MAX1208ETL+T [MAXIM]

ADC, Flash Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, 6 X 6 MM, 0.8 MM HEIGHT, MO-220-WJJD, TQFN-40;
MAX1208ETL+T
型号: MAX1208ETL+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Flash Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, 6 X 6 MM, 0.8 MM HEIGHT, MO-220-WJJD, TQFN-40

转换器
文件: 总27页 (文件大小:1036K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1002; Rev 0; 8/04  
12-Bit, 80Msps, 3.3V ADC  
General Description  
Features  
The MAX1208 is a 3.3V, 12-bit, 80Msps analog-to-digital  
converter (ADC) featuring a fully differential wideband  
track-and-hold (T/H) input amplifier, driving a low-noise  
internal quantizer. The analog input stage accepts single-  
ended or differential signals. The MAX1208 is optimized  
for low power, small size, and high dynamic performance  
in baseband applications.  
Excellent Dynamic Performance  
68.2dB/68.0dB SNR at f = 3MHz/70MHz  
89.3dBc/85.1dBc SFDR at f = 3MHz/70MHz  
IN  
IN  
3.3V Low-Power Operation  
373mW (Single-Ended Clock Mode)  
399mW (Differential Clock Mode)  
3µW (Power-Down Mode)  
Powered from a single 3.0V to 3.6V supply, the  
MAX1208 consumes only 373mW while delivering a  
typical signal-to-noise (SNR) performance of 68.2dB at  
an input frequency of 32.5MHz. In addition to low oper-  
ating power, the MAX1208 features a 3µW power-down  
mode to conserve power during idle periods.  
Differential or Single-Ended Clock  
Fully Differential or Single-Ended Analog Input  
Adjustable Full-Scale Analog Input Range: 0.35V  
to 1.15V  
Common-Mode Reference  
A flexible reference structure allows the MAX1208 to use  
the internal 2.048V bandgap reference or accept an  
externally applied reference. The reference structure  
allows the full-scale analog input range to be adjusted  
from 0.35V to 1.15V. The MAX1208 provides a com-  
mon-mode reference to simplify design and reduce exter-  
nal component count in differential analog input circuits.  
The MAX1208 supports both a single-ended and differ-  
ential input clock drive. Wide variations in the clock  
duty cycle are compensated with the ADC’s internal  
duty-cycle equalizer (DCE).  
ADC conversion results are available through a 12-bit,  
parallel, CMOS-compatible output bus. The digital out-  
put format is pin selectable to be either two’s comple-  
ment or Gray code. A data-valid indicator eliminates  
external components that are normally required for reli-  
able digital interfacing. A separate digital power input  
accepts a wide 1.7V to 3.6V supply, allowing the  
MAX1208 to interface with various logic levels.  
CMOS-Compatible Outputs in Two’s Complement  
or Gray Code  
Data-Valid Indicator Simplifies Digital Design  
Data Out-of-Range Indicator  
Miniature, 40-Pin Thin QFN Package with Exposed  
Paddle  
Evaluation Kit Available (Order MAX1211EVKIT)  
Ordering Information  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
TEMP RANGE  
40 Thin QFN  
(6mm x 6mm x  
0.8mm)  
MAX1208ETL -40°C to +85°C  
T4066-3  
The MAX1208 is available in a 6mm x 6mm x 0.8mm,  
40-pin thin QFN package with exposed paddle (EP),  
and is specified for the extended industrial (-40°C to  
+85°C) temperature range.  
See the Pin-Compatible Versions table for a complete  
family of 14-bit and 12-bit high-speed ADCs.  
Pin-Compatible Versions  
SAMPLING  
RATE (Msps)  
RESOLUTION  
(BITS)  
TARGET  
APPLICATION  
PART  
MAX12553  
MAX1209  
MAX1211  
MAX1208  
MAX1207  
MAX1206  
65  
80  
65  
80  
65  
40  
14  
12  
12  
12  
12  
12  
IF/Baseband  
IF  
Applications  
Communication Receivers  
IF  
Cellular, Point-to-Point Microwave, HFC, WLAN  
Baseband  
Baseband  
Baseband  
Ultrasound and Medical Imaging  
Portable Instrumentation  
Low-Power Data Acquisition  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
12-Bit, 80Msps, 3.3V ADC  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND...........................................................-0.3V to +3.6V  
D11 Through D0 I.C., DAV, DOR to GND...-0.3V to (OV + 0.3V)  
DD  
OV  
to GND........-0.3V to the lower of (V  
+ 0.3V) and +3.6V  
+ 0.3V) and +3.6V  
Continuous Power Dissipation (T = +70°C)  
40-Pin Thin QFN 6mm x 6mm x 0.8mm  
(derated 26.3mW/°C above +70°C)........................2105.3mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering 10s) ..................................+300°C  
DD  
DD  
DD  
A
INP, INN to GND ...-0.3V to the lower of (V  
REFIN, REFOUT, REFP, REFN,  
COM to GND......-0.3V to the lower of (V  
CLKP, CLKN, CLKTYP, G/T, DCE,  
PD to GND ........-0.3V to the lower of (V  
+ 0.3V) and +3.6V  
+ 0.3V) and +3.6V  
DD  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 3.3V, OV = 2.0V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle), T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CLK  
A
A
PARAMETER  
DC ACCURACY (Note 2)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
LSB  
Integral Nonlinearity  
INL  
f
f
= 20MHz  
0.65  
0.35  
IN  
= 20MHz, no missing codes over  
IN  
Differential Nonlinearity  
DNL  
-0.83  
LSB  
temperature  
Offset Error  
V
V
= 2.048V  
= 2.048V  
0.25  
1.0  
0.92  
5.6  
%FS  
%FS  
REFIN  
REFIN  
Gain Error  
ANALOG INPUT (INP, INN)  
Differential Input Voltage Range  
Common-Mode Input Voltage  
V
Differential or single-ended inputs  
1.024  
V
V
DIFF  
V
/ 2  
DD  
2
C
Fixed capacitance to ground  
Switched capacitance  
PAR  
Input Capacitance  
(Figure 3)  
pF  
C
1.9  
SAMPLE  
CONVERSION RATE  
Maximum Clock Frequency  
Minimum Clock Frequency  
f
80  
MHz  
MHz  
CLK  
5
Clock  
cycles  
Data Latency  
Figure 6  
8.5  
DYNAMIC CHARACTERISTICS (differential inputs, Note 2)  
Small-Signal Noise Floor  
SSNF  
Input at less than -35dBFS  
-68.8  
68.2  
68.2  
68.0  
68.1  
68.1  
67.8  
dBFS  
dB  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 3MHz at -0.5dBFS  
= 32.5MHz at -0.5dBFS  
= 70MHz at -0.5dBFS  
= 3MHz at -0.5dBFS  
= 32.5MHz at -0.5dBFS  
= 70MHz at -0.5dBFS  
Signal-to-Noise Ratio  
SNR  
65.4  
65.2  
Signal-to-Noise and Distortion  
SINAD  
dB  
2
_______________________________________________________________________________________  
12-Bit, 80Msps, 3.3V ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.3V, OV = 2.0V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle), T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CLK  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
fIN = 3MHz at -0.5dBFS  
MIN  
TYP  
MAX  
UNITS  
89.3  
88.2  
85.1  
-87.1  
-85.0  
-81.2  
-93  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Second Harmonic  
SFDR  
THD  
HD2  
HD3  
dBc  
fIN = 32.5MHz at -0.5dBFS  
fIN = 70MHz at -0.5dBFS  
fIN = 3MHz at -0.5dBFS  
fIN = 32.5MHz at -0.5dBFS  
fIN = 70MHz at -0.5dBFS  
fIN = 3MHz at -0.5dBFS  
fIN = 32.5MHz at -0.5dBFS  
fIN = 70MHz at -0.5dBFS  
fIN = 3MHz at -0.5dBFS  
fIN = 32.5MHz at -0.5dBFS  
fIN = 70MHz at -0.5dBFS  
78.7  
-77.2  
dBc  
dBc  
dBc  
-89  
-86.5  
-96.8  
-95.1  
-85.1  
Third Harmonic  
fIN1 = 68.5MHz at -7dBFS  
fIN2 = 71.5MHz at -7dBFS  
Intermodulation Distortion  
Third-Order Intermodulation  
IMD  
IM3  
-81.1  
-84.4  
85.4  
dBc  
dBc  
dBc  
fIN1 = 68.5MHz at -7dBFS  
fIN2 = 71.5MHz at -7dBFS  
Two-Tone Spurious-Free  
Dynamic Range  
fIN1 = 68.5MHz at -7dBFS  
fIN2 = 71.5MHz at -7dBFS  
SFDRTT  
Aperture Delay  
Aperture Jitter  
Output Noise  
tAD  
tAJ  
Figure 4  
0.9  
ns  
Figure 4  
<0.2  
0.52  
psRMS  
LSBRM  
nOUT  
INP = INN = COM  
Clock  
cycles  
Overdrive Recovery Time  
10% beyond full scale  
1
INTERNAL REFERENCE (REFIN = REFOUT; VREFP, VREFN, and VCOM are generated internally)  
REFOUT Output Voltage  
COM Output Voltage  
VREFOUT  
VCOM  
1.978  
2.048  
1.65  
1.024  
35  
2.079  
V
V
VDD / 2  
Differential Reference Output  
VREF  
VREF = VREFP - VREFN  
V
REFOUT Load Regulation  
mV/mA  
ppm/°C  
REFOUT Temperature Coefficient  
TCREF  
+50  
0.24  
2.1  
Short to VDD—sinking  
Short to GND—sourcing  
REFOUT Short-Circuit Current  
mA  
BUFFERED EXTERNAL REFERENCE (REFIN driven externally; VREFIN = 2.048V, VREFP, VREFN, and VCOM are generated  
internally)  
REFIN Input Voltage  
REFP Output Voltage  
VREFIN  
VREFP  
2.048  
2.162  
V
V
(VDD/2) + (VREFIN / 4)  
_______________________________________________________________________________________  
3
12-Bit, 80Msps, 3.3V ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.3V, OV = 2.0V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle), T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CLK  
A
A
PARAMETER  
REFN Output Voltage  
COM Output Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
(V / 2) - (V / 4)  
REFIN  
1.138  
1.65  
V
V
REFN  
DD  
V
V
/ 2  
DD  
1.60  
1.70  
COM  
Differential Reference Output  
Voltage  
V
V
= V  
- V  
0.969  
1.024  
1.069  
V
REF  
REF  
REFP  
REFN  
Differential Reference  
Temperature Coefficient  
25  
ppm/°C  
REFIN Input Resistance  
>50  
MΩ  
UNBUFFERED EXTERNAL REFERENCE (REFIN = GND; V  
, V  
, and V  
are applied externally)  
REFP REFN  
COM  
COM Input Voltage  
REFP Input Voltage  
REFN Input Voltage  
V
V
V
V
/ 2  
DD  
1.65  
0.512  
-0.512  
V
V
V
COM  
- V  
REFP  
REFN  
COM  
- V  
COM  
Differential Reference Input  
Voltage  
V
V
= V  
- V  
REFN  
1.024  
V
REF  
REF  
REFP  
REFP Sink Current  
I
V
V
= 2.162V  
= 1.138V  
1.1  
1.1  
0.3  
13  
6
mA  
mA  
mA  
pF  
REFP  
REFP  
REFN  
REFN Source Current  
COM Sink Current  
I
REFN  
I
COM  
REFP, REFN Capacitance  
COM Capacitance  
pF  
CLOCK INPUTS (CLKP, CLKN)  
Single-Ended Input High  
Threshold  
0.8 x  
V
CLKTYP = GND, CLKN = GND  
V
V
IH  
V
DD  
Single-Ended Input Low  
Threshold  
0.2 x  
V
CLKTYP = GND, CLKN = GND  
CLKTYP = high  
IL  
V
DD  
Differential Input Voltage Swing  
1.4  
/ 2  
V
P-P  
V
Differential Input Common-Mode  
Voltage  
CLKTYP = high  
V
DD  
Input Resistance  
R
C
Figure 5  
5
2
kΩ  
CLK  
Input Capacitance  
pF  
CLK  
DIGITAL INPUTS (CLKTYP, G/T, PD)  
0.8 x  
OV  
Input High Threshold  
V
V
IH  
DD  
4
_______________________________________________________________________________________  
12-Bit, 80Msps, 3.3V ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.3V, OV = 2.0V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle), T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CLK  
A
A
PARAMETER  
Input Low Threshold  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
0.2 x  
OV  
UNITS  
V
V
IL  
DD  
V
V
= OV  
= 0  
5
5
IH  
IL  
DD  
Input Leakage Current  
Input Capacitance  
µA  
pF  
C
5
DIN  
DIGITAL OUTPUTS (D11–D0, DAV, DOR)  
D11–D0, DOR, I  
= 200µA  
0.2  
0.2  
SINK  
Output Voltage Low  
V
V
V
OL  
DAV, I  
= 600µA  
SINK  
OV  
0.2  
-
DD  
D11–D0, DOR, I  
= 200µA  
SOURCE  
Output Voltage High  
V
OH  
OV  
0.2  
-
DD  
DAV, I  
= 600µA  
SOURCE  
Tri-State Leakage Current  
I
(Note 3)  
(Note 3)  
5
µA  
pF  
LEAK  
D11–D0, DOR Tri-State Output  
Capacitance  
C
3
6
OUT  
DAV  
DAV Tri-State Output  
Capacitance  
C
(Note 3)  
pF  
POWER REQUIREMENTS  
Analog Supply Voltage  
V
3.0  
1.7  
3.3  
2.0  
3.6  
DD  
0.3V  
V
V
DD  
V
+
Digital Output Supply Voltage  
Analog Supply Current  
OV  
DD  
Normal operating mode,  
= 32.5MHz at -0.5dBFS,  
CLKTYP = GND, single-ended clock  
f
IN  
113  
I
Normal operating mode,  
mA  
VDD  
121  
0.001  
373  
132.2  
f
= 32.5MHz at -0.5dBFS,  
IN  
CLKTYP = OV  
differential clock  
DD,  
Power-down mode clock idle, PD = OV  
DD  
Normal operating mode,  
f
IN  
= 32.5MHz at -0.5dBFS,  
CLKTYP = GND, single-ended clock  
Analog Power Dissipation  
P
Normal operating mode,  
mW  
DISS  
f
IN  
= 32.5MHz at -0.5dBFS,  
399  
436.3  
CLKTYP = OV , differential clock  
DD  
Power-down mode clock idle, PD = OV  
0.003  
DD  
_______________________________________________________________________________________  
5
12-Bit, 80Msps, 3.3V ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.3V, OV = 2.0V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle), T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CLK  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
Normal operating mode,  
MIN  
TYP  
MAX  
UNITS  
9.9  
mA  
f
C
= 32.5MHz at -0.5dBFS, OV  
5pF  
= 2.0V,  
IN  
DD  
Digital Output Supply Current  
I
OVDD  
L
Power-down mode clock idle, PD = OV  
0.9  
µA  
DD  
TIMING CHARACTERISTICS (Figure 6)  
Clock Pulse Width High  
Clock Pulse Width Low  
Data-Valid Delay  
t
6.25  
6.25  
6.4  
ns  
ns  
ns  
CH  
t
CL  
t
C = 5pF (Note 5)  
L
DAV  
Data Setup Time Before Rising  
Edge of DAV  
t
C = 5pF (Note 4, Note 5)  
7.7  
4.2  
ns  
SETUP  
L
Data Hold Time After Rising Edge  
of DAV  
t
C = 5pF (Note 4, Note 5)  
L
ns  
HOLD  
Wake-Up Time from Power-Down  
t
V
= 2.048V  
10  
ms  
WAKE  
REFIN  
Note 1: Specifications +25°C guaranteed by production test, <+25°C guaranteed by design and characterization.  
Note 2: See definitions in the Parameter Definitions section.  
Note 3: During power-down, D11–D0, DOR, and DAV are high impedance.  
Note 4: Guaranteed by design and characterization.  
Note 5: Digital outputs settle to V or V .  
IH  
IL  
6
_______________________________________________________________________________________  
12-Bit, 80Msps, 3.3V ADC  
Typical Operating Characteristics  
(V = 3.3V, OV = 2.0V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle), T = +25°C, unless otherwise noted.)  
A
CLK  
SINGLE-TONE FFT PLOT  
(8192-POINT DATA RECORD)  
SINGLE-TONE FFT PLOT  
(8192-POINT DATA RECORD)  
SINGLE-TONE FFT PLOT  
(8192-POINT DATA RECORD)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
f
= 80.00353MHz  
= 2.99817879MHz  
f
f
A
= 80.00353MHz  
CLK  
f
f
A
= 80.00353MHz  
= 69.99331395MHz  
= -0.510dBFS  
CLK  
IN  
CLK  
IN  
IN  
= 32.49166395MHz  
= -0.495dBFS  
IN  
IN  
AIN = -0.527dBFS  
SNR = 68.100dB  
SINAD = 68.061dB  
THD = -88.539dBc  
SFDR = 90.612dBc  
SNR = 68.236dB  
SNR = 68.011dB  
SINAD = 68.173dB  
THD = -86.624dBc  
SFDR = 89.446dBc  
SINAD = 67.819dB  
THD = -81.470dBc  
SFDR = 85.617dBc  
HD2  
HD3  
HD4  
HD2  
HD2  
HD3  
HD3  
0
4
8
12 16 20 24 28 32 36 40  
FREQUENCY (MHz)  
0
4
8
12 16 20 24 28 32 36 40  
FREQUENCY (MHz)  
0
4
8
12 16 20 24 28 32 36 40  
FREQUENCY (MHz)  
SINGLE-TONE FFT PLOT  
(16,384-POINT DATA RECORD)  
SINGLE-TONE FFT PLOT  
(16,384-POINT DATA RECORD)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
f
= 80MHz  
= 43.90137MHz  
= -7.010dBFS  
= 45.90332MHz  
= -7.041dBFS  
f
f
= 80MHz  
= 68.50098MHz  
= -7.043dBFS  
= 71.499MHz  
= -7.041dBFS  
IN2  
CLK  
IN1  
IN1  
CLK  
IN1  
IN1  
f
IN1  
f
IN1  
A
f
A
f
f
IN2  
IN2  
IN2  
A
A
f
IN2  
IN2  
SFDR = 87.239dBc  
IMD = -85.288dBc  
IM3 = -87.415dBc  
IMD = -80.988dBc  
IM3 = -84.424dBc  
TT  
f
+ f  
IN1 IN2  
2 x f + f  
IN1 IN2  
2 x f + f  
IN1 IN2  
f
+ 2 x f  
IN2  
IN1  
0
4
8
12 16 20 24 28 32 36 40  
FREQUENCY (MHz)  
0
4
8
12 16 20 24 28 32 36 40  
FREQUENCY (MHz)  
INTEGRAL NONLINEARITY  
DIFFERENTIAL NONLINEARITY  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
_______________________________________________________________________________________  
7
12-Bit, 80Msps, 3.3V ADC  
Typical Operating Characteristics (continued)  
(V = 3.3V, OV = 2.0V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle), T = +25°C, unless otherwise noted.)  
CLK  
A
SFDR, -THD  
SNR, SINAD  
POWER DISSIPATION  
vs. SAMPLING RATE  
vs. SAMPLING RATE  
vs. SAMPLING RATE  
100  
500  
450  
400  
350  
300  
250  
200  
70  
f
32.5MHz  
DIFFERENTIAL CLOCK  
32.5MHz  
IN  
f
32.5MHz  
IN  
f
95  
90  
85  
80  
75  
70  
65  
60  
IN  
L
69  
68  
67  
66  
65  
64  
63  
62  
C 5pF  
SFDR  
-THD  
ANALOG + DIGITAL POWER  
ANALOG POWER  
SNR  
SINAD  
0
20  
40  
60  
(MHz)  
80  
100  
100  
125  
0
20  
40  
60  
(MHz)  
80  
100  
0
20  
40  
60  
(MHz)  
80  
100  
f
CLK  
f
CLK  
f
CLK  
SNR, SINAD  
vs. SAMPLING RATE  
SFDR, -THD  
vs. SAMPLING RATE  
POWER DISSIPATION  
vs. SAMPLING RATE  
70  
69  
68  
67  
66  
65  
64  
63  
62  
100  
95  
90  
85  
80  
75  
70  
65  
60  
450  
400  
350  
300  
250  
200  
f
70MHz  
DIFFERENTIAL CLOCK  
70MHz  
IN  
f
70MHz  
IN  
f
IN  
C 5pF  
L
SNR  
SINAD  
SFDR  
-THD  
ANALOG + DIGITAL POWER  
ANALOG POWER  
0
20  
40  
60  
(MHz)  
80  
100  
0
20  
40  
60  
(MHz)  
80  
0
20  
40  
60  
80  
100  
120  
f
CLK  
f
f
(MHz)  
CLK  
CLK  
SNR, SINAD  
vs. ANALOG INPUT FREQUENCY  
SFDR, -THD  
vs. ANALOG INPUT FREQUENCY  
POWER DISSIPATION  
vs. ANALOG INPUT FREQUENCY  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
95  
90  
85  
80  
75  
70  
500  
450  
400  
350  
300  
f
80MHz  
f
80MHz  
CLK  
DIFFERENTIAL CLOCK  
CLK  
f
80MHz  
CLK  
L
C = 5pF  
SNR  
SINAD  
SFDR  
-THD  
ANALOG + DIGITAL POWER  
ANALOG POWER  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
0
25  
50  
75  
100  
125  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
8
_______________________________________________________________________________________  
12-Bit, 80Msps, 3.3V ADC  
Typical Operating Characteristics (continued)  
(V = 3.3V, OV = 2.0V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle), T = +25°C, unless otherwise noted.)  
A
CLK  
SNR, SINAD  
vs. ANALOG INPUT AMPLITUDE  
SFDR, -THD  
vs. ANALOG INPUT AMPLITUDE  
POWER DISSIPATION  
vs. ANALOG INPUT AMPLITUDE  
75  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
500  
450  
400  
350  
300  
f
f
= 80.003702MHz  
= 32.125257MHz  
f
f
= 80.003702MHz  
CLK  
DIFFERENTIAL CLOCK  
CLK  
IN  
70  
65  
60  
55  
50  
45  
40  
35  
30  
25  
= 32.125257MHz  
f
f
= 80.003702MHz  
= 32.125257MHz  
IN  
CLK  
IN  
C 5pF  
L
SNR  
SINAD  
SFDR  
-THD  
ANALOG + DIGITAL POWER  
ANALOG POWER  
-40 -35 -30 -25 -20 -15 -10 -5  
ANALOG INPUT AMPLITUDE (dBFS)  
0
-40 -35 -30 -25 -20 -15 -10 -5  
ANALOG INPUT AMPLITUDE (dBFS)  
0
-40 -35 -30 -25 -20 -15 -10 -5  
ANALOG INPUT AMPLITUDE (dBFS)  
0
SNR, SINAD  
vs. ANALOG POWER-INPUT VOLTAGE  
SFDR, -THD  
vs. ANALOG POWER-INPUT VOLTAGE  
POWER DISSIPATION  
vs. ANALOG POWER-INPUT VOLTAGE  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
550  
500  
450  
400  
350  
300  
250  
200  
f
f
= 80.03584MHz  
= 32.11399MHz  
f
f
= 80.03584MHz  
CLK  
CLK  
IN  
DIFFERENTIAL CLOCK  
= 32.11399MHz  
IN  
f
f
= 80.03584MHz  
= 32.11399MHz  
CLK  
IN  
C 5pF  
L
SNR  
SINAD  
SFDR  
-THD  
ANALOG + DIGITAL POWER  
ANALOG POWER  
2.6  
2.8  
3.0  
3.2  
(V)  
3.4  
3.6  
2.6  
2.8  
3.0  
3.2  
(V)  
3.4  
3.6  
2.6  
2.8  
3.0  
3.2  
(V)  
3.4  
3.6  
V
V
V
DD  
DD  
DD  
SFDR, -THD  
vs. OUTPUT-DRIVER POWER-INPUT VOLTAGE  
SNR, SINAD  
vs. OUTPUT-DRIVER POWER-INPUT VOLTAGE  
POWER DISSIPATION  
vs. OUTPUT-DRIVER POWER-INPUT VOLTAGE  
100  
95  
90  
85  
80  
75  
70  
65  
60  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
550  
f
f
= 80.03584MHz  
= 32.11399MHz  
f
f
= 80.03584MHz  
= 32.11399MHz  
DIFFERENTIAL CLOCK  
CLK  
IN  
CLK  
IN  
f
= 80.03584MHz  
CLK  
500  
450  
400  
350  
300  
250  
225  
200  
f
IN  
= 32.11399MHz  
C 5pF  
L
SFDR  
-THD  
SNR  
SINAD  
ANALOG + DIGITAL POWER  
ANALOG POWER  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
1.4  
1.8  
2.2  
2.6  
3.0  
3.4  
3.8  
OV (V)  
DD  
OV (V)  
DD  
OV (V)  
DD  
_______________________________________________________________________________________  
9
12-Bit, 80Msps, 3.3V ADC  
Typical Operating Characteristics (continued)  
(V = 3.3V, OV = 2.0V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle), T = +25°C, unless otherwise noted.)  
A
CLK  
SNR, SINAD  
vs. TEMPERATURE  
SFDR, -THD  
vs. TEMPERATURE  
ANALOG POWER DISSIPATION  
vs. TEMPERATURE  
70  
95  
93  
91  
89  
87  
85  
83  
81  
79  
77  
75  
550  
500  
450  
400  
350  
300  
250  
200  
f
f
= 80.003072MHz  
= 32.481716MHz  
f
f
= 80.003072MHz  
CLK  
DIFFERENTIAL CLOCK  
CLK  
IN  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
= 32.481716MHz  
f
= 80.003072MHz  
IN  
CLK  
f
IN  
= 32.481716MHz  
SNR  
SINAD  
SFDR  
-THD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OFFSET ERROR vs. TEMPERATURE  
GAIN ERROR vs. TEMPERATURE  
0.5  
0.4  
3
2
V
= 2.048V  
V
= 2.048V  
REFIN  
REFIN  
0.3  
0.2  
1
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-1  
-2  
-3  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
10 ______________________________________________________________________________________  
12-Bit, 80Msps, 3.3V ADC  
Typical Operating Characteristics (continued)  
(V = 3.3V, OV = 2.0V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle), T = +25°C, unless otherwise noted.)  
A
CLK  
REFERENCE OUTPUT VOLTAGE  
LOAD REGULATION  
REFERENCE OUTPUT VOLTAGE  
SHORT-CIRCUIT PERFORMANCE  
REFERENCE OUTPUT VOLTAGE  
vs. TEMPERATURE  
2.05  
2.04  
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
1.96  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.039  
2.037  
2.035  
2.033  
2.031  
2.029  
+85°C  
+85°C  
+25°C  
-40°C  
-40°C  
+25°C  
1.95  
-2.0  
-1.5  
I
-1.0  
-0.5  
0
0.5  
-3.0  
-2.0  
-1.0  
0
1.0  
-40  
-15  
10  
35  
60  
85  
SINK CURRENT (mA)  
I
SINK CURRENT (mA)  
TEMPERATURE (°C)  
REFOUT  
REFOUT  
REFP, COM, REFN  
SHORT-CIRCUIT PERFORMANCE  
REFP, COM, REFN  
LOAD REGULATION  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
V
REFP  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
COM  
V
REFP  
V
COM  
V
REFN  
V
REFN  
INTERNAL REFERENCE  
MODE AND BUFFERED  
EXTERNAL REFERENCE MODE  
INTERNAL REFERENCE MODE AND  
BUFFERED EXTERNAL REFERENCE MODE  
-8  
-4  
0
4
8
-2  
-1  
0
1
2
SINK CURRENT (mA)  
SINK CURRENT (mA)  
______________________________________________________________________________________ 11  
12-Bit, 80Msps, 3.3V ADC  
Pin Description  
PIN  
NAME  
FUNCTION  
Positive Reference I/O. The full-scale analog input range is (V  
- V  
). Bypass REFP to GND with  
REFP  
REFN  
a 0.1µF capacitor. Connect a 1µF capacitor in parallel with a 10µF capacitor between REFP and REFN.  
Place the 1µF REFP to REFN capacitor as close to the device as possible on the same side of the  
printed circuit (PC) board.  
1
REFP  
Negative Reference I/O. The full-scale analog input range is (V  
- V  
). Bypass REFN to GND  
REFP  
REFN  
with a 0.1µF capacitor. Connect a 1µF capacitor in parallel with a 10µF capacitor between REFP and  
REFN. Place the 1µF REFP to REFN capacitor as close to the device as possible on the same side  
of the PC board.  
2
3
REFN  
Common-Mode Voltage I/O. Bypass COM to GND with a 2.2µF capacitor. Place the 2.2µF COM to  
GND capacitor as close to the device as possible. This 2.2µF capacitor can be placed on the  
opposite side of the PC board and connected to the MAX1208 through a via.  
COM  
GND  
4, 7, 16,  
35  
Ground. Connect all ground pins and EP together.  
5
6
INP  
INN  
Positive Analog Input  
Negative Analog Input  
Duty-Cycle Equalizer Input. Connect DCE low (GND) to disable the internal duty-cycle equalizer.  
8
DCE  
Connect DCE high (OV  
or V ) to enable the internal duty-cycle equalizer.  
DD  
DD  
Negative Clock Input. In differential clock input mode (CLKTYP = OV  
or V ), connect the differential  
DD  
DD  
clock signal between CLKP and CLKN. In single-ended clock mode (CLKTYP = GND), apply the single-  
ended clock signal to CLKP and connect CLKN to GND.  
9
CLKN  
Positive Clock Input. In differential clock input mode (CLKTYP = OV  
or V ), connect the differential  
DD  
DD  
clock signal between CLKP and CLKN. In single-ended clock mode (CLKTYP = GND), apply the single-  
ended clock signal to CLKP and connect CLKN to GND.  
10  
CLKP  
Clock Type Definition Input. Connect CLKTYP to GND to define the single-ended clock input. Connect  
11  
CLKTYP  
CLKTYP to OV  
or V  
to define the differential clock input.  
DD  
DD  
Analog Power Input. Connect V  
capacitor combination of 2.2µF and 0.1µF. Connect all V  
to a 3.0V to 3.6V power supply. Bypass V to GND with a parallel  
DD  
DD  
12–15, 36  
17, 34  
V
DD  
pins to the same potential.  
DD  
Output-Driver Power Input. Connect OV  
parallel capacitor combination of 2.2µF and 0.1µF.  
to a 1.7V to V  
power supply. Bypass OV  
to GND with a  
DD  
DD  
DD  
OV  
DD  
Data Out-of-Range Indicator. The DOR digital output indicates when the analog input voltage is out of  
range. When DOR is high, the analog input is beyond its full-scale range. When DOR is low, the analog  
input is within its full-scale range (Figure 6).  
18  
DOR  
19  
20  
21  
22  
23  
24  
25  
26  
27  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
CMOS Digital Output, Bit 11 (MSB)  
CMOS Digital Output, Bit 10  
CMOS Digital Output, Bit 9  
CMOS Digital Output, Bit 8  
CMOS Digital Output, Bit 7  
CMOS Digital Output, Bit 6  
CMOS Digital Output, Bit 5  
CMOS Digital Output, Bit 4  
CMOS Digital Output, Bit 3  
12 ______________________________________________________________________________________  
12-Bit, 80Msps, 3.3V ADC  
Pin Description (continued)  
PIN  
28  
NAME  
D2  
FUNCTION  
CMOS Digital Output, Bit 2  
CMOS Digital Output, Bit 1  
CMOS Digital Output, Bit 0 ( LSB)  
29  
D1  
30  
D0  
Internally Connected. Leave I.C. unconnected.  
31, 32  
I.C.  
Data-Valid Output. DAV is a single-ended version of the input clock that is compensated to correct for  
any input clock duty-cycle variations. DAV is typically used to latch the MAX1208 output data into an  
external back-end digital circuit.  
33  
37  
38  
DAV  
PD  
Power-Down Input. Force PD high for power-down mode. Force PD low for normal operation.  
Internal Reference Voltage Output. For internal reference operation, connect REFOUT directly to REFIN  
or use a resistive divider from REFOUT to set the voltage at REFIN. Bypass REFOUT to GND with a  
0.1µF capacitor.  
REFOUT  
Reference Input. In internal reference mode and buffered external reference mode, bypass REFIN to  
39  
40  
REFIN  
G/T  
GND with a 0.1µF capacitor. In these modes, V  
- V  
= V  
/ 2. For unbuffered external  
REFIN  
REFP  
REFN  
reference-mode operation, connect REFIN to GND.  
Output Format Select Input. Connect G/T to GND for the two’s complement digital output format.  
Connect G/T to OV or V for the Gray code digital output format.  
DD  
DD  
Exposed Paddle. The MAX1208 relies on the exposed paddle connection for a low-inductance ground  
connection. Connect EP to GND to achieve specified performance. Use multiple vias to connect the  
top-side PC board ground plane to the bottom-side PC board ground plane.  
EP  
+
MAX1208  
T/H  
Σ
FLASH  
DAC  
ADC  
INP  
INN  
STAGE 10  
END OF PIPE  
STAGE 1  
STAGE 2  
STAGE 9  
T/H  
DIGITAL ERROR CORRECTION  
D11–D0  
OUTPUT  
DRIVERS  
D11–D0  
Figure 1. Pipeline Architecture—Stage Blocks  
______________________________________________________________________________________ 13  
12-Bit, 80Msps, 3.3V ADC  
CLOCK  
GENERATOR  
AND  
DUTY-CYCLE  
EQUALIZER  
CLKP  
CLKN  
V
DD  
BOND WIRE  
INDUCTANCE  
1.5nH  
MAX1208  
V
DD  
MAX1208  
GND  
DCE  
CLKTYP  
INP  
OV  
*C  
SAMPLE  
C
PAR  
DD  
1.9pF  
2pF  
D11–D0  
DAV  
12-BIT  
PIPELINE  
ADC  
INP  
INN  
OUTPUT  
DRIVERS  
T/H  
DEC  
DOR  
V
DD  
BOND WIRE  
INDUCTANCE  
1.5nH  
G/T  
PD  
REFOUT  
REFIN  
REFP  
INN  
*C  
1.9pF  
C
2pF  
SAMPLE  
PAR  
REFERENCE  
SYSTEM  
POWER CONTROL  
AND  
BIAS CIRCUITS  
COM  
REFN  
SAMPLING  
CLOCK  
Figure 2. Simplified Functional Diagram  
Detailed Description  
*THE EFFECTIVE RESISTANCE OF THE  
SWITCHED SAMPLING CAPACITORS IS: R  
1
The MAX1208 uses a 10-stage, fully differential,  
pipelined architecture (Figure 1) that allows for high-  
speed conversion while minimizing power consump-  
tion. Samples taken at the inputs move progressively  
through the pipeline stages every half-clock cycle.  
From input to output, the total clock-cycle latency is 8.5  
clock cycles.  
=
SAMPLE  
f
x C  
SAMPLE  
CLK  
Figure 3. Simplified Input Track-and-Hold Circuit  
capacitors must be charged to one-half LSB accuracy  
within one-half of a clock cycle.  
The analog input of the MAX1208 supports differential  
or single-ended input drive. For optimum performance  
with differential inputs, balance the input impedance of  
INP and INN and set the common-mode voltage to mid-  
Each pipeline converter stage converts its input voltage  
into a digital output code. At every stage, except the  
last, the error between the input voltage and the digital  
output code is multiplied and passed along to the next  
pipeline stage. Digital error correction compensates for  
ADC comparator offsets in each pipeline stage and  
ensures no missing codes. Figure 2 shows the  
MAX1208 functional diagram.  
supply (V  
/ 2). The MAX1208 provides the optimum  
DD  
common-mode voltage of V  
/ 2 through the COM  
DD  
output when operating in internal reference mode and  
buffered external reference mode. This COM output  
voltage can be used to bias the input network as shown  
in Figures 10, 11, and 12.  
Input Track-and-Hold (T/H) Circuit  
Figure 3 displays a simplified functional diagram of the  
input T/H circuit. This input T/H circuit allows for high  
analog input frequencies up to 70MHz and supports a  
Reference Output (REFOUT)  
An internal bandgap reference is the basis for all the  
internal voltages and bias currents used in the  
MAX1208. The power-down logic input (PD) enables  
and disables the reference circuit. The reference circuit  
requires 10ms to power up and settle when power is  
applied to the MAX1208 or when PD transitions from  
high to low. REFOUT has approximately 17kto GND  
when the MAX1208 is in power-down.  
common-mode input voltage of V  
/ 2 0.5V.  
DD  
The MAX1208 sampling clock controls the ADC’s  
switched-capacitor T/H architecture (Figure 3), allowing  
the analog input signal to be stored as charge on the  
sampling capacitors. These switches are closed (track)  
when the sampling clock is high and open (hold) when  
the sampling clock is low (Figure 4). The analog input  
signal source must be capable of providing the dynam-  
ic current necessary to charge and discharge the sam-  
pling capacitors. To avoid signal degradation, these  
The internal bandgap reference and its buffer generate  
V
to be 2.048V. The reference temperature coeffi-  
REFOUT  
cient is typically +50ppm/°C. Connect an external 0.1µF  
bypass capacitor from REFOUT to GND for stability.  
14 ______________________________________________________________________________________  
12-Bit, 80Msps, 3.3V ADC  
CLKP  
CLKN  
t
AD  
ANALOG  
INPUT  
t
AJ  
SAMPLED  
DATA  
T/H  
TRACK  
HOLD  
TRACK  
HOLD  
TRACK  
HOLD  
TRACK  
HOLD  
Figure 4. T/H Aperture Timing  
REFOUT sources up to 1.0mA and sinks up to 0.1mA  
for external circuits with a load regulation of 35mV/mA.  
divider, use resistances 10kto avoid loading  
REFOUT.  
Short-circuit protection limits I  
to a 2.1mA  
REFOUT  
Buffered external reference mode is virtually identical to  
internal reference mode except that the reference  
source is derived from an external reference and not the  
MAX1208 REFOUT. In buffered external reference  
mode, apply a stable 0.7V to 2.3V source at REFIN. In  
this mode, COM, REFP, and REFN are low-impedance  
source current when shorted to GND and a 0.24mA  
sink current when shorted to V  
.
DD  
Analog Inputs and Reference  
Configurations  
The MAX1208 full-scale analog input range is  
adjustable from 0.35V to 1.15V with a common-  
outputs with V  
= V / 2, V  
= V / 2 + V  
/
COM  
= V / 2 - V  
DD  
REFP  
/ 4.  
DD  
REFIN  
4, and V  
REFN  
DD  
REFIN  
mode input range of V  
/ 2 0.5V. The MAX1208 pro-  
DD  
To operate the MAX1208 in unbuffered external refer-  
ence mode, connect REFIN to GND. Connecting REFIN  
to GND deactivates the on-chip reference buffers for  
COM, REFP, and REFN. With the respective buffers  
deactivated, COM, REFP, and REFN become high-  
impedance inputs and must be driven through sepa-  
vides three modes of reference operation. The voltage  
at REFIN (V  
(Table 1).  
) sets the reference operation mode  
REFIN  
To operate the MAX1208 with the internal reference,  
connect REFOUT to REFIN either with a direct short or  
through a resistive divider. In this mode, COM, REFP,  
rate, external reference sources. Drive V  
to V  
/ 2  
COM  
DD  
and REFN are low-impedance outputs with V  
=
COM  
5%, and drive REFP and REFN such that V  
=
COM  
V
/ 2, V  
= V  
/ 2 + V  
V
= V  
/ 2  
DD  
REFP  
DD  
REFIN / 4, REFN  
DD  
(V  
+ V  
/ 2. The full-scale analog input range is  
).  
REFP  
REFN  
- V  
- V  
/ 4. The REFIN input impedance is very large  
REFIN  
(V  
REFP  
REFN  
(>50M). When driving REFIN through a resistive  
Table 1. Reference Modes  
V
REFIN  
REFERENCE MODE  
Internal Reference Mode. Drive REFIN with REFOUT either through a direct short or a resistive divider.  
The full-scale analog input range is  
V
/ 2:  
REFIN  
35% V  
100% V  
to  
REFOUT  
V
V
V
= V / 2  
DD  
COM  
REFP  
REFN  
REFOUT  
= V / 2 + V  
/ 4  
/ 4  
DD  
REFIN  
REFIN  
= V / 2 - V  
DD  
Buffered External Reference Mode. Apply an external 0.7V to 2.3V reference voltage to REFIN.  
The full-scale analog input range is / 2:  
V
REFIN  
0.7V to 2.3V  
<0.4V  
V
V
V
= V / 2  
DD  
COM  
REFP  
REFN  
= V / 2 + V  
/ 4  
/ 4  
DD  
REFIN  
= V / 2 - V  
DD  
REFIN  
Unbuffered External Reference Mode. Drive REFP, REFN, and COM with external reference sources.  
The full-scale analog input range is (V - V ).  
REFP  
REFN  
______________________________________________________________________________________ 15  
12-Bit, 80Msps, 3.3V ADC  
All three modes of reference operation require the  
same bypass capacitor combinations. Bypass COM  
with a 2.2µF capacitor to GND. Bypass REFP and  
REFN each with a 0.1µF capacitor to GND. Bypass  
REFP to REFN with a 1µF capacitor in parallel with a  
10µF capacitor. Place the 1µF capacitor as close to  
the device as possible on the same side of the PC  
board. Bypass REFIN and REFOUT to GND with a  
0.1µF capacitor.  
V
DD  
S
1H  
MAX1208  
10kΩ  
CLKP  
For detailed circuit suggestions, see Figures 13 and 14.  
10kΩ  
Clock Input and Clock Control Lines  
(CLKP, CLKN, CLKTYP)  
DUTY-CYCLE  
EQUALIZER  
S
2H  
The MAX1208 accepts both differential and single-  
ended clock inputs. For single-ended clock-input oper-  
ation, connect CLKTYP to GND, CLKN to GND, and  
drive CLKP with the external single-ended clock signal.  
For differential clock-input operation, connect CLKTYP  
S
1L  
10kΩ  
CLKN  
to OV  
or V , and drive CLKP and CLKN with the  
DD  
DD  
10kΩ  
SWITCHES S AND S ARE OPEN  
DURING POWER-DOWN, MAKING  
CLKP AND CLKN HIGH IMPEDANCE.  
external differential clock signal. To reduce clock jitter,  
the external single-ended clock must have sharp falling  
edges. Consider the clock input as an analog input and  
route it away from any other analog inputs and digital  
signal lines.  
1_  
2_  
S
2L  
SWITCHES S ARE OPEN IN  
SINGLE-ENDED CLOCK MODE.  
2_  
GND  
CLKP and CLKN are high impedance when the  
MAX1208 is powered down (Figure 5).  
Figure 5. Simplified Clock Input Circuit  
Low clock jitter is required for the specified SNR perfor-  
mance of the MAX1208. Analog input sampling occurs  
on the falling edge of the clock signal, requiring this  
edge to have the lowest possible jitter. Jitter limits the  
maximum SNR performance of any ADC according to  
the following relationship:  
The clock duty-cycle equalizer uses a delay-locked  
loop (DLL) to create internal timing signals that are  
duty-cycle independent. Due to this DLL, the MAX1208  
requires approximately 100 clock cycles to acquire and  
lock to new clock frequencies.  
Disabling the clock duty-cycle equalizer reduces the  
analog supply current by 1.5mA.  
1
SNR = 20 × log  
2 × π f × t  
IN  
J
System Timing Requirements  
Figure 6 shows the relationship between the clock, ana-  
log inputs, DAV indicator, DOR indicator, and the result-  
ing output data. The analog input is sampled on the  
falling edge of the clock signal and the resulting data  
appears at the digital outputs 8.5 clock cycles later.  
where f represents the analog input frequency and t  
IN  
J
is the total system clock jitter. Clock jitter is especially  
critical for undersampling applications. For example,  
assuming that clock jitter is the only noise source, to  
obtain the specified 68.2dB of SNR with an input fre-  
quency of 32.5MHz, the system must have less than  
1.9ps of clock jitter.  
The DAV indicator is synchronized with the digital out-  
put and optimized for use in latching data into digital  
back-end circuitry. Alternatively, digital back-end cir-  
cuitry can be latched with the rising edge of the con-  
version clock (CLKP-CLKN).  
Clock Duty-Cycle Equalizer (DCE)  
Enable the MAX1208 clock duty-cycle equalizer by  
connecting DCE to OV  
or V . Disable the MAX1208  
DD  
DD  
clock duty-cycle equalizer by connecting DCE to GND.  
16 ______________________________________________________________________________________  
12-Bit, 80Msps, 3.3V ADC  
N+4  
DIFFERENTIAL ANALOG INPUT (INP–INN)  
N+5  
N+3  
N+6  
(V  
(V  
- V  
- V  
)
)
REFP  
REFN  
N-3  
N-2  
N+2  
N+7  
N+9  
N-1  
N
N+1  
N+8  
REFN  
REFP  
t
AD  
CLKN  
CLKP  
t
CL  
t
CH  
t
DAV  
DAV  
D11–D0  
DOR  
t
t
HOLD  
SETUP  
N-3  
N-2  
N-1  
N
N+1  
N+2  
N+3  
N+4  
N+5  
N+6  
N+7  
N+8  
N+9  
t
t
8.5 CLOCK-CYCLE DATA LATENCY  
SETUP  
HOLD  
Figure 6. System Timing Diagram  
Data-Valid Output (DAV)  
side this valid differential range cause DOR to assert  
high as shown in Table 2 and Figure 6.  
DAV is a single-ended version of the input clock (CLKP).  
Output data changes on the falling edge of DAV, and  
DAV rises once output data is valid (Figure 6).  
DOR is synchronized with DAV and transitions along  
with the output data D11–D0. There is an 8.5 clock-  
cycle latency in the DOR function as with the output  
data (Figure 6).  
The state of the duty-cycle equalizer input (DCE)  
changes the waveform at DAV. With the duty-cycle  
equalizer disabled (DCE = low), the DAV signal is the  
inverse of the signal at CLKP delayed by 6.8ns. With the  
duty-cycle equalizer enabled (DCE = high), the DAV  
signal has a fixed pulse width that is independent of  
CLKP. In either case, with DCE high or low, output data  
at D11–D0 and DOR are valid from 7.7ns before the ris-  
ing edge of DAV to 4.2ns after the rising edge of DAV,  
and the rising edge of DAV is synchronized to have a  
DOR is high impedance when the MAX1208 is in  
power-down (PD = high). DOR enters a high-imped-  
ance state within 10ns after the rising edge of PD and  
becomes active 10ns after PD’s falling edge.  
Digital Output Data (D11–D0), Output Format (G/T)  
The MAX1208 provides a 12-bit, parallel, tri-state out-  
put bus. D11–D0 and DOR update on the falling edge  
of DAV and are valid on the rising edge of DAV.  
6.4ns (t  
) delay from the falling edge of CLKP.  
DAV  
DAV is high impedance when the MAX1208 is in  
power-down (PD = high). DAV is capable of sinking  
and sourcing 600µA and has three times the drive  
strength of D11–D0 and DOR. DAV is typically used to  
latch the MAX1208 output data into an external back-  
end digital circuit.  
The MAX1208 output data format is either Gray code or  
two’s complement, depending on the logic input G/T.  
With G/T high, the output data format is Gray code.  
With G/T low, the output data format is two’s comple-  
ment. See Figure 8 for a binary-to-Gray and Gray-to-  
binary code-conversion example.  
Keep the capacitive load on DAV as low as possible  
(<25pF) to avoid large digital currents feeding back  
into the analog portion of the MAX1208 and degrading  
its dynamic performance. An external buffer on DAV  
isolates it from heavy capacitive loads. Refer to the  
MAX1211 evaluation kit schematic for an example of  
DAV driving back-end digital circuitry through an exter-  
nal buffer.  
The following equations, Table 2, Figure 7, and Figure 8  
define the relationship between the digital output and  
the analog input:  
CODE  
2048  
10  
V
V  
= (V  
V  
) × 2 ×  
INP  
INN  
REFP  
REFN  
4096  
for Gray code (G/T = 1)  
Data Out-of-Range Indicator (DOR)  
The DOR digital output indicates when the analog input  
voltage is out of range. When DOR is high, the analog  
input is out of range. When DOR is low, the analog  
input is within range. The valid differential input range is  
from (V  
- V  
) to (V  
- V ). Signals out-  
REFP  
REFP  
REFN  
REFN  
______________________________________________________________________________________ 17  
12-Bit, 80Msps, 3.3V ADC  
Keep the capacitive load on the MAX1208 digital outputs  
D11–D0 as low as possible (<15pF) to avoid large digital  
currents feeding back into the analog portion of the  
MAX1208 and degrading its dynamic performance. The  
addition of external digital buffers on the digital outputs  
isolates the MAX1208 from heavy capacitive loading. To  
improve the dynamic performance of the MAX1208, add  
220resistors in series with the digital outputs close to  
the MAX1208. Refer to the MAX1211 evaluation kit  
schematic for an example of the digital outputs driving a  
digital buffer through 220series resistors.  
CODE  
10  
V
V  
= (V  
V  
) × 2 ×  
INP  
INN  
REFP  
REFN  
4096  
for two’s complement (G/T = 0)  
where CODE is the decimal equivalent of the digital  
10  
output code as shown in Table 2.  
Digital outputs D11–D0 are high impedance when the  
MAX1208 is in power-down (PD = high). D11–D0 transi-  
tion high 10ns after the rising edge of PD and become  
active 10ns after PD’s falling edge.  
Power-Down Input (PD)  
The MAX1208 has two power modes that are controlled  
with the power-down digital input (PD). With PD low, the  
Table 2. Output Codes vs. Input Voltage  
GRAY CODE OUTPUT CODE (G/T = 1)  
TWO’S-COMPLEMENT OUTPUT CODE (G/T = 0)  
DECIMAL  
EQUIVALENT  
OF  
DECIMAL  
EQUIVALENT  
OF  
D11D0  
(CODE )  
10  
V
REFP  
REFN  
- V  
INN  
= 2.162V  
= 1.138V  
INP  
HEXADECIMAL  
EQUIVALENT  
OF  
HEXADECIMAL  
EQUIVALENT  
OF  
V
BINARY  
D11D0  
BINARY  
D11D0  
DOR  
DOR  
(
)
V
D11D0  
D11D0  
D11D0  
(CODE  
)
10  
>+1.0235V  
(DATA OUT OF  
RANGE)  
1000 0000 0000  
1
0x800  
+4095  
0111 1111 1111  
1
0x7FF  
+2047  
1000 0000 0000  
1000 0000 0001  
0
0
0x800  
0x801  
+4095  
+4094  
0111 1111 1111  
0111 1111 1110  
0
0
0x7FF  
0x7FE  
+2047  
+2046  
+1.0235V  
+1.0230V  
1100 0000 0011  
1100 0000 0001  
1100 0000 0000  
0100 0000 0000  
0100 0000 0001  
0
0
0
0
0
0xC03  
0xC01  
0xC00  
0x400  
0x401  
+2050  
+2049  
+2048  
+2047  
+2046  
0000 0000 0010  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
1111 1111 1110  
0
0
0
0
0
0x002  
0x001  
0x000  
0xFFF  
0xFFE  
+2  
+1  
0
+0.0010V  
+0.0005V  
+0.0000V  
-0.0005V  
-0.0010V  
-1  
-2  
0000 0000 0001  
0000 0000 0000  
0
0
0x001  
0x000  
+1  
0
1000 0000 0001  
1000 0000 0000  
0
0
0x801  
0x800  
-2047  
-2048  
-1.0235V  
-1.0240V  
<-1.0240V  
(DATA OUT OF  
RANGE)  
0000 0000 0000  
1
0x000  
0
1000 0000 0000  
1
0x800  
-2048  
18 ______________________________________________________________________________________  
12-Bit, 80Msps, 3.3V ADC  
2 x V  
2 x V  
REF  
REF  
V
REF  
= V  
- V  
V
REF  
= V  
- V  
1 LSB =  
1 LSB =  
REFP REFN  
REFP REFN  
V
REF  
4096  
4096  
V
REF  
V
REF  
V
REF  
0x7FF  
0x7FE  
0x7FD  
0x800  
0x801  
0x803  
0x001  
0x000  
0xFFF  
0xC01  
0xC00  
0x400  
0x803  
0x802  
0x002  
0x003  
0x801  
0x800  
0x001  
0x000  
-2047  
-2045  
-1  
0
+1  
+2045  
+2047  
-2047  
-2045  
-1  
0
+1  
+2045  
+2047  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
Figure 7. Two’s Complement Transfer Function (G/T = 0)  
Figure 8. Gray Code Transfer Function (G/T = 1)  
MAX1208 is in normal operating mode. With PD high,  
the MAX1208 is in power-down mode.  
The wake-up time from power-down mode is dominat-  
ed by the time required to charge the capacitors at  
REFP, REFN, and COM. In internal reference mode and  
buffered external reference mode, the wake-up time is  
typically 10ms with the recommended capacitor array  
(Figure 13). When operating in unbuffered external ref-  
erence mode, the wake-up time is dependent on the  
external reference drivers.  
The power-down mode allows the MAX1208 to efficient-  
ly use power by transitioning to a low-power state when  
conversions are not required. Additionally, the  
MAX1208 parallel output bus is high impedance in  
power-down mode, allowing other devices on the bus  
to be accessed.  
In power-down mode, all internal circuits are off, the  
analog supply current reduces to 1µA, and the digital  
supply current reduces to 0.9µA. The following list  
shows the state of the analog inputs and digital outputs  
in power-down mode:  
Applications Information  
Using Transformer Coupling  
In general, the MAX1208 provides better SFDR and THD  
performance with fully differential input signals as  
opposed to single-ended input drive. In differential input  
mode, even-order harmonics are lower as both inputs are  
balanced, and each of the ADC inputs only requires half  
the signal swing compared to single-ended input mode.  
• INP, INN analog inputs are disconnected from the  
internal input amplifier (Figure 3).  
• REFOUT has approximately 17kto GND.  
• REFP, COM, and REFN go high impedance with  
An RF transformer (Figure 10) provides an excellent  
solution to convert a single-ended input source signal  
to a fully differential signal, required by the MAX1208  
for optimum performance. Connecting the center tap of  
respect to V  
and GND, but there is an internal 4kΩ  
DD  
resistor between REFP and COM, as well as an inter-  
nal 4kresistor between REFN and COM.  
• D11–D0, DOR, and DAV go high impedance.  
• CLKP and CLKN go high impedance (Figure 5).  
the transformer to COM provides a V  
/ 2 DC level  
DD  
shift to the input. Although a 1:1 transformer is shown, a  
______________________________________________________________________________________ 19  
12-Bit, 80Msps, 3.3V ADC  
BINARY-TO-GRAY CODE CONVERSION  
GRAY-TO-BINARY CODE CONVERSION  
1) THE MOST SIGNIFICANT GRAY-CODE BIT IS THE SAME  
AS THE MOST SIGNIFICANT BINARY BIT.  
1) THE MOST SIGNIFICANT BINARY BIT IS THE SAME AS THE  
MOST SIGNIFICANT GRAY-CODE BIT.  
D11  
D7  
D3  
D0  
0
BIT POSITION  
BINARY  
D11  
D7  
D3  
D0  
0
BIT POSITION  
GRAY CODE  
0
1
1
1
0
1
0
0
1
1
0
0
1
0
0
1
1
1
0
1
0
1
0
GRAY CODE  
0
BINARY  
2) SUBSEQUENT GRAY-CODE BITS ARE FOUND ACCORDING  
TO THE FOLLOWING EQUATION:  
2) SUBSEQUENT BINARY BITS ARE FOUND ACCORDING TO  
THE FOLLOWING EQUATION:  
+
GRAY = BINARY  
BINARY  
BINARY = BINARY  
+
GRAY  
X+1 X  
X
X
X + 1  
X
+
+
WHERE IS THE EXCLUSIVE OR FUNCTION (SEE TRUTH  
TABLE BELOW) AND X IS THE BIT POSITION:  
WHERE  
IS THE EXCLUSIVE OR FUNCTION (SEE TRUTH  
TABLE BELOW) AND X IS THE BIT POSITION:  
+
GRAY = BINARY  
10  
BINARY  
BINARY = BINARY  
10 11  
+
GRAY  
10  
10  
11  
GRAY = 1  
10  
+
0
BINARY = 0  
10  
+
1
GRAY = 1  
10  
BINARY = 1  
10  
D11  
D7  
D3  
1
D0  
0
BIT POSITION  
BINARY  
D11  
D7  
1
D3  
1
D0  
0
BIT POSITION  
GRAY CODE  
0
0
+
1
1
1
1
0
1
0
0
1
0
0
0
1
1
0
0
1
1
0
0
1
+
GRAY CODE  
BINARY  
3) REPEAT STEP 2 UNTIL COMPLETE:  
3) REPEAT STEP 2 UNTIL COMPLETE:  
+
GRAY = BINARY  
BINARY  
10  
9
9
+
BINARY = BINARY  
GRAY  
9
9
10  
+
GRAY = 1  
1
9
+
BINARY = 1  
0
9
GRAY = 0  
9
BINARY = 1  
9
D11  
D7  
D3  
1
D0  
0
BIT POSITION  
BINARY  
D11  
D7  
1
D3  
1
D0  
0
BIT POSITION  
GRAY CODE  
0
0
1
1
+
1
1
0
1
0
0
1
0
0
0
1
1
0
1
0
1
1
0
0
1
+
0
GRAY CODE  
BINARY  
4) THE FINAL GRAY CODE CONVERSION IS:  
4) THE FINAL BINARY CONVERSION IS:  
D11  
0
D7  
0
D3  
1
D0  
0
BIT POSITION  
BINARY  
D11  
0
D7  
1
D3  
1
D0  
0
BIT POSITION  
GRAY CODE  
1
1
1
0
1
0
1
1
0
1
0
0
1
0
0
1
1
1
0
1
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
GRAY CODE  
0
0
1
0
BINARY  
EXCLUSIVE OR TRUTH TABLE  
A
B
Y
=
A
+
B
0
0
1
1
0
1
0
1
0
1
1
0
Figure 9. Binary-to-Gray and Gray-to-Binary Code Conversion  
20 ______________________________________________________________________________________  
12-Bit, 80Msps, 3.3V ADC  
24.9Ω  
MAX4108  
V
IN  
INP  
0.1µF  
0.1µF  
6
5
4
12pF  
1
2
3
V
INP  
IN  
T1  
MAX1208  
5.6pF  
100Ω  
100Ω  
24.9Ω  
24.9Ω  
MAX1208  
N.C.  
COM  
INN  
2.2µF  
24.9Ω  
COM  
INN  
2.2µF  
MINICIRCUITS  
TT1-6 OR T1-1T  
12pF  
5.6pF  
Figure 10. Transformer-Coupled Input Drive for Input  
Frequencies Up to Nyquist  
Figure 12. Single-Ended, AC-Coupled Input Drive  
step-up transformer can be selected to reduce the  
drive requirements. A reduced signal swing from the  
input driver, such as an op amp, can also improve the  
overall distortion. The configuration of Figure 10 is good  
tion resistors connects to COM, providing the correct  
input common-mode voltage. Two 0resistors in series  
with the analog inputs allow high IF input frequencies.  
These 0resistors can be replaced with low-value  
resistors to limit the input bandwidth.  
for frequencies up to Nyquist (f  
/ 2).  
CLK  
The circuit of Figure 11 converts a single-ended input  
signal to fully differential just as Figure 10. However,  
Figure 11 utilizes an additional transformer to improve  
the common-mode rejection, allowing high-frequency  
signals beyond the Nyquist frequency. The two sets of  
termination resistors provide an equivalent 75termi-  
nation to the signal source. The second set of termina-  
Single-Ended AC-Coupled Input Signal  
Figure 12 shows an AC-coupled, single-ended input  
application. The MAX4108 provides high speed, high  
bandwidth, low noise, and low distortion to maintain the  
input signal integrity.  
0*  
INP  
0.1µF  
6
5
4
1
2
3
6
5
4
5.6pF  
1
2
3
V
IN  
75Ω  
110Ω  
T1  
T2  
MAX1208  
0.5%  
0.1%  
N.C.  
N.C.  
N.C.  
COM  
INN  
2.2µF  
75Ω  
0.5%  
110Ω  
0.1%  
0*  
MINICIRCUITS  
ADT1-1WT  
MINICIRCUITS  
ADT1-1WT  
5.6pF  
*0RESISTORS CAN BE REPLACED WITH LOW-VALUE  
RESISTORS TO LIMIT THE INPUT BANDWIDTH.  
Figure 11. Transformer-Coupled Input Drive for Input Frequencies Beyond Nyquist  
______________________________________________________________________________________ 21  
12-Bit, 80Msps, 3.3V ADC  
+3.3V  
2.2µF  
0.1µF  
0.1µF  
+3.3V  
1
2
V
DD  
1
MAX6029EUK21  
REFP  
REFN  
COM  
38  
0.1µF  
REFOUT  
5
0.1µF  
1µF*  
10µF  
2.048V  
MAX1208  
2
3
NOTE: ONE FRONT-END REFERENCE  
CIRCUIT IS CAPABLE OF SOURCING 15mA  
AND SINKING 30mA OF OUTPUT CURRENT.  
0.1µF  
+3.3V  
0.1µF  
39  
REFIN  
16.2kΩ  
1µF  
2.2µF  
GND  
MAX4230  
1
3
2.048V  
5
2
47Ω  
4
+3.3V  
10µF  
6V  
330µF  
6V  
0.1µF  
2.2µF  
0.1µF  
1.47kΩ  
V
DD  
1
REFP  
REFN  
COM  
38  
*PLACE THE 1µF REFP-to-REFN BYPASS CAPACITOR AS CLOSE TO THE DEVICE AS POSSIBLE.  
REFOUT  
0.1µF  
1µF*  
10µF  
MAX1208  
2
3
0.1µF  
39  
REFIN  
2.2µF  
GND  
Figure 13. External Buffered Reference Driving Multiple ADCs  
Figure 13 uses the MAX6029EUK21 precision 2.048V  
reference as a common reference for multiple convert-  
ers. The 2.048V output of the MAX6029 passes through  
a one-pole, 10Hz lowpass filter to the MAX4230. The  
MAX4230 buffers the 2.048V reference and provides  
additional 10Hz lowpass filtering before its output is  
applied to the REFIN input of the MAX1208.  
Buffered External Reference  
Drives Multiple ADCs  
The buffered external reference mode allows for more  
control over the MAX1208 reference voltage and allows  
multiple converters to use a common reference. The  
REFIN input impedance is >50M.  
22 ______________________________________________________________________________________  
12-Bit, 80Msps, 3.3V ADC  
+3.3V  
1
2
0.1µF  
MAX6029EUK30  
+3.3V  
+3.3V  
5
0.1µF  
2.2µF  
3.000V  
0.1µF  
0.1µF  
MAX4230  
1
3
2.157V  
5
2
47Ω  
24.3kΩ  
1%  
V
4
DD  
1
REFP  
38  
REFOUT  
10µF  
6V  
330µF  
6V  
0.1µF  
20kΩ  
1%  
10µF  
1µF*  
MAX1208  
2
3
1.47kΩ  
REFN  
COM  
+3.3V  
0.1µF  
0.47µF  
0.1µF  
26.7kΩ  
1%  
39  
REFIN  
MAX4230  
1
3
1.649V  
GND  
5
2
2.2µF  
47Ω  
4
26.7kΩ  
1%  
+3.3V  
10µF  
6V  
330µF  
6V  
2.2µF  
0.1µF  
20kΩ  
0.1µF  
1%  
1.47kΩ  
+3.3V  
0.1µF  
20kΩ  
1%  
V
DD  
1
REFP  
38  
REFOUT  
MAX4230  
1
3
1.141V  
0.1µF  
5
2
20kΩ  
1%  
10µF  
1µF*  
47Ω  
MAX1208  
4
2
3
REFN  
COM  
10µF  
6V  
330µF  
6V  
0.1µF  
39  
1.47kΩ  
REFIN  
GND  
2.2µF  
*PLACE THE 1µF REFP-TO-REFN BYPASS CAPACITOR AS CLOSE TO THE DEVICE AS POSSIBLE.  
Figure 14. External Unbuffered Reference Driving Multiple ADCs  
Figure 14 uses the MAX6029EUK30 precision 3.000V  
reference as a common reference for multiple convert-  
ers. A five-component resistive divider chain follows the  
MAX6029 voltage reference. The 0.47µF capacitor along  
this chain creates a 10Hz lowpass filter. Three MAX4230  
operational amplifiers buffer taps along this resistor  
chain providing 2.157V, 1.649V, and 1.141V to the  
MAX1208’s REFP, COM, and REFN reference inputs,  
Unbuffered External  
Reference Drives Multiple ADCs  
The unbuffered external reference mode allows for pre-  
cise control over the MAX1208 reference and allows  
multiple converters to use a common reference.  
Connecting REFIN to GND disables the internal refer-  
ence, and allows REFP, REFN, and COM to be driven  
directly by a set of external reference sources.  
______________________________________________________________________________________ 23  
12-Bit, 80Msps, 3.3V ADC  
respectively. The feedback around the MAX4230 op  
amps provides additional 10Hz lowpass filtering. The  
2.157V and 1.141V reference voltages set the full-scale  
analog input range to 1.016V.  
A common power source for all active components  
removes any concern regarding power-supply sequenc-  
ing when powering up or down.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1 LSB. A DNL  
error specification of less than 1 LSB guarantees no  
missing codes and a monotonic transfer function. For  
the MAX1208, DNL deviations are measured at every  
step of the transfer function and the worst-case devia-  
tion is reported in the Electrical Characteristics table.  
Grounding, Bypassing, and  
Board Layout  
Offset Error  
Offset error is a figure of merit that indicates how well  
the actual transfer function matches the ideal transfer  
function at a single point. Ideally the midscale  
MAX1208 transition occurs at 0.5 LSB above midscale.  
The offset error is the amount of deviation between the  
measured midscale transition point and the ideal mid-  
scale transition point.  
The MAX1208 requires high-speed board layout design  
techniques. Refer to the MAX1211 evaluation kit data  
sheet for a board layout reference. Locate all bypass  
capacitors as close to the device as possible, prefer-  
ably on the same side of the board as the ADC, using  
surface-mount devices for minimum inductance.  
Bypass V  
to GND with a 0.1µF ceramic capacitor in  
DD  
Gain Error  
Gain error is a figure of merit that indicates how well the  
slope of the actual transfer function matches the slope of  
the ideal transfer function. The slope of the actual trans-  
fer function is measured between two data points: posi-  
tive full scale and negative full scale. Ideally, the positive  
full-scale MAX1208 transition occurs at 1.5 LSBs below  
positive full scale, and the negative full-scale transition  
occurs at 0.5 LSB above negative full scale. The gain  
error is the difference of the measured transition points  
minus the difference of the ideal transition points.  
parallel with a 2.2µF ceramic capacitor. Bypass OV  
DD  
to GND with a 0.1µF ceramic capacitor in parallel with a  
2.2µF ceramic capacitor.  
Multilayer boards with ample ground and power planes  
produce the highest level of signal integrity. All MAX1208  
GNDs and the exposed backside paddle must be con-  
nected to the same ground plane. The MAX1208 relies on  
the exposed backside paddle connection for a low-induc-  
tance ground connection. Use multiple vias to connect  
the top-side ground to the bottom-side ground. Isolate  
the ground plane from any noisy digital system ground  
planes such as a DSP or output buffer ground.  
Small-Signal Noise Floor (SSNF)  
Small-signal noise floor is the integrated noise and dis-  
tortion power in the Nyquist band for small-signal  
inputs. The DC offset is excluded from this noise calcu-  
lation. For this converter, a small signal is defined as a  
single tone with an amplitude less than -35dBFS. This  
parameter captures the thermal and quantization noise  
characteristics of the converter and can be used to  
help calculate the overall noise figure of a receive  
channel. Go to www.maxim-ic.com for application  
notes on thermal + quantization noise floor.  
Route high-speed digital signal traces away from the  
sensitive analog traces. Keep all signal lines short and  
free of 90° turns.  
Ensure that the differential analog input network layout  
is symmetric and that all parasitics are balanced equal-  
ly. Refer to the MAX1211 evaluation kit data sheet for  
an example of symmetric input layout.  
Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. For the  
MAX1208, this straight line is between the end points of  
the transfer function, once offset and gain errors have  
been nullified. INL deviations are measured at every  
step of the transfer function and the worst-case devia-  
tion is reported in the Electrical Characteristics table.  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital sam-  
ples, the theoretical maximum SNR is the ratio of the full-  
scale analog input (RMS value) to the RMS quantization  
error (residual error). The ideal, theoretical minimum ana-  
log-to-digital noise is caused by quantization error only  
and results directly from the ADC’s resolution (N bits):  
SNR  
= 6.02 × N + 1.76  
[max]  
24 ______________________________________________________________________________________  
12-Bit, 80Msps, 3.3V ADC  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise. RMS noise includes all spec-  
tral components to the Nyquist frequency excluding the  
fundamental, the first six harmonics (HD2–HD7), and  
the DC offset.  
2
2
2
2
V
+ V  
IM2  
+.......+ V  
IM13  
+ V  
IM14  
IM1  
IMD = 20 × log  
2
2
V
+ V  
2
1
The fundamental input tone amplitudes (V and V ) are  
at -7dBFS. Fourteen intermodulation products (V _)  
1
2
IM  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS signal  
to the RMS noise plus distortion. RMS noise plus distor-  
tion includes all spectral components to the Nyquist fre-  
quency excluding the fundamental and the DC offset.  
are used in the MAX1208 IMD calculation. The inter-  
modulation products are the amplitudes of the output  
spectrum at the following frequencies, where f  
and  
IN1  
f
are the fundamental input tone frequencies:  
IN2  
• Second-order intermodulation products:  
+ f , f - f  
f
IN1  
IN2 IN2 IN1  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at  
a specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. ENOB for  
a full-scale sinusoidal input waveform is computed from:  
• Third-order intermodulation products:  
2 x f - f , 2 x f - f , 2 x f + f , 2 x f + f  
IN1 IN2  
IN2 IN1  
IN1  
IN2  
IN2  
IN1  
IN1  
• Fourth-order intermodulation products:  
3 x f - f , 3 x f - f , 3 x f + f , 3 x f + f  
IN1 IN2  
IN2 IN1  
IN1  
IN2  
IN2  
• Fifth-order intermodulation products:  
SINAD 1.76  
ENOB =  
3 x f  
3 x f  
- 2 x f , 3 x f  
- 2 x f , 3 x f  
+ 2 x f  
,
IN2  
IN1  
IN2  
IN2  
IN2  
IN1  
IN1  
6.02  
+ 2 x f  
IN1  
Third-Order Intermodulation (IM3)  
Single-Tone Spurious-Free Dynamic Range  
(SFDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS amplitude of the next-largest spurious  
component, excluding DC offset.  
IM3 is the total power of the third-order intermodulation  
products to the Nyquist frequency relative to the total  
input power of the two input tones f  
and f . The  
IN2  
IN1  
individual input tone levels are at -7dBFS. The third-  
order intermodulation products are 2 x f - f , 2 x  
IN1  
IN2  
f
- f , 2 x f  
+ f , 2 x f  
+ f  
.
IN1  
IN2 IN1  
IN1  
IN2  
IN2  
Total Harmonic Distortion (THD)  
THD is the ratio of the RMS sum of the first six harmon-  
ics of the input signal to the fundamental itself. This is  
expressed as:  
Two-Tone Spurious-Free Dynamic Range  
(SFDR  
)
TT  
SFDR represents the ratio, expressed in decibels, of  
TT  
the RMS amplitude of either input tone to the RMS ampli-  
tude of the next-largest spurious component in the spec-  
trum, excluding DC offset. This spurious component can  
occur anywhere in the spectrum up to Nyquist and is usu-  
ally an intermodulation product or a harmonic.  
2
2
2
2
2
2
V
+ V  
+ V  
+ V  
+ V  
+ V  
7
2
3
4
5
6
THD = 20 × log  
V
1
Aperture Delay  
The MAX1208 samples data on the falling edge of its  
sampling clock. In actuality, there is a small delay  
between the falling edge of the sampling clock and the  
where V is the fundamental amplitude, and V through  
7
harmonics (HD2–HD7).  
1
2
V
are the amplitudes of the 2nd- through 7th-order  
Intermodulation Distortion (IMD)  
actual sampling instant. Aperture delay (t ) is the time  
AD  
IMD is the ratio of the RMS sum of the intermodulation  
products to the RMS sum of the two fundamental input  
tones. This is expressed as:  
defined between the falling edge of the sampling clock  
and the instant when an actual sample is taken (Figure 4).  
Aperture Jitter  
Figure 4 depicts the aperture jitter (t ), which is the  
AJ  
sample-to-sample variation in the aperture delay.  
______________________________________________________________________________________ 25  
12-Bit, 80Msps, 3.3V ADC  
Output Noise (n  
)
OUT  
Pin Configuration  
The output noise (n  
) parameter is similar to the ther-  
OUT  
mal + quantization noise parameter and is an indication  
of the ADC’s overall noise performance.  
TOP VIEW  
No fundamental input tone is used to test for n  
; INP,  
OUT  
INN, and COM are connected together and 1024k data  
points collected. n is computed by taking the RMS  
40 39 38 37 36 35 34 33 32 31  
OUT  
REFP  
1
2
3
4
5
6
7
8
9
30 D0  
29 D1  
28 D2  
27 D3  
26 D4  
25 D5  
24 D6  
23 D7  
22 D8  
21 D9  
value of the collected data points.  
REFN  
COM  
GND  
INP  
Overdrive Recovery Time  
Overdrive recovery time is the time required for the  
ADC to recover from an input transient that exceeds the  
full-scale limits. The MAX1208 specifies overdrive  
recovery time using an input transient that exceeds the  
full-scale limits by 10%.  
MAX1208  
INN  
GND  
DCE  
CLKN  
EXPOSED PADDLE (GND)  
CLKP 10  
11 12 13 14 15 16 17 18 19 20  
THIN QFN  
6mm x 6mm x 0.8mm  
26 ______________________________________________________________________________________  
12-Bit, 80Msps, 3.3V ADC  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
C
L
b
D/2  
D2/2  
k
E/2  
E2/2  
(NE-1) X  
e
C
L
E
E2  
k
L
e
(ND-1) X  
e
e
L
C
C
L
L
L1  
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
1
E
21-0141  
2
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR 0.4mm LEAD PITCH PACKAGE T4866-1.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
2
E
21-0141  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 27  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1208ETL-T

ADC, Flash Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, 6 X 6 MM, 0.8 MM HEIGHT, MO-220-WJJD, TQFN-40
MAXIM

MAX1209

40Msps, 12-Bit ADC
MAXIM

MAX1209ETL

暂无描述
MAXIM

MAX1209ETL+

ADC, Flash Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, 6 X 6 MM, 0.8 MM HEIGHT, MO-220WJJD-2, TQFN-40
MAXIM

MAX1209ETL+G3U

ADC, Flash Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 6 X 6 MM, 0.8 MM HEIGHT, MO-220WJJD-2, TQFN-40
MAXIM

MAX1209ETL+T

ADC, Flash Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, 6 X 6 MM, 0.8 MM HEIGHT, ROHS COMPLIANT, MO-220-WJJD-2, TQFN-40
MAXIM

MAX1209ETL+TG3U

ADC, Flash Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 6 X 6 MM, 0.8 MM HEIGHT, MO-220WJJD-2, TQFN-40
MAXIM

MAX1209ETL-T

ADC, Flash Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, 6 X 6 MM, 0.8 MM HEIGHT, MO-220-WJJD-2, TQFN-40
MAXIM

MAX120C/D

500ksps, 12-Bit ADCs with Track/Hold And Refrence
MAXIM

MAX120CAG

500ksps, 12-Bit ADCs with Track/Hold And Refrence
MAXIM

MAX120CNG

500ksps, 12-Bit ADCs with Track/Hold And Refrence
MAXIM

MAX120CNG+

ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, PDIP24, 0.300 INCH, PLASTIC, DIP-24
MAXIM