MAX12554ETL/GG8 [MAXIM]

ADC, Proprietary Method,;
MAX12554ETL/GG8
型号: MAX12554ETL/GG8
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Proprietary Method,

转换器
文件: 总28页 (文件大小:1052K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3440; Rev 0; 10/04  
14-Bit, 80Msps, 3.3V ADC  
General Description  
Features  
Direct IF Sampling Up to 400MHz  
The MAX12554 is a 3.3V, 14-bit, 80Msps analog-to-digi-  
tal converter (ADC) featuring a fully differential wideband  
track-and-hold (T/H) input amplifier, driving a low-noise  
internal quantizer. The analog input stage accepts sin-  
gle-ended or differential signals. The MAX12554 is opti-  
mized for high dynamic performance, low power, and  
small size. Excellent dynamic performance is maintained  
from baseband to input frequencies of 175MHz and  
beyond, making the MAX12554 ideal for intermediate-  
frequency (IF) sampling applications.  
Excellent Dynamic Performance  
72.4dB/70.9dB SNR at f = 3MHz/175MHz  
IN  
86.2dBc/82.5dBc SFDR at f = 3MHz/175MHz  
IN  
Low Noise Floor: -74.8dBFS  
3.3V Low-Power Operation  
396mW (Single-Ended Clock Mode)  
429mW (Differential Clock Mode)  
300µW (Power-Down Mode)  
Powered from a single 3.3V supply, the MAX12554 con-  
sumes only 429mW while delivering a typical 70.9dB  
signal-to-noise ratio (SNR) performance at a 175MHz  
input frequency. In addition to low operating power, the  
MAX12554 features a 300µW power-down mode to  
conserve power during idle periods.  
Fully Differential or Single-Ended Analog Input  
Adjustable Full-Scale Analog Input Range  
0.35V to 1.10V  
Common-Mode Reference  
A flexible reference structure allows the MAX12554 to use  
the internal 2.048V bandgap reference or accept an  
externally applied reference. The reference structure  
allows the full-scale analog input range to be adjusted  
from 0.35V to 1.10V. The MAX12554 provides a com-  
mon-mode reference to simplify design and reduce exter-  
nal component count in differential analog input circuits.  
The MAX12554 supports either a single-ended or differ-  
ential input clock. Wide variations in the clock duty  
cycle are compensated with the ADC’s internal duty-  
cycle equalizer (DCE).  
ADC conversion results are available through a 14-bit,  
parallel, CMOS-compatible output bus. The digital out-  
put format is pin selectable to be either two’s comple-  
ment or Gray code. A data-valid indicator eliminates  
external components that are normally required for reli-  
able digital interfacing. A separate digital power input  
accepts a wide 1.7V to 3.6V supply, allowing the  
MAX12554 to interface with various logic levels.  
CMOS-Compatible Outputs in Two’s Complement  
or Gray Code  
Data-Valid Indicator Simplifies Digital Interface  
Data Out-of-Range Indicator  
Miniature, 6mm x 6mm x 0.8mm 40-Pin Thin QFN  
Package with Exposed Paddle  
Evaluation Kit Available (Order MAX12555EVKIT)  
Ordering Information  
PART*  
PIN-PACKAGE  
40 Thin QFN  
40 Thin QFN  
PKG CODE  
T4066-3  
MAX12554ETL  
MAX12554ETL+  
T4066-3  
+Denotes lead-free package.  
*All devices specified over the -40°C to +85°C operating range.  
The MAX12554 is available in a 6mm x 6mm x 0.8mm,  
40-pin thin QFN package with exposed paddle (EP),  
and is specified for the extended industrial (-40°C to  
+85°C) temperature range.  
See the Pin-Compatible Versions table for a complete  
family of 14-bit and 12-bit high-speed ADCs.  
Pin-Compatible Versions  
SAMPLING  
RESOLUTION  
(BITS)  
TARGET  
RATE  
(Msps)  
PART  
APPLICATION  
MAX12555  
MAX12554  
MAX12553  
MAX19538  
MAX1209  
MAX1211  
MAX1208  
MAX1207  
MAX1206  
95  
80  
65  
95  
80  
65  
80  
65  
40  
14  
14  
14  
12  
12  
12  
12  
12  
12  
IF/Baseband  
IF/Baseband  
IF/Baseband  
IF/Baseband  
IF  
Applications  
IF and Baseband Communication Receivers  
Cellular, Point-to-Point Microwave, HFC, WLAN  
Medical Imaging Including Positron Emission  
Tomography (PET)  
IF  
Video Imaging  
Baseband  
Baseband  
Baseband  
Portable Instrumentation  
Low-Power Data Acquisition  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
14-Bit, 80Msps, 3.3V ADC  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND...........................................................-0.3V to +3.6V  
Continuous Power Dissipation (T = +70°C)  
A
OV  
to GND........-0.3V to the lower of (V  
+ 0.3V) and +3.6V  
+ 0.3V) and +3.6V  
40-Pin Thin QFN 6mm x 6mm x 0.8mm  
DD  
DD  
DD  
INP, INN to GND ...-0.3V to the lower of (V  
REFIN, REFOUT, REFP, REFN, COM  
to GND................-0.3V to the lower of (V  
CLKP, CLKN, CLKTYP, G/T, DCE,  
(derated 26.3mW/°C above +70°C)........................2105.3mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering 10s) ..................................+300°C  
+ 0.3V) and +3.6V  
+ 0.3V) and +3.6V  
DD  
DD  
PD to GND ........-0.3V to the lower of (V  
D13–D0, DAV, DOR to GND....................-0.3V to (OV  
+ 0.3V)  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 3.3V, OV = 1.8V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle, 1.4V square wave), T = -40°C to +85°C, unless otherwise noted. Typical values are at  
P-P A  
CLK  
T
A
= +25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (Note 2)  
Resolution  
14  
Bits  
LSB  
Integral Nonlinearity  
INL  
f
f
= 3MHz (Note 3)  
2.4  
0.5  
4.9  
IN  
= 3MHz, no missing codes over  
IN  
Differential Nonlinearity  
DNL  
-1  
+1.3  
LSB  
temperature (Note 4)  
Offset Error  
V
V
= 2.048V  
= 2.048V  
0.1  
0.5  
0.72  
4.9  
%FS  
%FS  
REFIN  
REFIN  
Gain Error  
ANALOG INPUT (INP, INN)  
Differential Input Voltage Range  
Common-Mode Input Voltage  
V
Differential or single-ended inputs  
1.024  
V
V
DIFF  
V
/ 2  
DD  
2
C
Fixed capacitance to ground  
Switched capacitance  
PAR  
Input Capacitance  
(Figure 3)  
pF  
C
4.5  
SAMPLE  
CONVERSION RATE  
Maximum Clock Frequency  
Minimum Clock Frequency  
f
80  
MHz  
MHz  
CLK  
5
Clock  
cycles  
Data Latency  
Figure 6  
8.0  
DYNAMIC CHARACTERISTICS (Differential Inputs) (Note 2)  
Small-Signal Noise Floor  
SSNF  
Input at less than -35dBFS  
-74.8  
72.4  
72.0  
71.9  
70.9  
72.1  
71.7  
71.6  
70.3  
dBFS  
dB  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
f
IN  
= 3MHz at -0.5dBFS (Note 5)  
= 40MHz at -0.5dBFS  
69.0  
Signal-to-Noise Ratio  
SNR  
= 70MHz at -0.5dBFS  
= 175MHz at -0.5dBFS (Note 5)  
= 3MHz at -0.5dBFS (Note 5)  
= 40MHz at -0.5dBFS  
68.0  
68.9  
Signal-to-Noise and Distortion  
SINAD  
dB  
= 70MHz at -0.5dBFS  
= 175MHz at -0.5dBFS (Note 5)  
66.2  
2
_______________________________________________________________________________________  
14-Bit, 80Msps, 3.3V ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.3V, OV = 1.8V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle, 1.4V square wave), T = -40°C to +85°C, unless otherwise noted. Typical values are at  
P-P A  
CLK  
T
A
= +25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
= 3MHz at -0.5dBFS (Note 5)  
= 40MHz at -0.5dBFS  
= 70MHz at -0.5dBFS  
= 175MHz at -0.5dBFS (Note 5)  
= 3MHz at -0.5dBFS  
MIN  
TYP  
86.2  
84.6  
85.4  
82.5  
-84.8  
-84.0  
-82.6  
-79.4  
-91  
MAX  
UNITS  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
76.5  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Second Harmonic  
SFDR  
dBc  
69.0  
-75.9  
-69.0  
= 40MHz at -0.5dBFS  
= 70MHz at -0.5dBFS  
= 175MHz at -0.5dBFS  
= 3MHz at -0.5dBFS  
THD  
HD2  
HD3  
IMD  
IM3  
dBc  
dBc  
dBc  
dBc  
dBc  
= 40MHz at -0.5dBFS  
= 70MHz at -0.5dBFS  
= 175MHz at -0.5dBFS  
= 3MHz at -0.5dBFS  
-91  
-86  
-85  
-89  
= 40MHz at -0.5dBFS  
= 70MHz at -0.5dBFS  
= 175MHz at -0.5dBFS  
-85  
Third Harmonic  
-88  
-85  
f
f
= 68.5MHz at -7dBFS  
= 71.5MHz at -7dBFS  
IN1  
IN2  
-83  
-80  
-87  
-84  
84  
Intermodulation Distortion  
Third-Order Intermodulation  
f
f
= 172.5MHz at -7dBFS  
= 177.5MHz at -7dBFS  
IN1  
IN2  
f
f
= 68.5MHz at -7dBFS  
= 71.5MHz at -7dBFS  
IN1  
IN2  
f
f
= 172.5MHz at -7dBFS  
= 177.5MHz at -7dBFS  
IN1  
IN2  
f
f
= 68.5MHz at -7dBFS  
= 71.5MHz at -7dBFS  
IN1  
IN2  
Two-Tone Spurious-Free  
Dynamic Range  
SFDR  
dBc  
ns  
TT  
f
f
= 172.5MHz at -7dBFS  
= 177.5MHz at -7dBFS  
IN1  
80  
IN2  
Aperture Delay  
Aperture Jitter  
Output Noise  
t
Figure 4  
1.2  
AD  
t
AJ  
Figure 4  
<0.2  
1.05  
ps  
RMS  
n
INP = INN = COM  
LSB  
RMS  
OUT  
Clock  
cycles  
Overdrive Recovery Time  
10% beyond full scale  
1
_______________________________________________________________________________________  
3
14-Bit, 80Msps, 3.3V ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.3V, OV = 1.8V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle, 1.4V square wave), T = -40°C to +85°C, unless otherwise noted. Typical values are at  
P-P A  
CLK  
T
A
= +25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
, and V are generated internally)  
COM  
MIN  
TYP  
MAX  
UNITS  
INTERNAL REFERENCE (REFIN = REFOUT; V  
, V  
REFP REFN  
REFOUT Output Voltage  
COM Output Voltage  
V
1.979  
2.048  
1.65  
2.068  
V
V
REFOUT  
V
V
V
/ 2  
DD  
COM  
Differential-Reference Output  
Voltage  
V
= V  
- V  
= V x 3/4  
REFIN  
1.536  
V
REF  
REF  
REFP  
REFN  
REFOUT Load Regulation  
-1.0mA < I  
< +0.1mA  
35  
+50  
0.24  
2.1  
mV/mA  
ppm/°C  
REFOUT  
REFOUT Temperature Coefficient  
TC  
REF  
Short to V —sinking  
DD  
REFOUT Short-Circuit Current  
mA  
Short to GND—sourcing  
BUFFERED EXTERNAL REFERENCE (REFIN driven externally; V  
= 2.048V, V  
, V  
, and V  
are generated internally)  
REFIN  
REFP REFN  
COM  
REFIN Input Voltage  
REFP Output Voltage  
REFN Output Voltage  
COM Output Voltage  
V
2.048  
V
V
V
V
REFIN  
V
(V / 2) + (V  
x 3/8)  
2.418  
0.882  
1.65  
REFP  
DD  
REFIN  
V
(V / 2) - (V  
DD  
x 3/8)  
REFN  
REFIN  
V
V
/ 2  
DD  
1.60  
1.70  
COM  
Differential-Reference Output  
Voltage  
V
V
= V  
- V  
= V x 3/4  
REFIN  
1.462  
1.595  
V
REF  
REF  
REFP  
REFN  
Differential-Reference  
Temperature Coefficient  
25  
ppm/°C  
REFIN Input Resistance  
>50  
MΩ  
UNBUFFERED EXTERNAL REFERENCE (REFIN = GND; V  
, V  
, and V  
are applied externally)  
REFP REFN  
COM  
COM Input Voltage  
REFP Input Voltage  
REFN Input Voltage  
V
V
V
V
/2  
DD  
1.65  
0.768  
-0.768  
V
V
V
COM  
- V  
REFP  
REFN  
COM  
- V  
COM  
Differential-Reference Input  
Voltage  
V
V
= V  
- V  
= V x 3/4  
REFIN  
1.536  
V
REF  
REF  
REFP  
REFN  
REFP Sink Current  
I
V
V
V
= 2.418V  
= 0.882V  
= 1.650V  
1.2  
0.85  
0.85  
13  
mA  
mA  
mA  
pF  
REFP  
REFP  
REFN  
COM  
REFN Source Current  
COM Sink Current  
I
REFN  
I
COM  
REFP, REFN Capacitance  
COM Capacitance  
6
pF  
CLOCK INPUTS (CLKP, CLKN)  
Single-Ended Input High  
Threshold  
0.8 x  
V
CLKTYP = GND, CLKN = GND  
CLKTYP = GND, CLKN = GND  
CLKTYP = high  
V
V
IH  
V
DD  
Single-Ended Input Low  
Threshold  
0.2 x  
V
IL  
V
DD  
Minimum Differential Input  
Voltage Swing  
0.2  
V
P-P  
4
_______________________________________________________________________________________  
14-Bit, 80Msps, 3.3V ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.3V, OV = 1.8V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle, 1.4V square wave), T = -40°C to +85°C, unless otherwise noted. Typical values are at  
P-P A  
CLK  
T
A
= +25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
CLKTYP = high  
Figure 5  
MIN  
TYP  
MAX  
UNITS  
Differential Input Common-Mode  
Voltage  
V
/ 2  
V
DD  
Input Resistance  
R
C
5
2
kΩ  
CLK  
Input Capacitance  
pF  
CLK  
T
DIGITAL INPUTS (CLKTYP, G/ , PD)  
0.8 x  
Input High Threshold  
V
V
V
IH  
OV  
DD  
0.2 x  
OV  
Input Low Threshold  
V
IL  
DD  
V
V
= OV  
= 0  
5
5
IH  
IL  
DD  
Input Leakage Current  
Input Capacitance  
µA  
pF  
C
5
DIN  
DIGITAL OUTPUTS (D13–D0, DAV, DOR)  
D13–D0, DOR, I  
= 200µA  
0.2  
0.2  
SINK  
Output-Voltage Low  
V
V
V
OL  
DAV, I  
= 600µA  
SINK  
OV  
0.2  
-
DD  
D13–D0, DOR, I  
= 200µA  
SOURCE  
Output-Voltage High  
V
OH  
OV  
0.2  
-
DD  
DAV, I  
= 600µA  
SOURCE  
Tri-State Leakage Current  
I
(Note 6)  
(Note 6)  
(Note 6)  
5
µA  
pF  
pF  
LEAK  
D13–D0, DOR Tri-State Output  
Capacitance  
C
3
6
OUT  
DAV  
DAV Tri-State Output Capacitance  
POWER REQUIREMENTS  
Analog Supply Voltage  
C
V
3.15  
1.7  
3.3  
1.8  
3.60  
V
V
DD  
V
+
DD  
0.3V  
Digital Output Supply Voltage  
OV  
DD  
Normal operating mode,  
= 175MHz at -0.5dBFS,  
f
IN  
120  
CLKTYP = GND, single-ended clock  
Analog Supply Current  
I
mA  
VDD  
Normal operating mode,  
f
= 175MHz at -0.5dBFS,  
130  
0.1  
145  
IN  
CLKTYP = OV  
differential clock  
DD,  
Power-down mode clock idle, PD = OV  
DD  
_______________________________________________________________________________________  
5
14-Bit, 80Msps, 3.3V ADC  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 3.3V, OV = 1.8V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
= 80MHz (50% duty cycle, 1.4V square wave), T = -40°C to +85°C, unless otherwise noted. Typical values are at  
P-P A  
CLK  
T
A
= +25°C.) (Note 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Normal operating mode,  
f
IN  
= 175MHz at -0.5dBFS,  
396  
CLKTYP = GND, single-ended clock  
Analog Power Dissipation  
P
mW  
DISS  
Normal operating mode,  
f
= 175MHz at -0.5dBFS,  
429  
0.3  
8.6  
8
479  
IN  
CLKTYP = OV , differential clock  
DD  
Power-down mode clock idle, PD = OV  
DD  
DD  
Normal operating mode,  
f
IN  
= 175MHz at -0.5dBFS,  
mA  
µA  
Digital Output Supply Current  
I
OVDD  
OV  
= 1.8V, C 5pF  
L
DD  
Power-down mode clock idle, PD = OV  
TIMING CHARACTERISTICS (Figure 6)  
Clock Pulse-Width High  
Clock Pulse-Width Low  
Data-Valid Delay  
t
6.2  
6.2  
5.2  
ns  
ns  
ns  
CH  
t
CL  
t
C = 5pF (Note 7)  
L
DAV  
Data Setup Time Before Rising  
Edge of DAV  
t
C = 5pF (Note 3, Note 7)  
5.5  
5.5  
ns  
SETUP  
L
Data Hold Time After Rising Edge  
of DAV  
t
C = 5pF (Note 3, Note 7)  
L
ns  
HOLD  
Wake-Up Time from Power-Down  
t
V
= 2.048V  
10  
ms  
WAKE  
REFIN  
Note 1: Specifications +25°C guaranteed by production test; <+25°C guaranteed by design and characterization.  
Note 2: See definitions in the Parameter Definitions section at the end of this data sheet.  
Note 3: Guaranteed by design and characterization.  
Note 4: Specifications guaranteed by design and characterization. Devices tested to ensure no missing codes during production  
test.  
Note 5: Due to test-equipment-jitter limitations at 175MHz, 0.15% of the spectrum on each side of the fundamental is excluded from  
the spectral analysis.  
Note 6: During power-down, D13–D0, DOR, and DAV are high impedance.  
Note 7: Digital outputs settle to V or V .  
IH  
IL  
6
_______________________________________________________________________________________  
14-Bit, 80Msps, 3.3V ADC  
Typical Operating Characteristics  
(V = 3.3V, OV = 1.8V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
80MHz (50% duty cycle, 1.4V  
square wave), T = +25°C, unless otherwise noted.)  
A
P-P  
CLK  
SINGLE-TONE FFT PLOT  
(8192-POINT DATA RECORD)  
SINGLE-TONE FFT PLOT  
(8192-POINT DATA RECORD)  
SINGLE-TONE FFT PLOT  
(8192-POINT DATA RECORD)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
f
A
= 80MHz  
= 39.89257813MHz  
= -0.4dBFS  
SNR = 73.00dB  
SINAD = 72.02dB  
THD = -78.9dBc  
SFDR = 79.6dBc  
f
f
A
= 80MHz  
= 69.87304688MHz  
= -0.6dBFS  
CLK  
IN  
IN  
CLK  
IN  
IN  
f
f
A
= 80MHz  
= 2.99804688MHz  
= -0.5dBFS  
CLK  
IN  
IN  
-10  
-20  
-30  
SNR = 73.49dB  
SINAD = 73.26dB  
THD = -86.2dBc  
SFDR = 89.2dBc  
SNR = 72.65dB  
SINAD = 72.23dB  
THD = -82.6dBc  
SFDR = 84.6dBc  
-40  
-50  
-60  
HD3  
-70  
HD2 HD3  
HD3  
HD2  
-80  
-90  
-100  
-110  
0
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
0
0
0
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
0
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
SINGLE-TONE FFT PLOT  
(8192-POINT DATA RECORD)  
SINGLE-TONE FFT PLOT  
(8192-POINT DATA RECORD)  
TWO-TONE FFT PLOT  
(16,384-POINT DATA RECORD)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
f
A
= 80MHz  
= 175.1074219MHz  
= -0.5dBFS  
CLK  
IN  
IN  
f
f
A
= 80MHz  
= 225.1074219MHz  
= -0.5dBFS  
f
f
A
= 80MHz  
= 68.49121MHz  
= -7.0dBFS  
CLK  
IN  
IN  
CLK  
IN1  
IN1  
f
IN2  
f
IN1  
SNR = 71.17dB  
SINAD = 70.50dB  
THD = -78.9dBc  
SFDR = 80.7dBc  
SNR = 70.37dB  
SINAD = 69.83dB  
THD = -79.2dBc  
SFDR = 83.6dBc  
f
= 71.48926MHz  
IN2  
A
IN2  
= -7.0dBFS  
SFDR = 84.6dBc  
TT  
IMD = -81.5dBc  
IM3 = -82.5dBc  
2 x f - f  
2 x f + f  
IN2 IN1  
IN2 IN1  
HD5  
HD2  
HD5  
HD2 HD3  
2 x f - f  
IN1 IN2  
f + f  
IN1 IN2  
2 x f + f  
IN1 IN2  
HD3  
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
0
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
0
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
TWO-TONE FFT PLOT  
(16,384-POINT DATA RECORD)  
INTEGRAL NONLINEARITY  
DIFFERENTIAL NONLINEARITY  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
3
2
1.0  
f = 80.0017MHz  
CLK  
f = 172.4695MHz  
IN1  
0.8  
0.6  
f
IN1  
A
= -7.0dBFS  
IN1  
f
= 177.4696MHz  
IN2  
0.4  
A
= -7.0dBFS  
TT  
IN2  
1
f
IN2  
SFDR = 80.3dBc  
0.2  
IMD = -80.7dBc  
IM3 = -95.3dBc  
0
0
3 x f + 2 x f  
IN1  
IN2  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1  
-2  
-3  
f + f  
IN1 IN2  
0
4096  
8192  
12288  
16384  
0
4096  
8192  
12288  
16384  
5
10 15 20 25 30 35 40  
FREQUENCY (MHz)  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
_______________________________________________________________________________________  
7
14-Bit, 80Msps, 3.3V ADC  
Typical Operating Characteristics (continued)  
(V = 3.3V, OV = 1.8V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
80MHz (50% duty cycle, 1.4V  
square wave), T = +25°C, unless otherwise noted.)  
A
P-P  
CLK  
SNR, SINAD  
vs. SAMPLING RATE  
SFDR, -THD  
vs. SAMPLING RATE  
600  
POWER DISSIPATION  
vs. SAMPLING RATE  
76  
100  
DIFFERENTIAL CLOCK  
f = 70MHz  
IN  
C 5pF  
L
f
= 70MHz  
f
= 70MHz  
IN  
IN  
74  
72  
70  
68  
66  
64  
62  
60  
95  
90  
85  
80  
75  
70  
65  
60  
550  
500  
450  
400  
350  
300  
250  
200  
ANALOG + DIGITAL POWER  
ANALOG POWER  
SNR  
SINAD  
SFDR  
-THD  
25  
45  
65  
85  
(MHz)  
105  
125  
25  
45  
65  
85  
(MHz)  
105  
125  
25  
45  
65  
85  
(MHz)  
105  
125  
f
f
f
CLK  
CLK  
CLK  
SNR, SINAD  
vs. SAMPLING RATE  
SFDR, -THD  
vs. SAMPLING RATE  
POWER DISSIPATION  
vs. SAMPLING RATE  
76  
74  
72  
70  
68  
66  
64  
62  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
600  
550  
500  
450  
400  
350  
300  
250  
200  
f
= 175MHz  
f
= 175MHz  
IN  
DIFFERENTIAL CLOCK  
= 175MHz  
C 5pF  
L
IN  
f
IN  
SNR  
SINAD  
SFDR  
-THD  
ANALOG + DIGITAL POWER  
ANALOG POWER  
25  
45  
65  
85  
(MHz)  
105  
125  
25  
45  
65  
85  
(MHz)  
105  
125  
25  
45  
65  
85  
(MHz)  
105  
125  
f
f
CLK  
CLK  
f
CLK  
SFDR, -THD  
vs. ANALOG INPUT FREQUENCY  
POWER DISSIPATION  
vs. ANALOG INPUT FREQUENCY  
SNR, SINAD  
vs. ANALOG INPUT FREQUENCY  
100  
95  
90  
85  
80  
75  
70  
65  
60  
600  
550  
500  
450  
400  
350  
300  
250  
200  
76  
74  
72  
70  
68  
66  
64  
62  
60  
DIFFERENTIAL CLOCK  
C 5pF  
L
SFDR  
-THD  
ANALOG + DIGITAL POWER  
ANALOG POWER  
SNR  
SINAD  
0
50 100 150 200 250 300 350 400  
ANALOG INPUT FREQUENCY (MHz)  
0
50 100 150 200 250 300 350 400  
ANALOG INPUT FREQUENCY (MHz)  
0
50 100 150 200 250 300 350 400  
ANALOG INPUT FREQUENCY (MHz)  
8
_______________________________________________________________________________________  
14-Bit, 80Msps, 3.3V ADC  
Typical Operating Characteristics (continued)  
(V = 3.3V, OV = 1.8V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
80MHz (50% duty cycle, 1.4V  
square wave), T = +25°C, unless otherwise noted.)  
A
P-P  
CLK  
SNR, SINAD  
vs. ANALOG INPUT AMPLITUDE  
SFDR, -THD  
vs. ANALOG INPUT AMPLITUDE  
POWER DISSIPATION  
vs. ANALOG INPUT AMPLITUDE  
76  
71  
66  
61  
56  
51  
46  
41  
36  
31  
26  
90  
85  
80  
75  
70  
65  
60  
55  
50  
600  
550  
500  
450  
400  
350  
300  
250  
200  
f
= 175MHz  
IN  
DIFFERENTIAL CLOCK  
f
= 175MHz  
IN  
f
= 175MHz  
IN  
C 5pF  
L
SNR  
SINAD  
ANALOG + DIGITAL POWER  
ANALOG POWER  
SFDR  
-THD  
-40 -35 -30 -25 -20 -15 -10 -5  
ANALOG INPUT AMPLITUDE (dBFS)  
0
-40 -35 -30 -25 -20 -15 -10 -5  
ANALOG INPUT AMPLITUDE (dBFS)  
0
-40 -35 -30 -25 -20 -15 -10 -5  
ANALOG INPUT AMPLITUDE (dBFS)  
0
SNR, SINAD  
vs. ANALOG SUPPLY VOLTAGE  
SFDR, -THD  
vs. ANALOG SUPPLY VOLTAGE  
POWER DISSIPATION  
vs. ANALOG SUPPLY VOLTAGE  
76  
74  
72  
70  
68  
66  
64  
62  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
600  
550  
500  
450  
400  
350  
300  
250  
200  
f
= 175MHz  
f
= 175MHz  
DIFFERENTIAL CLOCK  
IN  
IN  
f
= 175MHz  
IN  
C 5pF  
L
SFDR  
-THD  
SNR  
SINAD  
ANALOG + DIGITAL POWER  
ANALOG POWER  
2.8  
3.0  
3.2  
3.4  
3.6  
2.8  
3.0  
3.2  
3.4  
3.6  
2.8  
3.0 3.2  
AV (V)  
3.4  
3.6  
AV (V)  
DD  
AV (V)  
DD  
DD  
SNR, SINAD  
vs. DIGITAL SUPPLY VOLTAGE  
SFDR, -THD  
vs. DIGITAL SUPPLY VOLTAGE  
POWER DISSIPATION  
vs. DIGITAL SUPPLY VOLTAGE  
76  
74  
72  
70  
68  
66  
64  
62  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
600  
550  
500  
450  
400  
350  
300  
250  
200  
f
= 175MHz  
f
= 175MHz  
IN  
IN  
DIFFERENTIAL CLOCK  
f
= 175MHz  
IN  
C 5pF  
L
SNR  
SINAD  
SFDR  
-THD  
ANALOG + DIGITAL POWER  
ANALOG POWER  
1.4  
1.8  
2.2  
2.6  
OV (V)  
3.0  
3.4  
3.8  
1.4  
1.8  
2.2  
2.6  
OV (V)  
3.0  
3.4  
3.8  
1.4  
1.8 2.2 2.6  
OV (V)  
3.0  
3.4  
3.8  
DD  
DD  
DD  
_______________________________________________________________________________________  
9
14-Bit, 80Msps, 3.3V ADC  
Typical Operating Characteristics (continued)  
(V = 3.3V, OV = 1.8V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
80MHz (50% duty cycle, 1.4V  
square wave), T = +25°C, unless otherwise noted.)  
A
P-P  
CLK  
POWER DISSIPATION  
vs. TEMPERATURE  
SNR, SINAD vs. TEMPERATURE  
SFDR, -THD vs. TEMPERATURE  
600  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
100  
95  
90  
85  
80  
75  
70  
65  
60  
f
= 175MHz  
DIFFERENTIAL CLOCK  
= 175MHz  
IN  
f
= 175MHz  
IN  
f
550  
500  
450  
400  
350  
300  
250  
200  
IN  
L
C 5pF  
SNR  
SINAD  
ANALOG + DIGITAL POWER  
ANALOG POWER  
SFDR  
-THD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OFFSET ERROR vs. TEMPERATURE  
GAIN ERROR vs. TEMPERATURE  
0.5  
0.4  
2.0  
V
= 2.048V  
V
= 2.048V  
REFIN  
REFIN  
1.5  
1.0  
0.3  
0.2  
0.5  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.5  
-1.0  
-1.5  
-2.0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
10 ______________________________________________________________________________________  
14-Bit, 80Msps, 3.3V ADC  
Typical Operating Characteristics (continued)  
(V = 3.3V, OV = 1.8V, GND = 0, REFIN = REFOUT (internal reference), V = -0.5dBFS, CLKTYP = high, DCE = high, PD = low,  
DD  
DD  
IN  
G/T = low, f  
80MHz (50% duty cycle, 1.4V  
square wave), T = +25°C, unless otherwise noted.)  
A
P-P  
CLK  
REFERENCE OUTPUT VOLTAGE  
LOAD REGULATION  
REFERENCE OUTPUT VOLTAGE  
SHORT-CIRCUIT PERFORMANCE  
REFERENCE OUTPUT VOLTAGE  
vs. TEMPERATURE  
2.05  
2.04  
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
1.96  
3.5  
2.039  
2.037  
2.035  
2.033  
2.031  
2.029  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
+85°C  
+85°C  
+25°C  
-40°C  
-40°C  
+25°C  
1.95  
-2.0  
-1.5  
-1.0  
-0.5  
0
0.5  
-3.0  
-2.0  
-1.0  
0
1.0  
-40  
-15  
10  
35  
60  
85  
I
SINK CURRENT (mA)  
I
REFOUT  
SINK CURRENT (mA)  
REFOUT  
TEMPERATURE (°C)  
REFP, COM, REFN  
LOAD REGULATION  
REFP, COM, REFN  
SHORT-CIRCUIT PERFORMACE  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
REFP  
V
COM  
V
REFP  
V
V
REFN  
COM  
V
REFN  
INTERNAL REFERENCE  
MODE AND BUFFERED EXTERNAL  
REFERENCE MODE  
INTERNAL REFERENCE  
MODE AND BUFFERED  
EXTERNAL REFERENCE MODE  
-2  
-1  
0
1
2
-8  
-4  
0
4
8
12  
SINK CURRENT (mA)  
SINK CURRENT (mA)  
______________________________________________________________________________________ 11  
14-Bit, 80Msps, 3.3V ADC  
Pin Description  
PIN  
NAME  
FUNCTION  
Positive Reference I/O. The full-scale analog input range is (V  
- V  
) x 2/3. Bypass REFP to  
REFP  
REFN  
GND with a 0.1µF capacitor. Connect a 1µF capacitor in parallel with a 10µF capacitor between REFP  
and REFN. Place the 1µF REFP to REFN capacitor as close to the device as possible on the same  
side of the PC board.  
1
REFP  
Negative Reference I/O. The full-scale analog input range is (V  
- V  
) x 2/3. Bypass REFN to  
REFP  
REFN  
GND with a 0.1µF capacitor. Connect a 1µF capacitor in parallel with a 10µF capacitor between REFP  
and REFN. Place the 1µF REFP to REFN capacitor as close to the device as possible on the same  
side of the PC board.  
2
3
REFN  
Common-Mode Voltage I/O. Bypass COM to GND with a 2.2µF capacitor. Place the 2.2µF COM to  
GND capacitor as close to the device as possible. This 2.2µF capacitor can be placed on the  
opposite side of the PC board and connected to the MAX12554 through a via.  
COM  
GND  
4, 7, 16,  
35  
Ground. Connect all ground pins and EP together.  
5
6
INP  
INN  
Positive Analog Input  
Negative Analog Input  
Duty-Cycle Equalizer Input. Connect DCE low (GND) to disable the internal duty-cycle equalizer.  
8
DCE  
Connect DCE high (OV  
or V ) to enable the internal duty-cycle equalizer.  
DD  
DD  
Negative Clock Input. In differential clock input mode (CLKTYP = OV  
or V ), connect the differential  
DD  
DD  
clock signal between CLKP and CLKN. In single-ended clock mode (CLKTYP = GND), apply the single-  
ended clock signal to CLKP and connect CLKN to GND.  
9
CLKN  
Positive Clock Input. In differential clock input mode (CLKTYP = OV  
or V ), connect the differential  
DD  
DD  
clock signal between CLKP and CLKN. In single-ended clock mode (CLKTYP = GND), apply the single-  
ended clock signal to CLKP and connect CLKN to GND.  
10  
CLKP  
Clock-Type Definition Input. Connect CLKTYP to GND to define the single-ended clock input. Connect  
11  
CLKTYP  
CLKTYP to OV  
or V  
to define the differential clock input.  
DD  
DD  
Analog Power Input. Connect V  
capacitor combination of 2.2µF and 0.1µF. Connect all V  
to a 3.15V to 3.60V power supply. Bypass V  
to GND with a parallel  
DD  
DD  
12–15, 36  
17, 34  
V
DD  
pins to the same potential.  
DD  
Output-Driver Power Input. Connect OV  
parallel capacitor combination of 2.2µF and 0.1µF.  
to a 1.7V to V  
power supply. Bypass OV  
to GND with a  
DD  
DD  
DD  
OV  
DD  
Data Out-of-Range Indicator. The DOR digital output indicates when the analog input voltage is out of  
range. When DOR is high, the analog input is beyond its full-scale range. When DOR is low, the analog  
input is within its full-scale range (Figure 6).  
18  
DOR  
19  
20  
21  
22  
23  
24  
25  
26  
27  
D13  
D12  
D11  
D10  
D9  
CMOS Digital Output Bit 13 (MSB)  
CMOS Digital Output Bit 12  
CMOS Digital Output Bit 11  
CMOS Digital Output Bit 10  
CMOS Digital Output Bit 9  
CMOS Digital Output Bit 8  
CMOS Digital Output Bit 7  
CMOS Digital Output Bit 6  
CMOS Digital Output Bit 5  
D8  
D7  
D6  
D5  
12 ______________________________________________________________________________________  
14-Bit, 80Msps, 3.3V ADC  
Pin Description (continued)  
PIN  
28  
29  
30  
31  
32  
NAME  
D4  
FUNCTION  
CMOS Digital Output Bit 4  
CMOS Digital Output Bit 3  
CMOS Digital Output Bit 2  
CMOS Digital Output Bit 1  
CMOS Digital Output Bit 0 (LSB)  
D3  
D2  
D1  
D0  
Data-Valid Output. DAV is a single-ended version of the input clock that is compensated to correct for  
any input clock duty-cycle variations. DAV is typically used to latch the MAX12554 output data into an  
external back-end digital circuit.  
33  
37  
38  
DAV  
PD  
Power-Down Input. Force PD high for power-down mode. Force PD low for normal operation.  
Internal Reference Voltage Output. For internal reference operation, connect REFOUT directly to REFIN  
or use a resistive divider from REFOUT to set the voltage at REFIN. Bypass REFOUT to GND with a  
0.1µF capacitor.  
REFOUT  
Reference Input. In internal reference mode and buffered external reference mode, bypass REFIN to  
39  
40  
REFIN  
G/T  
GND with a 0.1µF capacitor. In these modes, V  
- V  
= V  
x 3/4. For unbuffered external  
REFIN  
REFP  
REFN  
reference mode operation, connect REFIN to GND.  
Output-Format-Select Input. Connect G/T to GND for the two’s-complement digital output format.  
Connect G/T to OV or V for the Gray code digital output format.  
DD  
DD  
Exposed Paddle. The MAX12554 relies on the exposed paddle connection for a low-inductance ground  
connection. Connect EP to GND to achieve specified performance. Use multiple vias to connect the  
top-side PC board ground plane to the bottom-side PC board ground plane.  
EP  
+
MAX12554  
T/H  
Σ
FLASH  
DAC  
ADC  
INP  
INN  
STAGE 10  
END OF PIPE  
STAGE 1  
STAGE 2  
STAGE 9  
T/H  
DIGITAL ERROR CORRECTION  
D13–D0  
OUTPUT  
DRIVERS  
D13–D0  
Figure 1. Pipeline Architecture—Stage Blocks  
______________________________________________________________________________________ 13  
14-Bit, 80Msps, 3.3V ADC  
V
DD  
BOND WIRE  
INDUCTANCE  
1.5nH  
CLOCK  
GENERATOR  
AND  
DUTY-CYCLE  
EQUALIZER  
CLKP  
CLKN  
MAX12554  
V
MAX12554  
DD  
GND  
DCE  
INP  
CLKTYP  
*C  
SAMPLE  
C
PAR  
OV  
DD  
4.5pF  
2pF  
D13–D0  
DAV  
14-BIT  
PIPELINE  
ADC  
INP  
INN  
OUTPUT  
DRIVERS  
T/H  
DEC  
DOR  
V
DD  
BOND WIRE  
INDUCTANCE  
1.5nH  
G/T  
PD  
REFOUT  
REFIN  
REFP  
INN  
*C  
4.5pF  
C
2pF  
REFERENCE  
SYSTEM  
POWER CONTROL  
AND  
BIAS CIRCUITS  
SAMPLE  
PAR  
COM  
REFN  
SAMPLING  
CLOCK  
Figure 2. Simplified Functional Diagram  
Detailed Description  
*THE EFFECTIVE RESISTANCE OF THE  
SWITCHED SAMPLING CAPACITORS IS: R  
1
The MAX12554 uses a 10-stage, fully differential,  
pipelined architecture (Figure 1) that allows for high-  
speed conversion while minimizing power consump-  
tion. Samples taken at the inputs move progressively  
through the pipeline stages every half clock cycle.  
From input to output, the total clock-cycle latency is 8.0  
clock cycles.  
=
SAMPLE  
f
x C  
SAMPLE  
CLK  
Figure 3. Simplified Input T/H Circuit  
capacitors must be charged to one-half LSB accuracy  
within one-half of a clock cycle.  
The analog input of the MAX12554 supports differential  
or single-ended input drive. For optimum performance  
with differential inputs, balance the input impedance of  
INP and INN and set the common-mode voltage to mid-  
Each pipeline converter stage converts its input voltage  
into a digital output code. At every stage, except the  
last, the error between the input voltage and the digital  
output code is multiplied and passed along to the next  
pipeline stage. Digital error correction compensates for  
ADC comparator offsets in each pipeline stage and  
ensures no missing codes. Figure 2 shows the  
MAX12554 functional diagram.  
supply (V  
/ 2). The MAX12554 provides the optimum  
DD  
common-mode voltage of V  
/ 2 through the COM  
DD  
output when operating in internal reference mode and  
buffered external reference mode. This COM output  
voltage can be used to bias the input network as shown  
in Figures 10, 11, and 12.  
Input Track-and-Hold (T/H) Circuit  
Figure 3 displays a simplified functional diagram of the  
input T/H circuit. This input T/H circuit allows for high ana-  
log input frequencies of 175MHz and beyond and sup-  
Reference Output (REFOUT)  
An internal bandgap reference is the basis for all the  
internal voltages and bias currents used in the  
MAX12554. The power-down logic input (PD) enables  
and disables the reference circuit. The reference circuit  
requires 10ms to power up and settle when power is  
applied to the MAX12554 or when PD transitions from  
high to low. REFOUT has approximately 17kto GND  
when the MAX12554 is in power-down.  
ports a common-mode input voltage of V / 2 0.5V.  
DD  
The MAX12554 sampling clock controls the ADC’s  
switched-capacitor T/H architecture (Figure 3) allowing  
the analog input signal to be stored as a charge on the  
sampling capacitors. These switches are closed (track)  
when the sampling clock is high and open (hold) when  
the sampling clock is low (Figure 4). The analog input  
signal source must be capable of providing the dynam-  
ic current necessary to charge and discharge the sam-  
pling capacitors. To avoid signal degradation, these  
The internal bandgap reference and its buffer generate  
V
to be 2.048V. The reference temperature coeffi-  
REFOUT  
cient is typically +50ppm/°C. Connect an external 0.1µF  
bypass capacitor from REFOUT to GND for stability.  
14 ______________________________________________________________________________________  
14-Bit, 80Msps, 3.3V ADC  
CLKP  
CLKN  
t
AD  
ANALOG  
INPUT  
t
AJ  
SAMPLED  
DATA  
T/H  
TRACK  
HOLD  
TRACK  
HOLD  
TRACK  
HOLD  
TRACK  
HOLD  
Figure 4. T/H Aperture Timing  
REFOUT sources up to 1.0mA and sinks up to 0.1mA  
for external circuits with a load regulation of 35mV/mA.  
resistive divider, use resistances 10kto avoid load-  
ing REFOUT.  
Short-circuit protection limits I  
to a 2.1mA  
REFOUT  
Buffered external reference mode is virtually identical to  
internal reference mode except that the reference  
source is derived from an external reference and not  
the MAX12554 REFOUT. In buffered external reference  
mode, apply a stable 0.7V to 2.2V source at REFIN. In  
this mode, COM, REFP, and REFN are low-impedance  
source current when shorted to GND and a 0.24mA  
sink current when shorted to V  
.
DD  
Analog Inputs and Reference  
Configurations  
The MAX12554 full-scale analog input range is adjustable  
outputs with V  
= V  
DD  
/ 2, V  
= V  
/ 2 + V  
COM  
DD  
/ 2 - V  
REFP  
DD REFIN  
x 3/8.  
from 0.35V to 1.10V with a V  
/ 2 0.5V common-  
DD  
x 3/8, and V  
= V  
REFN  
REFIN  
mode input range. The MAX12554 provides three modes  
To operate the MAX12554 in unbuffered external refer-  
ence mode, connect REFIN to GND. Connecting REFIN  
to GND deactivates the on-chip reference buffers for  
COM, REFP, and REFN. With the respective buffers  
deactivated, COM, REFP, and REFN become high-  
impedance inputs and must be driven through sepa-  
of reference operation. The voltage at REFIN (V  
sets the reference operation mode (Table 1).  
)
REFIN  
To operate the MAX12554 with the internal reference,  
connect REFOUT to REFIN either with a direct short or  
through a resistive divider. In this mode, COM, REFP,  
and REFN are low-impedance outputs with V  
=
=
COM  
x 3/8, and V  
REFIN REFN  
rate, external reference sources. Drive V  
to V  
/ 2  
COM  
DD  
V
V
/ 2, V  
= V  
/ 2 + V  
DD  
DD  
REFP  
DD  
5%, and drive REFP and REFN so V  
= (V  
+
COM  
REFP  
/ 2 - V  
x 3/8. The REFIN input impedance is  
REFIN  
V
) / 2. The full-scale analog input range is (V  
REFN  
- V  
REFP  
very large (>50M). When driving REFIN through a  
) x 2/3.  
REFN  
Table 1. Reference Modes  
V
REFERENCE MODE  
Internal Reference Mode. Drive REFIN with REFOUT either through a direct short or a resistive divider.  
The full-scale analog input range is / 2:  
REFIN  
V
REFIN  
35% V  
to 100%  
REFOUT  
V
V
V
= V / 2  
DD  
COM  
REFP  
REFN  
V
REFOUT  
= V / 2 + V  
x 3/8  
x 3/8  
DD  
REFIN  
REFIN  
= V / 2 - V  
DD  
Buffered External Reference Mode. Apply an external 0.7V to 2.2V reference voltage to REFIN.  
The full-scale analog input range is / 2:  
V
REFIN  
0.7V to 2.2V  
<0.4V  
V
V
V
= V / 2  
DD  
COM  
REFP  
REFN  
= V / 2 + V  
x 3/8  
x 3/8  
DD  
REFIN  
= V / 2 - V  
DD  
REFIN  
Unbuffered External Reference Mode. Drive REFP, REFN, and COM with external reference sources.  
The full-scale analog input range is (V - V ) x 2/3.  
REFP  
REFN  
______________________________________________________________________________________ 15  
14-Bit, 80Msps, 3.3V ADC  
All three modes of reference operation require the  
same bypass capacitor combinations. Bypass COM  
with a 2.2µF capacitor to GND. Bypass REFP and  
REFN each with a 0.1µF capacitor to GND. Bypass  
REFP to REFN with a 1µF capacitor in parallel with a  
10µF capacitor. Place the 1µF capacitor as close to  
the device as possible on the same side of the PC  
board. Bypass REFIN and REFOUT to GND with a  
0.1µF capacitor.  
V
DD  
S
1H  
MAX12554  
10kΩ  
For detailed circuit suggestions, see Figure 13 and  
Figure 14.  
CLKP  
10kΩ  
Clock Input and Clock Control Lines  
(CLKP, CLKN, CLKTYP)  
DUTY-CYCLE  
EQUALIZER  
S
2H  
The MAX12554 accepts both differential and single-  
ended clock inputs. For single-ended clock input oper-  
ation, connect CLKTYP to GND, CLKN to GND, and  
drive CLKP with the external single-ended clock signal.  
For differential clock input operation, connect CLKTYP  
S
1L  
10kΩ  
CLKN  
to OV  
or V , and drive CLKP and CLKN with the  
DD  
10kΩ  
SWITCHES S AND S ARE OPEN  
DURING POWER-DOWN, MAKING  
CLKP AND CLKN HIGH IMPEDANCE.  
DD  
external differential clock signal. To reduce clock jitter,  
the external single-ended clock must have sharp falling  
edges. Consider the clock input as an analog input and  
route it away from any other analog inputs and digital  
signal lines.  
1_  
2_  
S
2L  
SWITCHES S ARE OPEN IN  
SINGLE-ENDED CLOCK MODE.  
2_  
GND  
CLKP and CLKN are high impedance when the  
MAX12554 is powered down (Figure 5).  
Figure 5. Simplified Clock Input Circuit  
Low clock jitter is required for the specified SNR perfor-  
mance of the MAX12554. Analog input sampling  
occurs on the falling edge of the clock signal, requiring  
this edge to have the lowest possible jitter. Jitter limits  
the maximum SNR performance of any ADC according  
to the following relationship:  
Clock Duty-Cycle Equalizer (DCE)  
Connect DCE high to enable the clock duty-cycle  
equalizer (DCE = OV or V ). Connect DCE low to  
disable the clock duty-cycle equalizer (DCE = GND).  
With the clock duty-cycle equalizer enabled, the  
MAX12554 is insensitive to the duty cycle of the signal  
applied to CLKP and CLKN. Duty cycles from 35% to  
65% are acceptable with the clock duty-cycle equalizer  
enabled.  
DD  
DD  
1
SNR = 20 × log  
2 × π f × t  
IN  
J
where f represents the analog input frequency and t  
IN  
J
is the total system clock jitter. Clock jitter is especially  
critical for undersampling applications. For example,  
assuming that clock jitter is the only noise source, to  
obtain the specified 70.9dB of SNR with a 175MHz  
input frequency, the system must have less than 0.26ps  
of clock jitter. In actuality, there are other noise sources  
such as thermal noise and quantization noise that con-  
tribute to the system noise, requiring the clock jitter to  
be less than 0.14ps to obtain the specified 70.9dB of  
SNR at 175MHz.  
The clock duty-cycle equalizer uses a delay-locked  
loop (DLL) to create internal timing signals that are  
duty-cycle independent. Due to this DLL, the  
MAX12554 requires approximately 100 clock cycles to  
acquire and lock to new clock frequencies.  
Although not recommended, disabling the clock duty-  
cycle equalizer reduces the analog supply current by  
1.5mA. With the clock duty-cycle equalizer disabled, the  
MAX12554’s dynamic performance varies depending on  
the duty cycle of the signal applied to CLKP and CLKN.  
16 ______________________________________________________________________________________  
14-Bit, 80Msps, 3.3V ADC  
N + 4  
N + 5  
DIFFERENTIAL ANALOG INPUT (INP–INN)  
N + 3  
N + 6  
(V  
(V  
- V  
- V  
) x 2/3  
) x 2/3  
REFP  
REFN  
N - 3  
N - 2  
N +2  
N + 7  
N + 9  
N - 1  
N
N + 1  
N + 8  
REFN  
REFP  
t
AD  
CLKN  
CLKP  
t
CL  
t
CH  
t
DAV  
DAV  
t
t
HOLD  
SETUP  
D0–D11  
DOR  
N - 3 N - 2 N - 1  
8.0 CLOCK-CYCLE DATA LATENCY  
N
N + 1 N + 2 N + 3 N + 4 N + 5 N + 6 N + 7 N + 8 N + 9  
t
SETUP  
t
HOLD  
Figure 6. System Timing Diagram  
With the duty-cycle equalizer enabled (DCE = high), the  
DAV signal has a fixed pulse width that is independent of  
CLKP. In either case, with DCE high or low, output data  
at D13–D0 and DOR are valid from 5.5ns before the ris-  
ing edge of DAV to 5.5ns after the rising edge of DAV,  
and the rising edge of DAV is synchronized to have a  
System-Timing Requirements  
Figure 6 shows the relationship between the clock, ana-  
log inputs, DAV indicator, DOR indicator, and the result-  
ing output data. The analog input is sampled on the  
falling edge of the clock signal and the resulting data  
appears at the digital outputs 8.0 clock cycles later.  
5.2ns (t  
) delay from the falling edge of CLKP.  
DAV  
The DAV indicator is synchronized with the digital out-  
put and optimized for use in latching data into digital  
back-end circuitry. Alternatively, digital back-end cir-  
cuitry can be latched with the rising edge of the con-  
version clock (CLKP-CLKN).  
DAV is high impedance when the MAX12554 is in  
power-down (PD = high). DAV is capable of sinking  
and sourcing 600µA and has three times the drive  
strength of D13–D0 and DOR. DAV is typically used to  
latch the MAX12554 output data into an external back-  
end digital circuit.  
Data-Valid Output (DAV)  
DAV is a single-ended version of the input clock (CLKP)  
Keep the capacitive load on DAV as low as possible  
(<25pF) to avoid large digital currents feeding back  
into the analog portion of the MAX12554 and degrading  
its dynamic performance. An external buffer on DAV  
isolates it from heavy capacitive loads. Refer to the  
MAX12555 evaluation kit schematic for an example of  
DAV driving back-end digital circuitry through an exter-  
nal buffer.  
with a delay (t ). Output data changes on the falling  
DAV  
edge of DAV, and DAV rises once output data is valid  
(Figure 6).  
The state of the duty-cycle equalizer input (DCE)  
changes the waveform at DAV. With the duty-cycle  
equalizer disabled (DCE = low), the DAV signal is a sin-  
gle-ended version of CLKP delayed by 5.2ns (t  
).  
DAV  
______________________________________________________________________________________ 17  
14-Bit, 80Msps, 3.3V ADC  
Data Out-of-Range Indicator (DOR)  
The DOR digital output indicates when the analog input  
voltage is out of range. When DOR is high, the analog  
input is out of range. When DOR is low, the analog  
input is within range. The valid differential input range is  
4
3
CODE  
10  
16384  
V
V  
INN  
= (V  
V  
) ×  
×
INP  
REFP REFN  
for two’s complement (G/T = 0).  
from (V  
- V  
) x 3/4 to (V  
- V  
) x 3/4.  
REFP  
REFP  
REFN  
REFN  
where CODE is the decimal equivalent of the digital  
10  
Signals outside this valid differential range cause DOR  
to assert high as shown in Table 2 and Figure 6.  
output code as shown in Table 2.  
Digital outputs D13–D0 are high impedance when the  
MAX12554 is in power-down (PD = high). D13–D0 tran-  
sition high 10ns after the rising edge of PD and  
become active 10ns after PD’s falling edge.  
DOR is synchronized with DAV and transitions along  
with the output data D13–D0. There is an 8.0 clock-  
cycle latency in the DOR function as is with the output  
data (Figure 6).  
Keep the capacitive load on the MAX12554 digital out-  
puts D13–D0 as low as possible (<15pF) to avoid large  
digital currents feeding back into the analog portion of  
the MAX12554 and degrading its dynamic perfor-  
mance. The addition of external digital buffers on the  
digital outputs isolates the MAX12554 from heavy  
capacitive loading. To improve the dynamic perfor-  
mance of the MAX12554, add 220resistors in series  
with the digital outputs close to the MAX12554. Refer to  
the MAX12555 evaluation kit schematic for an example  
of the digital outputs driving a digital buffer through  
220series resistors.  
DOR is high impedance when the MAX12554 is in  
power-down (PD = high). DOR enters a high-imped-  
ance state within 10ns after the rising edge of PD and  
becomes active 10ns after PD’s falling edge.  
Digital Output Data (D13–D0), Output Format (G/T)  
The MAX12554 provides a 14-bit, parallel, tri-state out-  
put bus. D13–D0 and DOR update on the falling edge  
of DAV and are valid on the rising edge of DAV.  
The MAX12554 output data format is either Gray code  
or two’s complement, depending on the logic input G/T.  
With G/T high, the output data format is Gray code.  
With G/T low, the output data format is two’s comple-  
ment. See Figure 9 for a binary-to-Gray and Gray-to-  
binary code-conversion example.  
Power-Down Input (PD)  
The MAX12554 has two power modes that are con-  
trolled with the power-down digital input (PD). With PD  
low, the MAX12554 is in normal operating mode. With  
PD high, the MAX12554 is in power-down mode.  
The following equations, Table 2, Figure 7, and Figure 8  
define the relationship between the digital output and  
the analog input:  
The power-down mode allows the MAX12554 to effi-  
ciently use power by transitioning to a low-power state  
when conversions are not required. Additionally, the  
MAX12554 parallel output bus is high impedance in  
power-down mode, allowing other devices on the bus  
to be accessed.  
4
3
CODE  
8192  
10  
V
V  
INN  
= (V  
V  
) ×  
×
INP  
REFP REFN  
16384  
for Gray code (G/T = 1).  
18 ______________________________________________________________________________________  
14-Bit, 80Msps, 3.3V ADC  
______________________________________________________________________________________ 19  
14-Bit, 80Msps, 3.3V ADC  
V
- V  
16384  
V
- V  
16384  
4
3
4
3
REFP  
REFN  
REFP REFN  
1 LSB =  
1 LSB =  
x
x
(V  
REFP  
- V ) x 2/3  
REFN  
(V  
REFP  
- V  
REFN  
) x 2/3  
(V  
REFP  
- V ) x 2/3  
REFN  
(V  
REFP  
- V  
REFN  
) x 2/3  
0x1FFF  
0x1FFE  
0x1FFD  
0x2000  
0x2001  
0x2003  
0x0001  
0x0000  
0x3FFF  
0x3001  
0x3000  
0x1000  
0x2003  
0x2002  
0x2001  
0x2000  
0x0002  
0x0003  
0x0001  
0x0000  
-8191 -8189  
-1  
0
+1  
+8189 +8191  
-8191 -8189  
-1  
+1  
+8189 +8191  
0
DIFFERENTIAL INPUT VOLTAGE (LSB)  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
Figure 7. Two’s-Complement Transfer Function (G/T = 0)  
Figure 8. Gray-Code Transfer Function (G/T = 1)  
In power-down mode, all internal circuits are off, the  
analog supply current reduces to 0.1mA, and the digi-  
tal supply current reduces to 0.008mA. The following  
list shows the state of the analog inputs and digital out-  
puts in power-down mode:  
Applications Information  
Using Transformer Coupling  
In general, the MAX12554 provides better SFDR and  
THD performance with fully differential input signals as  
opposed to single-ended input drive. In differential  
input mode, even-order harmonics are lower as both  
inputs are balanced, and each of the ADC inputs only  
requires half the signal swing compared to single-  
ended input mode.  
• INP, INN analog inputs are disconnected from the  
internal input amplifier (Figure 3).  
• REFOUT has approximately 17kto GND.  
• REFP, COM, REFN go high impedance with respect  
to V  
and GND, but there is an internal 4kresistor  
DD  
An RF transformer (Figure 10) provides an excellent  
solution to convert a single-ended input source signal  
to a fully differential signal, required by the MAX12554  
for optimum performance. Connecting the center tap of  
between REFP and COM, as well as an internal 4kΩ  
resistor between REFN and COM.  
• D13–D0, DOR, and DAV go high impedance.  
• CLKP, CLKN go high impedance (Figure 5).  
the transformer to COM provides a V  
/ 2 DC level  
DD  
shift to the input. Although a 1:1 transformer is shown, a  
step-up transformer can be selected to reduce the  
drive requirements. A reduced signal swing from the  
input driver, such as an op amp, can also improve the  
overall distortion. The configuration of Figure 10 is good  
The wake-up time from power-down mode is dominat-  
ed by the time required to charge the capacitors at  
REFP, REFN, and COM. In internal reference mode and  
buffered external reference mode, the wake-up time is  
typically 10ms with the recommended capacitor array  
(Figure 13). When operating in unbuffered external ref-  
erence mode, the wake-up time is dependent on the  
external reference drivers.  
for frequencies up to Nyquist (f  
/ 2).  
CLK  
The circuit of Figure 11 converts a single-ended input  
signal to fully differential just as Figure 10. However,  
Figure 11 utilizes an additional transformer to improve  
the common-mode rejection, allowing high-frequency  
20 ______________________________________________________________________________________  
14-Bit, 80Msps, 3.3V ADC  
BINARY-TO-GRAY-CODE CONVERSION  
GRAY-TO-BINARY-CODE CONVERSION  
1) THE MOST SIGNIFICANT GRAY-CODE BIT IS THE SAME  
AS THE MOST SIGNIFICANT BINARY BIT.  
1) THE MOST SIGNIFICANT BINARY BIT IS THE SAME  
AS THE MOST SIGNIFICANT GRAY-CODE BIT.  
D13  
D11  
D7  
0
D3  
1
D0  
0
D13  
D11  
D7  
1
D3  
1
D0  
0
BIT POSITION  
BINARY  
BIT POSITION  
GRAY CODE  
0
0
1
1
0
1
1
1
0
0
1
0
0
0
1
0
1
1 0  
1
1
0
0 1  
GRAY CODE  
BINARY  
2) SUBSEQUENT GRAY-CODE BITS ARE FOUND ACCORDING  
TO THE FOLLOWING EQUATION:  
2) SUBSEQUENT BINARY BITS ARE FOUND ACCORDING  
TO THE FOLLOWING EQUATION:  
GRAY = BINARY  
BINARY  
BINARY = BINARY  
GRAY  
X
X
X
X+1  
X
X+1  
WHERE  
IS THE EXCLUSIVE OR FUNCTION (SEE TRUTH  
WHERE  
IS THE EXCLUSIVE OR FUNCTION (SEE TRUTH  
TABLE BELOW) AND X IS THE BIT POSITION.  
TABLE BELOW) AND X IS THE BIT POSITION.  
GRAY = BINARY  
BINARY  
BINARY = BINARY GRAY  
12  
12  
12  
13  
12  
13  
GRAY = 1  
0
BINARY = 0  
1
12  
12  
GRAY = 1  
12  
BINARY = 1  
12  
D13  
D11  
D7  
0
D3  
1
D0 BIT POSITION  
D13  
D11  
D7  
1
D3  
1
D0 BIT POSITION  
0
1
1
0
0
1
1
0
1
1
1
0
0
1
0
0
BINARY  
0
1
1
0
1
1
0
0
1
0
GRAY CODE  
BINARY  
1
GRAY CODE  
0
3) REPEAT STEP 2 UNTIL COMPLETE.  
GRAY = BINARY BINARY  
3) REPEAT STEP 2 UNTIL COMPLETE.  
BINARY = BINARY GRAY  
11  
11  
11  
12  
11  
12  
GRAY = 1  
1
BINARY = 1  
0
11  
11  
GRAY = 0  
11  
BINARY = 1  
11  
D13  
D13  
D11  
D7  
D3  
1
D0  
0
BIT POSITION  
BINARY  
D11  
D7  
D3  
1
D0  
0
BIT POSITION  
GRAY CODE  
0
1
0
1
1
0
1
1
1
0
0
1
0
0
1
1
1
0
1
1
0
1
0
0
1
0
0
GRAY CODE  
0
1
1
BINARY  
4) THE FINAL GRAY-CODE CONVERSION IS:  
4) THE FINAL GRAY-CODE CONVERSION IS:  
D13  
D11  
D7  
0
D3  
1
D0  
0
BIT POSITION  
BINARY  
D13  
D11  
D7  
1
D3  
1
D0  
0
BIT POSITION  
GRAY CODE  
0
1
1
0
1
1
1
0
1
1
0
1
0
0
1
0
0
1
0
1
0
1
1
1
0
1
1
1
1
0
0
0
0
1
1
0
0
1
0
1
1
1
0
GRAY CODE  
0
1
1
0
0
1
0
BINARY  
EXCULSIVE OR TRUTH TABLE  
A
0
0
1
1
B
0
1
0
1
Y = A  
B
0
1
1
0
Figure 9. Binary-to-Gray and Gray-to-Binary Code Conversion  
______________________________________________________________________________________ 21  
14-Bit, 80Msps, 3.3V ADC  
MAX4108  
V
IN  
24.9Ω  
0.1µF  
24.9Ω  
INP  
0.1µF  
INP  
6
5
4
12pF  
1
2
3
V
IN  
5.6pF  
T1  
MAX12554  
100Ω  
MAX12554  
N.C.  
COM  
INN  
COM  
INN  
2.2µF  
2.2µF  
100Ω  
24.9Ω  
24.9Ω  
MINI-CIRCUITS  
TT1-6 OR T1-1T  
12pF  
5.6pF  
Figure 12. Single-Ended, AC-Coupled Input Drive  
Figure 10. Transformer-Coupled Input Drive for Input  
Frequencies Up to Nyquist  
0*  
INP  
0.1µF  
6
5
4
6
5
4
5.6pF  
1
2
3
1
2
3
V
IN  
75Ω  
110Ω  
T1  
T2  
MAX12554  
0.5%  
0.1%  
N.C.  
N.C.  
N.C.  
COM  
INN  
2.2µF  
75Ω  
0.5%  
110Ω  
0.1%  
0*  
MINI-CIRCUITS  
ADT1-1WT  
MINI-CIRCUITS  
ADT1-1WT  
5.6pF  
*0RESISTORS CAN BE REPLACED WITH LOW-VALUE  
RESISTORS TO LIMIT THE BANDWIDTH.  
Figure 11. Transformer-Coupled Input Drive for Input Frequencies Beyond Nyquist  
signals beyond the Nyquist frequency. The two sets of  
termination resistors provide an equivalent 50termi-  
nation to the signal source. The second set of termina-  
tion resistors connects to COM, providing the correct  
input common-mode voltage. Two 0resistors in series  
with the analog inputs allow high IF input frequencies.  
These 0resistors can be replaced with low-value  
resistors to limit the input bandwidth.  
Single-Ended, AC-Coupled Input Signal  
Figure 12 shows an AC-coupled, single-ended input  
application. The MAX4108 provides high speed, high  
bandwidth, low noise, and low distortion to maintain the  
input signal integrity.  
22 ______________________________________________________________________________________  
14-Bit, 80Msps, 3.3V ADC  
+3.3V  
0.1µF  
2.2µF  
0.1µF  
+3.3V  
1
2
V
DD  
1
MAX6029EUK21  
REFP  
REFN  
COM  
38  
0.1µF  
REFOUT  
5
0.1µF  
1µF*  
10µF  
2.048V  
MAX12554  
2
3
NOTE: ONE FRONT-END REFERENCE  
CIRCUIT IS CAPABLE OF SOURCING 15mA  
AND SINKING 30mA OF OUTPUT CURRENT.  
0.1µF  
+3.3V  
0.1µF  
39  
REFIN  
16.2kΩ  
1µF  
2.2µF  
GND  
MAX4230  
1
3
2.048V  
5
2
47Ω  
4
+3.3V  
10µF  
6V  
330µF  
6V  
0.1µF  
2.2µF  
0.1µF  
1.47kΩ  
V
DD  
1
REFP  
REFN  
COM  
38  
*PLACE THE 1µF REFP-to-REFN BYPASS CAPACITOR AS CLOSE TO THE DEVICE AS POSSIBLE.  
REFOUT  
0.1µF  
1µF*  
10µF  
MAX12554  
2
3
0.1µF  
39  
REFIN  
2.2µF  
GND  
Figure 13. External Buffered Reference Driving Multiple ADCs  
Figure 13 uses the MAX6029EUK21 precision 2.048V  
reference as a common reference for multiple convert-  
ers. The 2.048V output of the MAX6029 passes through  
a one-pole 10Hz lowpass filter to the MAX4230. The  
MAX4230 buffers the 2.048V reference and provides  
additional 10Hz lowpass filtering before its output is  
applied to the REFIN input of the MAX12554.  
Buffered External Reference  
Drives Multiple ADCs  
The buffered external reference mode allows for more  
control over the MAX12554 reference voltage and  
allows multiple converters to use a common reference.  
The REFIN input impedance is >50M.  
______________________________________________________________________________________ 23  
14-Bit, 80Msps, 3.3V ADC  
+3.3V  
1
0.1µF  
MAX6029EUK30  
2
+3.3V  
2.2µF  
0.1µF  
+3.3V  
5
0.1µF  
3.000V  
0.1µF  
MAX4230  
1
2.413V  
5
2
47Ω  
20kΩ  
V
4
DD  
1
2
3
1%  
REFP  
38  
REFOUT  
3
10µF  
6V  
330µF  
6V  
20kΩ  
1%  
0.1µF  
10µF  
1µF*  
MAX12554  
REFN  
1.47kΩ  
+3.3V  
0.1µF  
0.47µF  
0.1µF  
52.3kΩ  
1%  
39  
REFIN  
COM  
MAX4230  
1
1.647V  
GND  
5
2
2.2µF  
47Ω  
4
52.3kΩ  
1%  
3
+3.3V  
10µF  
6V  
330µF  
6V  
2.2µF  
0.1µF  
20kΩ  
0.1µF  
1%  
1.47kΩ  
+3.3V  
0.1µF  
20kΩ  
1%  
V
DD  
1
REFP  
38  
REFOUT  
MAX4230  
1
0.880V  
0.1µF  
5
2
20kΩ  
1%  
10µF  
1µF*  
47Ω  
MAX12554  
4
2
3
3
REFN  
10µF  
6V  
330µF  
6V  
0.1µF  
39  
1.47kΩ  
REFIN  
COM  
GND  
2.2µF  
*PLACE THE 1µF REFP-TO-REFN BYPASS CAPACITOR AS CLOSE TO THE DEVICE AS POSSIBLE.  
Figure 14. External Unbuffered Reference Driving Multiple ADCs  
Figure 14 uses the MAX6029EUK30 precision 3.000V  
reference as a common reference for multiple convert-  
ers. A seven-component resistive divider chain follows  
the MAX6029 voltage reference. The 0.47µF capacitor  
along this chain creates a 10Hz lowpass filter. Three  
MAX4230 operational amplifiers buffer taps along this  
resistor chain providing 2.413V, 1.647V, and 0.880V to  
the MAX12554’s REFP, COM, REFN reference inputs,  
Unbuffered External  
Reference Drives Multiple ADCs  
The unbuffered external reference mode allows for pre-  
cise control over the MAX12554 reference and allows  
multiple converters to use a common reference.  
Connecting REFIN to GND disables the internal refer-  
ence, allowing REFP, REFN, and COM to be driven  
directly by a set of external reference sources.  
24 ______________________________________________________________________________________  
14-Bit, 80Msps, 3.3V ADC  
respectively. The feedback around the MAX4230 op  
amps provides additional 10Hz lowpass filtering. The  
2.413V and 0.880V reference voltages set the full-scale  
analog input range to 1.022V = (VREFP - VREFN) x  
2/3. A common power source for all active components  
removes any concern regarding power-supply  
sequencing when powering up or down.  
missing codes and a monotonic transfer function. For  
the MAX12554, DNL deviations are measured at every  
step of the transfer function and the worst-case devia-  
tion is reported in the Electrical Characteristics table.  
Offset Error  
Offset error is a figure of merit that indicates how well  
the actual transfer function matches the ideal transfer  
function at a single point. Ideally the midscale  
MAX12554 transition occurs at 0.5 LSB above mid-  
scale. The offset error is the amount of deviation  
between the measured midscale transition point and  
the ideal midscale transition point.  
Grounding, Bypassing, and  
Board Layout  
The MAX12554 requires high-speed board layout  
design techniques. Refer to the MAX12555 evaluation  
kit data sheet for a board layout reference. Locate all  
bypass capacitors as close to the device as possible,  
preferably on the same side of the board as the ADC,  
using surface-mount devices for minimum inductance.  
Gain Error  
Gain error is a figure of merit that indicates how well the  
slope of the actual transfer function matches the slope  
of the ideal transfer function. The slope of the actual  
transfer function is measured between two data points:  
positive full scale and negative full scale. Ideally, the  
positive full-scale MAX12554 transition occurs at 1.5  
LSBs below positive full scale, and the negative full-  
scale transition occurs at 0.5 LSB above negative full  
scale. The gain error is the difference of the measured  
transition points minus the difference of the ideal transi-  
tion points.  
Bypass V  
to GND with a 0.1µF ceramic capacitor in  
DD  
parallel with a 2.2µF ceramic capacitor. Bypass OV  
to GND with a 0.1µF ceramic capacitor in parallel with a  
2.2µF ceramic capacitor.  
DD  
Multilayer boards with ample ground and power planes  
produce the highest level of signal integrity. All  
MAX12554 GNDs and the exposed back-side paddle  
must be connected to the same ground plane. The  
MAX12554 relies on the exposed back-side paddle  
connection for a low-inductance ground connection.  
Use multiple vias to connect the top-side ground to the  
bottom-side ground. Isolate the ground plane from any  
noisy digital system ground planes such as a DSP or  
output buffer ground.  
Small-Signal Noise Floor (SSNF)  
Small-signal noise floor is the integrated noise and dis-  
tortion power in the Nyquist band for small-signal  
inputs. The DC offset is excluded from this noise calcu-  
lation. For this converter, a small signal is defined as a  
single tone with an amplitude less than -35dBFS. This  
parameter captures the thermal and quantization noise  
characteristics of the converter and can be used to  
help calculate the overall noise figure of a receive  
channel. Go to www.maxim-ic.com for application  
notes on thermal + quantization noise floor.  
Route high-speed digital signal traces away from the  
sensitive analog traces. Keep all signal lines short and  
free of 90° turns.  
Ensure that the differential analog input network layout  
is symmetric and that all parasitics are balanced equal-  
ly. Refer to the MAX12555 evaluation kit data sheet for  
an example of symmetric input layout.  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADC’s reso-  
lution (N bits):  
Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. For the  
MAX12554, this straight line is between the end points  
of the transfer function, once offset and gain errors have  
been nullified. INL deviations are measured at every  
step of the transfer function and the worst-case devia-  
tion is reported in the Electrical Characteristics table.  
SNR  
= 6.02 x N + 1.76  
[max]  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise. RMS noise includes all spec-  
tral components to the Nyquist frequency excluding the  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1 LSB. A DNL  
error specification of less than 1 LSB guarantees no  
______________________________________________________________________________________ 25  
14-Bit, 80Msps, 3.3V ADC  
fundamental, the first six harmonics (HD2–HD7), and  
the DC offset:  
Intermodulation Distortion (IMD)  
IMD is the ratio of the RMS sum of the intermodulation  
products to the RMS sum of the two fundamental input  
tones. This is expressed as:  
SIGNAL  
NOISE  
RMS  
RMS  
SNR = 20 × log  
2
2
2
2
V
+ V  
+.......+ V  
+ V  
IM14  
IM1  
IM2  
IM13  
MD = 20 × log  
2
2
V
+ V  
2
1
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to the RMS noise plus the RMS distortion. RMS  
noise includes all spectral components to the Nyquist  
frequency excluding the fundamental, the first six har-  
monics (HD2–HD7), and the DC offset. RMS distortion  
includes the first six harmonics (HD2–HD7):  
The fundamental input tone amplitudes (V and V ) are  
1
2
at -7dBFS. Fourteen intermodulation products (V _)  
IM  
are used in the MAX12554 IMD calculation. The inter-  
modulation products are the amplitudes of the output  
spectrum at the following frequencies, where f  
IN2  
and  
IN1  
f
are the fundamental input tone frequencies:  
• Second-order intermodulation products:  
+ f , f - f  
SIGNAL  
2
f
RMS  
IN1  
IN2 IN2 IN1  
SINAD = 20 × log  
2
• Third-order intermodulation products:  
2 x f - f , 2 x f - f , 2 x f + f , 2 x f + f  
NOISE  
+ DISTORTION  
RMS  
RMS  
IN1 IN2  
IN2 IN1  
IN1  
IN2  
IN2  
IN1  
IN1  
• Fourth-order intermodulation products:  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at a  
specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. ENOB for  
a full-scale sinusoidal input waveform is computed from:  
3 x f - f , 3 x f - f , 3 x f + f , 3 x f + f  
IN1 IN2  
IN2 IN1  
IN1  
IN2  
IN2  
• Fifth-order intermodulation products:  
3 x f - 2 x f , 3 x f - 2 x f , 3 x f + 2 x  
IN1  
IN1  
, 3 x f  
IN2  
IN2  
+ 2 x f  
IN2 IN1  
IN1  
f
IN2  
Third-Order Intermodulation (IM3)  
SINAD 1.76  
IM3 is the total power of the third-order intermodulation  
products to the Nyquist frequency relative to the total  
ENOB =  
6.02  
input power of the two input tones f  
and f . The  
IN2  
IN1  
individual input tone levels are at -7dBFS. The third-  
order intermodulation products are 2 x f - f , 2 x  
Single-Tone Spurious-Free Dynamic  
Range (SFDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS amplitude of the next-largest spurious  
component, excluding DC offset.  
IN1  
IN2  
f
- f , 2 x f  
+ f , 2 x f  
+ f  
.
IN1  
IN2 IN1  
IN1  
IN2  
IN2  
Two-Tone Spurious-Free Dynamic Range  
(SFDR  
)
TT  
SFDR represents the ratio, expressed in decibels, of  
TT  
the RMS amplitude of either input tone to the RMS  
amplitude of the next-largest spurious component in the  
spectrum, excluding DC offset. This spurious compo-  
nent can occur anywhere in the spectrum up to Nyquist  
and is usually an intermodulation product or a harmonic.  
Total Harmonic Distortion (THD)  
THD is the ratio of the RMS sum of the first six harmon-  
ics of the input signal to the fundamental itself. This is  
expressed as:  
Aperture Delay  
The MAX12554 samples data on the falling edge of its  
sampling clock. In actuality, there is a small delay  
between the falling edge of the sampling clock and the  
2
2
2
2
2
2
V
+ V  
+ V  
+ V  
+ V  
+ V  
7
2
3
4
5
6
THD = 20 × log  
V
1
actual sampling instant. Aperture delay (t ) is the  
AD  
where V is the fundamental amplitude, and V through  
1
2
time defined between the falling edge of the sampling  
clock and the instant when an actual sample is taken  
(Figure 4).  
V
are the amplitudes of the 2nd- through 7th-order  
7
harmonics (HD2–HD7).  
26 ______________________________________________________________________________________  
14-Bit, 80Msps, 3.3V ADC  
Aperture Jitter  
Pin Configuration  
Figure 4 depicts the aperture jitter (t ), which is the  
AJ  
sample-to-sample variation in the aperture delay.  
TOP VIEW  
Output Noise (n  
)
OUT  
The output noise (n  
mal + quantization noise parameter and is an indication  
of the ADC’s overall noise performance.  
) parameter is similar to the ther-  
OUT  
40 39 38 37 36 35 34 33 32 31  
REFP  
REFN  
COM  
GND  
INP  
1
2
3
4
5
6
7
8
9
30 D2  
29 D3  
28 D4  
27 D5  
26 D6  
25 D7  
24 D8  
23 D9  
22 D10  
21 D11  
No fundamental input tone is used to test for n  
; INP,  
OUT  
INN, and COM are connected together and 1024k data  
points collected. n is computed by taking the RMS  
OUT  
value of the collected data points after the mean is  
removed.  
MAX12554  
INN  
Overdrive Recovery Time  
Overdrive recovery time is the time required for the  
ADC to recover from an input transient that exceeds the  
full-scale limits. The MAX12554 specifies overdrive  
recovery time using an input transient that exceeds the  
full-scale limits by 10%.  
GND  
DCE  
CLKN  
EXPOSED PADDLE (GND)  
CLKP 10  
11 12 13 14 15 16 17 18 19 20  
THIN QFN  
6mm x 6mm x 0.8mm  
______________________________________________________________________________________ 27  
14-Bit, 80Msps, 3.3V ADC  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
C
L
b
D/2  
D2/2  
k
E/2  
E2/2  
(NE-1) X  
e
C
L
E
E2  
k
L
e
(ND-1) X  
e
e
L
C
C
L
L
L1  
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
1
E
21-0141  
2
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR 0.4mm LEAD PITCH PACKAGE T4866-1.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
2
E
21-0141  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
28 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX12554ETL/GG8-T

ADC, Proprietary Method
MAXIM

MAX12554EVKIT+

Low-Voltage and Low-Power Operation
MAXIM

MAX12555

14-Bit, 95Msps, 3.3V ADC
MAXIM

MAX12555ETL

14-Bit, 95Msps, 3.3V ADC
MAXIM

MAX12555ETL-T

ADC, Proprietary Method, 14-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220-WJJD, TQFN-40
MAXIM

MAX12555EVKIT+

Low-Voltage and Low-Power Operation
MAXIM

MAX12557

Dual, 65Msps, 14-Bit, IF/Baseband ADC
MAXIM

MAX12557ETK

Dual, 65Msps, 14-Bit, IF/Baseband ADC
MAXIM

MAX12557ETK+

ADC, Successive Approximation, 14-Bit, 1 Func, 2 Channel, Parallel, Word Access, 10 X 10 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220WNND-2, TQFN-68
MAXIM

MAX12557ETK+TD

ADC, Successive Approximation, 14-Bit, 2 Func, 1 Channel, Parallel, Word Access, CMOS, 10 X 10 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, MO-220-WNND-2, TQFN-68
MAXIM

MAX12557ETK-TD

ADC, Successive Approximation, 14-Bit, 2 Func, 1 Channel, Parallel, Word Access, CMOS, 10 X 10 MM, 0.80 MM HEIGHT, MO-220-WNND-2, TQFN-68
MAXIM

MAX12557EVKIT

Low-Voltage and Low-Power Operation
MAXIM