MAX126EVB16 [MAXIM]

Complete Evaluation System Samples to 40ksps;
MAX126EVB16
型号: MAX126EVB16
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Complete Evaluation System Samples to 40ksps

文件: 总20页 (文件大小:276K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1322; Rev 0; 10/97  
MAX1 2 5 /MAX1 2 6 Eva lu a t io n  
S ys t e m s /Eva lu a t io n Kit s  
Evluate:5/MAX126  
Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
Proven PC Board Layout  
The MAX125/MAX126 evaluation systems (EV systems)  
consist of a MAX125/MAX126 evaluation kit (EV kit) and  
a Maxim 68HC16MOD-16WIDE microcontroller (µC)  
module. The MAX125/MAX126 are high-speed, 8-chan-  
nel, 14-bit data-acquisition systems with four simultane-  
ous track/holds. Windows 3.1/Windows 95™ software  
p rovid e s a ha nd y us e r inte rfa c e to e xe rc is e the  
MAX125/MAX126s features.  
Complete Evaluation System Samples to 40ksps  
Convenient Test Points Provided On Board  
Data-Logging Software with FFT Capability  
Fully Assembled and Tested  
Order the complete EV system for comprehensive eval-  
uation of the MAX125/MAX126 with a personal comput-  
er. Order the EV kit if you have already purchased the  
µC module (68HC16MOD-16WIDE) with another Maxim  
EV system or if you desire custom use in other µC-  
based systems.  
Ord e rin g In fo rm a t io n *  
PART  
TEMP. RANGE INTERFACE TYPE  
MAX125EVKIT  
MAX125EVB16  
MAX126EVKIT  
MAX126EVB16  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
User Supplied  
Windows Software  
User Supplied  
S t a n d -Alo n e EV Kit s  
The MAX125/MAX126 EV kits p rovid e a p rove n PC  
board layout to facilitate evaluation of the MAX125/  
MAX126. The EV kits must be interfaced to appropriate  
timing signals for proper operation. Apply dual power  
supplies (±8V min, ±20V max) to connector P1, pin 5  
(P1-5), and P1-9, with ground at P1-1. Connect the  
active-low read strobe to P1-38, the write strobe to  
P1-37, the chip selects to P1-35, and the convert-start  
signal to P1-36 (Table 1 and Figure 1). Refer to the  
MAX125/MAX126 data sheet for timing requirements.  
Windows Software  
*The MAX125 software can be used only with the complete eval-  
ua tion s ys te m (MAX125EVB16 or MAX126EVB16), whic h  
includes the 68HC16MOD-16WIDE module together with the  
MAX125EVKIT or MAX126EVKIT.  
MAX1 2 5 EVB1 6  
S ys t e m Co m p o n e n t Lis t  
EV S ys t e m s  
PART  
QTY  
DESCRIPTION  
The MAX125/MAX126 EV systems operate from a user-  
supplied +13V to +20V DC power supply. Windows  
3.1/Windows 95 software running on an IBM PC inter-  
faces to the EV system board through the computers  
serial-communications port. The software can be oper-  
ated with or without a mouse. Refer to the Quick Start  
section for setup and operating instructions.  
MAX125EVKIT  
1
MAX125 evaluation kit  
68HC16 µC module with  
16-bit parallel interface  
68HC16MOD-16WIDE  
1
MAX1 2 6 EVB1 6  
S ys t e m Co m p o n e n t Lis t  
Table 1. Power-Supply and Timing Signal  
Connections  
PART  
QTY  
DESCRIPTION  
MAX126EVKIT  
1
MAX126 evaluation kit  
PIN  
SIGNAL  
68HC16 µC module with  
16-bit parallel interface  
68HC16MOD-16WIDE  
1
P1–1  
Ground  
P1–5  
Positive Supply, +8V to +20V  
Negative Supply, -8V to -20V  
Chip Select  
P1–9  
P1–35  
P1–36  
P1–37  
P1–38  
Convert-Start  
Write Strobe  
Read Strobe  
Windows 3.1 and Windows 95 are trademarks of Microsoft Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
MAX1 2 5 /MAX1 2 6 Eva lu a t io n  
S ys t e m s /Eva lu a t io n Kit s  
MAX1 2 5 EVKIT/MAX1 2 6 EVKIT  
Co m p o n e n t Lis t  
Qu ic k S t a rt  
Re c o m m e n d e d Eq u ip m e n t  
You will ne e d the following e q uip me nt b e fore you  
begin:  
DESIGNATION QTY  
DESCRIPTION  
C1, C2, C4,  
A small DC power supply (+13V to +20V DC at  
250mA)  
C5, C6, C9,  
C10  
7
0.1µF ceramic capacitors  
An IBM PC-compatible computer capable of run-  
ning Windows 3.1 or Windows 95  
C3, C8  
C7  
2
1
1
2
2
4
2
1
1
1
1
1
1
1
10µF, 25V tantalum capacitors  
4.7µF, 6.3V tantalum capacitor  
100pF ceramic capacitor  
2x20 right-angle connectors  
100, 1% resistors  
A spare serial-communications port, preferably a  
9-pin plug  
C11  
P1, P2  
R1, R6  
R2–R5  
R7, R8  
U1  
A serial cable to connect the computers serial port  
to the Maxim 68HC16MOD-16WIDE module  
10k, 5% resistors  
Co n n e c t io n s a n d S e t u p  
10, 5% resistors  
Perform the following steps to evaluate the MAX125 or  
MAX126:  
Maxim MAX125 or MAX126  
78L05 voltage regulator  
74HCT244  
U2  
1) Carefully connect the boards by aligning the two  
40-pin headers of the MAX125/MAX126 EV kit with  
the two 40-pin connectors of the 68HC16MOD-  
16WIDE module. Gently press them together. The  
two boards should be flush against each other.  
U3  
U4  
79L05 negative-voltage regulator  
16MHz clock-oscillator module  
PC board  
U5  
None  
None  
2) Connect a +13V to +20V DC power source to the  
µC module at the terminal block (J2) next to the  
on/off switch, along the top edge of the µC module.  
Observe the polarity marked on the board.  
Software disk: MAX125 Evaluation Kit  
Evluate:5/MAX126  
3) Connect a cable from the computers serial port to  
the µC mod ule . With a 9-p in s e ria l p ort, us e a  
straight-through, 9-pin female-to-male cable. If the  
only available serial port uses a 25-pin connector, a  
standard 25-pin to 9-pin adapter is required. The  
EV kit s oftwa re c he c ks the mod e m s ta tus line s  
(CTS, DSR, DCD) to confirm that the correct port  
has been selected.  
Lis t o f File s in MAX1 2 5 EV Kit  
FILE  
FUNCTION  
Installs EV kit files onto your computer  
Application program  
INSTALL.EXE  
MAX125.EXE  
MAX125.HLP  
KIT125.B16  
MAX125.INI  
UNINST.EXE  
Help file  
Loads software into the 68HC16 µC  
Program settings  
4) Ins ta ll the EV kit s oftwa re on your c omp ute r b y  
running the INSTALL.EXE program on the floppy  
disk. The program files are copied, and icons are  
created for them in the Windows 3.1 program man-  
ager (or the Windows 95 Start menu). The EV kit soft-  
ware evaluates both the MAX125 and the MAX126.  
Removes EV kit files from your computer  
5) Start the program by opening its icon in the pro-  
gram manager (or Start menu).  
6) The program prompts you to connect the µC mod-  
ule and turn its power on. Slide SW1 to the on posi-  
tion. Select the correct serial port and click OK. The  
program automatically downloads KIT125.B16 to  
the module. The default device setting is for the  
MAX125. If using the MAX126, select MAX126” in  
the device characteristics dialog box and click on  
apply.”  
2
_______________________________________________________________________________________  
MAX1 2 5 /MAX1 2 6 Eva lu a t io n  
S ys t e m s /Eva lu a t io n Kit s  
Evluate:5/MAX126  
7) Ap p ly inp ut s ig na ls to the inp uts la b e le d  
You may optionally record readings into a data-log file.  
Click on the New Log” button to begin or end data log-  
ging. The Log File Formatdialog box is displayed.  
One complete line of data is written after all enabled  
channels have been sampled. The first line of the log  
file contains the column headings. Each subsequent  
line contains all enabled channels, separated by com-  
mas, tabs, or spaces (previously selected in the “Log  
File Format dialog box). Once a log file has been  
opened, it can be paused or resumed with the corre-  
sponding Log menu commands. The program contin-  
ues to write data to the log file until the “Stop Log”  
button is clicked.  
CH1A–CH4A at the bottom edge of the MAX125/  
MAX126 EV kit board. Observe the readout on the  
screen.  
De t a ile d De s c rip t io n o f S o ft w a re  
The MAX125/MAX126 digitize up to four inputs from  
either the A or the B input bank. Conversion time is  
determined by the number of enabled inputs. The soft-  
ware collects samples at a maximum throughput of  
40ksps (one channel) and 26ksps (four channels). The  
va rious p rog ra m func tions a re g roup e d into d ia log  
boxes, which are accessible from the Window menu on  
the main menu bar.  
On e -S h o t Re a d To o l  
The One-Shot Read Toolallows direct control of the  
analog-to-digital converter (ADC) configuration. Select  
the c ha nne l a nd mod e of op e ra tion to up d a te the  
Control Byte” display. Or, change the Control Byte”  
bits directly and observe the change in the “Channel  
Selection” control. The Read Now” button writes the  
configuration information to the ADC and performs one  
reading.  
Ke yb o a rd Na vig a t io n  
If a mouse or other pointing device is not available, use  
the following keyboard shortcuts (Table 2):  
Press ALT+W to display the Window menu, and  
then select a tool window.  
Pre s s the TAB ke y to s e le c t c ontrols within the  
selected tool window.  
Activate buttons by pressing the spacebar.  
P o w e r Cyc lin g To o l  
To re d uc e a ve ra g e s up p ly c urre nt d e ma nd , the  
MAX125/MAX126 can be shut down between conver-  
sions. From the Window menu, select Power Cycling  
Tool.” The amount of power saved depends primarily  
on how long the p a rt is off b e twe e n c onve rs ions .  
Conversion accuracy depends on the power-up delay,  
reference capacitor, and time in power-down. Adjust  
the off-time with the “Delay Between Samples” com-  
mand. Adjust the on-time with the “Power-Up Delay”  
command.  
Use the up/down arrow keys for check boxes, radio  
buttons, and combo boxes.  
S c a n To o l  
You can automatically take readings at regular intervals  
up to 10 samples per second from user-selected chan-  
nels by selecting Scan Tool from the Window menu.  
The Channel Selection and Configuration” group con-  
trols which channels will be scanned. The Bipolar and  
Diffe re ntia l” c ontrols a re d is a b le d b e c a us e the  
MAX125/MAX126s transfer function is bipolar.  
Using an adequate power-up delay ensures that the  
desired conversion accuracy is achieved during power-  
cycling modes. The reference must be allowed enough  
time to stabilize before the measurement is performed.  
Start with zero power-up delay, and increase the delay  
time until no further change in accuracy is observed. The  
power-up delay requirement depends on the value of the  
reference capacitor and the off-time (delay between  
samples).  
The Scan Rate” combo box controls the rate at which  
measurements are made. Readings are displayed in  
the “Recent Values” text area.  
Table 2. Keyboard-Navigation Shortcuts  
KEY  
FUNCTION  
TAB  
Selects next control  
ALT+W  
Window menu  
The MAX125/MAX126 EV kit software performs power-  
up by writing a configuration word with the shutdown  
bit cleared. After power-up, the power-up delay is exe-  
cuted to allow time for the reference voltage to stabilize  
so that an accurate measurement can be performed.  
ALT+space  
ALT+minus  
Spacebar  
System menu of main program window  
System menu of child window  
Clicks on the selected button  
Copies the image of the main window  
onto the clipboard  
ALT+PrintScreen  
_______________________________________________________________________________________  
3
MAX1 2 5 /MAX1 2 6 Eva lu a t io n  
S ys t e m s /Eva lu a t io n Kit s  
Changing the Reference Voltage  
S a m p lin g To o l  
The EV kit software assumes a 2.5V reference voltage,  
unless otherwise specified. Apply an external 2.5V ref-  
erence to the REFIN pad to overdrive the internal refer-  
ence. See the MAX125/MAX126 data sheet for more  
information. From the Window menu, select Device  
Characteristics.” Next, type the new reference voltage  
into the “Reference Voltage” edit box.  
To sample data at rates up to 40ksps, select Sampling  
Tool” from the Window menu, make your selections,  
and click on the Start button. Adjust the timing delays  
as appropriate to control the sample rate. Estimate the  
effective sample rate by taking the reciprocal of the  
s um of the d e la y b e twe e n s a mp le s , the p owe r-up  
delay, and the conversion time. Sample size is restrict-  
e d to a p owe r of two s o tha t the “Fa s t Fourie r  
Transform” (FFT) tool can process the data. Sample  
Size” controls the number of samples collected on  
each selected channel. After the samples have been  
collected, the data is automatically uploaded to the  
hos t a nd g ra p he d . Onc e d is p la ye d , the d a ta c a n  
optionally be saved to a file.  
De t a ile d De s c rip t io n  
o f Ha rd w a re  
The ADC (U1) is an 8-channel, 14-bit data-acquisition  
system with four simultaneous track/holds. Linear regu-  
lators U2 and U4 provide clean analog ±5V power sup-  
plies for the ADC. R8 and C1 filter digital noise out of  
the analog power supply. U3 isolates the CS, RD, WR,  
and CONVST signals from the main system bus to fur-  
ther prevent digital noise from entering the ADC. R7  
and C11 filter the TTL clock oscillator to prevent over-  
shoot at the CLK input.  
FFT To o l  
The EV software includes an FFT tool that can display  
the spectral content of data collected with the high-  
speed sampling tool.  
To view the spectral content of a waveform, first select  
a data sample that was previously collected with the  
Sa mp ling Tool.” The n s e le c t “FFT Tool” from the  
Window menu. Check the output plots desired and  
click on the Start button.  
The MAX125/MAX126s chip-select (CS) is memory-  
mapped to location 7E000 on the 68HC16 module. This  
location is used for writing configuration bytes and  
reading data. The convert-start (CONVST) signal is also  
me mory-ma p p e d a nd is a s s e rte d for one me mory-  
a c c e s s c yc le whe n me mory loc a tion 7E800 is  
accessed. The MAX125/MAX126s interrupt (INT) out-  
put triggers an interrupt on the 68HC16 through the  
input capture vector.  
A d a ta -wind owing func tion p re p roc e s s e s the d a ta  
sample before performing an FFT.1) When the input sig-  
nal is not synchronized to the sampling clock, spectral  
energy appears to leak into nearby frequency buckets.  
A suitable data window tapers the raw data to zero  
amplitude at the beginning and end, reducing this spec-  
tral leakage.  
Evluate:5/MAX126  
Me a s u rin g S u p p ly Cu rre n t  
To monitor supply current, measure the voltage across  
resistor R1 (for the +5V supply) or R6 (for the -5V sup-  
ply). These resistors are 100±1%, so every 1mV  
across R1 or R6 represents 10µA of supply current.  
De vic e Ch a ra c t e ris t ic s  
The Device Characteristics” dialog box contains para-  
meters that are not expected to change often. The  
device selection is used to select between the MAX125  
and the MAX126.  
Table 3. Troubleshooting Guide  
PROBLEM  
CORRECTIVE ACTIONS  
Evaluating the MAX126  
The MAX125 software can evaluate the MAX126 direct-  
ly. From the Window menu, select Device Charac-  
teristics.” Next, change the device type from MAX125  
to MAX126. This tells the program that the input voltage  
Check the +5V and -5V sup-  
ply voltages.  
Check the 2.5V REFOUT ref-  
erence voltage using a digi-  
tal voltmeter.  
No output measurement.  
System seems to report  
zero voltage or fails to  
make a measurement.  
span is ±V  
instead of ±2V  
.
REF  
REF  
Use an oscilloscope to verify  
that the 16MHz clock is run-  
ning and that the conver-  
sion-start signal is being  
strobed.  
1) For more information on the FFT and data-windowing functions, refer to W.H. Press, et al., Numerical Recipes in Pascal: The Art of  
Scientific Computing, Cambridge University Press, 1989, ISBN 0-521-37516-9.  
4
_______________________________________________________________________________________  
MAX1 2 5 /MAX1 2 6 Eva lu a t io n  
S ys t e m s /Eva lu a t io n Kit s  
Evluate:5/MAX126  
5U  
1U  
1
MAX162  
2
U4  
A
U3B  
Figure 1. MAX125 EV Kit Schematic  
_______________________________________________________________________________________  
5
MAX1 2 5 /MAX1 2 6 Eva lu a t io n  
S ys t e m s /Eva lu a t io n Kit s  
Evluate:5/MAX126  
1.0"  
1.0"  
Figure 2. MAX125/MAX126 EV Kit Component Placement  
Guide  
Figure 3. MAX125/MAX126 EV Kit PC Board Layout—  
Component Side  
6
_______________________________________________________________________________________  
MAX1 2 5 /MAX1 2 6 Eva lu a t io n  
S ys t e m s /Eva lu a t io n Kit s  
Evluate:5/MAX126  
1.0"  
Figure 4. MAX125/MAX126 EV Kit PC Board Layout—Solder  
Side  
_______________________________________________________________________________________  
7
MAX1 2 5 /MAX1 2 6 Eva lu a t io n  
S ys t e m s /Eva lu a t io n Kit s  
NOTES  
Evluate:5/MAX126  
8
_______________________________________________________________________________________  
6 8 HC1 6 MOD-1 6 WIDE  
8HCMO-16WIDE  
Co m p o n e n t Lis t  
DESIGNATION  
QTY  
DESCRIPTION  
DESIGNATION  
SW1  
QTY  
DESCRIPTION  
Slide switch  
C1  
1
7
1
2
2
1
1
1
1
10µF, 25V electrolytic capacitor  
0.1µF ceramic capacitors  
1µF ceramic capacitor  
1
1
C2, C8–C12, C14  
SW2  
Momentary pushbutton switch  
C3  
C4, C5  
C6, C7  
C13  
68HC16 microcontroller  
MC68HC16Z1CFC16 (132-pin  
plastic quad flat pack)  
U1  
1
22µF, 25V electrolytic capacitors  
22pF ceramic capacitors  
100µF, 25V electrolytic capacitor  
1N4001 diode  
U2  
U3  
1
1
Maxim MAX233CPP  
27C256 EPROM containing  
monitor program  
D1  
D2  
1N4742A 12V, 1W zener diode  
2-circuit terminal block  
U3  
U4  
1
1
1
2
2
2
1
1
1
4
1
28-pin socket  
J2  
7805 regulator, TO-220 size  
Heatsink, thermalloy # 6078  
62256 (32K x 8) static RAMs  
74HCT245 bidirectional buffers  
20-pin sockets  
Right-angle printed circuit board  
mount, DB9 female socket  
J3  
1
U4  
U5, U8  
U6, U9  
U6, U9  
U7  
LED1  
P1, P2  
R1  
1
2
1
1
2
1
1
1
Light-emitting diode  
40-pin right-angle male connectors  
10M, 5% resistor  
330k, 5% resistor  
10k, 5% resistors  
470, 5% resistor  
Maxim MAX707CPA  
R2  
U10  
Maxim ICL7662CPA  
R3, R4  
R5  
Y1  
32.768kHz watch crystal  
Rubber feet  
None  
None  
R6  
10k, SIP resistor  
5" x 5" printed circuit board  
R7  
100, 5% resistor  
Ge n e ra l De s c rip t io n  
De t a ile d De s c rip t io n  
The 68HC16MOD-16WIDE module is an assembled and  
te s te d p rinte d -c irc uit b oa rd inte nd e d for us e with  
Maxims high-speed evaluation kits (EV kits). The mod-  
ule us e s a full 16-b it imp le me nta tion of Motorola s  
MC68HC16Z1 microcontroller (µC). It requires an IBM-  
compatible personal computer and an external DC  
power supply, typically 12V or as specified in the EV kit  
manual.  
P o w e r In p u t Co n n e c t o r J 2  
The 68HC16MOD-16WIDE module draws its power from  
a user-supplied power source connected to terminal  
block J2. Be sure to note the positive and negative  
markings on the board. A three-terminal 5V regulator  
allows input voltages between 8V and an absolute maxi-  
mum of 20V. The 68HC16MOD-16WIDE module typical-  
ly requires 200mA of input current.  
Ma xims 68HC16MOD-16WIDE mod ule a llows c us -  
tomers to evaluate selected Maxim products. It is not  
intended to be used as a microprocessor development  
platform, and such use is not supported by Maxim.  
6 8 HC1 6 Mic ro c o n t ro lle r  
U1 is Motorolas 68HC16Z1 µC. Contact Motorola for µC  
information, development, and support. Maxim EV kits  
may use the 16-bit wide bus or use the high-speed  
queued serial peripheral interface (QSPI™) and the  
internal chip-select generation.  
A MAX707 on the module (U7) monitors the 5V logic  
supply, generates the power-on reset, and produces a  
reset pulse whenever the reset button is pressed.  
QSPI is a trademark of Motorola Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 408-737-7600 ext. 3468.  
6 8 HC1 6 MOD-1 6 WIDE  
The 68HC16MOD-16WIDE module uses a phase-locked  
loop (PLL) to s e t its b us s p e e d . Crys ta l Y1 is a  
32.768kHz frequency reference. The internal oscillator  
runs 256 times faster than the external crystal. When the  
68HC16MOD-16WIDE module is reset, it waits for the  
PLL to lock before it executes any software. After the  
PLL locks onto the reference frequency, the software  
doubles the clock speed by writing to the clock synthe-  
s ize r c ontrol re g is te r, s e le c ting a b us s p e e d of  
16.78MHz.  
Table 1. Serial Communications Port J3  
PIN  
NAME  
FUNCTION  
1
DCD  
Handshake; hard-wired to DTR and DSR  
RS-232-compatible data output from  
68HC16MOD-16WIDE module  
2
3
RXD  
TXD  
RS-232-compatible data input to  
68HC16MOD-16WIDE module  
4
5
6
7
8
9
DTR  
GND  
DSR  
RTS  
Handshake; hard-wired to DCD and DSR  
Signal ground connection  
U5 and U8, the user RAM area, are 32kbyte CMOS stat-  
ic RAMs.  
Handshake; hard-wired to DCD and DTR  
Handshake; hard-wired to CTS  
Handshake; hard-wired to RTS  
Unused  
The 74HCT245 oc ta l b uffe rs le t the 68HC16MOD-  
16WIDE module access a 16-bit port on the interface  
connectors. This memory-mapped port consists of sep-  
arate read and write strobes, four chip selects, four  
address LSBs, and sixteen data bits.  
CTS  
None  
Bo o t ROM  
The boot ROM, U3, is configured as an 8-bit memory  
device. Resistor R4 pulls data bit 0 low during system  
reset, forcing the µC to fetch instructions using only the  
upper eight data bits. The boot ROM checks the system  
and waits for commands from the host. Refer to the EV  
kit manual for specific start-up procedures.  
S e ria l Co m m u n ic a t io n s  
J3 is an RS-232 serial port, designed to be compatible  
with the IBM PC 9-p in s e ria l p ort. Us e a s tra ig ht-  
through DB9 male-to-female cable to connect J3 to this  
port. If the only available serial port has a 25-pin con-  
ne c tor, you ma y us e a s ta nd a rd 25-p in to 9-p in  
adapter. Table 1 shows the pinout of J3.  
8HCMO-16WIDE  
S o ft w a re  
All s oftwa re is s up p lie d on a d is k with the EV kit.  
Instructions for operating the software are included in  
the EV kit manual. Refer to the EV kit manual for more  
information.  
The MAX233 is an RS-232 interface voltage level-shifter  
with two transmitters and two receivers. It includes a  
built-in charge pump with internal capacitors that gener-  
ates the output voltages necessary to drive RS-232 lines.  
Use the 68HC16MOD-16WIDE module only with those  
EV kits that are designed to support it, and only down-  
load code that is targeted for the 68HC16MOD-16WIDE  
module. Downloading incorrect object code into the  
68HC16MOD-16WIDE module will have unpredictable  
results.  
4 0 -P in Co n n e c t o rs P 1 a n d P 2  
The 20 x 2 p in he a d e rs (P1 a nd P2) c onne c t the  
68HC16MOD-16WIDE module to a Maxim EV kit. Table  
2 lists the function of each pin.  
Ad d re s s Ra n g e s  
The 68HC16 µC generates various enable signals for  
different address ranges. The ROM and RAM enable  
signals are fed directly to the respective chips. Several  
additional signals (P1–33 to P1–36) are available on the  
data connector to be used by Maxim EV kits. Table 3  
outlines the address ranges for each of the elements  
found on the 68HC16MOD-16WIDE module, and Table  
4 is a truth table that describes the logic for each of the  
modules chip-select outputs. Because the addresses  
are not completely decoded, the boot ROM and has a  
shadow at address 08000 hex.  
2
_______________________________________________________________________________________  
6 8 HC1 6 MOD-1 6 WIDE  
8HCMO-16WIDE  
If the LED flashes with a 10%-on/90%-off duty cycle,  
then the module failed its self check. Most likely, one of  
the RAM chips (U5 or U8) is bad.  
S e lf Ch e c k  
The 68HC16MOD-16WIDE module includes a self-diag-  
nostic routine, which checks the power supply, micro-  
processor, RAM, and ROM, independent of the EV kit  
or computer. Note that it does not exercise the RS-232  
port or the EV kit 80-pin interface. Connect the power  
supply to the power terminals (J2) and slide the power  
switch SW1 to the “ON” position. The LED will light up,  
and will flash within 5 seconds.  
If the LED remains on and does not flash, then the prob-  
lem is either U3 (the EPROM), U1 (the microprocessor),  
U4 (the regulator), the MAX707 reset generator, or the  
power supply. Use a voltmeter to verify that the power  
supplies are good; check the power-supply input and the  
+5V output from the regulator. Use an oscilloscope to see  
if the 32.768kHz reference oscillator is running.  
If the LED flashes with a 50% duty cycle, then the module  
passed its self check.  
Table 2. P1 and P2 Data-Connector Signals  
HEADER  
PIN  
1, 4  
5, 6  
7, 8  
9, 10  
11  
NAME  
GND  
VPREREG  
+5V  
68HC16-16WIDE MODULE FUNCTION  
Ground return  
+12V from wall cube  
+5V from 78M05  
-12V  
PCS2  
PCS3  
PCS0/SS  
PCS1  
MOSI  
SCK  
-12V from ICL7662 (typically -8V at 15mA load)  
QSPI peripheral chip select 2  
12  
QSPI peripheral chip select 3  
13  
QSPI peripheral chip select 0  
14  
QSPI peripheral chip select 1  
15  
QSPI Master Output, Slave Input  
QSPI Serial Clock  
16  
17  
Not used  
18  
MISO  
IC2  
QSPI Master Input, Slave Output  
General purpose I/O; Input Capture 2; can be used as an IRQ  
General purpose I/O; Input Capture 1; can be used as an IRQ  
General purpose I/O; Output Compare 1  
General purpose I/O; Input Capture 3; can be used as an IRQ  
Not used  
P1  
19  
20  
IC1  
21  
OC1  
22  
IC3  
23  
24  
OC2  
General purpose I/O; Output Compare 2  
General purpose I/O; Output Compare 4  
General purpose I/O; Output Compare 3  
Pulse Accumulator Input  
25  
OC4  
26  
OC3  
27  
PAI  
28  
IC4  
General purpose I/O; Input Capture 4; can be used as an IRQ  
Pulse-Width Modulator B output (drives the status LED)  
Pulse-Width Modulator A output  
29  
PWMB  
PWMA  
30  
_______________________________________________________________________________________  
3
6 8 HC1 6 MOD-1 6 WIDE  
Table 2. P1 and P2 Data-Connector Signals (continued)  
HEADER  
PIN  
NAME  
68HC16-16WIDE MODULE FUNCTION  
31  
32  
Not used  
PCLK  
Pulse Accumulator Clock Input  
Chip select strobe for I/O area $7F800  
Chip select strobe for I/O area $7F000  
Chip select strobe for I/O area $7E000  
Chip select strobe for I/O area $7E800  
Active low write strobe for I/O area  
Active low read strobe for I/O area  
Not used  
33  
CS10/7F800  
CS9/7F000  
CS7/7E000  
CS8/7E800  
CS5/WRIO  
CS1/RDIO  
34  
P1  
35  
36  
37  
38  
39, 40  
1
EXTD0  
External I/O data bus LSB  
External I/O data bus  
2–15  
16  
EXTD1–14  
EXTD15  
External I/O data bus MSB  
Not used  
17, 18  
19  
P2  
A01  
A02  
A03  
A04  
Word address LSB  
8HCMO-16WIDE  
20  
Word address  
21  
Word address  
22  
Word address  
23–40  
Not used  
Table 3. Memory Map (all address values are in 20-bit hex)  
PIN  
FUNCTION  
Boot ROM (U3, strobed by CSBOOT)  
Shadow of boot ROM  
PIN  
FUNCTION  
F8000–FF6FF  
FF700–FF73F  
FF740–FF8FF  
FF900–FF93F  
FF940–FF9FF  
FFA00–FFA7F  
FFA80–FFAFF  
Unused  
00000–07FFF  
08000–0FFFF  
68HC16s built-in ADC (not used)  
Unused  
User RAM (U5 and U8, strobed by CS0  
and CS2)  
10000–1FFFF  
General-purpose timer module (GPT)  
Unused  
20000–203FF  
20400–7DFFF  
7E000–7E7FF  
7E800–7EFFF  
7F000–7F7FF  
7F800–7FFFF  
80000–F7FFF  
Internal standby RAM; 1kbyte  
Unused  
System integration module (SIM)  
Unused  
External chip select (P1 pin 35) (CS7)  
External chip select (P1 pin 36) (CS8)  
External chip select (P1 pin 34) (CS9)  
External chip select (P1 pin 33) (CS10)  
Not accessed by the 68HC16  
Internal standby RAM (SRAM)  
control registers  
FFB00–FFB07  
FFB08–FFBFF  
FFC00–FFDFF  
FFE00–FFFFF  
Unused  
Queued serial module (QSM)  
Unused  
4
_______________________________________________________________________________________  
6 8 HC1 6 MOD-1 6 WIDE  
8HCMO-16WIDE  
Table 4. Chip-Select Outputs Truth Table  
ADDRESS  
RANGE  
CSBOOT  
CS0  
CS1  
CS2  
CS5  
CS6  
CS7  
CS8  
CS9  
CS10  
0xxxx read  
1xxxx read  
1xxxx write  
7E0xx read  
7E0xx write  
7E8xx read  
7E8xx write  
7F0xx read  
7F0xx write  
7F8xx read  
7F8xx write  
L
H
H
H
H
H
H
H
H
H
H
H
H
L
H
H
H
L
H
L
H
H
H
H
L
H
H
H
L
L
L
L
L
L
L
L
H
H
H
L
H
H
H
H
H
L
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
L
L
H
L
H
H
H
H
H
H
H
L
L
H
L
H
H
H
H
H
L
L
H
L
H
H
H
L
VCC  
LED1  
R5  
470  
EXTD0  
EXTD2  
EXTD4  
EXTD6  
EXTD8  
EXTD10  
EXTD12  
EXTD14  
P2-1  
P2-3  
P2-5  
P2-7  
P2-2  
P2-4  
P2-6  
EXTD1  
GND  
GND  
VPREREG  
VCC  
-12V  
PCS2  
PCO/SS  
MOSI  
P1-1  
P1-3  
P1-5  
P1-7  
P1-9  
P1-11  
P1-13  
P1-15 P1-16  
P1-17  
P1-19  
P1-2  
P1-4  
P1-6  
GND  
GND  
VPREREG  
VCC  
-12V  
PCS3  
PCS1  
SCK  
MISO  
IC1  
IC3  
OC2  
OC3  
IC4  
PWMA  
PCLK  
CS9/7F000  
CS8/7E800  
CS1/RDIO  
EXTD3  
EXTD5  
EXTD7  
EXTD9  
EXTD11  
EXTD13  
EXTD15  
PWMB  
C9  
VCC  
P2-8  
P1-8  
0.1µF  
P2-9  
P2-10  
P2-12  
P2-14  
P2-16  
P2-18  
P2-20  
P2-22  
P2-24  
P2-26  
P2-28  
P2-30  
P2-32  
P2-34  
P2-36  
P2-38  
P2-40  
P1-10  
P1-12  
P1-14  
P2-11  
P2-13  
P2-15  
P2-17  
P2-19  
P2-21  
P2-23  
P2-25  
P2-27  
P2-29  
P2-31  
P2-33  
P2-35  
P2-37  
P2-39  
GND  
19  
1
CS6/IOBUFFER  
CS1/RDIO  
OE  
DIR U6  
P1-18  
P1-20  
A01  
A03  
A02  
A04  
IC2  
OC1  
74HCT245  
18  
17  
16  
15  
14  
13  
12  
11  
2
3
4
5
6
7
8
9
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
EXTD0  
D00  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
P1-21 P1-22  
EXTD1  
EXTD2  
EXTD3  
EXTD4  
EXTD5  
EXTD6  
EXTD7  
P1-23  
P1-25  
P1-27  
P1-29  
P1-31  
P1-33  
P1-35  
P1-37  
P1-39  
P1-24  
P1-26  
P1-28  
P1-30  
P1-32  
P1-34  
P1-36  
P1-38  
P1-40  
OC4  
PAI  
PWMB  
CS10/7F800  
CS7/7E000  
CS5/WRIO  
VCC  
1
2
3
4
5
6
7
8
9
10  
TSTME  
BKPT/DSCLK  
BKPT/DSCLK  
HALT  
19  
1
CS6/IOBUFFER  
CS1/RDIO  
OE  
R6  
10k  
SIP  
DIR U9  
74HCT245  
18  
17  
16  
15  
14  
13  
12  
11  
BERR  
2
3
4
5
6
7
8
9
DS  
J4-1  
J4-3  
J4-5  
J4-7  
J4-9  
J4-2  
BERR  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
EXTD8  
EXTD9  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
RESISTOR  
BKPT/DSCLK  
GND  
GND  
J4-4  
J4-6  
MODCLK  
DSACK1  
DSACK0  
IRQ7  
EXTD10  
EXTD11  
EXTD12  
EXTD13  
EXTD14  
EXTD15  
FREEZE  
IPIPE1/DSI  
IPIPE0/DS0  
RESET  
VCC  
J4-8  
J4-10  
Figure 1. 68HC16MOD-16WIDE Module Schematic  
_______________________________________________________________________________________  
5
6 8 HC1 6 MOD-1 6 WIDE  
C14  
0.1µF  
MISO  
MOSI  
SCK  
VCC  
CS10/7F800  
CS9/7F000  
CS8/7E800  
CS7/7E000  
CS6/IOBUFFER  
CS2/RDRAM  
CS1/RDIO  
PCSO/SS  
PCS1  
PCS2  
PCS3  
RXD  
TXD  
18  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
TXD  
19  
CSO/WRRAMHIGH  
CS5/WRIO  
BR  
FC2  
FC1  
A01  
A02  
VCC  
ADDR1  
ADDR2  
VDDE  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
VCC  
VDDE  
VSSE  
FCO  
CSBOOT  
DATA0  
DATA1  
DATA2  
DATA3  
VSSI  
DATA4  
DATA5  
DATA6  
DATA7  
DATA8  
DATA9  
VDDE  
VSSE  
A03  
A04  
A05  
A06  
A07  
A08  
ADDR3  
ADDR4  
ADDR5  
ADDR6  
ADDR7  
ADDR8  
VSSI  
ADDR9  
ADDR10  
ADDR11  
ADDR12  
ADDR13  
ADDR14  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
VDDE  
VSSE  
VDDA  
VSSA  
ADA0  
ADA1  
ADA2  
ADA3  
ADA4  
ADA5  
CS3/WRRAMLOW  
CSBOOT/RDROM  
DOO  
DO1  
DO2  
DO3  
8HCMO-16WIDE  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
DO4  
DO5  
DO6  
DO7  
DO8  
DO9  
VCC  
VSS  
D10  
D11  
D12  
D13  
D14  
U1  
MOTOROLA  
MC68HC16Z1CFC16  
VSSE  
DATA10  
DATA11  
DATA12  
DATA13  
DATA14  
DATA15  
ADDRO  
DSACK0  
DSACK1  
AVEC  
VCC  
VSS  
D15  
90  
89  
88  
87  
86  
85  
84  
AOO  
DSACKO  
DSACK1  
DS  
DS  
AS  
VDDE  
VRH  
VCC  
V
CC  
C10  
0.1µF  
C3  
1µF  
20V  
Figure 1. 68HC16MOD-16WIDE Module Schematic (continued)  
6
_______________________________________________________________________________________  
6 8 HC1 6 MOD-1 6 WIDE  
8HCMO-16WIDE  
VCC  
VCC  
C8  
VCC  
R2  
0.1µF  
330k  
J3-8  
XTAL  
7
CTS  
C7  
GND  
VCC  
22pF  
J3-7  
RTS  
R1  
10M  
Y1  
32.768kHz  
2
1
5
T1IN  
T1OUT  
T2OUT  
R1IN  
TXD  
GND  
RXD  
J3-2  
RXD  
EXTAL  
C6  
22pF  
18  
4
T2IN  
2
R1OUT  
R2OUT  
3
VCC  
J3-3  
TXD  
U7  
MAX707  
SW2  
RESET  
R2IN  
20  
19  
GND  
5
6
8
7
PFO  
8
13  
12  
17  
14  
11  
15  
10  
16  
1
1
4
2
C1+  
C1-  
V-  
C2+  
C2+  
C2-  
C2-  
N.C.  
RESET  
RESET  
MR  
PFI  
J2  
J3-4  
DTR  
U2  
MAX233  
1
+
RESET  
J3-6  
DSR  
GND  
3
V-  
2
V+  
J3-1  
DCD  
GND GND  
9
6
SW1  
POWER  
J3-5  
GND  
D1  
J3-9  
RI  
1N4001  
R7  
100  
8
VPREREG  
1
2
3
4
U10  
ICL7662  
N.C  
V+  
OSC  
LV  
R4  
U4  
D2  
7
6
5
10k  
IN4742A  
12V  
78M05  
IN  
CAP+  
GND  
CAP-  
3
1
D00  
D09  
RESET  
RESET  
VCC  
OUT  
C1  
10µF  
C5  
C4  
R3  
10k  
GND  
2
22µF  
22µF  
25V  
25V  
VOUT  
-12V  
C13  
100µF  
GND  
10  
11  
12  
13  
15  
16  
17  
18  
19  
D00  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
11  
12  
13  
15  
16  
17  
18  
19  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
10  
11  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
10  
A00  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
I/O0  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
I/O0  
I/O1  
I/O2  
I/O3  
I/O4  
I/O5  
I/O6  
I/O7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
9
8
9
8
12  
9
8
U3  
27C256  
U8  
62256  
U5  
62256  
13  
7
7
15  
7
6
6
16  
6
5
5
17  
5
4
4
18  
4
3
3
19  
3
25  
24  
21  
23  
2
25  
24  
21  
23  
2
25  
24  
21  
23  
2
A8  
A9  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
VCC  
VCC  
A10  
A11  
A12  
A13  
A14  
VCC  
26  
1
26  
26  
1
C11  
0.1µF  
C12  
0.1µF  
C2  
0.1µF  
27  
1
A14  
A14  
VPP  
OE  
20  
22  
27  
20  
22  
27  
GND  
CS2/RDRAM  
CS3/WRRAMLOW  
CS  
OE  
WE  
VCC  
CSBOOT/RDROM  
GND  
CS2/RDRAM  
CS0/WRRAMHIGH  
CS  
OE  
WE  
22  
20  
GND  
CE  
32k x 8-BIT HIGH-SPEED CMOS STATIC RAM  
32k x 8-BIT CMOS EPROM  
32k x 8-BIT HIGH-SPEED CMOS STATIC RAM  
Figure 1. 68HC16MOD-16WIDE Module Schematic (continued)  
_______________________________________________________________________________________  
7
6 8 HC1 6 MOD-1 6 WIDE  
8HCMO-16WIDE  
1.0"  
Figure 2. 68HC16MOD-16WIDE Module Component Placement Guide  
8
_______________________________________________________________________________________  
6 8 HC1 6 MOD-1 6 WIDE  
8HCMO-16WIDE  
1.0"  
Figure 3. 68HC16MOD-16WIDE Module PC Board Layout—Component Side  
_______________________________________________________________________________________  
9
6 8 HC1 6 MOD-1 6 WIDE  
8HCMO-16WIDE  
1.0"  
Figure 4. 68HC16MOD-16WIDE Module PC Board Layout—Solder Side  
10 ______________________________________________________________________________________  
6 8 HC1 6 MOD-1 6 WIDE  
8HCMO-16WIDE  
NOTES  
______________________________________________________________________________________ 11  
6 8 HC1 6 MOD-1 6 WIDE  
NOTES  
8HCMO-16WIDE  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1997 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX126EVKIT

Evaluation Kit for the MAX845[MAX845EVKIT ]
MAXIM

MAX127

Multirange.+5V.12-Bit DAS with 2-Wire Serial Interface
MAXIM

MAX127-MAX128

Multirange, +5V, 12-Bit DAS with 2-Wire Serial Interface
MAXIM

MAX1270

Multirange, +5V, 8-Channel, Serial 12-Bit ADCs
MAXIM

MAX1270-MAX1271

Multirange, +5V, 8-Channel, Serial 12-Bit ADCs
MAXIM

MAX1270ACAI

Multirange, +5V, 8-Channel, Serial 12-Bit ADCs
MAXIM

MAX1270ACNG

Multirange, +5V, 8-Channel, Serial 12-Bit ADCs
MAXIM

MAX1270AEAI

Multirange, +5V, 8-Channel, Serial 12-Bit ADCs
MAXIM

MAX1270AEAI+

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO28, 5.3 MM, 0.65 MM PITCH, SSOP-28
MAXIM

MAX1270AEAI+T

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO28, 5.3 MM, 0.65 MM PITCH, SSOP-28
MAXIM

MAX1270AEAI/GG8

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, PDSO28, 5.3 MM, PLASTIC, MO-150, SSOP-28
MAXIM

MAX1270AENG

Multirange, +5V, 8-Channel, Serial 12-Bit ADCs
MAXIM