MAX1214NEGK+D [MAXIM]

1.8V, Low-Power, 12-Bit, 210Msps ADC for Broadband Applications; 1.8V ,低功耗, 12位,210Msps ADC,用于宽带应用
MAX1214NEGK+D
型号: MAX1214NEGK+D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1.8V, Low-Power, 12-Bit, 210Msps ADC for Broadband Applications
1.8V ,低功耗, 12位,210Msps ADC,用于宽带应用

转换器 模数转换器
文件: 总21页 (文件大小:740K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3866; Rev 0; 4/06  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
General Description  
Features  
210Msps Conversion Rate  
The MAX1214N is a monolithic, 12-bit, 210Msps ana-  
log-to-digital converter (ADC) optimized for outstanding  
dynamic performance at high-IF frequencies beyond  
300MHz. The product operates with conversion rates  
up to 210Msps while consuming only 799mW.  
Excellent Low-Noise Characteristics  
SNR = 67dB at f = 100MHz  
IN  
SNR = 65dB at f = 250MHz  
IN  
Excellent Dynamic Range  
At 210Msps and an input frequency up to 100MHz, the  
MAX1214N achieves an 81.3dBc spurious-free dynam-  
ic range (SFDR) with excellent 67dB signal-to-noise  
ratio (SNR) that remains flat (within 2dB) for input tones  
up to 250MHz. This makes it ideal for wideband appli-  
cations such as communications receivers, cable-head  
end receivers, and power-amplifier predistortion in cel-  
lular base-station transceivers.  
SFDR = 81.3dBc at f = 100MHz  
IN  
SFDR = 84.9dBc at f = 250MHz  
IN  
Single 1.8V Supply  
799mW Power Dissipation at f  
= 210Msps  
SAMPLE  
and f = 100MHz  
IN  
On-Chip Track-and-Hold Amplifier  
Internal 1.24V-Bandgap Reference  
On-Chip Selectable Divide-by-2 Clock Input  
LVDS Digital Outputs with Data Clock Output  
MAX1214NEVKIT Available  
The MAX1214N operates from a single 1.8V power sup-  
ply. The analog input is designed for AC-coupled differ-  
ential or single-ended operation. The ADC also features  
a selectable on-chip divide-by-2 clock circuit that  
accepts clock frequencies as high as 420MHz. A low-  
voltage differential signal (LVDS) sampling clock is rec-  
ommended for best performance. The converter  
provides LVDS-compatible digital outputs with data for-  
mat selectable to be either two’s complement or offset  
binary.  
Ordering Information  
PIN-  
PKG  
PART  
TEMP RANGE  
The MAX1214N is available in a 68-pin QFN package  
with exposed paddle (EP) and is specified over the  
industrial (-40°C to +85°C) temperature range.  
PACKAGE CODE  
MAX1214NEGK-D -40°C to +85°C 68 QFN-EP* G6800-4  
MAX1214NEGK+D -40°C to +85°C 68 QFN-EP* G6800-4  
See the Pin-Compatible Versions table for a complete  
selection of 8-bit, 10-bit, and 12-bit high-speed ADCs in  
this family.  
*EP = Exposed paddle.  
+Denotes lead-free package.  
D = Dry pack.  
Applications  
Pin-Compatible Versions  
Base-Station Power-Amplifier Linearization  
SPEED  
GRADE  
(Msps)  
RESOLUTION  
(BITS)  
ON-CHIP  
BUFFER  
PART  
Cable-Head End Receivers  
Wireless and Wired Broadband Communications  
Communications Test Equipment  
MAX1121  
MAX1122  
MAX1123  
MAX1124  
MAX1213  
MAX1214  
MAX1215  
MAX1213N  
MAX1214N  
MAX1215N  
8
250  
170  
210  
250  
170  
210  
250  
170  
210  
250  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
10  
10  
10  
12  
12  
12  
12  
12  
12  
Radar and Satellite Subsystems  
No  
No  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
ABSOLUTE MAXIMUM RATINGS  
AV  
to AGND ......................................................-0.3V to +2.1V  
to OGND .....................................................-0.3V to +2.1V  
Current into Any Pin.......................................................... 50mA  
CC  
OV  
Continuous Power Dissipation (T = +70°C, multilayer board)  
A
CC  
AV  
to OV .......................................................-0.3V to +2.1V  
68-Pin QFN-EP (derate 41.7mW/°C above +70°C)....3333mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range ............................-60°C to +150°C  
Lead Temperature (soldering,10s) ..................................+300°C  
CC  
CC  
AGND to OGND ....................................................-0.3V to +0.3V  
INP, INN to AGND....................................-0.3V to (AV + 0.3V)  
All Digital Inputs to AGND........................-0.3V to (AV + 0.3V)  
CC  
CC  
CC  
REFIO, REFADJ to AGND........................-0.3V to (AV + 0.3V)  
All Digital Outputs to OGND....................-0.3V to (OV + 0.3V)  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= OV  
= 1.8V, AGND = OGND = 0, f  
= 210MHz, differential clock input drive, 0.1µF capacitor on REFIO, internal ref-  
CC  
CC  
SAMPLE  
erence, digital output pins differential R = 100. Limits are for T = -40°C to +85°C, unless otherwise noted. Typical values are at  
L
A
T
A
= +25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Resolution  
12  
-2.1  
-1.0  
-3  
Bits  
LSB  
LSB  
mV  
Integral Nonlinearity  
INL  
f
= 10MHz (Note 2)  
0.75  
0.3  
+2.1  
+1.3  
+3  
IN  
Differential Nonlinearity  
Transfer Curve Offset  
Offset Temperature Drift  
ANALOG INPUTS (INP, INN)  
Full-Scale Input Voltage Range  
DNL  
No missing codes (Note 2)  
(Note 2)  
V
OS  
15  
µV/°C  
V
1150  
1390  
60  
mV  
P-P  
FS  
Full-Scale Range Temperature  
Drift  
ppm/°C  
Common-Mode Input Voltage  
Differential Input Capacitance  
Differential Input Resistance  
Full-Power Analog Bandwidth  
REFERENCE (REFIO, REFADJ)  
Reference Output Voltage  
Reference Temperature Drift  
REFADJ Input High Voltage  
SAMPLING CHARACTERISTICS  
Maximum Sampling Rate  
Minimum Sampling Rate  
Clock Duty Cycle  
V
Internally self-biased  
0.7  
2.5  
1.8  
700  
V
pF  
CM  
C
IN  
IN  
R
kΩ  
FPBW  
MHz  
V
REFADJ = AGND  
1.18  
1.24  
90  
1.30  
V
ppm/°C  
V
REFIO  
V
Used to disable the internal reference  
AV - 0.3  
CC  
REFADJ  
f
f
210  
MHz  
MHz  
%
SAMPLE  
SAMPLE  
20  
Set by clock-management circuit  
Figures 5, 11  
40 to 60  
620  
Aperture Delay  
t
ps  
AD  
Aperture Jitter  
t
Figure 11  
0.15  
ps  
RMS  
AJ  
2
_______________________________________________________________________________________  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= OV  
= 1.8V, AGND = OGND = 0, f  
= 210MHz, differential clock input drive, 0.1µF capacitor on REFIO, internal ref-  
CC  
CC  
SAMPLE  
erence, digital output pins differential R = 100. Limits are for T = -40°C to +85°C, unless otherwise noted. Typical values are at  
L
A
T
A
= +25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CLOCK INPUTS (CLKP, CLKN)  
Differential Clock Input Amplitude  
(Note 3)  
Internally self-biased  
200  
500  
1.15 0.25  
11 25%  
5
mV  
P-P  
Clock Input Common-Mode  
Voltage Range  
V
Clock Differential Input  
R
C
kΩ  
CLK  
Clock Differential Input  
Capacitance  
pF  
CLK  
DYNAMIC CHARACTERISTICS (at A = -1dBFS)  
IN  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= 10MHz  
65.5  
65.2  
67.3  
67  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 100MHz  
= 200MHz  
= 250MHz  
= 10MHz  
Signal-to-Noise Ratio  
SNR  
SINAD  
SFDR  
dB  
dB  
65.3  
65.0  
67.2  
66.6  
65.2  
64.9  
88.5  
81.3  
82.8  
84.9  
-88.5  
-81.3  
-82.8  
-84.9  
65.3  
64.9  
= 100MHz  
= 200MHz  
= 250MHz  
= 10MHz  
Signal-to-Noise and Distortion  
Spurious-Free Dynamic Range  
77.0  
76.0  
= 100MHz  
= 200MHz  
= 250MHz  
= 10MHz  
dBc  
-77.0  
-76.0  
= 100MHz  
= 200MHz  
= 250MHz  
Worst Harmonics  
(HD2 or HD3)  
dBc  
dBc  
Two-Tone Intermodulation  
Distortion  
f
f
= 97MHz at -7dBFS,  
= 100MHz at -7dBFS  
IN1  
TTIMD  
-79  
IN2  
LVDS DIGITAL OUTPUTS (D0P/N–D11P/N, ORP/N)  
Differential Output Voltage  
Output Offset Voltage  
|V  
|
R = 100Ω  
280  
440  
mV  
V
OD  
L
OV  
R = 100Ω  
L
1.110  
1.370  
OS  
_______________________________________________________________________________________  
3
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= OV  
= 1.8V, AGND = OGND = 0, f  
= 210MHz, differential clock input drive, 0.1µF capacitor on REFIO, internal ref-  
CC  
CC  
SAMPLE  
erence, digital output pins differential R = 100. Limits are for T = -40°C to +85°C, unless otherwise noted. Typical values are at  
L
A
T
A
= +25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LVCMOS DIGITAL INPUTS (CLKDIV, T/B)  
Digital Input-Voltage Low  
V
0.2 x AV  
V
V
IL  
CC  
Digital Input-Voltage High  
TIMING CHARACTERISTICS  
CLK-to-Data Propagation Delay  
CLK-to-DCLK Propagation Delay  
DCLK-to-Data Propagation Delay  
LVDS Output Rise Time  
V
0.8 x AV  
IH  
CC  
t
Figure 5  
Figure 5  
2.05  
3.95  
1.9  
ns  
ns  
ns  
ps  
ps  
PDL  
t
CPDL  
t
- t  
Figure 5 (Note 3)  
1.8  
2.0  
CPDL PDL  
t
20% to 80%, C = 5pF  
450  
450  
RISE  
FALL  
L
LVDS Output Fall Time  
t
20% to 80%, C = 5pF  
L
Clock  
cycles  
Output Data Pipeline Delay  
t
Figure 5  
11  
LATENCY  
POWER REQUIREMENTS  
Analog Supply Voltage Range  
Digital Supply Voltage Range  
Analog Supply Current  
AV  
1.70  
1.70  
1.80  
1.80  
379  
65  
1.90  
1.90  
410  
71  
V
V
CC  
OV  
CC  
I
f
f
f
= 100MHz  
= 100MHz  
= 100MHz  
mA  
AVCC  
IN  
IN  
IN  
Digital Supply Current  
I
mA  
OVCC  
Analog Power Dissipation  
P
799  
1.8  
866  
mW  
mV/V  
%FS/V  
DISS  
Offset  
Gain  
Power-Supply Rejection Ratio  
(Note 4)  
PSRR  
1.5  
Note 1: Values at T +25°C guaranteed by production test, values at T < +25°C guaranteed by design and characterization.  
A
A
Note 2: Static linearity and offset parameters are computed from an end-point curve fit.  
Note 3: Parameter guaranteed by design and characterization: T = -40°C to +85°C.  
A
Note 4: PSRR is measured with both analog and digital supplies connected to the same potential.  
4
_______________________________________________________________________________________  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
Typical Operating Characteristics  
(AV = OV = 1.8V, AGND = OGND = 0, f  
= 210MHz, A = -1dBFS; see each TOC for detailed information on test condi-  
IN  
CC  
CC  
SAMPLE  
tions, differential input drive, differential sine-wave clock input drive, 0.1µF capacitor on REFIO, internal reference, digital output pins  
differential R = 100, T = +25°C.)  
L
A
FFT PLOT  
(8192-POINT DATA RECORD)  
FFT PLOT  
(8192-POINT DATA RECORD)  
FFT PLOT  
(8192-POINT DATA RECORD)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
f
A
= 210MHz  
= 12.484MHz  
= -0.97dBFS  
SAMPLE  
IN  
IN  
f
f
A
= 210MHz  
= 199.771MHz  
= -0.961dBFS  
f
f
A
= 210MHz  
= 100.155MHz  
= -0.954dBFS  
SAMPLE  
IN  
IN  
SAMPLE  
IN  
IN  
SNR = 67.3dB  
SNR = 65.4dB  
SNR = 67dB  
SINAD = 67.2dB  
THD = -83.4dBc  
SFDR = 88.5dB  
HD2 = -90.4dBc  
HD3 = -96.7dBc  
SINAD = 65.1dB  
THD = -78.5dBc  
SFDR = 82.8dBc  
HD2 = -82.8dBc  
HD3 = -84.6dBc  
SINAD = 66.6dB  
THD = -76.8dBc  
SFDR = 81.2dBc  
HD2 = -81.2dBc  
HD3 = -81.8dBc  
2
3
3
9
2
4
5
7
5
8
2
6
5
3
4
4
10  
0
10 20 30 40 50 60 70 80 90 100  
ANALOG INPUT FREQUENCY (MHz)  
0
10 20 30 40 50 60 70 80 90 100  
ANALOG INPUT FREQUENCY (MHz)  
0
10 20 30 40 50 60 70 80 90 100  
ANALOG INPUT FREQUENCY (MHz)  
FFT PLOT  
TWO-TONE IMD PLOT  
SNR/SINAD vs. ANALOG INPUT FREQUENCY  
(8192-POINT DATA RECORD)  
(8192-POINT DATA RECORD)  
(f  
= 210MHz, A = -1dBFS)  
SAMPLE  
IN  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
70  
65  
60  
55  
50  
45  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
f
A
= 210MHz  
= 249.913MHz  
= -0.994dBFS  
f
f
f
= 210MHz  
= 96.8737793MHz  
= 100.1550293MHz  
SAMPLE  
IN  
IN  
f
IN1  
SAMPLE  
IN1  
IN2  
SNR  
f
IN2  
SNR = 65dB  
IMD = -79dBc  
SINAD = 64.9dB  
THD = -79.3dBc  
SFDR = 85dBc  
HD2 = -85dBc  
HD3 = -86dBc  
SINAD  
f
+ f  
IN2 IN1  
2f + f  
IN2 IN1  
f
- f  
IN2 IN1  
2f + f  
IN1 IN2  
2f - f  
IN2 IN1  
3
2
4
5
0
10 20 30 40 50 60 70 80 90 100  
ANALOG INPUT FREQUENCY (MHz)  
0
50  
100  
150  
200  
250  
300  
0
10 20 30 40 50 60 70 80 90 100  
ANALOG INPUT FREQUENCY (MHz)  
f
(MHz)  
IN  
HD2/HD3 vs. ANALOG INPUT FREQUENCY  
SFDR/(-THD) vs. ANALOG INPUT FREQUENCY  
SNR/SINAD vs. ANALOG INPUT AMPLITUDE  
(f  
= 210MHz, A = -1dBFS)  
(f  
= 210MHz, A = -1dBFS)  
SAMPLE  
IN  
(f  
= 210MHz, f = 65.087MHz)  
SAMPLE  
IN  
SAMPLE  
IN  
-50  
-55  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
SNR  
-60  
SFDR  
-65  
-70  
HD2  
SINAD  
-75  
-80  
-THD  
-85  
-90  
-95  
HD3  
-100  
-105  
-110  
0
50  
100  
150  
200  
250  
300  
-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5  
ANALOG INPUT AMPLITUDE (dBFS)  
0
0
50  
100  
150  
200  
250  
300  
f (MHz)  
IN  
f
IN  
(MHz)  
_______________________________________________________________________________________  
5
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
Typical Operating Characteristics (continued)  
(AV = OV = 1.8V, AGND = OGND = 0, f  
= 210MHz, A = -1dBFS; see each TOC for detailed information on test condi-  
IN  
CC  
CC  
SAMPLE  
tions, differential input drive, differential sine-wave clock input drive, 0.1µF capacitor on REFIO, internal reference, digital output pins  
differential R = 100, T = +25°C.)  
L
A
SFDR/(-THD) vs. ANALOG INPUT AMPLITUDE  
HD2/HD3 vs. ANALOG INPUT AMPLITUDE  
SNR/SINAD vs. SAMPLE FREQUENCY  
(f = 65.087MHz, A = -1dBFS)  
(f  
= 210MHz, f = 65.087MHz)  
(f  
= 210MHz, f = 65.087MHz)  
SAMPLE  
IN  
SAMPLE  
IN  
IN  
IN  
-30  
-40  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
30  
75  
70  
65  
60  
55  
50  
45  
40  
SNR  
HD2  
-50  
SFDR  
-60  
SINAD  
-70  
HD2  
-80  
-THD  
-90  
-100  
-110  
-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5  
ANALOG INPUT AMPLITUDE (dBFS)  
0
-55 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5  
ANALOG INPUT AMPLITUDE (dBFS)  
0
0
20 40 60 80 100 120 140 160 180 200 220  
(MHz)  
f
SAMPLE  
TOTAL POWER DISSIPATION vs. SAMPLE  
FREQUENCY (f = 65.087MHz, A = -1dBFS)  
SFDR/(-THD) vs. SAMPLE FREQUENCY  
(f = 65.087MHz, A = -1dBFS)  
HD2/HD3 vs. SAMPLE FREQUENCY  
(f = 65.087MHz, A = -1dBFS)  
IN  
IN  
IN  
IN  
IN  
IN  
0.875  
0.850  
0.825  
0.800  
0.775  
0.750  
0.725  
0.700  
-60  
-65  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
SFDR  
-70  
-75  
HD3  
-80  
-85  
-90  
-THD  
-95  
-100  
-105  
-110  
-115  
-120  
HD2  
20 39 58 77 96 115 134 153 172 191 210  
(MHz)  
0
20 40 60 80 100 120 140 160 180 200 220  
(MHz)  
0
20 40 60 80 100 120 140 160 180 200 220  
(MHz)  
f
f
f
SAMPLE  
SAMPLE  
SAMPLE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
GAIN BANDWIDTH PLOT  
= 210MHz, A = -1dBFS)  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
(f  
SAMPLE  
IN  
0.7  
0.4  
1
0
0.8  
0.5  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
0.1  
0.2  
-0.2  
-0.5  
-0.8  
-0.1  
-0.4  
-0.7  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
1
10  
100  
1000  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
ANALOG INPUT FREQUENCY (MHz)  
6
______________________________________________________________________________________  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
Typical Operating Characteristics (continued)  
(AV = OV = 1.8V, AGND = OGND = 0, f  
= 210MHz, A = -1dBFS; see each TOC for detailed information on test condi-  
IN  
CC  
CC  
SAMPLE  
tions, differential input drive, differential sine-wave clock input drive, 0.1µF capacitor on REFIO, internal reference, digital output pins  
differential R = 100, T = +25°C.)  
L
A
HD2/HD3 vs. TEMPERATURE  
SFDR/(-THD) vs. TEMPERATURE  
SNR/SINAD vs. TEMPERATURE  
(f  
= 210MHz, f = 100MHz, A = -1dBFS)  
(f  
= 210MHz, f = 100MHz, A = -1dBFS)  
(f  
= 210MHz, f = 100MHz, A = -1dBFS)  
SAMPLE  
100  
IN  
IN  
SAMPLE  
IN  
IN  
SAMPLE  
IN  
IN  
90  
70.5  
69.5  
68.5  
67.5  
66.5  
65.5  
64.5  
63.5  
62.5  
61.5  
60.5  
95  
90  
85  
80  
75  
70  
65  
60  
55  
85  
80  
75  
70  
65  
HD2  
SFDR  
SNR  
HD3  
SINAD  
-THD  
50  
60  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SNR/SINAD vs. SUPPLY VOLTAGE  
(f = 65.087MHz, A = -1dBFS)  
SFDR/(-THD) vs. SUPPLY VOLTAGE  
(f = 65.087MHz, A = -1dBFS)  
IN  
IN  
IN  
IN  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
100  
97  
94  
91  
88  
85  
82  
79  
76  
73  
70  
SNR  
SFDR  
SINAD  
-THD  
1.70  
1.75  
1.80  
1.85  
1.90  
1.70  
1.75  
1.80  
1.85  
1.90  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
REFERENCE VOLTAGE vs. SUPPLY VOLTAGE  
(f = 65.087MHz, A = -1dBFS)  
HD2/HD3 vs. SUPPLY VOLTAGE  
(f = 65.087MHz, A = -1dBFS)  
IN  
IN  
IN  
IN  
1.248  
1.247  
1.246  
1.245  
1.244  
1.243  
1.242  
1.241  
1.240  
-70  
-75  
-80  
HD3  
HD2  
-85  
-90  
-95  
-100  
-105  
-110  
-115  
-120  
1.70  
1.75  
1.80  
1.85  
1.90  
1.70  
1.75  
1.80  
1.85  
1.90  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
7
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
Pin Description  
PIN  
NAME  
FUNCTION  
Analog Supply Voltage. Bypass AV  
capacitors for best decoupling results. Connect all AV  
Bypassing, and Board Layout Considerations section.  
to AGND with a parallel combination of 0.1µF and 0.22µF  
CC  
1, 6, 11–14, 20,  
25, 62, 63, 65  
AV  
inputs together. See the Grounding,  
CC  
CC  
2, 5, 7, 10, 15, 16,  
18, 19, 21, 24,  
64, 66, 67  
AGND  
REFIO  
Analog Converter Ground. Connect all AGND inputs together.  
Reference Input/Output. Pull REFADJ high to allow REFIO to accept an external reference. Pull  
REFADJ low to activate the internal 1.24V-bandgap reference. Connect a 0.1µF capacitor from  
REFIO to AGND for both internal and external reference.  
3
Reference Adjust Input. REFADJ allows for FSR adjustments by placing a resistor or trim  
potentiometer between REFADJ and AGND (decreases FSR) or REFADJ and REFIO (increases  
FSR). Connect REFADJ to AV to override the internal reference with an external source  
CC  
4
REFADJ  
connected to REFIO. Connect REFADJ to AGND to allow the internal reference to determine the  
FSR of the data converter. See the FSR Adjustment Using the Internal Bandgap Reference  
section.  
8
9
INP  
INN  
Positive Analog Input Terminal. Internally self-biased to 0.7V.  
Negative Analog Input Terminal. Internally self-biased to 0.7V.  
Clock Divider Input. CLKDIV controls the sampling frequency relative to the input clock  
frequency. CLKDIV has an internal pulldown resistor.  
CLKDIV = 0: Sampling frequency is at one-half the input clock frequency.  
CLKDIV = 1: Sampling frequency is equal to the input clock frequency.  
17  
CLKDIV  
22  
23  
CLKP  
CLKN  
True Clock Input. Apply an LVDS-compatible input level to CLKP. Internally self-biased to 1.15V.  
Complementary Clock Input. Apply an LVDS-compatible input level to CLKN. Internally self-  
biased to 1.15V.  
Digital Converter Ground. Ground connection for digital circuitry and output drivers. Connect all  
OGND inputs together.  
26, 45, 61  
OGND  
Digital Supply Voltage. Bypass OV  
with a 0.1µF capacitor to OGND. Connect all OV  
inputs  
CC  
CC  
27, 28, 41, 44, 60  
OV  
CC  
together. See the Grounding, Bypassing, and Board Layout Considerations section.  
Complementary Output Bit 0 (LSB)  
True Output Bit 0 (LSB)  
29  
30  
31  
32  
33  
34  
35  
36  
D0N  
D0P  
D1N  
D1P  
D2N  
D2P  
D3N  
D3P  
Complementary Output Bit 1  
True Output Bit 1  
Complementary Output Bit 2  
True Output Bit 2  
Complementary Output Bit 3  
True Output Bit 3  
8
_______________________________________________________________________________________  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
Pin Description (continued)  
PIN  
37  
NAME  
D4N  
D4P  
FUNCTION  
Complementary Output Bit 4  
True Output Bit 4  
38  
39  
D5N  
D5P  
Complementary Output Bit 5  
True Output Bit 5  
40  
Complementary Clock Output. This output provides an LVDS-compatible output level and can  
be used to synchronize external devices to the converter clock.  
42  
43  
DCLKN  
DCLKP  
True Clock Output. This output provides an LVDS-compatible output level and can be used to  
synchronize external devices to the converter clock.  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
D6N  
D6P  
Complementary Output Bit 6  
True Output Bit 6  
D7N  
D7P  
Complementary Output Bit 7  
True Output Bit 7  
D8N  
D8P  
Complementary Output Bit 8  
True Output Bit 8  
D9N  
D9P  
Complementary Output Bit 9  
True Output Bit 9  
D10N  
D10P  
D11N  
D11P  
Complementary Output Bit 10  
True Output Bit 10  
Complementary Output Bit 11 (MSB)  
True Output Bit 11 (MSB)  
Complementary Out-of-Range Control Bit Output. If an out-of-range condition is detected,  
bit ORN flags this condition by transitioning low.  
58  
59  
ORN  
ORP  
True Out-of-Range Control Bit Output. If an out-of-range condition is detected, bit ORP flags  
this condition by transitioning high.  
Output Format Select. This LVCMOS-compatible input controls the digital output format of the  
MAX1214N. T/B has an internal pulldown resistor.  
T/B = 0: Two’s-complement output format.  
68  
T/B  
T/B = 1: Binary output format.  
Exposed Paddle. The exposed paddle is located on the backside of the chip and must be  
connected to AGND.  
EP  
_______________________________________________________________________________________  
9
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
OV  
CC  
AV  
CC  
INP  
12-BIT PIPELINE  
T/H  
MAX1214N  
ADC  
INN  
900  
900Ω  
DCLKP  
DCLKN  
COMMON-  
MODE BUFFER  
D0P/N  
D1P/N  
D2P/N  
CLOCK  
MANAGEMENT  
REFIO  
REFERENCE  
DIV1/DIV2  
REFADJ  
LVDS  
DATA  
PORT  
D11P/N  
CLKP  
CLKN  
ORP/ORN  
CLKDIV  
T/B  
OGND  
AGND  
Figure 1. Block Diagram  
pipeline stage. Digital error correction compensates for  
ADC comparator offsets in each pipeline stage and  
ensures no missing codes. The result is a 12-bit parallel  
digital output word in user-selectable two’s-complement  
or offset binary output formats with LVDS-compatible  
output levels. See Figure 1 for a more detailed view of  
the MAX1214N architecture.  
Detailed Description—  
Theory of Operation  
The MAX1214N uses a fully differential pipelined archi-  
tecture that allows for high-speed conversion, opti-  
mized accuracy, and linearity while minimizing power  
consumption.  
Both positive (INP) and negative/complementary ana-  
log input terminals (INN) are centered around a 0.7V  
common-mode voltage, and accept a differential ana-  
Analog Inputs (INP, INN)  
INP and INN are the fully differential inputs of the  
MAX1214N. Differential inputs usually feature good  
rejection of even-order harmonics, which allows for  
enhanced AC performance as the signals are progress-  
ing through the analog stages. The MAX1214N analog  
inputs are self-biased at a 0.7V common-mode voltage  
log input voltage swing of V / 4 each, resulting in a  
FS  
typical 1.39V  
differential full-scale signal swing.  
P-P  
Inputs INP and INN are sampled when the differential  
sampling clock signal transitions high. When using  
the clock-divide mode, the analog inputs are sampled  
at every other high transition of the differential sam-  
pling clock.  
and allow a 1.39V  
differential input voltage swing  
P-P  
(Figure 2). Both inputs are self-biased through 900  
resistors, resulting in a typical differential input resis-  
tance of 1.8k. Drive the analog inputs of the  
MAX1214N in AC-coupled configuration to achieve the  
best dynamic performance. See the Transformer-  
Coupled, Differential Analog Input Drive section.  
Each pipeline converter stage converts its input voltage  
to a digital output code. At every stage, except the last,  
the error between the input voltage and the digital out-  
put code is multiplied and passed along to the next  
10 ______________________________________________________________________________________  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
AV  
CC  
T/H  
C
MAX1214N  
INP  
INN  
C
C
P
P
S
900  
900Ω  
12-BIT PIPELINE  
ADC  
C
S
FROM CLOCK-  
MANAGEMENT BLOCK  
TO COMMON MODE  
C
C
IS THE SAMPLING CAPACITANCE.  
IS THE PARASITIC CAPACITANCE ~ 1pF.  
S
P
V
+ V / 4  
FS  
CM  
INP  
V
CM  
INN  
V
- V / 4  
FS  
CM  
GND  
+V / 2  
FS  
INP - INN  
GND  
-V / 2  
FS  
Figure 2. Simplified Analog Input Architecture and Allowable Input Voltage Range  
______________________________________________________________________________________ 11  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
The MAX1214N also features an internal clock-manage-  
On-Chip Reference Circuit  
The MAX1214N features an internal 1.24V-bandgap refer-  
ence circuit (Figure 3), which, in combination with an  
internal reference-scaling amplifier, determines the FSR  
of the MAX1214N. Bypass REFIO with a 0.1µF capacitor  
to AGND. To compensate for gain errors or increase/de-  
crease the ADC’s FSR, the voltage of this bandgap refer-  
ence can be indirectly adjusted by adding an external  
resistor (e.g., 100ktrim potentiometer) between  
REFADJ and AGND or REFADJ and REFIO. See the  
Applications Information section for a detailed description  
of this process.  
ment circuit (duty-cycle equalizer) that ensures the  
clock signal applied to inputs CLKP and CLKN is  
processed to provide a 50% duty-cycle clock signal  
that desensitizes the performance of the converter to  
variations in the duty cycle of the input clock source.  
Note that the clock duty-cycle equalizer cannot be  
turned off externally and requires a minimum 20MHz  
clock frequency to allow the device to meet data sheet  
specifications.  
Data Clock Outputs (DCLKP, DCLKN)  
The MAX1214N features a differential clock output,  
which can be used to latch the digital output data with  
an external latch or receiver. Additionally, the clock out-  
put can be used to synchronize external devices (e.g.,  
FPGAs) to the ADC. DCLKP and DCLKN are differential  
outputs with LVDS-compatible voltage levels. There is a  
3.95ns delay time between the rising (falling) edge of  
CLKP (CLKN) and the rising edge of DCLKP (DCLKN).  
See Figure 5 for timing details.  
To disable the internal reference, connect REFADJ to  
AV . Apply an external, stable reference to set the  
CC  
converter’s full scale. To enable the internal reference,  
connect REFADJ to AGND.  
Clock Inputs (CLKP, CLKN)  
Drive the clock inputs of the MAX1214N with an LVDS- or  
LVPECL-compatible clock to achieve the best dynamic  
performance. The clock signal source must be of high  
quality and low phase noise to avoid any degradation in  
the noise performance of the ADC. The clock inputs  
(CLKP, CLKN) are internally biased to 1.15V and accept  
Divide-by-2 Clock Control (CLKDIV)  
The MAX1214N offers a clock control line (CLKDIV),  
which supports the reduction of clock jitter in a system.  
Connect CLKDIV to OGND to enable the ADC’s internal  
divide-by-2 clock divider. Data is now updated at one-  
half the ADC’s input clock rate. CLKDIV has an internal  
pulldown resistor and can be left open for applications  
that require this divide-by-2 mode. Connecting CLKDIV  
a typical 0.5V  
differential signal swing (Figure 4). See  
P-P  
the Differential, AC-Coupled LVPECL-Compatible Clock  
Input section for more circuit details on how to drive  
CLKP and CLKN appropriately. Although not recom-  
mended, the clock inputs also accept a single-ended  
input signal.  
to OV  
disables the divide-by-2 mode.  
CC  
REFERENCE-  
SCALING AMPLIFIER  
REFT  
ADC FULL SCALE = REFT - REFB  
G
REFB  
REFERENCE  
BUFFER  
REFIO  
1V  
0.1µF  
REFADJ*  
CONTROL LINE TO  
DISABLE REFERENCE BUFFER  
100*  
*REFADJ MAY  
BE SHORTED TO  
AGND DIRECTLY.  
MAX1214N  
AV  
CC  
AV / 2  
CC  
REFT: TOP OF REFERENCE LADDER.  
REFB: BOTTOM OF REFERENCE LADDER.  
Figure 3. Simplified Reference Architecture  
12 ______________________________________________________________________________________  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
Digital Outputs (D0P/N–D11P/N, DCLKP/N,  
ORP/N) and Control Input T/B  
AV  
DD  
Digital outputs D0P/N–D11P/N, DCLKP/N, and ORP/N  
are LVDS compatible, and data on D0P/N–D11P/N is  
presented in either binary or two’s-complement format  
(Table 1). The T/B control line is an LVCMOS-compati-  
ble input, which allows the user to select the desired  
2.89k  
CLKP  
output format. Pulling T/B low outputs data in two’s  
complement and pulling it high presents data in offset  
binary format on the 12-bit parallel bus. T/B has an  
internal pulldown resistor and may be left unconnected  
in applications using only two’s-complement output for-  
mat. All LVDS outputs provide a typical 0.325V voltage  
swing around a 1.2V common-mode voltage, and must  
be terminated at the far end of each transmission line pair  
(true and complementary) with 100. Apply a 1.7V to  
5.35kΩ  
5.35kΩ  
CLKN  
5.35kΩ  
1.9V voltage supply at OV to power the LVDS outputs.  
CC  
AGND  
The MAX1214N offers an additional differential output  
pair (ORP, ORN) to flag out-of-range conditions, where  
out-of-range is above positive or below negative full  
scale. An out-of-range condition is identified with ORP  
(ORN) transitioning high (low).  
Figure 4. Simplified Clock Input Architecture  
Note: Although a differential LVDS output architecture  
reduces single-ended transients to the supply and  
ground planes, capacitive loading on the digital out-  
puts should still be kept as low as possible. Using  
LVDS buffers on the digital outputs of the ADC when  
driving larger loads may improve overall performance  
and reduce system-timing constraints.  
System Timing Requirements  
Figure 5 shows the relationship between the clock input  
and output, analog input, sampling event, and data out-  
put. The MAX1214N samples on the rising (falling)  
edge of CLKP (CLKN). Output data is valid on the next  
rising (falling) edge of the DCLKP (DCLKN) clock, but  
has an internal latency of 11 clock cycles.  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
SAMPLING EVENT  
INP  
INN  
t
AD  
CLKN  
N
N + 1  
N + 10  
N - 1  
N + 11  
N + 12  
CLKP  
t
t
CL  
CH  
t
CPDL  
DCLKN  
N + 1  
N - 11  
N - 10  
N
DCLKP  
t
LATENCY  
t
PDL  
D0P/D0N–  
D11P/D11N  
ORP/N  
N - 11  
N - 10  
N - 9  
N - 1  
N
N + 1  
t
- t ~ 0.4 x t  
CPDL PDL  
WITH t  
= 1 / f  
SAMPLE SAMPLE  
SAMPLE  
NOTE: THE ADC SAMPLES ON THE RISING EDGE OF CLKP. THE RISING EDGE OF DCLKP CAN BE USED TO EXTERNALLY LATCH THE OUTPUT DATA.  
Figure 5. System and Output Timing Diagram  
______________________________________________________________________________________ 13  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
Table 1. MAX1214N Digital Output Coding  
INP ANALOG  
INPUT VOLTAGE  
LEVEL  
INN ANALOG  
INPUT VOLTAGE  
LEVEL  
OUT-OF-RANGE  
ORP (ORN)  
BINARY DIGITAL OUTPUT  
CODE (D11P/N–D0P/N)  
TWO’S-COMPLEMENT DIGITAL  
OUTPUT CODE (D11P/N–D0P/N)  
1111 1111 1111  
(exceeds +FS, OR set)  
0111 1111 1111  
(exceeds +FS, OR set)  
> V  
+ V / 4  
< V  
- V / 4  
1 (0)  
0 (1)  
0 (1)  
0 (1)  
1 (0)  
CM  
FS  
CM  
FS  
V
+ V / 4  
V
- V / 4  
1111 1111 1111 (+FS)  
0111 1111 1111 (+FS)  
CM  
FS  
CM  
CM  
FS  
1000 0000 0000 or  
0111 1111 1111 (FS/2)  
0000 0000 0000 or  
1111 1111 1111 (FS/2)  
V
V
CM  
V
- V / 4  
V
+ V / 4  
0000 0000 0000 (-FS)  
1000 0000 0000 (-FS)  
CM  
FS  
CM  
FS  
0000 0000 0000  
(exceeds -FS, OR set)  
1000 0000 0000  
(exceeds -FS, OR set)  
< V  
+ V / 4  
> V  
- V / 4  
CM FS  
CM  
FS  
CONFIGURATION TO INCREASE THE FSR OF THE MAX1214N  
CONFIGURATION TO DECREASE THE FSR OF THE MAX1214N  
REFERENCE-  
SCALING  
AMPLIFIER  
REFERENCE-  
SCALING  
AMPLIFIER  
ADC FULL SCALE = REFT - REFB  
ADC FULL SCALE = REFT - REFB  
REFT  
REFB  
REFT  
REFB  
G
G
REFERENCE  
BUFFER  
REFERENCE  
BUFFER  
1V  
1V  
REFIO  
REFIO  
0.1µF  
0.1µF  
13kTO  
1MΩ  
REFADJ  
REFADJ  
CONTROL LINE  
TO DISABLE  
REFERENCE BUFFER  
CONTROL LINE  
TO DISABLE  
REFERENCE BUFFER  
13kTO  
1MΩ  
MAX1214N  
MAX1214N  
AV  
CC  
AV / 2  
CC  
AV  
CC  
AV / 2  
CC  
REFT: TOP OF REFERENCE LADDER.  
REFB: BOTTOM OF REFERENCE LADDER.  
Figure 6a. Circuit Suggestions to Adjust the ADC’s Full-Scale Range  
tor value between REFADJ and REFIO increases the  
FSR of the data converter. Figure 6a shows the two  
possible configurations and their impact on the overall  
full-scale range adjustment of the MAX1214N. Do not  
use resistor values of less than 13kto avoid instability  
of the internal gain regulation loop for the bandgap ref-  
erence. See Figure 6b for the resulting FSR for a series  
of resistor values.  
Applications Information  
FSR Adjustments Using the Internal  
Bandgap Reference  
The MAX1214N supports a 10% ( 5%) full-scale  
adjustment range. To decrease the full-scale signal  
range, add an external resistor value ranging from  
13kto 1Mbetween REFADJ and AGND. Adding a  
variable resistor, potentiometer, or predetermined resis-  
14 ______________________________________________________________________________________  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
Differential, AC-Coupled,  
LVPECL-Compatible Clock Input  
The MAX1214N dynamic performance depends on the  
use of a very clean clock source. The phase noise floor  
FS VOLTAGE  
vs. ADJUST RESISTOR  
of the clock source has a negative impact on the SNR  
performance. Spurious signals on the clock signal  
source also affect the ADC’s dynamic range. The pre-  
ferred method of clocking the MAX1214N is differential-  
ly with LVDS- or LVPECL-compatible input levels. The  
fast data transition rates of these logic families minimize  
the clock-input circuitry’s transition uncertainty, thereby  
improving the SNR performance. To accomplish this, a  
50reverse-terminated clock signal source with low  
phase noise is AC-coupled into a fast differential  
receiver such as the MC100LVEL16 (Figure 7). The  
receiver produces the necessary LVPECL output levels  
to drive the clock inputs of the data converter.  
1.34  
1.32  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
RESISTOR VALUE APPLIED BETWEEN  
REFADJ AND REFIO INCREASES V  
FS  
RESISTOR VALUE APPLIED BETWEEN  
REFADJ AND AGND DECREASES V  
FS  
0
100 200 300 400 500 600 700 800 900 1000  
Transformer-Coupled,  
Differential Analog Input Drive  
FS ADJUST RESISTOR (k)  
The MAX1214N provides the best SFDR and THD with  
fully differential input signals and it is not recommend-  
ed to drive the ADC inputs in single-ended configura-  
tion. In differential input mode, even-order harmonics  
are usually lower since INP and INN are balanced, and  
Figure 6b. FS Adjustment Range vs. FS Adjustment Resistor  
V
CLK  
8
0.1µF  
10kΩ  
0.1µF  
SINGLE-ENDED  
INPUT TERMINAL  
0.1µF  
2
3
7
6
150Ω  
0.1µF  
50Ω  
MC100LVEL16D  
150Ω  
510Ω  
510Ω  
AV  
CC  
OV  
CC  
4
5
0.01µF  
CLKN CLKP  
INP  
INN  
D0P/N–D11P/N, 0RP/N  
MAX1214N  
12  
AGND  
OGND  
Figure 7. Differential, AC-Coupled, PECL-Compatible Clock Input Configuration  
______________________________________________________________________________________ 15  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
each of the ADC inputs only requires half the signal  
swing compared to a single-ended configuration.  
To further enhance THD and SFDR performance at high  
input frequencies (> 100MHz), a second transformer  
(Figure 8) should be placed in series with the single-  
ended-to-differential conversion transformer. This trans-  
former reduces the increase of even-order harmonics  
at high frequencies.  
Wideband RF transformers provide an excellent solu-  
tion to convert a single-ended signal to a fully differen-  
tial signal, required by the MAX1214N to reach its  
optimum dynamic performance. Apply a secondary-  
side termination of a 1:1 transformer (e.g., Mini-Circuit’s  
ADT1-1WT) into two separate 24.9resistors. Higher  
source impedance values can be used at the expense  
of degradation in dynamic performance. This configu-  
ration optimizes THD and SFDR performance of the  
ADC by reducing the effects of transformer parasitics.  
However, the source impedance combined with the  
shunt capacitance provided by a PC board and the  
ADC’s parasitic capacitance limit the ADC’s full-power  
input bandwidth.  
Single-Ended, AC-Coupled Analog Inputs  
Although not recommended, the MAX1214N can be used  
in single-ended mode (Figure 9). AC-couple the analog  
signals to the positive input INP through a 0.1µF capacitor  
terminated with a 49.9resistor to AGND. Terminate the  
negative input INN with a 49.9resistor in series with a  
0.1µF capacitor to AGND. In single-ended mode, the  
input range is limited to approximately half of the FSR of  
the device, and dynamic performance usually degrades.  
AV  
CC  
OV  
CC  
0.1µF  
SINGLE-ENDED  
INPUT TERMINAL  
6
INP  
0.1µF  
4
ADT1-1WT  
ADT1-1WT  
1
5
3
3
5
D0P/N–D11P/N,  
0RP/N  
10Ω  
10Ω  
24.9Ω  
24.9Ω  
12  
2
2
4
MAX1214N  
6
1
12  
INN  
0.1µF  
OGND  
AGND  
Figure 8. Analog Input Configuration with Back-to-Back Transformers and Secondary-Side Termination  
AV  
CC  
OV  
CC  
SINGLE-ENDED  
INPUT TERMINAL  
0.1µF  
0.1µF  
INP  
INN  
D0P/N–D11P/N, 0RP/N  
49.9Ω  
1%  
MAX1214N  
12  
49.9Ω  
1%  
AGND  
OGND  
Figure 9. Single-Ended, AC-Coupled Analog Input Configuration  
16 ______________________________________________________________________________________  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
match the physical location of analog and digital  
Grounding, Bypassing, and  
Board Layout Considerations  
ground on the ADC’s package. The two ground planes  
should be joined at a single point so the noisy digital  
ground currents do not interfere with the analog ground  
plane. The dynamic currents that may need to travel  
long distances before they are recombined at a com-  
mon source ground, resulting in large and undesirable  
ground loops, are a major concern with this approach.  
Ground loops can degrade the input noise by coupling  
back to the analog front-end of the converter, resulting  
in increased spurious activity, leading to decreased  
noise performance.  
The MAX1214N requires board-layout design tech-  
niques suitable for high-speed data converters. This  
ADC provides separate analog and digital power sup-  
plies. The analog and digital supply voltage pins  
accept 1.7V to 1.9V input voltage ranges. Although  
both supply types can be combined and supplied from  
one source, it is recommended to use separate sources  
to cut down on performance degradation caused by dig-  
ital switching currents, which can couple into the analog  
supply network. Isolate analog and digital supplies  
Alternatively, all ground pins could share the same  
ground plane, if the ground plane is sufficiently isolated  
from any noisy, digital systems ground. To minimize the  
coupling of the digital output signals from the analog  
input, segregate the digital output bus carefully from the  
analog input circuitry. To further minimize the effects of  
digital noise coupling, ground return vias can be posi-  
tioned throughout the layout to divert digital switching  
currents away from the sensitive analog sections of the  
ADC. This approach does not require split ground  
planes, but can be accomplished by placing substantial  
ground connections between the analog front-end and  
the digital outputs.  
(AV  
and OV ) where they enter the PC board with  
CC  
separate networks of ferrite beads and capacitors to  
their corresponding grounds (AGND, OGND).  
CC  
To achieve optimum performance, provide each supply  
with a separate network of a 47µF tantalum capacitor  
and parallel combinations of 10µF and 1µF ceramic  
capacitors. Additionally, the ADC requires each supply  
pin to be bypassed with separate 0.1µF ceramic  
capacitors (Figure 10). Locate these capacitors directly  
at the ADC supply pins or as close as possible to the  
MAX1214N. Choose surface-mount capacitors, whose  
preferred location should be on the same side as the  
converter to save space and minimize the inductance.  
If close placement on the same side is not possible,  
these bypassing capacitors may be routed through  
vias to the bottom side of the PC board.  
The MAX1214N is packaged in a 68-pin QFN-EP pack-  
age (package code: G6800-4), providing greater  
design flexibility, increased thermal dissipation, and  
optimized AC performance of the ADC. The exposed  
paddle (EP) must be soldered down to AGND.  
Multilayer boards with separated ground and power  
planes produce the highest level of signal integrity.  
Consider the use of a split ground plane arranged to  
In this package, the data converter die is attached to  
an EP lead frame with the back of this frame exposed  
BYPASSING—ADC LEVEL  
BYPASSING—BOARD LEVEL  
AV  
OV  
AV  
CC  
CC  
CC  
0.1µF  
0.1µF  
ANALOG POWER-  
SUPPLY SOURCE  
10µF  
47µF  
1µF  
AGND  
OGND  
D0P/N–D11P/N, 0RP/N  
OV  
CC  
MAX1214N  
12  
DIGITAL/OUTPUT  
DRIVER POWER-  
SUPPLY SOURCE  
10µF  
47µF  
1µF  
NOTE: EACH POWER-SUPPLY PIN (ANALOG  
AND DIGITAL) SHOULD BE DECOUPLED WITH  
AN INDIVIDUAL 0.1µF CAPACITOR AS CLOSE  
AS POSSIBLE TO THE ADC.  
AGND  
OGND  
Figure 10. Grounding, Bypassing, and Decoupling Recommendations for the MAX1214N  
______________________________________________________________________________________ 17  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
at the package bottom surface, facing the PC board  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital sam-  
ples, the theoretical maximum SNR is the ratio of the full-  
scale analog input (RMS value) to the RMS quantization  
error (residual error). The ideal, theoretical minimum ana-  
log-to-digital noise is caused by quantization error only  
and results directly from the ADC’s resolution (N bits):  
side of the package. This allows a solid attachment of  
the package to the board with standard infrared (IR)  
flow soldering techniques.  
Thermal efficiency is one of the factors for selecting a  
package with an exposed paddle for the MAX1214N.  
The exposed paddle improves thermal and ensures a  
solid ground connection between the ADC and the PC  
board’s analog ground layer.  
SNR  
= 6.02 x N + 1.76  
[max]  
In reality, other noise sources such as thermal noise,  
clock jitter, signal phase noise, and transfer function  
nonlinearities also contribute to the SNR calculation and  
should be considered when determining the signal-to-  
noise ratio in ADC. The SNR for the MAX1214N is speci-  
fied in decibels (dB), however, SNR can also be  
specified in dBFS. To obtain the SNR in dBFS, simply  
subtract the amplitude of the input tone (this number is  
given in dBFS) at which the SNR is measured from the  
SNR number in dB. For example, an ADC having an  
SNR of 67dB resulting from an input tone with amplitude  
-1dBFS will have an SNR of 67 - (-1) = 68dBFS.  
Considerable care must be taken when routing the digi-  
tal output traces for a high-speed, high-resolution data  
converter. Keep trace lengths at a minimum and place  
minimal capacitive loading (less than 5pF) on any digi-  
tal trace to prevent coupling to sensitive analog sec-  
tions of the ADC. It is recommended running the LVDS  
output traces as differential lines with 100matched  
impedance from the ADC to the LVDS load device.  
Static Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. This straight  
line can be either a best straight-line fit or a line drawn  
between the end points of the transfer function, once off-  
set and gain errors have been nullified. The static linearity  
parameters for the MAX1214N are measured using the  
histogram method with a 10MHz input frequency.  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to all spectral components excluding the fundamen-  
tal and the DC offset. In the case of the MAX1214N,  
SINAD is computed from a curve fit.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1 LSB. A DNL  
error specification of less than 1 LSB guarantees no  
missing codes and a monotonic transfer function. The  
MAX1214N’s DNL specification is measured with the  
histogram method based on a 10MHz input tone.  
CLKP  
CLKN  
ANALOG  
INPUT  
t
AD  
t
AJ  
Dynamic Parameter Definitions  
SAMPLED  
Aperture Jitter  
DATA (T/H)  
Figure 11 shows the aperture jitter (t ), which is the  
AJ  
sample-to-sample variation in the aperture delay.  
HOLD  
TRACK  
TRACK  
T/H  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
rising edge of the sampling clock and the instant when  
an actual sample is taken (Figure 11).  
Figure 11. Aperture Jitter/Delay Specifications  
18 ______________________________________________________________________________________  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
The fundamental input tone amplitudes (V1 and V2) are  
at -7dBFS. The intermodulation products are the ampli-  
tudes of the output spectrum at the following frequencies:  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the RMS amplitude of the carrier  
frequency (maximum signal component) to the RMS  
value of the next-largest noise or harmonic distortion  
component. SFDR is usually measured in dBc with  
respect to the carrier frequency amplitude or in dBFS  
with respect to the ADC’s full-scale range.  
• Second-order intermodulation products: f  
+ f  
,
,
,
,
IN1  
IN2  
f
- f  
IN2 IN1  
• Third-order intermodulation products: 2 x f  
- f  
IN1  
IN2  
2 x f  
- f , 2 x f  
IN2 IN1  
+ f , 2 x f  
+ f  
IN2 IN1  
IN1  
IN2  
Intermodulation Distortion (IMD)  
IMD is the ratio of the RMS sum of the intermodulation  
products to the RMS sum of the two fundamental input  
tones. This is expressed as:  
• Fourth-order intermodulation products: 3 x f  
- f  
IN1 IN2  
3 x f  
- f , 3 x f  
IN2 IN1  
+ f , 3 x f  
+ f  
IN2 IN1  
IN1  
IN2  
• Fifth-order intermodulation products: 3 x f  
- 2 x f  
IN1  
IN2  
IN1  
3 x f  
- 2 x f , 3 x f  
+ 2 x f , 3 x f  
+ 2 x f  
IN2  
IN1  
IN1  
IN2  
IN2  
2
2
2
2
Full-Power Bandwidth  
V
+ V  
+......+ V  
+ V  
IM1  
IM2  
IM3 IMn  
IMD = 20 × log  
A large -1dBFS analog input signal is applied to an  
ADC and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by 3dB. The -3dB point is defined as  
the full-power input bandwidth frequency of the ADC.  
2
2
V
+ V  
2
1
Pin Configuration  
TOP VIEW  
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52  
AV  
1
2
3
4
5
6
7
8
9
51 D8P  
50 D8N  
49 D7P  
48 D7N  
47 D6P  
46 D6N  
45 OGND  
CC  
AGND  
REFIO  
EP  
REFADJ  
AGND  
AV  
CC  
AGND  
INP  
44 OV  
CC  
INN  
43 DCLKP  
42 DCLKN  
MAX1214N  
AGND 10  
AV  
AV  
AV  
AV  
11  
12  
13  
14  
41 OV  
CC  
CC  
CC  
CC  
CC  
40 D5P  
39 D5N  
38 D4P  
37 D4N  
36 D3P  
35 D3N  
AGND 15  
AGND 16  
CLKDIV 17  
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
QFN  
EP = EXPOSED PADDLE  
______________________________________________________________________________________ 19  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
For the MAX1214N, the package code is G6800-4.  
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
20 ______________________________________________________________________________________  
1.8V, Low-Power, 12-Bit, 210Msps  
ADC for Broadband Applications  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  
Heaney  

相关型号:

MAX1214NEGK+TD

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.9 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX1214NEGK-D

1.8V, Low-Power, 12-Bit, 210Msps ADC for Broadband Applications
MAXIM

MAX1214NEGK-TD

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX1215

1.8V, 12-Bit, 170Msps ADC for Broadband Applications
MAXIM

MAX1215EGK

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, MO-220, TQFN-68
MAXIM

MAX1215EGK+D

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX1215EGK+TD

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX1215EGK-D

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX1215EGK-TD

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX1215EVKIT

Up to 170Msps/210Msps/250Msps Sampling Rate
MAXIM

MAX1215N

1.8V, Low-Power, 12-Bit, 250Msps ADC for Broadband Applications
MAXIM

MAX1215NEGK+D

1.8V, Low-Power, 12-Bit, 250Msps ADC for Broadband Applications
MAXIM