MAX1196ECM+T [MAXIM]

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, EXPOSED PAD, MO-136, TQFP-48;
MAX1196ECM+T
型号: MAX1196ECM+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, EXPOSED PAD, MO-136, TQFP-48

文件: 总23页 (文件大小:632K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2600; Rev 0; 9/02  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
General Description  
Features  
The MAX1196 is a 3V, dual 8-bit analog-to-digital con-  
verter (ADC) featuring fully differential wideband track-  
and-hold (T/H) inputs, driving two ADCs. The MAX1196  
is optimized for low power, small size, and high-dynamic  
performance for applications in imaging, instrumenta-  
tion, and digital communications. This ADC operates  
from a single 2.7V to 3.6V supply, consuming only  
87mW while delivering a typical signal-to-noise and dis-  
tortion (SINAD) of 48.4dB at an input frequency of  
20MHz and a sampling rate of 40Msps. The T/H driven  
input stages incorporate 400MHz (-3dB) input ampli-  
fiers. The converters can also be operated with single-  
ended inputs. In addition to low operating power, the  
MAX1196 features a 3mA sleep mode as well as a  
0.1µA power-down mode to conserve power during idle  
periods.  
Single 2.7V to 3.6V Operation  
Excellent Dynamic Performance  
48.4dB/44.7dB SINAD at f = 20MHz/200MHz  
68.9dB/53dBc SFDR at f = 20MHz/200MHz  
IN  
IN  
-72dB Interchannel Crosstalk at f = 20MHz  
IN  
Low Power  
87mW (Normal Operation)  
9mW (Sleep Mode)  
0.3µW (Shutdown Mode)  
0.05dB Gain and 0.05° Phase Matching  
Wide 1V  
Differential Analog Input Voltage  
P-P  
Range  
400MHz -3dB Input Bandwidth  
An internal 2.048V precision bandgap reference sets  
the full-scale range of the ADC. A flexible reference  
structure allows the use of this internal or an externally  
applied reference, if desired for applications requiring  
increased accuracy or a different input voltage range.  
On-Chip 2.048V Precision Bandgap Reference  
User-Selectable Output Format—Two’s  
Complement or Offset Binary  
Pin-Compatible 8-Bit and 10-Bit Upgrades  
Available  
The MAX1196 features parallel, multiplexed, CMOS-  
compatible three-state outputs. The digital output format  
can be set to two’s complement or straight offset binary  
through a single control pin. The device provides for a  
separate output power supply of 1.7V to 3.6V for flexible  
interfacing. The MAX1196 is available in a 7mm × 7mm,  
48-pin TQFP package, and is specified for the extended  
industrial (-40°C to +85°C) temperature range.  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX1196ECM  
*EP = Exposed pad.  
-40°C to +85°C  
48 TQFP-EP*  
Pin Configuration  
Pin-compatible, nonmultiplexed higher speed versions of  
the MAX1196 are also available. Refer to the MAX1198  
data sheet for 100Msps, the MAX1197 data sheet for  
60Msps, and the MAX1195 data sheet for 40Msps.  
For a 10-bit, pin-compatible upgrade, refer to the  
MAX1186 data sheet. With the N.C. pins of the  
MAX1196 internally pulled down to ground, this ADC  
becomes a drop-in replacement for the MAX1186.  
COM  
1
2
36 N.C.  
35 N.C.  
34 OGND  
V
DD  
GND  
INA+  
INA-  
3
4
33 OV  
32 OV  
DD  
DD  
5
Applications  
V
6
31 OGND  
30 A/B  
DD  
MAX1196  
Baseband I/Q Sampling  
Multichannel IF Sampling  
Ultrasound and Medical Imaging  
Battery-Powered Instrumentation  
WLAN, WWAN, WLL, MMDS Modems  
Set-Top Boxes  
GND  
INB-  
INB+  
GND  
7
8
29 N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
9
28  
27  
26  
25  
10  
11  
12  
V
DD  
CLK  
VSAT Terminals  
TQFP-EP  
Functional Diagram appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
ABSOLUTE MAXIMUM RATINGS  
V
, OV  
to GND .............................................. -0.3V to +3.6V  
Continuous Power Dissipation (T = +70°C)  
DD  
DD  
A
OGND to GND...................................................... -0.3V to +0.3V  
48-Pin TQFP (derate 12.5mW/°C above +70°C)........1000mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
INA+, INA-, INB+, INB- to GND ...............................-0.3V to V  
REFIN, REFOUT, REFP, REFN, COM,  
DD  
CLK to GND............................................-0.3V to (V  
OE, PD, SLEEP, T/B,  
+ 0.3V)  
DD  
D7A/BD0A/B, A/B to OGND...............-0.3V to (OV  
+ 0.3V)  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= OV  
= 3V, 0.1µF and 2.2µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a 10k  
DD  
DD  
resistor, V = 2V  
(differential with respect to COM), C = 10pF at digital outputs (Note 5), f  
= 40MHz, T = T  
to T  
,
IN  
P-P  
CLK  
A
MIN  
MAX  
L
unless otherwise noted. +25°C guaranteed by production test, <+25°C guaranteed by design and characterization. Typical values  
are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX UNITS  
DC ACCURACY  
Resolution  
8
Bits  
Integral Nonlinearity  
INL  
f
f
= 7.51MHz (Note 1)  
0.3  
1
1
LSB  
IN  
IN  
= 7.51MHz, no missing codes  
Differential Nonlinearity  
DNL  
0.15  
LSB  
guaranteed (Note 1)  
Offset Error  
4
4
%FS  
%FS  
Gain Error  
Gain Temperature Coefficient  
ANALOG INPUT  
100  
1.0  
ppm/°C  
Differential Input Voltage Range  
V
Differential or single-ended inputs  
Switched capacitor load  
V
V
DIFF  
Common-Mode Input Voltage  
Range  
V
/ 2  
DD  
0.2  
V
CM  
Input Resistance  
R
140  
5
kΩ  
IN  
Input Capacitance  
C
pF  
IN  
CONVERSION RATE  
Maximum Clock Frequency  
f
40  
MHz  
CLK  
CHA  
CHB  
5
Clock  
Cycles  
Data Latency  
5.5  
DYNAMIC CHARACTERISTICS (f  
= 40MHz)  
SNR  
CLK  
f
f
f
f
f
f
f
f
= 2MHz at -1dB FS  
= 7.5MHz at -1dB FS  
= 20MHz at -1dB FS  
= 101MHz at -1dB FS  
= 2MHz at -1dB FS  
= 7.5MHz at -1dB FS  
= 20MHz at -1dB FS  
= 101MHz at -1dB FS  
48.7  
48.7  
48.5  
48  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
INA or B  
Signal-to-Noise Ratio  
dB  
dB  
47.5  
47  
48.6  
48.7  
48.4  
48  
Signal-to-Noise and Distortion  
SINAD  
2
_______________________________________________________________________________________  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= OV  
= 3V, 0.1µF and 2.2µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a 10kΩ  
DD  
DD  
resistor, V = 2V  
(differential with respect to COM), C = 10pF at digital outputs (Note 5), f  
= 40MHz, T = T  
to T  
,
IN  
P-P  
CLK  
A
MIN  
MAX  
L
unless otherwise noted. +25°C guaranteed by production test, <+25°C guaranteed by design and characterization. Typical values  
are at T = +25°C.)  
A
UNITS  
PARAMETER  
SYMBOL  
CONDITIONS  
= 2MHz at -1dB FS  
= 7.5MHz at -1dB FS  
= 20MHz at -1dB FS  
= 101MHz at -1dB FS  
= 2MHz at -1dB FS  
= 7.5MHz at -1dB FS  
= 20MHz at -1dB FS  
= 101MHz at -1dB FS  
MIN  
TYP  
69  
MAX  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
INA or B  
70  
INA or B  
Spurious-Free Dynamic Range  
Third-Harmonic Distortion  
SFDR  
dBc  
60  
68.9  
65  
INA or B  
INA or B  
-72  
-73.7  
-75  
-67  
INA or B  
INA or B  
HD3  
dBc  
INA or B  
INA or B  
= 1.997MHz at -7dB FS,  
= 2.046MHz at -7dB FS  
= 1.997MHz at -7dB FS,  
= 2.046MHz at -7dB FS  
IN1(A or B)  
IN2(A or B)  
IN1(A or B)  
IN2(A or B)  
Intermodulation Distortion  
(First Five Odd-Order IMDs) (Note 2)  
dBc  
dBc  
IMD  
IM3  
-68  
Third-Order Intermodulation  
Distortion (Note 2)  
-73.2  
= 2MHz at -1dB FS  
= 7.5MHz at -1dB FS  
= 20MHz at -1dB FS  
= 101MHz at -1dB FS  
-70  
-69  
-69  
-63  
500  
400  
INA or B  
INA or B  
INA or B  
INA or B  
Total Harmonic Distortion  
(First Four Harmonics)  
THD  
dBc  
-57  
Small-Signal Bandwidth  
Full-Power Bandwidth  
Input at -20dB FS, differential inputs  
Input at -1dB FS, differential inputs  
MHz  
MHz  
FPBW  
f
f
= 106MHz at -1dB FS,  
= 118MHz at -1dB FS  
IN1(A or B)  
IN2(A or B)  
Gain Flatness (12MHz Spacing)  
(Note 3)  
0.05  
dB  
ns  
Aperture Delay  
t
1
2
2
AD  
Aperture Jitter  
t
1dB SNR degradation at Nyquist  
ps  
RMS  
AJ  
Overdrive Recovery Time  
For 1.5 × full-scale input  
ns  
INTERNAL REFERENCE (REFIN = REFOUT through 10kresistor; REFP, REFN, and COM levels are generated internally.)  
2.048  
3%  
Reference Output Voltage  
V
(Note 4)  
(Note 5)  
(Note 5)  
(Note 5)  
V
REFOUT  
Positive Reference Output  
Voltage  
V
2.012  
V
REFP  
REFN  
Negative Reference Output  
Voltage  
V
0.988  
V
V
/ 2  
DD  
Common-Mode Level  
V
V
V
COM  
0.1  
Differential Reference Output  
Voltage Range  
1.024  
3%  
V  
V  
= V  
- V  
REFP REFN  
REF  
REF  
Reference Temperature  
Coefficient  
TC  
100  
ppm/°C  
REF  
_______________________________________________________________________________________  
3
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= OV  
= 3V, 0.1µF and 2.2µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a 10kΩ  
DD  
DD  
resistor, V = 2V  
(differential with respect to COM), C = 10pF at digital outputs (Note 5), f  
= 40MHz, T = T  
to T  
,
IN  
P-P  
CLK  
A
MIN  
MAX  
L
unless otherwise noted. +25°C guaranteed by production test, <+25°C guaranteed by design and characterization. Typical values  
are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BUFFERED EXTERNAL REFERENCE (V  
= 2.048V)  
(Note 5)  
REFIN  
Positive Reference Output  
V
2.012  
0.988  
V
V
V
REFP  
Voltage  
Negative Reference Output  
Voltage  
V
(Note 5)  
(Note 5)  
REFN  
V
/ 2  
DD  
Common-Mode Level  
V
COM  
0.1  
Differential Reference Output  
Voltage Range  
1.024  
2%  
V  
V  
= V  
- V  
REFN  
V
REF  
REF  
REFP  
REFIN Resistance  
R
>50  
MΩ  
mA  
REFIN  
Maximum REFP, COM Source  
Current  
I
I
5
SOURCE  
Maximum REFP, COM Sink Current  
Maximum REFN Source Current  
Maximum REFN Sink Current  
I
-250  
250  
-5  
µA  
µA  
SINK  
SOURCE  
I
mA  
SINK  
UNBUFFERED EXTERNAL REFERENCE (V  
= AGND, reference voltage applied to REFP, REFN, and COM)  
REFIN  
R
R
,
REFP  
REFP, REFN Input Resistance  
Measured between REFP and REFN  
4
kΩ  
pF  
V
REFN  
REFP, REFN, COM Input  
Capacitance  
C
15  
IN  
Differential Reference Input  
Voltage Range  
1.024  
10%  
V  
V  
= V  
- V  
REFP REFN  
REF  
REF  
V
/ 2  
5%  
DD  
COM Input Voltage Range  
REFP Input Voltage  
V
V
V
COM  
REFP  
REFN  
V
COM  
+
V
V  
/ 2  
REF  
V
-
COM  
REFN Input Voltage  
V
V
V  
/ 2  
REF  
DIGITAL INPUTS (CLK, PD, OE, SLEEP, T/B)  
0.8 ×  
V
DD  
CLK  
Input High Threshold  
Input Low Threshold  
V
V
V
IH  
0.8 ×  
OV  
PD, OE, SLEEP, T/B  
CLK  
DD  
0.2 ×  
V
DD  
V
IL  
0.2 ×  
OV  
PD, OE, SLEEP, T/B  
DD  
4
_______________________________________________________________________________________  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= OV  
= 3V, 0.1µF and 2.2µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a 10kΩ  
DD  
DD  
resistor, V = 2V  
(differential with respect to COM), C = 10pF at digital outputs (Note 5), f  
= 40MHz, T = T  
to T  
,
IN  
P-P  
CLK  
A
MIN  
MAX  
L
unless otherwise noted. +25°C guaranteed by production test, <+25°C guaranteed by design and characterization. Typical values  
are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Hysteresis  
V
0.15  
V
HYST  
I
V
V
= V  
= 0  
= OV  
DD  
20  
20  
IH  
IH  
IL  
DD  
Input Leakage  
µA  
pF  
I
IL  
Input Capacitance  
C
5
IN  
DIGITAL OUTPUTS (D0A/BD7A/B, A/B)  
Output Voltage Low  
V
I
I
= -200µA  
0.2  
10  
V
V
OL  
SINK  
OV  
0.2  
-
DD  
Output Voltage High  
V
= 200µA  
SOURCE  
OH  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
Analog Supply Voltage Range  
Output Supply Voltage Range  
I
OE = OV  
OE = OV  
µA  
pF  
LEAK  
DD  
C
5
OUT  
DD  
V
2.7  
1.7  
3
3
3.6  
3.6  
V
V
DD  
OV  
DD  
Operating, f  
applied to both channels  
= 20MHz at -1dB FS  
INA&B  
29  
36  
mA  
Analog Supply Current  
Output Supply Current  
Analog Power Dissipation  
I
VDD  
Sleep mode  
3
Shutdown, clock idle, PD = OE = OV  
0.1  
20  
µA  
DD  
DD  
DD  
Operating, f  
= 20MHz at -1dB FS  
INA&B  
8
mA  
applied to both channels (Note 6)  
I
OVDD  
Sleep mode  
3
3
µA  
Shutdown, clock idle, PD = OE = OV  
10  
Operating, f  
= 20MHz at -1dB FS  
INA&B  
87  
108  
applied to both channels  
mW  
PDISS  
PSRR  
Sleep mode  
9
0.3  
3
Shutdown, clock idle, PD = OE = OV  
60  
µW  
Offset, V  
5%  
DD  
Power-Supply Rejection  
mV/V  
Gain, V  
5%  
3
DD  
TIMING CHARACTERISTICS  
CLK Rise to CHA Output Data  
Valid  
t
t
C = 20pF (Notes 1, 7)  
6
6
6
8.25  
8.25  
ns  
ns  
ns  
DOA  
DOB  
DA/B  
L
CLK Fall to CHB Output Data  
Valid  
C = 20pF (Notes 1, 7)  
L
Clock Rise/Fall to A/B Rise/Fall  
Time  
t
OE Fall to Output Enable Time  
OE Rise to Output Disable Time  
t
5
5
ns  
ns  
ENABLE  
t
DISABLE  
12.5  
1.5  
CLK Pulse Width High  
t
Clock period: 25ns (Note 7)  
ns  
CH  
_______________________________________________________________________________________  
5
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= OV  
= 3V, 0.1µF and 2.2µF capacitors from REFP, REFN, and COM to GND; REFOUT connected to REFIN through a 10kΩ  
DD  
DD  
resistor, V = 2V  
(differential with respect to COM), C = 10pF at digital outputs (Note 5), f  
= 40MHz, T = T  
to T  
,
IN  
P-P  
CLK  
A
MIN  
MAX  
L
unless otherwise noted. +25°C guaranteed by production test, <+25°C guaranteed by design and characterization. Typical values  
are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12.5  
1.5  
CLK Pulse Width Low  
Wake-Up Time  
t
Clock period: 25ns (Note 7)  
ns  
CL  
Wake-up from sleep mode  
1
t
µs  
WAKE  
Wake-up from shutdown mode (Note 8)  
20  
CHANNEL-TO-CHANNEL MATCHING  
Crosstalk  
f
f
f
= 20MHz at -1dB FS (Note 9)  
= 20MHz at -1dB FS (Note 10)  
= 20MHz at -1dB FS (Note 11)  
-72  
dB  
dB  
INA or B  
INA or B  
INA or B  
Gain Matching  
0.05  
0.05  
Phase Matching  
Degrees  
Note 1: Guaranteed by design. Not subject to production testing.  
Note 2: Intermodulation distortion is the total power of the intermodulation products relative to the total input power.  
Note 3: Analog attenuation is defined as the amount of attenuation of the fundamental bin from a converted FFT between two  
applied input signals with the same magnitude (peak-to-peak) at f and f  
.
IN2  
IN1  
Note 4: REFIN and REFOUT should be bypassed to GND with a 0.1µF (min) and 2.2µF (typ) capacitor.  
Note 5: REFP, REFN, and COM should be bypassed to GND with a 0.1µF (min) and 2.2µF (typ) capacitor.  
Note 6: Typical digital output current at f  
= 20MHz. For digital output currents vs. analog input frequency, see the Typical  
INA&B  
Operating Characteristics.  
Note 7: See Figure 3 for detailed system timing diagrams. Clock to data valid timing is measured from 50% of the clock level to  
50% of the data output level.  
Note 8: SINAD settles to within 0.5dB of its typical value in unbuffered external reference mode.  
Note 9: Crosstalk rejection is tested by applying a test tone to one channel and holding the other channel at DC level. Crosstalk is  
measured by calculating the power ratio of the fundamental of each channels FFT.  
Note 10:Amplitude matching is measured by applying the same signal to each channel and comparing the magnitude of the funda-  
mental of the calculated FFT.  
Note 11:Phase matching is measured by applying the same signal to each channel and comparing the phase of the fundamental of  
the calculated FFT. The data from both ADC channels must be captured simultaneously during this test.  
6
_______________________________________________________________________________________  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Typical Operating Characteristics  
(V  
DD  
= OV  
= 3V, V  
= 2.048V, differential input at -1dB FS, f  
= 40MHz, C 10pF, T = +25°C, unless otherwise noted.)  
DD  
REFIN  
CLK L A  
FFT PLOT CHA  
FFT PLOT CHB  
FFT PLOT CHA  
(DIFFERENTIAL INPUT, 8192-POINT DATA RECORD)  
(DIFFERENTIAL INPUT, 8192-POINT DATA RECORD) (DIFFERENTIAL INPUT, 8192-POINT DATA RECORD)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
f
f
f
= 40.0005678MHz  
= 1.958036MHz  
= 7.534287MHz  
f
f
f
= 40.0005678MHz  
= 1.958036MHz  
= 7.534287MHz  
f
f
f
= 40.0005678MHz  
= 7.534287MHz  
= 1.958036MHz  
CLK  
INA  
INB  
CLK  
INA  
INB  
CLK  
INA  
INB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f
INA  
f
INA  
AINA = AINB = -1dB FS  
COHERENT SAMPLING  
AINA = AINB = -1dB FS  
COHERENT SAMPLING  
AINA = AINB = -1dB FS  
COHERENT SAMPLING  
f
INB  
f
INB  
HD3  
HD2  
HD3  
HD2  
f
INA  
HD2  
HD3  
f
INB  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
FFT PLOT CHB  
(DIFFERENTIAL INPUT, 8192-POINT DATA RECORD)  
FFT PLOT CHA  
FFT PLOT CHB  
(DIFFERENTIAL INPUT, 8192-POINT DATA RECORD) (DIFFERENTIAL INPUT, 8192-POINT DATA RECORD)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f
f
f
= 40.0005678MHz  
= 19.88798MHz  
= 40.49374MHz  
f
f
f
= 40.0005678MHz  
= 7.534287MHz  
= 1.958036MHz  
CLK  
INA  
INB  
f
f
f
= 40.0005678MHz  
= 19.88798MHz  
= 40.49374MHz  
CLK  
INA  
INB  
CLK  
INA  
INB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f
INB  
f
INB  
AINA = AINB = -1dB FS  
COHERENT SAMPLING  
AINA = AINB = -1dB FS  
COHERENT SAMPLING  
AINA = AINB = -1dB FS  
COHERENT SAMPLING  
f
INA  
HD2  
HD3  
HD2  
f
HD2  
INB  
f
f
INA  
INA  
HD3  
HD3  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
TWO-TONE IMD PLOT  
(DIFFERENTIAL INPUT, 8192-POINT DATA RECORD)  
FFT PLOT CHA  
FFT PLOT CHB  
(DIFFERENTIAL INPUT, 8192-POINT DATA RECORD) (DIFFERENTIAL INPUT, 8192-POINT DATA RECORD)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f
f
f
= 40.0005678MHz  
= 40.49374MHz  
= 19.88798MHz  
f
f
f
= 40.0005678MHz  
= 40.49374MHz  
= 19.88798MHz  
f
f
f
= 40.001536MHz  
= 1.997147MHz  
= 2.045977MHz  
CLK  
INA  
INB  
CLK  
INA  
INB  
CLK  
INA  
INB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
f
AINA = AINB = -1dB FS  
COHERENT SAMPLING  
AINA = AINB = -1dB FS  
COHERENT SAMPLING  
AIN = -7dB FS  
INA  
COHERENT SAMPLING  
f
INB  
f
f
IN1  
IN2  
f
INA  
HD2  
HD3  
HD2  
f
INB  
HD3  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
ANALOG INPUT FREQUENCY (MHz)  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Typical Operating Characteristics (continued)  
(V  
DD  
= OV  
= 3V, V  
= 2.048V, differential input at -1dB FS, f  
= 40MHz, C 10pF, T = +25°C, unless otherwise noted.)  
DD  
REFIN  
CLK L A  
SIGNAL-TO-NOISE + DISTORTION  
vs. ANALOG INPUT FREQUENCY  
TWO-TONE IMD PLOT  
(DIFFERENTIAL INPUT, 8192-POINT DATA RECORD)  
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
50  
0
50  
49  
48  
47  
46  
45  
44  
f
f
f
= 40.001536MHz  
= 9.95643MHz  
= 10.024799MHz  
AIN = -7dB FS  
COHERENT SAMPLING  
CHB  
CLK  
IN1  
IN2  
CHB  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
49  
48  
47  
46  
45  
44  
43  
f
IN1  
f
IN2  
CHA  
CHA  
0
40  
80  
120  
160  
200  
7
8
9
10  
11  
12  
13  
0
40  
80  
120  
160  
200  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT FREQUENCY  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
FULL-POWER INPUT BANDWIDTH  
vs. ANALOG INPUT FREQUENCY, DIFFERENTIAL  
-38  
90  
80  
70  
60  
50  
40  
2
1
0
-48  
-58  
-68  
-78  
-88  
CHB  
CHA  
-1  
-2  
-3  
-4  
CHA  
CHB  
0
40  
80  
120  
160  
200  
0
40  
80  
120  
160  
200  
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
SIGNAL-TO-NOISE RATIO  
SMALL-SIGNAL INPUT BANDWIDTH  
vs. ANALOG INPUT FREQUENCY, DIFFERENTIAL  
SIGNAL-TO-NOISE + DISTORTION  
vs. INPUT POWER (f = 19.88798MHz)  
vs. INPUT POWER (f = 19.88798MHz)  
IN  
IN  
2
55  
55  
50  
45  
40  
35  
30  
25  
V
= 100mV  
P-P  
IN  
1
0
50  
45  
40  
35  
30  
25  
-1  
-2  
-3  
-4  
1
10  
100  
1000  
-20  
-16  
-12  
-8  
-4  
0
-20  
-16  
-12  
-8  
-4  
0
ANALOG INPUT FREQUENCY (MHz)  
INPUT POWER (dB FS)  
INPUT POWER (dB FS)  
8
_______________________________________________________________________________________  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Typical Operating Characteristics (continued)  
(V  
DD  
= OV  
= 3V, V  
= 2.048V, differential input at -1dB FS, f  
= 40MHz, C 10pF, T = +25°C, unless otherwise noted.)  
DD  
REFIN  
CLK  
L
A
SNR/SINAD, THD/SFDR  
vs. CLOCK DUTY CYCLE  
TOTAL HARMONIC DISTORTION  
vs. INPUT POWER (f = 19.88798MHz)  
SPURIOUS-FREE DYNAMIC RANGE  
vs. INPUT POWER (f = 19.88798MHz)  
IN  
IN  
80  
70  
60  
50  
40  
30  
-45  
72  
67  
62  
57  
52  
47  
42  
f
= 7.534287MHz  
SFDR  
INA/B  
-50  
-55  
-60  
-65  
-70  
-75  
THD  
SNR  
SINAD  
40  
44  
48  
52  
56  
60  
-20  
-16  
-12  
-8  
-4  
0
-20  
-16  
-12  
-8  
-4  
0
CLOCK DUTY CYCLE (%)  
INPUT POWER (dB FS)  
INPUT POWER (dB FS)  
INTEGRAL NONLINEARITY  
(131,072-POINT DATA RECORD)  
DIFFERENTIAL NONLINEARITY  
(131,072-POINT DATA RECORD)  
0.5  
0.4  
0.5  
0.4  
f
= 7.534287MHz  
IN  
f
= 7.534287MHz  
IN  
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
0
32 64 96 128 160 192 224 256  
DIGITAL OUTPUT CODE  
0
32 64 96 128 160 192 224 256  
DIGITAL OUTPUT CODE  
OFFSET ERROR vs. TEMPERATURE,  
GAIN ERROR vs. TEMPERATURE,  
EXTERNAL REFERENCE V  
= 2.048V  
EXTERNAL REFERENCE V  
= 2.048V  
REFIN  
REFIN  
0.2  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
CHA  
CHB  
-0.2  
-0.4  
-0.6  
-0.8  
CHB  
CHA  
-0.1  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
9
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Typical Operating Characteristics (continued)  
(V  
DD  
= OV  
= 3V, V  
= 2.048V, differential input at -1dB FS, f  
= 40MHz, C 10pF, T = +25°C, unless otherwise noted.)  
DD  
REFIN  
CLK  
L
A
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
DIGITAL SUPPLY CURRENT  
vs. ANALOG INPUT FREQUENCY  
INTERNAL REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
33  
2.0324  
2.0320  
2.0316  
2.0312  
2.0308  
2.0304  
2.0300  
8
7
6
5
4
3
32  
31  
30  
29  
28  
27  
26  
25  
-40  
-15  
10  
35  
60  
85  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
0
4
8
12  
16  
20  
TEMPERATURE (°C)  
V
(V)  
ANALOG INPUT FREQUENCY (MHz)  
DD  
SNR/SINAD, THD/SFDR  
vs. SAMPLING SPEED  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
100  
2.040  
2.036  
2.032  
2.028  
2.024  
2.020  
SNR  
SFDR  
f
= 20MHz  
IN  
80  
60  
40  
SINAD  
20  
0
-20  
-40  
-60  
-80  
-100  
THD  
0
10  
20  
30  
40  
50  
60  
-40  
-15  
10  
35  
60  
85  
SAMPLING SPEED (Msps)  
TEMPERATURE (°C)  
Pin Description  
PIN  
NAME  
FUNCTION  
1
COM  
Common-Mode Voltage Input/Output. Bypass to GND with a 0.1µF capacitor.  
Analog Supply Voltage. Bypass to GND with a capacitor combination of 2.2µF in parallel with 0.1µF.  
Analog Ground  
2, 6, 11, 14, 15  
V
DD  
3, 7, 10, 13, 16  
GND  
INA+  
INA-  
INB-  
INB+  
CLK  
4
5
Channel APositive Analog Input. For single-ended operation, connect signal source to INA+.  
Channel ANegative Analog Input. For single-ended operation, connect INA- to COM.  
Channel BNegative Analog Input. For single-ended operation, connect INB- to COM.  
Channel BPositive Analog Input. For single-ended operation, connect signal source to INB+.  
Converter Clock Input  
8
9
12  
10 ______________________________________________________________________________________  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
T/B selects the ADC digital output format.  
High: Twos complement.  
17  
T/B  
Low: Straight offset binary.  
Sleep Mode Input.  
18  
19  
20  
SLEEP High: Deactivates the two ADCs, but leaves the reference bias circuit active.  
Low: Normal operation.  
High-Active Power-Down Input.  
High: Power-down mode  
Low: Normal operation  
PD  
Low-Active Output Enable Input.  
High: Digital outputs disabled  
Low: Digital outputs enabled  
OE  
2129, 35, 36  
30  
N.C.  
A/B  
No Connection. Do not connect.  
A/B Data Indicator. This digital output indicates CHA data (A/B = 1) or CHB data (A/B = 0) to be  
present on the output. A/B follows the external clock signal with typically 6ns delay.  
31, 34  
OGND Output-Driver Ground  
Output-Driver Supply Voltage. Bypass to OGND with a capacitor combination of 2.2µF in parallel with  
32, 33  
OV  
DD  
0.1µF.  
Three-State Digital Output, Bit 0. Depending on status of A/B, output data reflects channel A or  
channel B data.  
37  
38  
39  
40  
41  
42  
43  
44  
D0A/B  
D1A/B  
D2A/B  
D3A/B  
D4A/B  
D5A/B  
D6A/B  
D7A/B  
Three-State Digital Output, Bit 1. Depending on status of A/B, output data reflects channel A or  
channel B data.  
Three-State Digital Output, Bit 2. Depending on status of A/B, output data reflects channel A or  
channel B data.  
Three-State Digital Output, Bit 3. Depending on status of A/B, output data reflects channel A or  
channel B data.  
Three-State Digital Output, Bit 4. Depending on status of A/B, output data reflects channel A or  
channel B data.  
Three-State Digital Output, Bit 5. Depending on status of A/B, output data reflects channel A or  
channel B data.  
Three-State Digital Output, Bit 6. Depending on status of A/B, output data reflects channel A or  
channel B data.  
Three-State Digital Output, Bit 7 (MSB). Depending on status of A/B, output data reflects channel A or  
channel B data.  
45  
46  
47  
REFOUT Internal Reference Voltage Output. Can be connected to REFIN through a resistor or a resistor-divider.  
REFIN Reference Input. V = 2 × (V - V ). Bypass to GND with a 0.1µF capacitor.  
REFIN  
REFP  
REFN  
REFP  
Positive Reference I/O. Conversion range is (V  
- V  
REFN  
). Bypass to GND with a 0.1µF capacitor.  
REFP  
Negative Reference I/O. Conversion range is (V  
capacitor.  
- V  
REFN  
). Bypass to GND with a 0.1µF  
REFP  
48  
REFN  
______________________________________________________________________________________ 11  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
2-BIT FLASH  
ADC  
2-BIT FLASH  
ADC  
STAGE 1  
STAGE 2  
STAGE 6  
STAGE 7  
STAGE 1  
STAGE 2  
STAGE 6  
STAGE 7  
DIGITAL ALIGNMENT LOGIC  
8
DIGITAL ALIGNMENT LOGIC  
8
T/H  
T/H  
V
V
INB  
INA  
OUTPUT MULTIPLEXER  
8
D0A/B–D7A/B  
Figure 1. Pipelined Architecture—Stage Blocks  
S4b, S5a, and S5b are closed. The fully differential cir-  
cuits sample the input signals onto the two capacitors  
(C2a and C2b) through switches S4a and S4b. S2a and  
S2b set the common mode for the amplifier input, and  
open simultaneously with S1, sampling the input wave-  
form. Switches S4a, S4b, S5a, and S5b are then  
opened before switches S3a and S3b connect capaci-  
tors C1a and C1b to the output of the amplifier and  
switch S4c is closed. The resulting differential voltages  
are held on capacitors C2a and C2b. The amplifiers are  
used to charge capacitors C1a and C1b to the same  
values originally held on C2a and C2b. These values  
are then presented to the first stage quantizers and iso-  
late the pipelines from the fast-changing inputs. The  
wide input bandwidth T/H amplifiers allow the MAX1196  
to track and sample/hold analog inputs of high frequen-  
cies (>Nyquist). Both ADC inputs (INA+, INB+, INA-,  
and INB-) can be driven either differentially or single  
ended. Match the impedance of INA+ and INA-, as well  
as INB+ and INB-, and set the common-mode voltage  
Detailed Description  
The MAX1196 uses a 7-stage, fully differential, pipelined  
architecture (Figure 1) that allows for high-speed con-  
version while minimizing power consumption. Samples  
taken at the inputs move progressively through the  
pipeline stages every half clock cycle. Including the  
delay through the output latch, the total clock-cycle  
latency is 5 clock cycles for CHA and 5.5 clock cycles  
for CHB.  
Flash ADCs convert the held input voltages into a digi-  
tal code. Internal MDACs convert the digitized results  
back into analog voltages, which are then subtracted  
from the original held input signals. The resulting error  
signals are then multiplied by two, and the residues are  
passed along to the next pipeline stages where the  
process is repeated until the signals have been  
processed by all 7 stages.  
Both input channels are sampled on the rising edge of  
the clock and the resulting data is multiplexed at the  
output. CHA data is updated on the rising edge (5  
clock cycles later) and CHB data is updated on the  
falling edge (5.5 clock cycles later) of the clock signal.  
The A/B indicator follows the clock signal with a typical  
delay time of 6ns and remains high when CHA data is  
updated and low when CHB data is updated.  
to midsupply (V /2) for optimum performance.  
DD  
Analog Inputs and Reference  
Configurations  
The full-scale range of the MAX1196 is determined by  
the internally generated voltage difference between  
REFP (V /2 + V  
/4) and REFN (V /2 - V  
/4).  
DD  
REFIN  
DD  
REFIN  
Input Track-and-Hold (T/H) Circuits  
Figure 2 displays a simplified functional diagram of the  
input track-and-hold (T/H) circuits in both track and  
hold mode. In track mode, switches S1, S2a, S2b, S4a,  
The full-scale range for both on-chip ADCs is  
adjustable through the REFIN pin, which is provided for  
this purpose.  
12 ______________________________________________________________________________________  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
INTERNAL  
COM  
S5a  
BIAS  
S2a  
C1a  
S3a  
S4a  
S4b  
INA+  
INA-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
CLK  
INTERNAL  
NONOVERLAPPING  
CLOCK SIGNALS  
HOLD  
HOLD  
INTERNAL  
BIAS  
TRACK  
TRACK  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
INB+  
INB-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
MAX1196  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
Figure 2. MAX1196 T/H Amplifiers  
The MAX1196 provides three modes of reference  
operation:  
10k) or resistor-divider, if an application requires a  
reduced full-scale range. For stability and noise-filtering  
purposes, bypass REFIN with a 0.1µF capacitor to  
GND. In internal reference mode, REFOUT, COM,  
REFP, and REFN become low-impedance outputs.  
Internal reference mode  
Buffered external reference mode  
Unbuffered external reference mode  
In buffered external reference mode, adjust the refer-  
ence voltage levels externally by applying a stable and  
accurate voltage at REFIN. In this mode, COM, REFP,  
In internal reference mode, connect the internal refer-  
ence output REFOUT to REFIN through a resistor (e.g.,  
______________________________________________________________________________________ 13  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
and REFN are outputs. REFOUT can be left open or  
Clock jitter is especially critical for undersampling  
applications. The clock input should always be consid-  
ered as an analog input and routed away from any ana-  
log input or other digital signal lines.  
connected to REFIN through a >10kresistor.  
In unbuffered external reference mode, connect REFIN  
to GND. This deactivates the on-chip reference buffers  
for REFP, COM, and REFN. With their buffers shut down,  
these nodes become high-impedance inputs and can be  
driven through separate, external reference sources.  
The MAX1196 clock input operates with a voltage  
threshold set to V /2. Clock inputs with a duty cycle  
DD  
other than 50%, must meet the specifications for high  
and low periods as stated in the Electrical  
Characteristics.  
For detailed circuit suggestions and how to drive this  
dual ADC in buffered/unbuffered external reference  
mode, see the Applications Information section.  
System Timing Requirements  
Figure 3 shows the relationship between clock and  
analog input, A/B indicator, and the resulting valid  
CHA/CHB data output. CHA and CHB data are sam-  
pled on the rising edge of the clock signal. Following  
the rising edge of the 5th clock cycles, the digitized  
value of the original CHA sample is presented at the  
output, followed one-half clock cycle later by the digi-  
tized value of the original CHB sample.  
Clock Input (CLK)  
The MAX1196s CLK input accepts CMOS-compatible  
clock signal. Since the interstage conversion of the  
device depends on the repeatability of the rising and  
falling edges of the external clock, use a clock with low  
jitter and fast rise and fall times (<2ns). In particular,  
sampling occurs on the rising edge of the clock signal,  
requiring this edge to provide lowest possible jitter. Any  
significant aperture jitter would limit the SNR perfor-  
mance of the on-chip ADCs as follows:  
A channel selection signal (A/B indicator) allows the  
user to determine which output data represents which  
input channel. With A/B = 1, digitized data from CHA is  
present at the output and with A/B = 0 digitized data  
from CHB is present.  
1
SNR = 20 × log  
2 × π × f × t  
IN  
AJ  
where f represents the analog input frequency and  
IN  
t
AJ  
is the time of the aperture jitter.  
5 CLOCK-CYCLE LATENCY (CHA), 5.5 CLOCK-CYCLE LATENCY (CHB)  
CHA  
CHB  
t
CLK  
t
t
CL  
CH  
CLK  
t
t
DOA  
DOB  
A/B  
CHB  
D0B  
CHA  
D1A  
CHB  
CHA  
D2A  
CHB  
D2B  
CHA  
D3A  
CHB  
D3B  
CHA  
D4A  
CHB  
D4B  
CHA  
D5A  
CHB  
D5B  
CHA  
D6A  
CHB  
D6B  
t
DA/B  
D0A/BD7A/B  
D1B  
Figure 3. System Timing Diagram  
14 ______________________________________________________________________________________  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Digital Output Data, Output Data Format  
Selection (T/B), Output Enable (OE),  
Power-Down (PD) and Sleep  
(SLEEP) Modes  
The MAX1196 offers two power-save modessleep  
and full power-down mode. In sleep mode (SLEEP = 1),  
only the reference bias circuit is active (both ADCs are  
disabled), and current consumption is reduced to 3mA.  
Channel Selection (A/B)  
All digital outputs, D0A/BD7A/B (CHA or CHB data) and  
A/B are TTL/CMOS-logic compatible. The output coding  
can be chosen to be either offset binary or twos comple-  
ment (Table 1) controlled by a single pin (T/B). Pull T/B  
low to select offset binary and high to activate twos com-  
plement output coding. The capacitive load on the digital  
outputs D0A/BD7A/B should be kept as low as possible  
(<15pF), to avoid large digital currents that could feed  
back into the analog portion of the MAX1196, thereby  
degrading its dynamic performance. Using buffers on  
the digital outputs of the ADCs can further isolate the  
digital outputs from heavy capacitive loads. To further  
improve the dynamic performance of the MAX1196,  
small-series resistors (e.g., 100) can be added to the  
digital output paths, close to the MAX1196.  
To enter full power-down mode, pull PD high. With OE  
simultaneously low, all outputs are latched at the last  
value prior to the power down. Pulling OE high forces  
the digital outputs into a high-impedance state.  
Applications Information  
Figure 5 depicts a typical application circuit containing  
two single-ended-to-differential converters. The internal  
reference provides a V /2 output voltage for level-shift-  
DD  
ing purposes. The input is buffered and then split to a  
voltage follower and inverter. One lowpass filter per  
amplifier suppresses some of the wideband noise asso-  
ciated with high-speed operational amplifiers. The user  
Figure 4 displays the timing relationship between out-  
put enable and data output valid as well as power-  
down/wake-up and data output valid.  
can select the R  
and C values to optimize the filter  
IN  
ISO  
performance, to suit a particular application. For the  
application in Figure 5, an R of 50is placed before  
ISO  
the capacitive load to prevent ringing and oscillation.  
The 22pF C capacitor acts as a small filter capacitor.  
IN  
OE  
Using Transformer Coupling  
An RF transformer (Figure 6) provides an excellent solu-  
tion to convert a single-ended source signal to a fully dif-  
ferential signal, required by the MAX1196 for optimum  
performance. Connecting the center tap of the trans-  
t
t
DISABLE  
ENABLE  
OUTPUT  
D0A/BD7A/B  
HIGH-Z  
HIGH-Z  
VALID DATA  
former to COM provides a V /2 DC level shift to the  
DD  
input. Although a 1:1 transformer is shown, a step-up  
transformer can be selected to reduce the drive require-  
ments. A reduced signal swing from the input driver, such  
as an op amp, can also improve the overall distortion.  
Figure 4. Output Timing Diagram  
Table 1. MAX1196 Output Codes for Differential Inputs  
STRAIGHT OFFSET  
DIFFERENTIAL INPUT  
VOLTAGE*  
TWOS COMPLEMENT  
DIFFERENTIAL INPUT  
BINARY  
T/B = 0  
T/B = 1  
V
× 255/256  
+Full Scale - 1LSB  
+1LSB  
1111 1111  
1000 0001  
1000 0000  
0111 1111  
0000 0001  
0000 0000  
0111 1111  
0000 0001  
0000 0000  
1111 1111  
1000 0001  
1000 0000  
REF  
V
× 1/256  
0
REF  
Bipolar Zero  
-1LSB  
-V  
× 1/256  
REF  
-V  
× 255/256  
× 256/256  
-Full Scale + 1LSB  
-Full Scale  
REF  
REF  
-V  
= V  
*V  
- V  
REFN  
REF  
REFP  
______________________________________________________________________________________ 15  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
+5V  
0.1µF  
LOWPASS FILTER  
INA-  
MAX4108  
R
IS0  
50Ω  
0.1µF  
300Ω  
C
IN  
22pF  
0.1µF  
-5V  
600Ω  
600Ω  
+5V  
300Ω  
0.1µF  
COM  
INA+  
+5V  
0.1µF  
0.1µF  
600Ω  
INPUT  
0.1µF  
0.1µF  
LOWPASS FILTER  
MAX4108  
300Ω  
300Ω  
MAX4108  
R
IS0  
C
IN  
22pF  
50Ω  
-5V  
-5V  
+5V  
300Ω  
300Ω  
600Ω  
MAX1196  
0.1µF  
0.1µF  
LOWPASS FILTER  
INB-  
MAX4108  
R
IS0  
50Ω  
0.1µF  
300Ω  
C
IN  
22pF  
-5V  
600Ω  
+5V  
600Ω  
600Ω  
300Ω  
0.1µF  
0.1µF  
0.1µF  
+5V  
INPUT  
LOWPASS FILTER  
0.1µF  
MAX4108  
300Ω  
300Ω  
INB+  
MAX4108  
R
IS0  
50Ω  
C
IN  
22pF  
-5V  
0.1µF  
-5V  
300Ω  
300Ω  
600Ω  
Figure 5. Typical Application for Single-Ended-to-Differential Conversion  
16 ______________________________________________________________________________________  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
In general, the MAX1196 provides better SFDR and  
THD with fully differential input signals than single-  
ended drive, especially for very high input frequencies.  
In differential input mode, even-order harmonics are  
lower as both inputs (INA+, INA- and/or INB+, INB-) are  
balanced, and each of the ADC inputs only requires  
half the signal swing compared to single-ended mode.  
Buffered External Reference Drives  
Multiple ADCs  
Multiple-converter systems based on the MAX1196 are  
well suited for use with a common reference voltage.  
The REFIN pin of those converters can be connected  
directly to an external reference source.  
A precision bandgap reference like the MAX6062 gen-  
erates an external DC level of 2.048V (Figure 8), and  
exhibits a noise voltage density of 150nV/Hz. Its out-  
put passes through a one-pole lowpass filter (with 10Hz  
cutoff frequency) to the MAX4250, which buffers the  
reference before its output is applied to a second 10Hz  
lowpass filter. The MAX4250 provides a low offset volt-  
age (for high gain accuracy) and a low noise level. The  
passive 10Hz filter following the buffer attenuates noise  
Single-Ended AC-Coupled Input Signal  
Figure 7 shows an AC-coupled, single-ended applica-  
tion. Amplifiers like the MAX4108 provide high speed,  
high bandwidth, low noise, and low distortion to main-  
tain the integrity of the input signal.  
REFP  
25  
INA+  
22pF  
1kΩ  
1kΩ  
R
ISO  
50Ω  
V
IN  
0.1µF  
0.1µF  
INA+  
COM  
INA-  
6
5
4
1
2
T1  
V
IN  
MAX4108  
C
IN  
22pF  
100Ω  
100Ω  
N.C.  
COM  
2.2µF  
0.1µF  
3
REFN  
0.1µF  
MINICIRCUITS  
TT1-6-KK81  
R
ISO  
50Ω  
25Ω  
25Ω  
INA-  
INB+  
C
22pF  
IN  
22pF  
22pF  
MAX1196  
REFP  
MAX1196  
R
1kΩ  
ISO  
50Ω  
V
IN  
0.1µF  
0.1µF  
6
5
4
INB+  
1
2
3
T1  
V
IN  
MAX4108  
C
IN  
22pF  
100Ω  
100Ω  
1kΩ  
N.C.  
2.2µF  
0.1µF  
REFN  
0.1µF  
MINICIRCUITS  
TT1-6-KK81  
R
ISO  
50Ω  
25Ω  
INB-  
INB-  
C
IN  
22pF  
22pF  
Figure 6. Transformer-Coupled Input Drive  
Figure 7. Using an Op Amp for Single-Ended, AC-Coupled  
Input Drive  
______________________________________________________________________________________ 17  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
3.3V  
3.3V  
0.1µF  
N.C.  
29  
31  
32  
1
REFOUT  
REFIN  
REFP  
2.048V  
0.1µF  
1
MAX6062  
3
0.1µF  
16.2kΩ  
REFN  
N = 1  
5
2
3
4
2
162Ω  
COM  
1
MAX1196  
MAX4250  
2
1µF  
100µF  
10Hz LOWPASS  
FILTER  
0.1µF 0.1µF 0.1µF  
10Hz LOWPASS  
FILTER  
2.2µF  
10V  
NOTE: ONE FRONT-END REFERENCE CIRCUIT DESIGN CAN BE USED WITH UP TO 1000 ADCs.  
0.1µF  
29  
31  
32  
1
N.C.  
REFOUT  
REFIN  
REFP  
N = 1000  
0.1µF  
REFN  
MAX1196  
2
COM  
0.1µF 0.1µF 0.1µF  
Figure 8. External Buffered (MAX4250) Reference Drive Using a MAX6062 Bandgap Reference  
produced in the voltage-reference and buffer stages.  
This filtered noise density, which decreases for higher  
frequencies, meets the noise levels specified for preci-  
sion-ADC operation.  
ual voltage followers are connected to 10Hz lowpass fil-  
ters, which filter both the reference-voltage and amplifier  
noise to a level of 3nV/Hz. The 2.0V and 1.0V reference  
voltages set the differential full-scale range of the asso-  
ciated ADCs at 2V . The 2.0V and 1.0V buffers drive  
P-P  
Unbuffered External Reference Drives  
Multiple ADCs  
the ADCsinternal ladder resistances between them.  
Note that the common power supply for all active com-  
ponents removes any concern regarding power-supply  
sequencing when powering up or down.  
Connecting each REFIN to analog ground disables the  
internal reference of each device, allowing the internal  
reference ladders to be driven directly by a set of exter-  
nal reference sources. Followed by a 10Hz lowpass fil-  
ter and precision voltage-divider, the MAX6066  
generates a DC level of 2.500V. The buffered outputs of  
this divider are set to 2.0V, 1.5V, and 1.0V, with an  
accuracy that depends on the tolerance of the divider  
resistors.  
With the outputs of the MAX4252 matching better than  
0.1%, the buffers and subsequent lowpass filters can  
be replicated to support as many as 32 ADCs. For  
applications requiring more than 32 matched ADCs, a  
voltage-reference and divider string common to all con-  
verters is highly recommended.  
Those three voltages are buffered by the MAX4252,  
which provides low noise and low DC offset. The individ-  
18 ______________________________________________________________________________________  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
3.3V  
0.1µF  
N.C.  
29  
31  
32  
1
REFOUT  
REFIN  
REFP  
1
MAX6066  
3
2.0V  
3.3V  
4
4
4
21.5kΩ  
REFN  
N = 1  
2.0V AT 8mA  
2
3
2
1/4 MAX4252  
1
47kΩ  
MAX1196  
2
COM  
10µF  
6V  
330µF  
6V  
11  
21.5kΩ  
1.47kΩ  
0.1µF 0.1µF 0.1µF  
1.5V  
3.3V  
1.5V AT 0mA  
5
6
1/4 MAX4252  
7
47kΩ  
1µF  
10µF  
330µF  
11  
6V  
6V  
21.5kΩ  
2.2µF  
10V  
1.47kΩ  
0.1µF  
3.3V  
0.1µF  
1.0V  
3.3V  
1.0V AT -8mA  
47kΩ  
10  
9
1/4 MAX4252  
8
21.5kΩ  
21.5kΩ  
330µF  
6V  
29  
31  
32  
1
N.C.  
10µF  
11  
REFOUT  
REFIN  
REFP  
MAX4254 POWER-SUPPLY  
BYPASSING. PLACE CAPACITOR  
AS CLOSE AS POSSIBLE TO  
THE OP AMP.  
6V  
1.47kΩ  
N = 32  
REFN  
MAX1196  
2
COM  
0.1µF 0.1µF 0.1µF  
NOTE: ONE FRONT-END REFERENCE CIRCUIT DESIGN CAN BE USED WITH UP TO 32 ADCs.  
Figure 9. External Unbuffered Reference Drive With MAX4252 and MAX6066  
component, where the Q component is 90 degrees  
phase-shifted with respect to the in-phase component.  
At the receiver, the QAM signal is divided down into its  
I and Q components, essentially representing the mod-  
ulation process reversed. Figure 10 displays the  
demodulation process performed in the analog domain,  
using the dual matched 3V, 8-bit ADC MAX1196, and  
the MAX2451 quadrature demodulator to recover and  
digitize the I and Q baseband signals. Before being  
digitized by the MAX1196, the mixed-down signal com-  
ponents can be filtered by matched analog filters, such  
Typical QAM Demodulation Application  
A frequently used modulation technique in digital com-  
munications applications is quadrature amplitude mod-  
ulation (QAM). Typically found in spread- spectrum-  
based systems, a QAM signal represents a carrier fre-  
quency modulated in both amplitude and phase. At the  
transmitter, modulating the baseband signal with quad-  
rature outputs, a local oscillator followed by subse-  
quent up-conversion can generate the QAM signal. The  
result is an in-phase (I) and a quadrature (Q) carrier  
______________________________________________________________________________________ 19  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
A/B  
MAX2451  
INA+  
INA-  
0°  
DSP  
90°  
POST-  
MAX1196  
PROCESSING  
INB+  
INB-  
CHA AND CHB DATA  
ALTERNATINGLY  
AVAILABLE ON  
DOWNCONVERTER  
÷
8
8-BIT MULTIPLEXED  
OUTPUT BUS.  
Figure 10. Typical QAM Application Using the MAX1196  
as Nyquist or pulse-shaping filters, which remove  
unwanted images from the mixing process, thereby  
enhancing the overall signal-to-noise (SNR) perfor-  
mance and minimizing intersymbol interference.  
high-speed digital signal traces away from the sensitive  
analog traces of either channel. Make sure to isolate  
the analog input lines to each respective converter to  
minimize channel-to-channel crosstalk. Keep all signal  
lines short and free of 90 degree turns.  
Grounding, Bypassing,  
and Board Layout  
Static Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. This straight  
line can be either a best-straight-line fit or a line drawn  
between the endpoints of the transfer function, once  
offset and gain errors have been nullified. The static lin-  
earity parameters for the MAX1196 are measured using  
the best-straight-line fit method.  
The MAX1196 requires high-speed board layout design  
techniques. Locate all bypass capacitors as close to  
the device as possible, preferably on the same side as  
the ADC, using surface-mount devices for minimum  
inductance. Bypass V , REFP, REFN, and COM with  
DD  
two parallel 0.1µF ceramic capacitors and a 2.2µF  
bipolar capacitor to GND. Follow the same rules to  
bypass the digital supply (OV ) to OGND. Multilayer  
DD  
boards with separated ground and power planes pro-  
duce the highest level of signal integrity. Consider the  
use of a split ground plane arranged to match the  
physical location of the analog ground (GND) and the  
digital output-driver ground (OGND) on the ADCs  
package. The two ground planes should be joined at a  
single point such that the noisy digital ground currents  
do not interfere with the analog ground plane. The ideal  
location of this connection can be determined experi-  
mentally at a point along the gap between the two  
ground planes, which produces optimum results. Make  
this connection with a low-value, surface-mount resistor  
(1to 5), a ferrite bead, or a direct short.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1LSB. A DNL  
error specification of less than 1LSB guarantees no  
missing codes and a monotonic transfer function.  
Dynamic Parameter Definitions  
Aperture Jitter  
Figure 11 depicts the aperture jitter (t ), which is the  
AJ  
sample-to-sample variation in the aperture delay.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
rising edge of the sampling clock and the instant when  
an actual sample is taken (Figure 11).  
Alternatively, all ground pins could share the same  
ground plane, if the ground plane is sufficiently isolated  
from any noisy, digital systems ground plane (e.g.,  
downstream output buffer or DSP ground plane). Route  
20 ______________________________________________________________________________________  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Total Harmonic Distortion (THD)  
THD is typically the ratio of the RMS sum of the first four  
CLK  
harmonics of the input signal to the fundamental itself.  
This is expressed as:  
ANALOG  
INPUT  
2 +  
2
2
2
V
V
+ V  
+ V  
5
2
3
4
THD = 20 × log  
t
AD  
V
1
t
AJ  
SAMPLED  
DATA (T/H)  
where V is the fundamental amplitude, and V through  
1
2
V
are the amplitudes of the 2nd- through 5th-order  
5
harmonics.  
HOLD  
TRACK  
TRACK  
T/H  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next largest spurious  
component, excluding DC offset.  
Figure 11. T/H Aperture Timing  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADCs reso-  
lution (N bits):  
Intermodulation Distortion (IMD)  
The two-tone IMD is the ratio expressed in decibels of  
either input tone to the worst third-order (or higher)  
intermodulation products. The individual input tone lev-  
els are at -7dB full scale.  
Pin-Compatible Upgrades  
(Sampling Speed and Resolution)  
SNR  
= 6.02 × N + 1.76  
dB dB  
dB[max]  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
SAMPLING SPEED  
8-BIT PART  
10-BIT PART  
(Msps)  
N/A  
MAX1185  
MAX1183  
MAX1182  
MAX1180  
MAX1190  
MAX1186  
20  
MAX1195  
MAX1197  
MAX1198  
N/A  
40  
60  
100  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to all spectral components minus the fundamental  
and the DC offset.  
120  
MAX1196  
40, multiplexed  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at  
a specific input frequency and sampling rate. An ideal  
ADC error consists of quantization noise only. ENOB for  
a full-scale sinusoidal input waveform is computed from:  
Chip Information  
TRANSISTOR COUNT: 11,601  
PROCESS: CMOS  
SINAD - 1.76  
6.02  
ENOB =  
______________________________________________________________________________________ 21  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Functional Diagram  
V
OGND  
OV  
DD  
GND  
DD  
INA+  
8
ADC  
A/B  
DEC  
MUX  
T/H  
INA-  
CLK  
8
8
CONTROL  
INB+  
INB-  
8
D7BD0B  
OR  
OUTPUT  
DRIVERS  
ADC  
DEC  
T/H  
D7AD0A  
OE  
T/B  
PD  
SLEEP  
REFERENCE  
MAX1196  
REFOUT  
REFN COM REFP  
REFIN  
22 ______________________________________________________________________________________  
Dual 8-Bit, 40Msps, 3V, Low-Power ADC with  
Internal Reference and Multiplexed Parallel Outputs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1196ECM-D

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, EXPOSED PAD, MO-136, TQFP-48
MAXIM

MAX1196ECM-T

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, EXPOSED PAD, MO-136, TQFP-48
MAXIM

MAX1197

Dual, 8-Bit, 40Msps, 3V, Low-Power ADC with Internal Reference and Parallel Outputs
MAXIM

MAX1197ECM

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, EXPOSED PAD, TQFP-48
MAXIM

MAX1197ECM+D

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, EXPOSED PAD, TQFP-48
MAXIM

MAX1197ECM+TD

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, EXPOSED PAD, TQFP-48
MAXIM

MAX1197ECM-T

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, EXPOSED PAD, TQFP-48
MAXIM

MAX1197ECM-TD

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, EXPOSED PAD, TQFP-48
MAXIM

MAX1198

Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs
MAXIM

MAX1198E/D

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, DIE-48
MAXIM

MAX1198ECM

Dual, 8-Bit, 100Msps, 3.3V, Low-Power ADC with Internal Reference and Parallel Outputs
MAXIM

MAX1198ECM+D

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, ROHS COMPLIANT, MO-136AE, TQFP-48
MAXIM