MAX1204_12 [MAXIM]

5V, 8-Channel, Serial, 10-Bit ADC with 3V Digital Interface; 5V,8通道,串行, 10位ADC, 3V数字接口
MAX1204_12
型号: MAX1204_12
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

5V, 8-Channel, Serial, 10-Bit ADC with 3V Digital Interface
5V,8通道,串行, 10位ADC, 3V数字接口

文件: 总23页 (文件大小:236K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
_______________General Description  
____________________________Features  
o 8-Channel Single-Ended or 4-Channel Differential  
The MAX1204 is a 10-bit data-acquisition system  
specifically designed for use in applications with mixed  
+5V (analog) and +3V (digital) supply voltages. It oper-  
ates with a single +5V analog supply or dual 5V ana-  
log supplies, and combines an 8-channel multiplexer,  
internal track/hold, and serial interface with high con-  
version speed and low power consumption.  
Inputs  
o Operates from +5V Single or 5V Dual Supplies  
o User-Adjustable Output Logic Levels (2.7V to  
5.25V)  
o Low Power: 1.5mA (Operating Mode)  
2µA (Power-Down Mode)  
A 4-wire serial interface connects directly to  
o Internal Track/Hold, 133kHz Sampling Rate  
o Internal 4.096V Reference  
®
SPI/MICROWIRE devices without external logic, and a  
serial strobe output allows direct connection to  
TMS320-family digital signal processors. The MAX1204  
uses either the internal clock or an external serial-inter-  
face clock to perform successive-approximation ana-  
log-to-digital conversions. The serial interface operates  
at up to 2MHz.  
o SPI/MICROWIRE/TMS320-Compatible 4-Wire  
Serial Interface  
o Software-Configurable Unipolar/Bipolar Inputs  
o 20-Pin PDIP/SSOP  
o Pin-Compatible 12-Bit Upgrade: MAX1202  
The MAX1204 features an internal 4.096V reference and  
a reference-buffer amplifier that simplifies gain trim. It  
also has a V pin that supplies power to the digital out-  
L
puts. Output logic levels (3V, 3.3V, or 5V) are determined  
by the value of the voltage applied to this pin.  
______________Ordering Information  
TOP  
MARK  
PIN-  
PACKAGE  
A hard-wired SHDN pin and two software-selectable  
power-down modes are provided. Accessing the serial  
interface automatically powers up the device. A quick  
turn-on time allows the MAX1204 to be shut down  
between conversions, enabling the user to optimize  
supply currents. By customizing power-down between  
conversions, supply current can drop below 10µA at  
reduced sampling rates.  
PART  
TEMP RANGE  
MAX1204ACPP+  
MAX1204BCPP+  
MAX1204ACAP+  
MAX1204BCAP+  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
20 PDIP  
20 PDIP  
20 SSOP  
20 SSOP  
1/2  
1
1/2  
1
Ordering Information continued at end of data sheet.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
The MAX1204 is available in 20-pin SSOP and PDIP  
packages, and is specified for the commercial and  
extended temperature ranges.  
__________________Pin Configuration  
________________________Applications  
5V/3V Mixed-Supply Systems  
TOP VIEW  
+
Data Acquisition  
20  
V
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
1
2
DD  
Process Control  
19 SCLK  
Battery-Powered Instruments  
Medical Instruments  
CS  
18  
3
MAX1204  
4
17  
DIN  
5
16 SSTRB  
15 DOUT  
6
14  
13  
12  
11  
V
L
7
8
GND  
V
9
REFADJ  
REF  
SS  
SHDN  
10  
Typical Operating Circuit appears on last page.  
MICROWIRE is a registered trademark of National Semiconductor Corp.  
PDIP/SSOP  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-1179; Rev 1; 1/12  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND..............................................................-0.3V to +6V  
Digital Output Sink Current .................................................25mA  
V ................................................................-0.3V to (V  
+ 0.3V)  
Continuous Power Dissipation (T = +70°C)  
L
DD  
A
V
V
to GND...............................................................+0.3V to -6V  
PDIP (derate 11.11mW/°C above +70°C).....................889mW  
SSOP (derate 8.00mW/°C above +70°C) .....................640mW  
Operating Temperature Ranges  
SS  
DD  
to V ..............................................................-0.3V to +12V  
SS  
CH0–CH7 to GND............................(V - 0.3V) to (V  
+ 0.3V)  
SS  
DD  
MAX1204_C_P.....................................................0°C to +70°C  
MAX1204_E_P ..................................................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Soldering Temperature (reflow) .......................................+260°C  
Digital Outputs to GND .................................-0.3V to (V + 0.3V)  
L
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +5V 5ꢀ, V = 2.7V to 3.6V; V = 0V or -5V 5ꢀ; f  
= 2.0MHz, external clock (50ꢀ duty cycle); 15 clocks/conversion  
SCLK  
DD  
L
SS  
cycle (133ksps); 4.7µF capacitor at REF; T = T  
to T ; unless otherwise noted.)  
A
MIN  
MAX  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
10  
Bits  
LSB  
LSB  
LSB  
MAX1204A  
0.5  
1.0  
1.0  
1.0  
2.0  
1.0  
2.0  
Relative Accuracy (Note 2)  
Differential Nonlinearity  
Offset Error  
INL  
MAX1204B  
DNL  
No missing codes over temperature  
MAX1204A  
MAX1204B  
MAX1204A  
Gain Error (Note 3)  
LSB  
ppm/°C  
LSB  
MAX1204B  
Gain Temperature Coefficient  
External reference, 4.096V  
0.8  
0.1  
Channel-to-Channel  
Offset Matching  
DYNAMIC SPECIFICATIONS (10kHz sine-wave input, 4.096V , 133ksps, 2.0MHz external clock, bipolar input mode)  
P-P  
Signal-to-Noise + Distortion Ratio  
SINAD  
66  
dB  
dB  
Total Harmonic Distortion  
(up to the 5th harmonic)  
THD  
-70  
Spurious-Free Dynamic Range  
Channel-to-Channel Crosstalk  
Small-Signal Bandwidth  
SFDR  
70  
-75  
4.5  
800  
dB  
dB  
V
= 4.096  
, 65kHz (Note 4)  
V
P-P  
IN  
-3dB rolloff  
MHz  
kHz  
Full-Power Bandwidth  
Maxim Integrated  
2
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
ELECTRICAL CHARACTERISTICS (continued)  
= 2.0MHz, external clock (50ꢀ duty cycle); 15 clocks/conversion  
SCLK  
(V  
= +5V 5ꢀ, V = 2.7V to 3.6V; V = 0V or -5V 5ꢀ; f  
DD  
L
SS  
cycle (133ksps); 4.7µF capacitor at REF; T = T  
to T ; unless otherwise noted.)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CONVERSION RATE  
Internal clock  
5.5  
6
10  
Conversion Time (Note 5)  
t
µs  
CONV  
External clock, 2MHz, 12 clocks/conversion  
Track/Hold Acquisition Time  
Aperture Delay  
t
1.5  
µs  
ns  
ACQ  
10  
<50  
1.7  
Aperture Jitter  
ps  
Internal Clock Frequency  
MHz  
External compensation mode, 4.7µF  
Internal compensation mode (Note 6)  
Used for data transfer only  
0.1  
0.1  
0
2.0  
0.4  
2.0  
External Clock-Frequency Range  
MHz  
ANALOG INPUT  
Input Voltage Range, Single-  
Ended and Differential (Note 7)  
Unipolar, V = 0V  
V
REF  
SS  
V
Bipolar, V = -5V  
SS  
V
/ 2  
REF  
Multiplexer Leakage Current  
Input Capacitance  
On/off leakage current, V  
(Note 6)  
=
5V  
0.01  
16  
1
µA  
pF  
CH_  
INTERNAL REFERENCE  
REF Output Voltage  
T
A
= +25°C  
4.076  
4.096  
4.116  
30  
V
REF Short-Circuit Current  
mA  
MAX1204AC  
MAX1204AE  
MAX1204B  
30  
30  
50  
V
REF  
Temperature Coefficient  
60  
ppm/°C  
30  
Load Regulation (Note 8)  
Capacitive Bypass at REF  
0mA to 0.5mA output load  
Internal compensation mode  
External compensation mode  
2.5  
mV  
µF  
0
4.7  
Capacitive Bypass at REFADJ  
REFADJ Adjustment Range  
0.01  
µF  
1.5  
EXTERNAL REFERENCE AT REF (Buffer disabled, V  
= 4.096V)  
REF  
2.50  
12  
V
+
DD  
Input Voltage Range  
V
50mV  
Input Current  
200  
20  
350  
µA  
kΩ  
µA  
Input Resistance  
REF Input Current in Shutdown  
1.5  
10  
V
SHDN  
= 0V  
V
-
DD  
REFADJ Buffer Disable Threshold  
V
50mV  
Maxim Integrated  
3
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
ELECTRICAL CHARACTERISTICS (continued)  
= 2.0MHz, external clock (50ꢀ duty cycle); 15 clocks/conversion  
SCLK  
V
= +5V 5ꢀ, V = 2.7V to 3.6V; V = 0V or -5V 5ꢀ; f  
DD  
L
SS  
cycle (133ksps); 4.7µF capacitor at REF; T = T  
to T ; unless otherwise noted.)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EXTERNAL REFERENCE AT REFADJ  
Internal compensation mode  
External compensation mode  
0
Capacitive Bypass at REF  
µF  
4.7  
Reference-Buffer Gain  
REFADJ Input Current  
POWER REQUIREMENTS  
1.68  
V/V  
µA  
V
50  
Positive Supply Voltage  
V
DD  
5 5ꢀ  
Negative Supply Voltage  
V
SS  
0 or -5 5ꢀ  
V
Operating mode  
1.5  
30  
2
2.5  
70  
mA  
Positive Supply Current  
Negative Supply Current  
I
Fast power-down (Note 9)  
Full power-down (Note 9)  
Operating mode and fast power-down  
Full power-down  
DD  
µA  
µA  
10  
50  
I
SS  
10  
Logic Supply Voltage  
V
2.70  
5.25  
10  
V
L
Logic Supply Current (Notes 6, 10)  
I
VL  
V = V = 5V  
L DD  
µA  
Positive Supply Rejection  
(Note 11)  
V
= 5V 5ꢀ; external reference, 4.096V;  
DD  
PSR  
PSR  
PSR  
0.06  
0.01  
0.06  
0.5  
0.5  
0.5  
mV  
mV  
mV  
full-scale input  
Negative Supply Rejection  
(Note 11)  
V
SS  
full-scale input  
= -5V 5ꢀ; external reference, 4.096V;  
Logic Supply Rejection  
(Note 12)  
External reference, 4.096V; full-scale input  
Maxim Integrated  
4
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
ELECTRICAL CHARACTERISTICS  
(V  
= +5V 5ꢀ, V = 2.7V to 5.25V; V = 0V or -5V 5ꢀ; f  
= 2.0MHz, external clock (50ꢀ duty cycle); 15 clocks/conversion  
SCLK  
DD  
L
SS  
cycle (133ksps); 4.7µF capacitor at REF; T = T  
to T ; unless otherwise noted.)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS: DIN, SCLK, CS, SHDN  
V
2.0  
V
V
DIN, SCLK, CS Input High Voltage  
DIN, SCLK, CS Input Low Voltage  
DIN, SCLK, CS Input Hysteresis  
DIN, SCLK, CS Input Leakage  
DIN, SCLK, CS Input Capacitance  
SHDN Input High Voltage  
IH  
V
IL  
0.8  
V
0.15  
V
HYST  
I
V
= 0V or V  
DD  
1
µA  
pF  
V
IN  
IN  
C
IN  
(Note 6)  
15  
V
V
V
- 0.5  
SH  
DD  
1.5  
V
DD  
- 1.5  
V
SHDN Input Mid-Voltage  
SM  
V
FLT  
2.75  
V
SHDN Voltage, Open  
SHDN = open  
V
0.5  
4.0  
V
SHDN Input Low Voltage  
SL  
I
µA  
µA  
SHDN Input Current, High  
SHDN Input Current, Low  
SHDN = V  
SH  
DD  
I
SL  
V
SHDN  
= 0V  
-4.0  
SHDN Maximum Allowed  
Leakage, Mid-Input  
-100  
100  
0.4  
nA  
SHDN = open  
DIGITAL OUTPUTS: DOUT, SSTRB (V = 2.7V to 3.6V)  
L
I
I
I
= 3mA  
SINK  
Output Voltage Low  
V
OL  
V
= 6mA  
0.3  
0.3  
SINK  
Output Voltage High  
V
OH  
= 1mA  
SOURCE  
V - 0.5  
L
V
Three-State Leakage Current  
Three-State Output Capacitance  
I
10  
15  
µA  
pF  
CS = V  
L
L
C
OUT  
CS = V (Note 6)  
L
DIGITAL OUTPUTS: DOUT, SSTRB (V = 4.75V to 5.25V)  
L
I
I
I
= 5mA  
0.4  
SINK  
Output Voltage Low  
V
V
OL  
= 8mA  
SINK  
Output Voltage High  
V
OH  
= 1mA  
SOURCE  
4
V
Three-State Leakage Current  
Three-State Output Capacitance  
I
V
CS  
V
CS  
= 5V  
10  
15  
µA  
pF  
L
C
= 5V (Note 6)  
OUT  
Maxim Integrated  
5
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
TIMING CHARACTERISTICS  
(V  
= +5V 5ꢀ, V = 2.7V to 3.6V, V = 0V or -5V 5ꢀ, T = T  
to T  
, unless otherwise noted.)  
MAX  
DD  
L
SS  
A
MIN  
PARAMETER  
Acquisition Time  
SYMBOL  
t
ACQ  
CONDITIONS  
MIN  
1.5  
TYP  
MAX  
UNITS  
µs  
DIN to SCLK Setup  
t
100  
ns  
DS  
DH  
DO  
DIN to SCLK Hold  
t
0
ns  
SCLK Fall to Output Data Valid  
CS Fall to Output Enable  
CS Rise to Output Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
SCLK Pulse Width High  
SCLK Pulse Width Low  
SCLK Fall to SSTRB  
t
C
C
C
= 100pF  
= 100pF  
= 100pF  
20  
240  
240  
240  
ns  
LOAD  
LOAD  
LOAD  
t
ns  
DV  
t
ns  
TR  
t
100  
0
ns  
CSS  
CSH  
t
ns  
t
200  
200  
ns  
CH  
t
ns  
CL  
t
C
LOAD  
= 100pF  
240  
240  
ns  
SSTRB  
CS Fall to SSTRB Output Enable  
(Note 6)  
t
External clock mode only, C  
External clock mode only, C  
Internal clock mode only  
= 100pF  
= 100pF  
ns  
ns  
ns  
SDV  
LOAD  
CS Rise to SSTRB Output  
Disable (Note 6)  
t
240  
STR  
LOAD  
SSTRB Rise to SCLK Rise  
(Note 6)  
t
0
SCK  
Note 1: Tested at V  
= 5.0V; V = 0V; unipolar input mode.  
SS  
Note 2: Relative accuracy is the analog value’s deviation (at any code) from its theoretical value after the full-scale range is  
DD  
calibrated.  
Note 3: Internal reference, offset nulled.  
Note 4: On-channel grounded; sine-wave applied to all off-channels.  
Note 5: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50ꢀ duty cycle.  
Note 6: Guaranteed by design. Not subject to production testing.  
Note 7: Common-mode range for analog inputs is from V to V  
.
DD  
SS  
Note 8: External load should not change during the conversion for specified accuracy.  
Note 9: Shutdown supply current is measured with V at 3.3V, and with all digital inputs tied to either V or GND (Figure 12c);  
L
L
REFADJ = GND.  
Note 10: Logic supply current is measured with the digital outputs (DOUT and SSTRB) disabled (CS high). When the outputs are  
active (CS low), the logic supply current depends on f , and on the static and capacitive load at DOUT and SSTRB.  
SCLK  
Note 11: Measured at V  
+5ꢀ and V  
-5ꢀ only.  
SUPPLY  
L
SUPPLY  
Note 12: Measured at V = 2.7V and V = 3.6V.  
L
Maxim Integrated  
6
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
__________________________________________Typical Operating Characteristics  
(V  
= 5V 5ꢀ; V = 2.7V to 3.6V; f  
= 2.0MHz, external clock (50ꢀ duty cycle); 15 clocks/conversion cycle (133ksps);  
DD  
L
SCLK  
4.7µF capacitor at REF; T = +25°C; unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
2.0  
2.0  
6
5
REFADJ = GND  
1.8  
1.6  
1.8  
1.6  
4
3
1.4  
1.2  
1.0  
1.4  
1.2  
1.0  
2
1
0
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
______________________________________________________________Pin Description  
PIN  
NAME  
FUNCTION  
1–8  
CH0–CH7  
Sampling Analog Inputs  
9
V
SS  
Negative Supply Voltage. Tie V to -5V 5ꢀ or GND.  
SS  
Three-Level Shutdown Input. Pulling SHDN low shuts the MAX1204 down to 10µA (max) supply  
current; otherwise, the MAX1204 is fully operational. Pulling SHDN to V  
amplifier in internal compensation mode. Letting SHDN float puts the reference-buffer amplifier in  
external compensation mode.  
puts the reference-buffer  
DD  
10  
11  
SHDN  
Reference Buffer Output/ADC Reference Input. In internal reference mode, the reference buffer  
provides a 4.096V nominal output, externally adjustable at REFADJ. In external reference mode,  
REF  
disable the internal buffer by pulling REFADJ to V  
DD.  
12  
13  
REFADJ  
GND  
Input to the Reference-Buffer Amplifier. Tie REFADJ to V to disable the reference-buffer amplifier.  
DD  
Ground; IN- Input for Single-Ended Conversions  
Supply Voltage for Digital Output Pins. Voltage applied to V determines the positive output swing of  
L
the Digital Outputs (DOUT, SSTRB).  
14  
15  
V
L
DOUT  
Serial-Data Output. Data is clocked out at SCLK’s falling edge. High impedance when CS is high.  
Serial-Strobe Output. In internal clock mode, SSTRB goes low when the MAX1204 begins the analog-  
to-digital conversion and goes high when the conversion is finished. In external clock mode, SSTRB  
pulses high for one clock period before the MSB decision. High impedance when CS is high (external  
clock mode).  
16  
SSTRB  
17  
18  
DIN  
Serial-Data Input. Data is clocked in at SCLK’s rising edge.  
Active-Low Chip Select. Data is not clocked into DIN unless CS is low. When CS is high, DOUT is  
high impedance.  
CS  
Serial-Clock Input. SCLK clocks data in and out of serial interface. In external clock mode, SCLK also  
sets the conversion speed. (Duty cycle must be 40ꢀ to 60ꢀ in external clock mode.)  
19  
20  
SCLK  
V
DD  
Positive Supply Voltage, +5V 5ꢀ  
Maxim Integrated  
7
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
+3.3V  
3kΩ  
DOUT  
DOUT  
18  
19  
CS  
SCLK  
C
3kΩ  
INPUT  
SHIFT  
C
LOAD  
LOAD  
INT  
17  
10  
DIN  
CLOCK  
REGISTER  
CONTROL  
LOGIC  
SHDN  
GND  
a. High-Z to V and V to V  
OH  
GND  
1
2
3
4
5
6
7
8
CH0  
15  
16  
b. High-Z to V and V to V  
OH  
OL  
OL  
OH  
OL  
OUTPUT  
SHIFT  
REGISTER  
DOUT  
CH1  
CH2  
CH3  
CH4  
CH5  
SSTRB  
Figure 1. Load Circuits for Enable Time  
ANALOG  
INPUT  
MUX  
T/H  
CLOCK  
+3.3V  
IN  
SAR  
ADC  
CH6  
CH7  
OUT  
3kΩ  
20  
14  
9
13  
REF  
V
V
DD  
L
GND  
DOUT  
DOUT  
A 1.68  
+2.44V  
REFERENCE  
20k  
V
3kΩ  
SS  
C
C
LOAD  
12  
11  
LOAD  
REFADJ  
REF  
MAX1204  
+4.096V  
GND  
GND  
a. V to High-Z  
OH  
b. V to High-Z  
OL  
Figure 2. Load Circuits for Disable Time  
Figure 3. Block Diagram  
GND during a conversion. To do this, connect a 0.1µF  
capacitor from IN- (of the selected analog input) to  
GND.  
_______________Detailed Description  
The MAX1204 uses a successive-approximation con-  
version technique and input track/hold (T/H) circuitry to  
convert an analog signal to a 10-bit digital output. A  
flexible serial interface provides easy interface to 3V  
microprocessors (µPs). Figure 3 is the MAX1204 block  
diagram.  
During the acquisition interval, the channel selected as  
the positive input (IN+) charges capacitor C  
. The  
HOLD  
acquisition interval spans three SCLK cycles and ends  
on the falling SCLK edge after the input control word’s  
last bit is entered. The T/H switch opens at the end of  
Pseudo-Differential Input  
Figure 4 shows the analog-to-digital converter’s  
(ADC’s) analog comparator’s sampling architecture. In  
single-ended mode, IN+ is internally switched to  
CH0–CH7 and IN- is switched to GND. In differential  
mode, IN+ and IN- are selected from pairs of CH0/CH1,  
CH2/CH3, CH4/CH5, and CH6/CH7. Configure the  
channels using Tables 3 and 4.  
the acquisition interval, retaining charge on C  
sample of the signal at IN+.  
as a  
HOLD  
The conversion interval begins with the input multiplex-  
er switching C from the positive input (IN+) to the  
HOLD  
negative input (IN-). In single-ended mode, IN- is sim-  
ply GND. This unbalances node ZERO at the compara-  
tor’s input. The capacitive DAC adjusts during the  
remainder of the conversion cycle to restore node  
ZERO to 0V within the limits of 10-bit resolution. This  
action is equivalent to transferring a charge of 16pF x  
In differential mode, IN- and IN+ are internally switched  
to either of the analog inputs. This configuration is  
pseudo-differential such that only the signal at IN+ is  
sampled. The return side (IN-) must remain stable with-  
in 0.5 LSB ( 0.1 LSB for best results) with respect to  
[(V +) - (V -)] from C to the binary-weighted  
HOLD  
IN  
IN  
capacitive DAC, which in turn forms a digital represen-  
tation of the analog input signal.  
Maxim Integrated  
8
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
impedances can be used if an input capacitor is con-  
nected to the analog inputs, as shown in Figure 5. Note  
that the input capacitor forms an RC filter with the input  
source impedance, limiting the ADC’s signal bandwidth.  
Track/Hold  
The T/H enters tracking mode on the falling clock edge  
after the fifth bit of the 8-bit control word is shifted in. The  
T/H enters hold mode on the falling clock edge after the  
eighth bit of the control word is shifted in. IN- is connect-  
ed to GND if the converter is set up for single-ended  
inputs, and the converter samples the “+” input. IN- con-  
nects to the “-” input if the converter is set up for differen-  
CAPACITIVE DAC  
REF  
tial inputs, and the difference of |N+ - IN- is sampled.  
The positive input connects back to IN+ at the end of  
COMPARATOR  
INPUT  
MUX  
C
HOLD  
ZERO  
HOLD  
+
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
GND  
the conversion, and C  
charges to the input signal.  
HOLD  
16pF  
The time required for the T/H to acquire an input signal is  
a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
acquisition time increases and more time must be  
allowed between conversions. The acquisition time,  
9k  
R
IN  
C
SWITCH  
TRACK  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN– CHANNEL.  
T/H  
SWITCH  
t
ACQ, is the maximum time the device takes to acquire  
the signal, and is also the minimum time needed for the  
signal to be acquired. It is calculated by the following:  
SINGLE-ENDED MODE: IN+ = CHO–CH7, IN- = GND.  
DIFFERENTIAL MODE:  
IN+ AND IN- SELECTED FROM PAIRS OF  
CH0/CH1, CH2/CH3, CH4/CH5, CH6/CH7.  
tACQ = 7 x (RS + RIN) x 16pF  
where RIN = 9k, RS = the source impedance of the  
input signal, and tACQ is never less than 1.5µs. Note that  
source impedances below 4kdo not significantly  
affect the ADC’s AC performance. Higher source  
Figure 4. Equivalent Input Circuit  
+3V  
V
V
+5V  
L
DD  
OSCILLOSCOPE  
0.1µF  
0.1µF  
GND  
SCLK  
V
SS  
MAX1204  
SSTRB  
DOUT  
0V TO  
4.096V  
ANALOG  
INPUT  
CH7  
CS  
SCLK  
DIN  
0.01µF  
CH4  
2MHz  
OSCILLATOR  
CH3  
CH1  
CH2  
+3V  
SSTRB  
DOUT  
REFADJ  
REF  
SHDN  
N.C.  
C2  
0.01µF  
C1  
4.7µF  
FULL-SCALE ANALOG INPUT  
Figure 5. Quick-Look Circuit  
Maxim Integrated  
9
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
Table 1a. Unipolar Full Scale  
Table 1b. Bipolar Full Scale, Zero Scale,  
and Zero Scale  
and Negative Full Scale  
ZERO  
REFERENCE  
NEGATIVE  
ZERO  
FULL SCALE  
REFERENCE  
FULL SCALE  
SCALE  
FULL SCALE SCALE  
Internal  
External  
0V  
0V  
0V  
+4.096V  
Internal  
-4.096V/2  
0V  
0V  
0V  
+4.096V / 2  
at REFADJ  
at REF  
V
x 1.68  
REFADJ  
at  
-1/2 V  
x
+1/2 V  
REFADJ  
REFADJ  
1.68  
REFADJ  
x 1.68  
V
REF  
External  
at REF  
-1/2 V  
REF  
+1/2 V  
REF  
which triggers single-ended unipolar conversions on  
CH7 in external clock mode without powering down  
between conversions. In external clock mode, the  
SSTRB output pulses high for one clock period before  
the most significant bit of the conversion result shifts out  
of DOUT. Varying the analog input to CH7 alters the  
sequence of bits from DOUT. A total of 15 clock cycles  
per conversion is required. All SSTRB and DOUT output  
transitions occur on SCLK’s falling edge.  
Input Bandwidth  
The ADC’s input tracking circuitry has a 4.5MHz  
small-signal bandwidth. Therefore, it is possible to digi-  
tize high-speed transient events and measure periodic  
signals with bandwidths exceeding the ADC’s sampling  
rate by using undersampling techniques. To avoid  
high-frequency signals being aliased into the frequency  
band of interest, anti-alias filtering is recommended.  
Analog Input Range and Input Protection  
How to Start a Conversion  
Clocking a control byte into DIN starts conversion on  
the MAX1204. With CS low, each rising edge on SCLK  
clocks a bit from DIN into the MAX1204’s internal shift  
register. After CS falls, the first logic “1” bit defines the  
control byte’s MSB. Until this first “start” bit arrives, any  
number of logic “0” bits can be clocked into DIN with  
no effect. Table 2 shows the control-byte format.  
Internal protection diodes, which clamp the analog  
inputs to V  
and V , allow the analog input pins to  
SS  
DD  
swing from (V - 0.3V) to (V  
+ 0.3V) without dam-  
DD  
SS  
age. However, for accurate conversions near full scale,  
the inputs must not exceed V by more than 50mV, or  
DD  
be lower than V by 50mV.  
SS  
If the analog input exceeds 50mV beyond the sup-  
plies, do not forward bias the protection diodes of  
off-channels over 2mA, as excessive current  
degrades on-channel conversion accuracy.  
The full-scale input voltage depends on the voltage at  
REF (Tables 1a and 1b).  
The MAX1204 is fully compatible with MICROWIRE and  
SPI devices. For SPI, select the correct clock polarity  
and sampling edge in the SPI control registers: set  
CPOL = 0 and CPHA = 0. MICROWIRE and SPI both  
transmit a byte and receive a byte at the same time.  
Using the Typical Operating Circuit, the simplest soft-  
ware interface requires only three 8-bit transfers to per-  
form a conversion (one 8-bit transfer to configure the  
ADC, and two more 8-bit transfers to clock out the con-  
version result).  
Quick Look  
Use the circuit of Figure 5 to quickly evaluate the  
MAX1204’s analog performance. The MAX1204 requires  
that a control byte be written to DIN before each conver-  
sion. Tying DIN to +3V feeds in control byte $FF hex,  
Maxim Integrated  
10  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
MAX1204  
Table 2. Control-Byte Format  
Bit 7  
Bit 0  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
(MSB)  
(LSB)  
START  
SEL 2  
SEL 1  
SEL 0  
PD1  
PD0  
UNI/BIP  
SGL/DIF  
Bit  
Name  
Description  
7 (MSB)  
START  
The first logic 1 bit after CS goes low defines the beginning of the control byte.  
6
5
4
SEL2  
SEL1  
SEL0  
These three bits select which of the eight channels is used for the conversion  
(Tables 3 and 4).  
1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode. In unipolar mode, an  
analog input signal from 0V to V can be converted; in bipolar mode, the signal can range  
3
2
UNI/BIP  
SGL/DIF  
REF  
from -V  
/ 2 to +V  
/ 2.  
REF  
REF  
1 = single ended, 0 = differential. Selects single-ended or differential conversions. In single-  
ended mode, input signal voltages are referred to GND. In differential mode, the voltage dif-  
ference between two channels is measured. (Tables 3 and 4.)  
Selects clock and power-down modes.  
PD1  
0
PD0  
0
Mode  
Full power-down (I  
Fast power-down (I  
Internal clock mode  
External clock mode  
= 2µA, internal reference)  
= 30µA, internal reference)  
1
PD1  
PD0  
DD  
DD  
0 (LSB)  
0
1
1
0
1
1
Table 3. Channel Selection in Single-Ended Mode (SGL/DIF = 1)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
GND  
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
+
+
+
+
+
+
+
+
Table 4. Channel Selection in Differential Mode (SGL/DIF = 0)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+
+
+
+
+
+
+
+
Maxim Integrated  
11  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
PD0 of the control byte program the clock mode.  
Figures 7–10 show the timing characteristics common  
to both modes.  
Simple Software Interface  
Make sure the CPU’s serial interface runs in master  
mode so the CPU generates the serial clock. Choose a  
clock frequency from 100kHz to 2MHz.  
External Clock  
In external clock mode, the external clock not only shifts  
data in and out, but it also drives the A/D conversion  
steps. SSTRB pulses high for one clock period after the  
last bit of the control byte. Successive-approximation bit  
decisions are made and appear at DOUT on each of the  
next 12 SCLK falling edges (Figure 6). SSTRB and  
DOUT go into a high-impedance state when CS goes  
high; after the next CS falling edge, SSTRB outputs a  
logic low. Figure 8 shows the SSTRB timing in external  
clock mode.  
1) Set up the control byte for external clock mode and  
call it TB1. TB1’s format should be: 1XXXXX11 binary,  
where the Xs denote the particular channel and  
conversion mode selected.  
2) Use a general-purpose I/O line on the CPU to pull  
CS on the MAX1204 low.  
3) Transmit TB1 and simultaneously receive a byte  
and call it RB1. Ignore RB1.  
4) Transmit a byte of all zeros ($00 hex) and simulta-  
neously receive byte RB2.  
The conversion must complete in some minimum time or  
droop on the sample-and-hold can degrade conversion  
results. Use internal clock mode if the clock period  
exceeds 10µs or if serial-clock interruptions could cause  
the conversion interval to exceed 120µs.  
5) Transmit a byte of all zeros ($00 hex) and simulta-  
neously receive byte RB3.  
6) Pull CS on the MAX1204 high.  
Figure 6 shows the timing for this sequence. Bytes RB2  
and RB3 contain the result of the conversion padded  
with one leading zero, two trailing sub-bits (S1 and S0),  
and three trailing zeros. Total conversion time is a func-  
tion of the serial clock frequency and the amount of idle  
time between 8-bit transfers. To avoid excessive T/H  
droop, make sure that the total conversion time does  
not exceed 120µs.  
Internal Clock  
In internal clock mode, the MAX1204 generates its own  
conversion clock. This frees the µP from running the  
SAR conversion clock, and allows the conversion  
results to be read back at the processor’s convenience,  
at any clock rate from zero to 2MHz. SSTRB goes low  
at the start of the conversion, then goes high when the  
conversion is complete. SSTRB is low for a maximum of  
10µs, during which time SCLK should remain low for  
best noise performance. An internal register stores data  
while the conversion is in progress. SCLK clocks the  
data out at this register at any time after the conversion  
is complete. After SSTRB goes high, the next falling  
clock edge produces the MSB of the conversion at  
DOUT, followed by the remaining bits in MSB-first for-  
mat (Figure 9). CS does not need to be held low once a  
conversion is started. Pulling CS high prevents data  
from being clocked into the MAX1204 and three-states  
DOUT, but it does not adversely affect an internal  
clock-mode conversion already in progress. When  
internal clock mode is selected, SSTRB does not go  
high impedance when CS goes high.  
Digital Output  
In unipolar input mode, the output is straight binary  
(Figure 15); for bipolar inputs, the output is two’s-  
complement (Figure 16). Data is clocked out at SCLK’s  
falling edge in MSB-first format. The digital output logic  
level is adjusted with the V pin. This allows DOUT and  
L
SSTRB to interface with 3V logic without the risk of  
overdrive. The MAX1204’s digital inputs are designed  
to be compatible with 3V CMOS logic as well as 5V  
logic.  
Internal and External Clock Modes  
The MAX1204 can use either an external serial clock  
or the internal clock to perform the successive-  
approximation conversion. In both clock modes, the  
external clock shifts data in and out of the MAX1204.  
The T/H acquires the input signal as the last three bits  
of the control byte are clocked into DIN. Bits PD1 and  
Figure 10 shows the SSTRB timing in internal clock  
mode. Data can be shifted in and out of the MAX1204 at  
clock rates up to 2.0MHz if the acquisition time, tACQ, is  
kept above 1.5µs.  
Maxim Integrated  
12  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
CS  
t
ACQ  
SCLK  
1
4
8
12  
16  
20  
24  
UNI/ SGL/  
DIN  
SSTRB  
DOUT  
SEL2 SEL1 SEL0  
PD1 PD0  
BIP  
DIF  
START  
RB2  
B6  
RB3  
S1  
RB1  
FILLED WITH  
ZEROS  
B9  
MSB  
B0  
LSB  
B8  
B7  
B5  
B4  
B3  
B2  
B1  
S0  
ACQUISITION  
1.5µs  
(SCLK = 2MHz)  
CONVERSION  
IDLE  
IDLE  
ADC STATE  
Figure 6. 24-Bit External-Clock-Mode Conversion Timing (Microwire/SPI Compatible)  
• • •  
• • •  
CS  
t
t
t
CSH  
CSS  
CH  
t
t
CL  
CSH  
SCLK  
t
DS  
t
DH  
DIN  
• • •  
• • •  
t
DV  
t
t
TR  
DO  
DOUT  
Figure 7. Detailed Serial-Interface Timing  
CS  
• • •  
• • •  
t
t
STR  
SDV  
SSTRB  
• • •  
• • •  
• • •  
t
t
SSTRB  
SSTRB  
• • •  
SCLK  
PD0 CLOCKED IN  
Figure 8. External Clock-Mode SSTRB Detailed Timing  
Maxim Integrated  
13  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
CS  
SCLK  
DIN  
1
4
8
18  
24  
2
3
5
6
7
9
10  
11  
12  
19  
20  
21  
22  
23  
UNI/ SGL/  
DIP DIF  
SEL2 SEL1 SEL0  
PD1 PD0  
START  
SSTRB  
t
CONV  
FILLED WITH  
ZEROS  
B9  
MSB  
B0  
LSB  
DOUT  
B8  
B7  
S1  
S0  
ACQUISITION  
1.5µs  
(SCLK = 2MHz)  
CONVERSION  
10µs MAX  
IDLE  
IDLE  
ADC STATE  
Figure 9. Internal Clock Mode Timing  
CS • • •  
t
t
CONV  
CSS  
t
t
SCK  
CSH  
SSTRB • • •  
SCLK • • •  
t
SSTRB  
PD0 CLOCK IN  
NOTE: KEEP SCLK LOW DURING CONVERSION FOR BEST NOISE PERFORMANCE.  
Figure 10. Internal Clock Mode SSTRB Detailed Timing  
Data Framing  
If a falling edge on CS forces a start bit before B3  
becomes available, the current conversion is termi-  
nated and a new one started. Thus, the fastest the  
MAX1204 can run is 15 clocks/conversion. Figure 11a  
shows the serial-interface timing necessary to perform  
a conversion every 15 SCLK cycles in external clock  
mode. If CS is low and SCLK is continuous, guarantee  
a start bit by first clocking in 16 zeros.  
CS’s falling edge does not start a conversion on the  
MAX1204. The first logic high clocked into DIN is inter-  
preted as a start bit and defines the first bit of the control  
byte. A conversion starts on SCLK’s falling edge after the  
eighth bit of the control byte (the PD0 bit) is clocked into  
DIN. The start bit is defined as:  
The first high bit clocked into DIN with CS low any-  
time the converter is idle; (e.g., after VDD is applied).  
Most microcontrollers (µCs) require that conversions  
occur in multiples of eight SCLK clocks; 16 clocks per  
conversion is typically the fastest that a µC can drive  
the MAX1204. Figure 11b shows the serial-interface  
timing necessary to perform a conversion every 16  
SCLK cycles in external clock mode.  
or  
The first high bit clocked into DIN after bit 3 (B3) of a  
conversion in progress appears at DOUT.  
Maxim Integrated  
14  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
CS  
1
8
1
8
1
15  
15  
SCLK  
DIN  
S
CONTROL BYTE 2  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
DOUT  
SSTRB  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 0  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 1  
Figure 11a. External Clock Mode, 15 Clocks/Conversion Timing  
• • •  
CS  
• • •  
• • •  
• • •  
SCLK  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
DIN  
DOUT  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 0  
B9 B8 B7 B6 B5  
CONVERSION RESULT 1  
Figure 11b. External Clock Mode, 16 Clocks/Conversion Timing  
Float SHDN to select external compensation. The Typical  
Operating Circuit uses a 4.7µF capacitor at REF. A value  
of 4.7µF or greater ensures stability and allows converter  
operation at the 2MHz full clock speed. External com-  
pensation increases power-up time (see the section  
Choosing Power-Down Mode, and Table 5).  
__________ Applications Information  
Power-On Reset  
When power is first applied and if SHDN is not pulled  
low, internal power-on reset circuitry activates the  
MAX1204 in internal clock mode, ready to convert with  
SSTRB = high. After the power supplies are stabilized,  
the internal reset time is 100µs. No conversions should  
be performed during this phase. SSTRB is high on  
power-up, and if CS is low, the first logical 1 on DIN is  
interpreted as a start bit. Until a conversion takes  
place, DOUT shifts out zeros.  
Internal compensation requires no external capacitor at  
REF, and is selected by pulling SHDN high. Internal com-  
pensation allows for the shortest power-up times, but is  
only available using an external clock up to 400kHz.  
Power-Down  
Choosing Power-Down Mode  
You can save power by placing the converter in a  
low-current shutdown state between conversions.  
Select full power-down or fast power-down mode via  
bits 1 and 0 of the DIN control byte with SHDN high or  
open (Tables 2 and 6). Pull SHDN low at any time to shut  
down the converter completely. SHDN overrides bits 1  
and 0 of the control byte.  
Reference-Buffer Compensation  
In addition to its shutdown function, SHDN also selects  
internal or external compensation. The compensation  
affects both power-up time and maximum conversion  
speed. Compensated or not, the minimum clock rate is  
100kHz due to droop on the sample-and-hold.  
Maxim Integrated  
15  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
Full power-down mode turns off all chip functions  
that draw quiescent current, reducing IDD and ISS typi-  
cally to 2µA.  
From fast power-down, start-up time can be eliminated  
by using low-leakage capacitors that do not discharge  
more than 1/2 LSB while shut down. In power-down, the  
capacitor has to supply the current into the reference  
(typically 1.5µA) and the transient currents at power-up.  
Fast power-down mode turns off all circuitry except the  
bandgap reference. With fast power-down mode, the  
supply current is 30µA. Power-up time can be shortened  
to 5µs in internal compensation mode.  
Figures 12a and 12b show the various power-down  
sequences in both external and internal clock modes.  
The I  
shutdown current can increase if any digital input  
DD  
Software Power-Down  
Software power-down is activated using bits PD1 and  
PD0 of the control byte. As shown in Table 6, PD1 and  
PD0 also specify clock mode. When software power-  
down is asserted, the ADC continues to operate in the  
last specified clock mode until the conversion is com-  
plete. The ADC then powers down into a low  
quiescent-current state. In internal clock mode, the  
interface remains active and conversion results can be  
clocked out even though the MAX1204 has already  
entered a software power-down.  
(DIN, SCLK, CS) is held high in either power-down mode.  
The actual shutdown current depends on the state of the  
digital inputs, the voltage applied to the digital inputs  
(V ), the supply voltage (V ), and the operating temper-  
IH  
DD  
ature. Figure 12c shows the maximum I  
increase for  
DD  
each digital input held high in power-down mode for differ-  
ent operating conditions. This current is cumulative, so if  
all three digital inputs are held high, the additional shut-  
down current is three times the value shown in Figure 12c.  
In both software power-down modes, the serial interface  
remains operational, but the ADC does not convert.  
Table 5 shows how the choice of reference-buffer com-  
pensation and power-down mode affects both power-up  
delay and maximum sample rate.  
The first logical 1 on DIN is interpreted as a start bit  
and powers up the MAX1204. Following the start bit,  
the control byte also determines clock and power-down  
modes. For example, if the control byte contains PD1 =  
1, the chip remains powered up. If PD1 = 0,  
power-down resumes after one conversion.  
In external compensation mode, power-up time is 20ms  
with a 4.7µF compensation capacitor (200ms with a 33µF  
capacitor) when the capacitor is initially fully discharged.  
Table 5. Typical Power-Up Delay Times  
REFERENCE  
MAXIMUM  
POWER-UP  
REFERENCE  
BUFFER  
REFERENCE-BUFFER  
COMPENSATION MODE  
POWER-DOWN  
MODE  
CAPACITOR  
SAMPLING RATE  
(ksps)  
DELAY (µs)  
(µF)  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Internal  
Internal  
External  
Fast  
Full  
5
26  
300  
26  
4.7  
Fast/Full  
Fast  
See Figure 14c  
133  
133  
133  
2
2
Full  
Table 7. Hard-Wired Shutdown and  
Compensation Mode  
Table 6. Software Shutdown and  
Clock Mode  
DEVICE  
MODE  
REFERENCE-BUFFER  
SHDN  
STATE  
PD1  
PD0  
DEVICE MODE  
COMPENSATION  
1
1
0
0
1
0
1
0
External clock mode  
Internal clock mode  
Fast power-down mode  
Full power-down mode  
V
Enabled  
Internal compensation  
External compensation  
DD  
Open  
Enabled  
Full  
Power-Down  
GND  
N/A  
Maxim Integrated  
16  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
CLOCK  
MODE  
INTERNAL  
EXTERNAL  
EXTERNAL  
SHDN  
SETS FAST  
POWER-DOWN  
MODE  
SETS EXTERNAL  
CLOCK MODE  
SETS EXTERNAL  
CLOCK MODE  
DIN  
S
X
X X X X 1  
1
S X  
X
X X X 0  
1
S
X X X X X 1  
1
DOUT  
DATA VALID  
(10 + 2 DATA BITS)  
DATA VALID  
(10 + 2 DATA BITS)  
DATA  
INVALID  
FULL  
POWER-  
DOWN  
POWERED UP  
MODE  
POWERED UP  
POWERED  
UP  
FAST  
POWER-DOWN  
Figure 12a. Timing Diagram for Power-Down Modes (External Clock)  
CLOCK  
MODE  
INTERNAL CLOCK MODE  
SETS FULL  
POWER-DOWN  
SETS INTERNAL  
CLOCK MODE  
DIN  
S
X
X X X X 1  
0
S X  
X
X X X 0  
0
S
DOUT  
DATA VALID  
DATA VALID  
SSTRB  
MODE  
CONVERSION  
CONVERSION  
FULL  
POWER-DOWN  
POWERED UP  
POWERED  
UP  
Figure 12b. Timing Diagram for Power-Down Modes (Internal Clock)  
Hardware Power-Down  
The SHDN pin places the converter into full  
power-down mode. Unlike the software power-down  
modes, conversion is not completed; it stops coinci-  
dentally with SHDN being brought low. There is no  
power-up delay if an external reference, which is not  
shut down, is used. SHDN also selects internal or  
external reference compensation (Table 7).  
Lowest Power at up to  
500 Conversions per Channel per Second  
Figure 14a depicts MAX1204’s power consumption for one  
or eight channel conversions using full power-down mode  
and internal reference compensation. A 0.01µF bypass  
capacitor at REFADJ forms an RC filter with the internal  
20kreference resistor, with a 0.2ms time constant. To  
achieve full 10-bit accuracy, 10 time constants (or 2ms in  
this example) are required for the reference buffer to settle.  
When exiting FULLPD, waiting this 2ms in FASTPD mode  
(instead of just exiting FULLPD mode and returning to nor-  
mal operating mode) reduces power consumption by a  
factor of 10 or more (Figure 13).  
Power-Down Sequencing  
The MAX1204’s automatic power-down modes can  
save considerable power when operating at less than  
maximum sample rates. The following sections discuss  
the various power-down sequences.  
Maxim Integrated  
17  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
Lowest Power at Higher Throughputs  
Figure 14b shows power consumption with external-  
reference compensation in fast power-down, with one and  
eight channels converted. The external 4.7µF compensa-  
tion requires a 50µs wait after power-up. This circuit com-  
bines fast multichannel conversion with the lowest power  
consumption possible. Full power-down mode can  
increase power savings in applications where the  
MAX1204 is inactive for long periods of time, but where  
intermittent bursts of high-speed conversions are required.  
An internal buffer is designed to provide 4.096V at REF  
for the MAX1204. Its internally trimmed 2.44V reference  
is buffered with a 1.68 nominal gain.  
Internal Reference  
The MAX1204’s full-scale range with internal reference is  
4.096V with unipolar inputs and 2.048V with bipolar  
inputs. The internal reference voltage is adjustable to  
1.5ꢀ with the circuit of Figure 17.  
External Reference  
An external reference can be placed at either the input  
(REFADJ) or the output (REF) of the MAX1204’s internal  
buffer amplifier. The REFADJ input impedance is typical-  
ly 20k. At REF, the input impedance is a minimum of  
12kfor DC currents. During conversion, an external  
reference at REF must deliver up to 350µA DC load cur-  
rent and have an output impedance of 10or less. If the  
reference has higher output impedance or is noisy,  
bypass it close to the REF pin with a 4.7µF capacitor.  
External and Internal References  
The MAX1204 can be used with an internal or external  
reference. An external reference can be connected  
directly at the REF terminal or at the REFADJ pin.  
40  
35  
(V - V ) = 2.55V  
DD  
IH  
30  
25  
20  
15  
10  
5
Using the buffered REFADJ input makes buffering of  
the external reference unnecessary. To use the direct  
REF input, disable the internal buffer by tying REFADJ  
to VDD. In power-down, the input bias current to  
REFADJ can be as much as 25µA with REFADJ tied to  
(V - V ) = 2.25V  
V
. Pull REFADJ to GND to minimize the input bias  
DD  
IH  
DD  
current in power-down.  
(V - V ) = 1.95V  
DD  
IH  
Transfer Function and Gain Adjust  
0
Figure 15 depicts the nominal, unipolar input/output  
(I/O) transfer function, and Figure 16 shows the bipolar  
I/O transfer function. Code transitions occur halfway  
between successive integer LSB values. Output coding  
is binary with 1 LSB = 4mV (4.096V/1024) for  
unipolar operation and 1 LSB = 4mV [(4.096V/2 -  
-4.096V/2)/1024] for bipolar operation.  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
Figure 12c. Additional IDD Shutdown Supply Current vs. VIH  
for Each Digital Input at a Logic 1  
COMPLETE CONVERSION SEQUENCE  
2ms WAIT  
0 1  
(ZEROS)  
CH1  
CH7  
(ZEROS)  
DIN  
1
0 0  
1
1
1 1  
1
0 0  
1
0 1  
FULLPD  
2.5V  
FASTPD  
NOPD  
FULLPD  
FASTPD  
REFADJ  
REF  
0V  
4V  
0V  
τ = RC = 20kx C  
REFADJ  
t
15µs  
BUFFEN  
Figure 13. MAX1204 FULLPD/FASTPD Power-Up Sequence  
18  
Maxim Integrated  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
FULL POWER-DOWN  
3.0  
2.5  
2.0  
1.5  
1.0  
1000  
2ms FASTPD WAIT  
400kHz EXTERNAL CLOCK  
INTERNAL COMPENSATION  
8 CHANNELS  
1 CHANNEL  
100  
10  
0.5  
0
1
0.0001 0.001  
0.01  
0.1  
1
10  
0
50 100 150 200 250 300 350 400 450 500  
CONVERSIONS PER CHANNEL PER SECOND  
TIME IN SHUTDOWN (sec)  
Figure 14c. Typical Power-Up Delay vs. Time in Shutdown  
Figure 14a. MAX1204 Supply Current vs. Sample Rate/Second,  
FULLPD, 400kHz Clock  
Layout, Grounding, Bypassing  
For best performance, use printed circuit boards.  
Wire-wrap boards are not recommended. Board layout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digital  
(especially clock) lines parallel to one another, or digital  
lines underneath the ADC package.  
FAST POWER-DOWN  
10,000  
8 CHANNELS  
1000  
Figure 18 shows the recommended system-ground con-  
nections. Establish a single-point analog ground (star  
ground point) at GND. Connect all other analog grounds  
to this ground. No other digital system ground should be  
connected to this single-point analog ground. The  
ground return to the power supply should be low imped-  
ance and as short as possible for noise-free operation.  
1 CHANNEL  
100  
2MHz EXTERNAL CLOCK  
EXTERNAL COMPENSATION  
50µs WAIT  
10  
High-frequency noise in the VDD power supply may affect  
the high-speed comparator in the ADC. Bypass these  
supplies to the single-point analog ground with 0.1µF and  
4.7µF bypass capacitors close to the MAX1204. Minimize  
capacitor lead lengths for best supply-noise rejection. If  
the +5V power supply is very noisy, a 10resistor can  
be connected as a lowpass filter, as shown in Figure 18.  
0
2k  
4k  
6k  
8k 10k 12k 14k 16k 18k  
CONVERSIONS PER CHANNEL PER SECOND  
Figure 14b. MAX1204 Supply Current vs. Sample Rate/Second,  
FASTPD, 2MHz Clock  
Figure 17, the Reference-Adjust Circuit, shows how to  
adjust ADC gain in applications that use the internal  
reference. The circuit provides 1.5ꢀ ( 16 LSBs) of  
gain-adjustment range.  
Maxim Integrated  
19  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
OUTPUT CODE  
+5V  
MAX1204  
REFADJ  
FULL-SCALE  
TRANSITION  
11 . . . 111  
510kΩ  
100kΩ  
11 . . . 110  
12  
11 . . . 101  
0.01µF  
24kΩ  
FS = +4.096V  
FS  
1024  
1 LSB =  
Figure 17. Reference-Adjust Circuit  
00 . . . 011  
00 . . . 010  
00 . . . 001  
00 . . . 000  
0
1
2
3
FS  
SUPPLIES  
FS - 3/2 LSB  
INPUT VOLTAGE (LSBs)  
+5V  
-5V  
+3V  
GND  
Figure 15. Unipolar Transfer Function, 4.096V = Full Scale  
R* = 10Ω  
V
GND  
V
SS  
V
L
+3V  
DGND  
DD  
OUTPUT CODE  
011 . . . 111  
DIGITAL  
CIRCUITRY  
MAX1204  
011 . . . 110  
+4.096V  
FS =  
2
*OPTIONAL  
+4.096V  
1 LSB =  
000 . . . 010  
000 . . . 001  
000 . . . 000  
1024  
Figure 18. Power-Supply Grounding Connection  
111 . . . 111  
111 . . . 110  
111 . . . 101  
100 . . . 001  
100 . . . 000  
0V  
-FS  
+FS - 1 LSB  
INPUT VOLTAGE (LSBs)  
Figure 16. Bipolar Transfer Function, 4.096V/2 = Full Scale  
20  
Maxim Integrated  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
TMS320CL3x to MAX1204 Interface  
Figure 19 shows an application circuit to interface the  
MAX1204 to the TMS320 in external clock mode. Figure  
20 is the timing diagram for this interface circuit.  
XF  
CLKX  
CLKR  
DX  
CS  
Use the following steps to initiate a conversion in the  
MAX1204 and to read the results.  
SCLK  
1) The TMS320 should be configured with CLKX (trans-  
mit clock) as an active-high output clock and CLKR  
(TMS320 receive clock) as an active-high input clock.  
The TMS320’s CLKX and CLKR are tied together with  
the MAX1204’s SCLK input.  
TMS320LC3x  
MAX1204  
DIN  
2) The MAX1204’s CS is driven low by the TMS320’s  
XF_ I/O port to enable data to be clocked into the  
MAX1204’s DIN.  
DR  
DOUT  
FSR  
SSTRB  
3) Write an 8-bit word (1XXXXX11) to the MAX1204 to  
initiate a conversion and place the device into exter-  
nal clock mode. Refer to Table 2 to select the proper  
XXXXX bit values for your specific application.  
4) The MAX1204’s SSTRB output is monitored via the  
TMS320’s FSR input. A falling edge on the SSTRB  
output indicates that the conversion is in progress  
and data is ready to be received from the MAX1204.  
Figure 19. MAX1204 to TMS320 Serial Interface  
5) The TMS320 reads in one data bit on each of the  
next 16 rising edges of SCLK. These data bits repre-  
sent the 10-bit conversion result followed by two  
sub-bits and four trailing bits, which should be  
ignored.  
6) Pull CS high to disable the MAX1204 until the next  
conversion is initiated.  
CS  
SCLK  
DIN  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP SGL/DIF  
PD1  
PD0  
HIGH  
IMPEDANCE  
SSTRB  
HIGH  
IMPEDANCE  
DOUT  
MSB  
LSB  
Figure 20. TMS320 Serial-Interface Timing Diagram  
Maxim Integrated  
21  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
_Ordering Information (continued)  
__________Typical Operating Circuit  
TOP  
MARK  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
+5V  
+3V  
V
V
CH0  
CH7  
DD  
DD  
MAX1204AEPP+  
MAX1204BEPP+  
MAX1204AEAP+  
MAX1204BEAP+  
-40°C to +85°C 20 PDIP  
-40°C to +85°C 20 PDIP  
-40°C to +85°C 20 SSOP  
-40°C to +85°C 20 SSOP  
1/2  
1
C3  
0.1µF  
0V to  
4.096V  
ANALOG  
INPUTS  
V
L
MAX1204  
C4  
0.1µF  
1/2  
1
GND  
CPU  
V
SS  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
I/O  
CS  
SCLK  
SCK (SK)  
MOSI (SO)  
MISO (SI)  
REF  
DIN  
C1  
DOUT  
4.7µF  
___________________Chip Information  
SSTRB  
SHDN  
REFADJ  
C2  
0.01µF  
V
SS  
SUBSTRATE CONNECTED TO V  
SS  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns (foot-  
prints), go to www.maximintegrated.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but the  
drawing pertains to the package regardless of RoHS status.  
LAND  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE NO.  
PATTERN NO.  
90-0094  
20 PDIP  
P20+3  
21-0043  
21-0056  
20 SSOP  
A20+2  
Maxim Integrated  
22  
MAX1204  
5V, 8-Channel, Serial, 10-Bit ADC  
with 3V Digital Interface  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
1
1/97  
1/12  
Initial release  
Remove military grade packages.  
22  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in  
the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000 ________________________________ 23  
© 2012 Maxim Integrated  
The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX1205

+5v sINGLE-sUPPLY, 1mSPS, 14-bIT sELF-cALIBRATING adc
MAXIM

MAX1205CMH

+5v sINGLE-sUPPLY, 1mSPS, 14-bIT sELF-cALIBRATING adc
MAXIM

MAX1205CMH+

ADC, Proprietary Method, 14-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP44, ROHS COMPLIANT, MO-108AA-2, MQFP-44
MAXIM

MAX1205CMH+T

ADC, Proprietary Method, 14-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP44, MO-108AA-2, MQFP-44
MAXIM

MAX1205CMH-T

ADC, Proprietary Method, 14-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP44, M0-108AA-2, MQFP-44
MAXIM

MAX1205EMH

+5v sINGLE-sUPPLY, 1mSPS, 14-bIT sELF-cALIBRATING adc
MAXIM

MAX1205EMH+

暂无描述
MAXIM

MAX1205EMH+T

A/D Converter, 14-Bit, 1 Func, CMOS, PQFP44
MAXIM

MAX1205EMH-T

ADC, Proprietary Method, 14-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP44, M0-108AA-2, MQFP-44
MAXIM

MAX1205EVKIT

Evaluation Kit for the MAX1200/MAX1201/MAX1205
MAXIM

MAX1205EVKIT-MQFP

Fully Assembled and Tested Surface-Mount Board
MAXIM

MAX1206

40Msps, 12-Bit ADC
MAXIM