
An RF transformer (Figure 8) provides an excellent  
solution to convert a single-ended source signal to a  
fully differential signal, required by the MAX1191 for  
optimum performance. Connecting the center tap of the  
Single-Ended AC-Coupled Input Signal  
Figure 9 shows an AC-coupled, single-ended applica-  
tion. Amplifiers such as the MAX4108 provide high  
speed, high bandwidth, low noise, and low distortion to  
maintain the input signal integrity.  
transformer to COM provides a V /2 DC level shift to  
DD  
the input. Although a 1:1 transformer is shown, a step-  
up transformer can be selected to reduce the drive  
requirements. A reduced signal swing from the input  
driver, such as an op amp, can also improve the overall  
distortion.  
Buffered External Reference Drives  
Multiple ADCs  
The buffered external reference mode allows for more  
control over the MAX1191 reference voltage and allows  
multiple converters to use a common reference. To  
drive one MAX1191 in buffered external reference  
mode, the external circuit must sink 0.7µA, allowing one  
reference circuit to easily drive the REFIN of multiple  
converters to 1.024V 10%.  
In general, the MAX1191 provides better SFDR and  
THD with fully differential input signals than single-  
ended drive, especially for high input frequencies. In  
differential input mode, even-order harmonics are lower  
as both inputs (INA+, INA- and/or INB+, INB-) are bal-  
20 ______________________________________________________________________________________  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
3V  
V
DD  
24  
27  
26  
25  
REFIN  
REFP  
REFN  
COM  
1.248V  
0.1µF  
0.1µF  
0.33µF  
0.33µF  
0.33µF  
1
2
N = 1  
MAX6061  
10Hz  
LOWPASS  
FILTER  
1%  
MAX1191  
20kΩ  
3
1%  
90.9kΩ  
1µF  
GND  
3V  
0.1µF  
15Ω  
5
3
NOTE: ONE FRONT-END REFERENCE  
1.023V  
CIRCUIT PROVIDES 15mA OF OUTPUT  
1
DRIVE AND SUPPORTS OVER 1000 MAX1191s.  
4
V
DD  
MAX4250  
24  
27  
2.2µF  
0.1µF  
REFIN  
REFP  
2
0.1µF  
N = 1000  
0.33µF  
MAX1191  
26  
25  
REFN  
COM  
0.33µF  
0.33µF  
GND  
Figure 10. External Buffered (MAX4250) Reference Drive Using a MAX6062 Bandgap Reference  
Figure 10 shows the MAX6061 precision bandgap ref-  
erence used as a common reference for multiple con-  
verters. The 1.248V output of the MAX6061 is divided  
down to 1.023V as it passes through a one-pole, 10Hz,  
lowpass filter to the MAX4250. The MAX4250 buffers  
the 1.023V reference before its output is applied to the  
MAX1191. The MAX4250 provides a low offset voltage  
(for high gain accuracy) and a low noise level.  
Unbuffered External Reference Drives  
Multiple ADCs  
The unbuffered external reference mode allows for pre-  
cise control over the MAX1191 reference and allows  
multiple converters to use a common reference.  
Connecting REFIN to GND disables the internal refer-  
ence, allowing REFP, REFN, and COM to be driven  
directly by a set of external reference sources.  
______________________________________________________________________________________ 21  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
3V  
2.500V  
1
0.1µF  
2
V
DD  
27  
26  
25  
REFP  
REFN  
COM  
MAX6066  
1%  
30.1kΩ  
3
0.33µF  
0.33µF  
0.33µF  
N = 1  
1.748V  
MAX1191  
24  
3
REFIN  
47Ω  
1/4  
1
MAX4254  
2
330µF  
6V  
10µF  
6V  
1µF  
1.47kΩ  
47Ω  
NOTE: ONE FRONT-END  
REFERENCE CIRCUIT  
SUPPORTS UP TO 160 MAX1191s.  
GND  
1%  
10.0kΩ  
1.498V  
5
1/4  
7
MAX4254  
6
330µF  
10µF  
2.2µF  
0.1µF  
6V  
6V  
3V  
1.47kΩ  
47Ω  
1%  
UNCOMMITTED  
V
DD  
10.0kΩ  
1MΩ  
27  
26  
25  
REFP  
REFN  
COM  
1.248V  
10  
0.1µF  
0.33µF  
0.33µF  
0.33µF  
N = 160  
12  
13  
1/4  
4
8
1/4  
14  
MAX4254  
24  
MAX1191  
9
330µF  
6V  
MAX4254  
REFIN  
1MΩ  
10µF  
6V  
11  
1.47kΩ  
1%  
49.9kΩ  
GND  
Figure 11. External Unbuffered Reference Driving 160 ADCs with MAX4254 and MAX6066  
Figure 11 shows the MAX6066 precision bandgap ref-  
erence used as a common reference for multiple con-  
verters. The 2.500V output of the MAX6066 is followed  
by a 10Hz lowpass filter and precision voltage-divider.  
The MAX4254 buffers the taps of this divider to provide  
the 1.75V, 1.5V, and 1.25V sources to drive REFP,  
REFN, and COM. The MAX4254 provides a low offset  
voltage and low noise level. The individual voltage fol-  
lowers are connected to 10Hz lowpass filters, which fil-  
ter both the reference-voltage and amplifier noise to a  
level of 3nV/Hz. The 1.75V and 1.25V reference volt-  
ages set the differential full-scale range of the associat-  
ed ADCs at 0.5V.  
The common power supply for all active components  
removes any concern regarding power-supply  
sequencing when powering up or down.  
With the outputs of the MAX4252 matching better than  
0.1%, the buffers and subsequent lowpass filters sup-  
port as many as 160 MAX1191s.  
22 ______________________________________________________________________________________  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
A/B  
MAX2451  
INA+  
INA-  
0°  
DSP  
90°  
POST-  
MAX1191  
PROCESSING  
INB+  
INB-  
DOWNCONVERTER  
÷
8
Figure 12. Typical QAM Receiver Application  
ably on the same side as the ADC, using surface-  
mount devices for minimum inductance. Bypass V to  
Typical QAM Demodulation Application  
Quadrature amplitude modulation (QAM) is frequently  
used in digital communications. Typically found in  
spread-spectrum-based systems, a QAM signal repre-  
sents a carrier frequency modulated in both amplitude  
and phase. At the transmitter, modulating the baseband  
signal with quadrature outputs, a local oscillator fol-  
lowed by subsequent upconversion can generate the  
QAM signal. The result is an in-phase (I) and a quadra-  
ture (Q) carrier component, where the Q component is  
90° phase shifted with respect to the in-phase compo-  
nent. At the receiver, the QAM signal is demodulated  
into analog I and Q components. Figure 12 displays the  
demodulation process performed in the analog domain  
using the MAX1191 dual-matched, 3V, 8-bit ADC and  
the MAX2451 quadrature demodulator to recover and  
digitize the I and Q baseband signals. Before being dig-  
itized by the MAX1191, the mixed-down signal compo-  
nents can be filtered by matched analog filters, such as  
Nyquist or pulse-shaping filters. The filters remove  
unwanted images from the mixing process, thereby  
enhancing the overall signal-to-noise (SNR) perfor-  
mance and minimizing intersymbol interference.  
DD  
GND with a 0.1µF ceramic capacitor in parallel with a  
2.2µF bipolar capacitor. Bypass OV to OGND with a  
DD  
0.1µF ceramic capacitor in parallel with a 2.2µF bipolar  
capacitor. Bypass REFP, REFN, and COM each to  
GND with a 0.33µF ceramic capacitor.  
Multilayer boards with separated ground and power  
planes produce the highest level of signal integrity. Use  
a split ground plane arranged to match the physical  
location of the analog ground (GND) and the digital  
output driver ground (OGND) on the ADCs package.  
Connect the MAX1191 exposed backside paddle to  
GND. Join the two ground planes at a single point such  
that the noisy digital ground currents do not interfere  
with the analog ground plane. The ideal location of this  
connection can be determined experimentally at a  
point along the gap between the two ground planes,  
which produces optimum results. Make this connection  
with a low-value, surface-mount resistor (1to 5), a  
ferrite bead, or a direct short. Alternatively, all ground  
pins could share the same ground plane, if the ground  
plane is sufficiently isolated from any noisy, digital sys-  
tems ground plane (e.g., downstream output buffer or  
DSP ground plane).  
Grounding, Bypassing,  
and Board Layout  
The MAX1191 requires high-speed board layout design  
techniques. Refer to the MAX1193 Evaluation Kit data  
sheet for a board layout reference. Locate all bypass  
capacitors as close to the device as possible, prefer-  
Route high-speed digital signal traces away from the  
sensitive analog traces of either channel. Make sure to  
isolate the analog input lines to each respective con-  
verter to minimize channel-to-channel crosstalk. Keep  
all signal lines short and free of 90° turns.  
______________________________________________________________________________________ 23  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Dynamic Parameter Definitions  
CLK  
Aperture Jitter  
Figure 13 depicts the aperture jitter (t ), which is the  
AJ  
sample-to-sample variation in the aperture delay.  
ANALOG  
INPUT  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
rising edge of the sampling clock and the instant when  
an actual sample is taken (Figure 13).  
t
AD  
t
AJ  
SAMPLED  
DATA (T/H)  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADCs reso-  
lution (N bits):  
HOLD  
TRACK  
TRACK  
T/H  
Figure 13. T/H Aperture Timing  
Static Parameter Definitions  
SNR  
= 6.02 × N + 1.76  
dB[max]  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. This straight  
line can be either a best-straight-line fit or a line drawn  
between the end points of the transfer function, once  
offset and gain errors have been nullified. The static lin-  
earity parameters for the MAX1191 are measured using  
the end-point method.  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise. RMS noise includes all spec-  
tral components to the Nyquist frequency excluding the  
fundamental, the first five harmonics, and the DC offset.  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to the RMS noise. RMS noise includes all spectral  
components to the Nyquist frequency excluding the  
the fundamental and the DC offset.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1LSB. A DNL  
error specification of less than 1LSB guarantees no  
missing codes and a monotonic transfer function.  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at  
a specific input frequency and sampling rate. An ideal  
ADCs error consists of quantization noise only. ENOB  
for a full-scale sinusoidal input waveform is computed  
from:  
Offset Error  
Ideally, the midscale MAX1191 transition occurs at 0.5  
LSB above midscale. The offset error is the amount of  
deviation between the measured transition point and  
the ideal transition point.  
SINAD - 1.76  
Gain Error  
Ideally, the full-scale MAX1191 transition occurs at 1.5  
LSB below full-scale. The gain error is the amount of  
deviation between the measured transition point and  
the ideal transition point with the offset error removed.  
ENOB =  
6.02  
24 ______________________________________________________________________________________  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Total Harmonic Distortion (THD)  
THD is typically the ratio of the RMS sum of the first five  
harmonics of the input signal to the fundamental itself.  
This is expressed as:  
Third-Order Intermodulation (IM3)  
IM3 is the power of the worst third-order intermodula-  
tion product relative to the input power of either input  
tone when two tones, f1 and f2, are present at the  
inputs. The third-order intermodulation products are (2  
x f1 f2), (2 x f2 f1). The individual input tone levels  
are at -7dB FS.  
2
2
2
2
2
V
+ V  
+ V  
+ V  
+ V  
6
2
3
4
5
THD = 20 × log  
V
1
Power-Supply Rejection  
Power-supply rejection is defined as the shift in offset  
and gain error when the power supplies are moved  
5%.  
where V is the fundamental amplitude, and V V are  
1
2
6
the amplitudes of the 2nd- through 6th-order harmonics.  
Third Harmonic Distortion (HD3)  
HD3 is defined as the ratio of the RMS value of the third  
harmonic component to the fundamental input signal.  
Small-Signal Bandwidth  
A small -20dB FS analog input signal is applied to an  
ADC in such a way that the signals slew rate does not  
limit the ADCs performance. The input frequency is  
then swept up to the point where the amplitude of the  
digitized conversion result has decreased by -3dB.  
Note that the track/hold (T/H) performance is usually  
the limiting factor for the small-signal input bandwidth.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest spurious  
component, excluding DC offset.  
Intermodulation Distortion (IMD)  
IMD is the total power of the intermodulation products  
relative to the total input power when two tones, f1 and  
f2, are present at the inputs. The intermodulation prod-  
ucts are (f1 f2), (2 x f1), (2 x f2), (2 x f1 f2), (2 x f2  
f1). The individual input tone levels are at -7dB FS.  
Full-Power Bandwidth  
A large -0.5dB FS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by -3dB. This point is defined as full-  
power input bandwidth frequency.  
Chip Information  
TRANSISTOR COUNT: 7925  
PROCESS: CMOS  
______________________________________________________________________________________ 25  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
D2  
0.15  
C A  
D
b
0.10 M  
C A B  
C
L
D2/2  
D/2  
k
PIN # 1  
I.D.  
0.15  
C
B
PIN # 1 I.D.  
0.35x45  
E/2  
E2/2  
C
(NE-1) X  
e
L
E2  
E
k
L
DETAIL A  
e
(ND-1) X  
e
C
C
L
L
L
L
e
e
0.10  
C
A
0.08  
C
C
A3  
A1  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0140  
C
2
26 ______________________________________________________________________________________  
Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
EXPOSED PAD VARIATIONS  
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220.  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
16, 20, 28, 32L, QFN THIN, 5x5x0.8 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
21-0140  
C
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 27  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1191ETI

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, THIN, QFN-28
MAXIM

MAX1191ETI+

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, THIN, QFN-28
MAXIM

MAX1191ETI+T

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220, TQFN-28
MAXIM

MAX1191ETI-T

Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC
MAXIM

MAX1192

Ultra-Low-Power, 22Msps, Dual 8-Bit ADC
MAXIM

MAX1192ETI

IC,A/D CONVERTER,DUAL,8-BIT,CMOS,LLCC,28PIN
ROCHESTER

MAX1192ETI-T

Ultra-Low-Power, 22Msps, Dual 8-Bit ADC
MAXIM

MAX1193

Ultra-Low-Power, 45Msps, Dual 8-Bit ADC
MAXIM

MAX1193ETI+

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, THIN, QFN-28
MAXIM

MAX1193ETI+T

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220, TQFN-28
MAXIM

MAX1193ETI-T

Ultra-Low-Power, 45Msps, Dual 8-Bit ADC
MAXIM

MAX1193EVKIT

MAX1193 Evaluation Kit
MAXIM