MAX1273EUA

更新时间:2024-09-18 01:55:35
品牌:MAXIM
描述:Fault-Protected, 12-Bit ADCs with Software-Selectable Input Range

MAX1273EUA 概述

Fault-Protected, 12-Bit ADCs with Software-Selectable Input Range 故障保护, 12位ADC,具有软件可选的输入范围 模数转换器

MAX1273EUA 规格参数

是否Rohs认证:不符合生命周期:Obsolete
零件包装代码:TSSOP包装说明:MO-187CAA, USOP-8
针数:8Reach Compliance Code:not_compliant
ECCN代码:EAR99HTS代码:8542.39.00.01
风险等级:5.81Is Samacsys:N
最大模拟输入电压:4.096 V最小模拟输入电压:-4.096 V
转换器类型:ADC, SUCCESSIVE APPROXIMATIONJESD-30 代码:S-PDSO-G8
JESD-609代码:e0长度:3 mm
最大线性误差 (EL):0.0244%湿度敏感等级:1
模拟输入通道数量:1位数:12
功能数量:1端子数量:8
最高工作温度:85 °C最低工作温度:-40 °C
输出位码:BINARY, 2'S COMPLEMENT BINARY输出格式:SERIAL
封装主体材料:PLASTIC/EPOXY封装代码:TSSOP
封装等效代码:TSSOP8,.19封装形状:SQUARE
封装形式:SMALL OUTLINE, THIN PROFILE, SHRINK PITCH峰值回流温度(摄氏度):245
电源:5 V认证状态:Not Qualified
采样并保持/跟踪并保持:TRACK座面最大高度:1.1 mm
子类别:Analog to Digital Converters标称供电电压:5 V
表面贴装:YES技术:BICMOS
温度等级:INDUSTRIAL端子面层:Tin/Lead (Sn/Pb)
端子形式:GULL WING端子节距:0.65 mm
端子位置:DUAL处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:3 mmBase Number Matches:1

MAX1273EUA 数据手册

通过下载MAX1273EUA数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
19-2921; Rev 1; 12/03  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
General Description  
Features  
o Four Software-Selectable Input Ranges  
MAX1272: 0 to 10V, 0 to 5V, 10V, 5V  
MAX1273: 0 to V , 0 to V / 2, V ,  
REF  
The MAX1272/MAX1273 multirange 12-bit data-acquisi-  
tion systems (DAS) operate with a single 5V supply. The  
software-programmable analog input accepts a variety  
of voltage ranges: 1ꢀVꢁ 5Vꢁ ꢀ to 1ꢀVꢁ ꢀ to 5V for the  
REF  
REF  
V
/ 2  
REF  
MAX1272;  
V
REF  
V
/ 2ꢁ ꢀ to V  
ꢁ ꢀ to V  
/ 2 for  
REF  
REF  
REF  
o 12-Bit Resolution, No Missing Codes  
o 5V Single-Supply Operation  
the MAX1273. The software-selectable extended analog  
input range increases the effective dynamic range to 14  
bits and provides the flexibility to interface 4–2ꢀmA pow-  
ered sensors directly to a single 5V system. In additionꢁ  
the MAX1272 provides fault protection to 12V. ꢂther  
features include a 5MHz track/hold (T/H) bandwidthꢁ  
87ksps throughput rateꢁ and internal (4.ꢀ96V) or external  
(2.4ꢀV to 4.18V) reference.  
o SPI/QSPI/MICROWIRE-Compatible 3-Wire  
Interface  
o 87ksps Sampling Rate  
o
12V Fault-Protected Analog Input ꢀMAX1272ꢁ  
o Internal ꢀ4.096Vꢁ or External ꢀ2.4V to 4.18Vꢁ  
The MAX1272/MAX1273 serial interfaces connect  
directly to SPI™/QSPI™/MICRꢂWIRE™-compatible  
devices without any external logic.  
Reference  
o Low Power  
1.5mA at 87ksps  
0.4mA at 10ksps  
0.2mA at 1ksps  
Four software-programmable power-down modes  
(delayed standbyꢁ immediate standbyꢁ delayed full power-  
downꢁ and immediate full power-down) provide low-cur-  
rent shutdown between conversions. In standby modeꢁ the  
internal reference buffer remains activeꢁ thus eliminating  
startup delay.  
o Four Power-Down Modes  
o 8-Pin µMAX and PDIP Packages  
The MAX1272/MAX1273 are available in 8-pin PDIP  
and µMAX packages. Both devices are available in the  
commercial (ꢀ°C to +7ꢀ°C) or extended (-4ꢀ°C to  
+85°C) temperature range.  
Ordering Information  
TEMP  
PIN-  
INL  
PART  
RANGE  
PACKAGE  
ꢀLSBꢁ  
Applications  
MAX1272CPA  
0°C to +70°C  
0°C to +70°C  
8 Plastic DIP  
8 µMAX  
1
1
1
1
1
1
1
1
MAX1272CUA  
Industrial Control Systems  
Data-Acquisition Systems  
Robotics  
MAX1272EPA -40°C to +85°C  
MAX1272EUA -40°C to +85°C  
8 Plastic DIP  
8 µMAX  
MAX1273CPA  
MAX1273CUA  
MAX1273EPA  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
8 Plastic DIP  
8 µMAX  
Automatic Testing  
Battery-Powered Instruments  
Medical Instruments  
8 Plastic DIP  
8 µMAX  
MAX1273EUA -40°C to +85°C  
Pin Configuration  
TOP VIEW  
SCLK  
DIN  
1
2
3
4
8
7
6
5
DOUT  
CS  
MAX1272  
MAX1273  
V
DD  
REF  
AIN  
Typical Application Circuit appears at end of data sheet.  
GND  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
PDIP/µMAX  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND..............................................................-0.3V to +6V  
Operating Temperature Ranges  
AIN to GND (MAX1272)...................................................... 12V  
AIN to GND (MAX1273)........................................................ 6V  
MAX127_ C_ _ .....................................................0°C to +70°C  
MAX127_ E_ _...................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) ................................+300°C  
Junction Temperature .....................................................+150°C  
DOUT, CS, DIN, SCLK, REF to GND..........-0.3V to (V  
+ 0.3V)  
DD  
Maximum Current into Any Pin............................................50mA  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin Plastic DIP (derate 9.1mW/°C above +70°C) ......727mW  
8-Pin µMAX (derate 4.5mW/°C above +70°C)..............362mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
DD  
(V  
= 4.75V to 5.25V, unipolar/bipolar input range, external reference mode, V  
= 4.096V, C  
= 1.0µF, f  
= 1.4MHz,  
REF  
REF  
SCLK  
50% duty cycle, C  
= 50pF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
LOAD  
A
MIN  
PARAMETERS  
ACCURACY ꢀNote 1ꢁ  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
INL  
0.3  
1.0  
1.00  
5
DNL  
No missing codes over temperature  
0.35  
Unipolar  
Bipolar  
Unipolar  
Bipolar  
Unipolar  
Bipolar  
Offset Error  
LSB  
LSB  
10  
10  
Gain Error (Note 2)  
10  
3
5
Gain Error Temperature  
Coefficient (Note 2)  
ppm/°C  
DYNAMIC SPECIFICATIONS ꢀ10kHz sine-wave input, 10V  
ꢀMAX1272ꢁ, or 4.096V  
ꢀMAX1273ꢁ, f  
= 87kspsꢁ  
P-P  
P-P  
SAMPLE  
Signal-to-Noise + Distortion Ratio  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Aperture Delay  
SINAD  
THD  
69  
72  
dB  
dB  
dB  
ns  
Up to the 5th harmonic  
-87  
88  
-78  
SFDR  
80  
t
15  
AD  
Aperture Jitter  
t
<50  
ps  
AJ  
ANALOG INPUT  
T/H Acquisition Time  
t
2.85  
µs  
ACQ  
2
_______________________________________________________________________________________  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
ELECTRICAL CHARACTERISTICS ꢀcontinuedꢁ  
DD  
(V  
= 4.75V to 5.25V, unipolar/bipolar input range, external reference mode, V  
= 4.096V, C  
= 1.0µF, f  
= 1.4MHz,  
REF  
REF  
SCLK  
50% duty cycle, C  
= 50pF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
LOAD  
A
MIN  
PARAMETERS  
SYMBOL  
CONDITIONS  
10V (MAX1272) or (MAX1273)  
range  
5V (MAX1272) or  
range  
MIN  
TYP  
MAX  
UNITS  
V
REF  
5
V
REF  
/ 2 (MAX1273)  
2.5  
2.5  
Small-Signal Bandwidth  
BW  
MHz  
-3dB  
0 to 10V (MAX1272) or 0 to V  
range  
(MAX1273)  
REF  
0 to 5V (MAX1272) or 0 to V  
(MAX1273) range  
/ 2  
REF  
1.25  
RNG = 1  
0
0
10  
5
MAX1272  
MAX1273  
MAX1272  
MAX1273  
MAX1272  
MAX1273  
MAX1272  
MAX1273  
RNG = 0  
Unipolar  
Bipolar  
Unipolar  
Bipolar  
RNG = 1  
0
V
REF  
RNG = 0  
0
V
/ 2  
REF  
Input Voltage Range  
(Tables 2, 3)  
V
V
IN  
RNG = 1  
-10  
-5  
+10  
+5  
RNG = 0  
RNG = 1  
-V  
+V  
REF  
REF  
REF  
RNG = 0  
-V  
/ 2  
+V  
/ 2  
REF  
0 to 10V range  
0 to 5V range  
-10  
+860  
-10  
-10  
+430  
+10  
0 to V  
0 to V  
range  
REF  
REF  
/ 2 range  
-10  
+10  
Input Current  
I
µA  
pF  
IN  
10V range  
5V range  
-1400  
-720  
-1400  
-720  
+860  
+430  
+10  
V
V
range  
REF  
REF  
/ 2 range  
+10  
Input Capacitance  
40  
INTERNAL REFERENCE  
REF Output Voltage  
V
4.036  
4.096  
15  
4.156  
V
REF  
MAX127_ C  
MAX127_ E  
REF Output Tempco  
TC V  
ppm/°C  
REF  
30  
Output Short-Circuit Current  
Load Regulation  
REF shorted to GND  
40  
mA  
mV  
µF  
0 to 0.5mA output current  
0.7  
10  
Capacitive Bypass at REF  
1
REFERENCE INPUT ꢀReference buffer disabled, reference input applied to REFꢁ  
Input Voltage Range  
2.40  
4.18  
V
_______________________________________________________________________________________  
3
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
ELECTRICAL CHARACTERISTICS ꢀcontinuedꢁ  
DD  
(V  
= 4.75V to 5.25V, unipolar/bipolar input range, external reference mode, V  
= 4.096V, C  
= 1.0µF, f  
= 1.4MHz,  
REF  
REF  
SCLK  
50% duty cycle, C  
= 50pF, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
LOAD  
A
MIN  
MAX  
A
PARAMETERS  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Converting  
400  
850  
Standby power-down  
mode  
Input Current  
V
= 4.096V  
5
10  
1
µA  
REF  
Full power-down mode  
POWER REQUIREMENTS  
Supply Voltage  
V
4.75  
5
5.25  
4
V
DD  
Bipolar  
2.4  
2.2  
400  
1
Converting  
mA  
Unipolar  
3
Supply Current  
(Internal Reference Mode)  
I
DD  
Standby power-down mode  
Full power-down mode  
700  
µA  
mA  
µA  
Bipolar  
Converting  
1.5  
1.2  
200  
1
2.5  
2.0  
Unipolar  
Supply Current  
(External Reference Mode)  
I
DD  
Standby power-down mode  
Full power-down mode  
External reference = 4.096V  
Internal reference  
450  
0.3  
1.0  
1.4  
Power-Supply Rejection  
Ratio (Note 3)  
PSRR  
LSB  
0.5  
TIMING  
Clock Frequency Range  
T/H Acquisition Time  
Conversion Time  
f
0.1  
MHz  
µs  
SCLK  
t
(Note 4)  
(Note 4)  
2.85  
8.57  
ACQ  
t
µs  
CONV  
Throughput Rate  
87.5  
ksps  
ms  
µs  
Internal Reference Settling Time  
Device Power-Up Time  
REF bypass capacitor initially discharged  
External reference mode  
2
10  
DIGITAL INPUTS ꢀDIN, SCLK, and CSꢁ  
Input High-Threshold Voltage  
Input Low-Threshold Voltage  
Input Hysteresis  
V
2.4  
+10  
0.4  
V
V
IH  
V
0.8  
-10  
IL  
V
0.2  
15  
V
HYS  
Input Leakage Current  
Input Capacitance  
I
V
= 0 to V  
DD  
µA  
pF  
IN  
IN  
C
IN  
DIGITAL OUTPUT ꢀDOUTꢁ  
I
I
= 10mA  
= 16mA  
SINK  
Output Voltage Low  
Output Voltage High  
V
V
V
OL  
0.6  
15  
SINK  
V
DD  
V
I
= 0.5mA  
OH  
SOURCE  
- 0.5  
Three-State Leakage Current  
I
CS = V  
CS = V  
-10  
+10  
µA  
pF  
L
DD  
DD  
Three-State Output Capacitance  
C
OUT  
4
_______________________________________________________________________________________  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
TIMING CHARACTERISTICS  
DD  
(V  
= 4.75V to 5.25V, unipolar/bipolar input range, external reference mode, V  
= 4.096V, C  
= 1.0µF, f = 1.4MHz,  
SCLK  
REF  
REF  
50% duty cycle, C  
= 50pF, T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Figures 1 and 4)  
MAX A  
LOAD  
A
MIN  
PARAMETERS  
DIN to SCLK Setup  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
t
100  
DS  
DH  
DO  
DIN to SCLK Hold  
t
0
ns  
SCLK Fall to Output Data Valid  
CS Fall to Output Enable  
CS Rise to Output Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
SCLK Pulse Width High  
SCLK Pulse Width Low  
t
20  
250  
100  
100  
ns  
t
ns  
DV  
t
ns  
TR  
t
100  
0
ns  
CSS  
CSH  
t
ns  
t
200  
200  
ns  
CH  
t
ns  
CL  
Note 1: Accuracy specifications tested at V  
= 5V. Performance at power-supply tolerance limit is guaranteed by power-supply  
DD  
rejection test.  
Note 2: Offset error nulled. The ideal last-code transition is (FS - 1.5 LSB).  
Note 3: PSRR measured at full scale. Tested at 10V (MAX1272) and 4.096V (MAX1273) input ranges.  
Note 4: Acquisition and conversion times are dependent on the clock speed.  
Typical Operating Characteristics  
(Typical operating circuit, BIP = RNG = 1, V  
= 5V, external reference mode, V  
= 4.096V, C  
= 1.0µF, f  
= 1.4MHz,  
DD  
REF  
REF  
SCLK  
50% duty cycle, 87ksps, T = +25°C, unless otherwise noted.)  
A
CONVERTING SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
CONVERTING SUPPLY CURRENT  
vs. TEMPERATURE  
STANDBY SUPPLY CURRENT  
vs. TEMPERATURE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
V
AIN  
= 0  
V
AIN  
= 0  
V
AIN  
= 0  
INTERNAL  
REFERENCE  
INTERNAL  
REFERENCE  
INTERNAL  
REFERENCE  
EXTERNAL  
REFERENCE  
EXTERNAL  
REFERENCE  
EXTERNAL  
REFERENCE  
0
4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25  
SUPPLY VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
Typical Operating Characteristics (continued)  
(Typical operating circuit, BIP = RNG = 1, V  
= 5V, external reference mode, V  
= 4.096V, C  
= 1.0µF, f  
= 1.4MHz,  
DD  
REF  
REF  
SCLK  
50% duty cycle, 87ksps, T = +25°C, unless otherwise noted.)  
A
STANDBY SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
FULL POWER-DOWN  
SUPPLY CURRENT vs. TEMPERATURE  
FULL POWER-DOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
V
AIN  
= 0  
V
AIN  
= 0  
V
= 0  
AIN  
INTERNAL  
REFERENCE  
INTERNAL/EXTERNAL  
REFERENCE  
INTERNAL/EXTERNAL  
REFERENCE  
EXTERNAL  
REFERENCE  
4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25  
SUPPLY VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
NORMALIZED INTERNAL REFERENCE  
VOLTAGE vs. TEMPERATURE  
NORMALIZED INTERNAL REFERENCE  
VOLTAGE vs. SUPPLY VOLTAGE  
1.0005  
1.0010  
1.0008  
1.0006  
1.0004  
1.0002  
1.0000  
0.9998  
0.9996  
0.9994  
0.9992  
0.9990  
1.0000  
0.9995  
0.9990  
0.9985  
0.9980  
0.9975  
0.9970  
0.9965  
0.9960  
-40  
-15  
10  
35  
60  
85  
4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
DNL vs. CODE  
INL vs. CODE  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
CODE  
0
512 1024 1536 2048 2560 3072 3584 4096  
CODE  
6
_______________________________________________________________________________________  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
Typical Operating Characteristics (continued)  
(Typical operating circuit, BIP = RNG = 1, V  
= 5V, external reference mode, V  
= 4.096V, C  
= 1.0µF, f  
= 1.4MHz,  
DD  
REF  
REF  
SCLK  
50% duty cycle, 87ksps, T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT  
vs. CONVERSION RATE  
FFT PLOT  
0
2500  
2000  
1500  
1000  
500  
f
= 10kHz  
V
AIN  
= 0  
AIN  
-20  
-40  
STANDBY POWER-DOWN MODE  
BETWEEN CONVERSIONS  
-60  
-80  
EXTERNAL REFERENCE  
INTERNAL REFERENCE  
-100  
-120  
-140  
-160  
0
0
10  
20  
30  
40  
50  
10  
CONVERSION RATE (ksps)  
0.1  
1
100  
FREQUENCY (kHz)  
OFFSET ERROR vs. TEMPERATURE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
10  
8
10  
8
RNG = 1, BIP = 1  
RNG = 0, BIP = 1  
6
6
4
4
RNG = 1, BIP = 1  
2
2
0
0
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
RNG = 0, BIP = 1  
RNG = 1, BIP = 0  
RNG = 0, BIP = 0  
RNG = 0, BIP = 0  
RNG = 1, BIP = 0  
-40  
-15  
10  
35  
60  
85  
4.50  
4.75  
5.00  
5.25  
5.50  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
GAIN ERROR vs. TEMPERATURE  
GAIN ERROR vs. SUPPLY VOLTAGE  
10  
8
10  
8
RNG = 0, BIP = 0  
RNG = 0, BIP = 1  
RNG = 0, BIP = 0  
RNG = 0, BIP = 1  
6
6
4
4
2
2
0
0
RNG = 1, BIP = 0  
RNG = 1, BIP = 1  
RNG = 1, BIP = 0  
-2  
-4  
-6  
-8  
-10  
-2  
-4  
-6  
-8  
-10  
RNG = 1, BIP = 1  
-40  
-15  
10  
35  
60  
85  
4.50  
4.75  
5.00  
5.25  
5.50  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
_______________________________________________________________________________________  
7
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
Pin Description  
PIN  
1
NAME  
SCLK  
DIN  
FUNCTION  
Serial Clock Input. Clocks data in and out of serial interface. SCLK sets the conversion speed.  
2
Serial Data Input. Data clocks in on the rising edge of SCLK.  
3
V
5V Supply. Bypass with a 0.1µF capacitor to GND.  
DD  
4
GND  
AIN  
Ground  
5
Analog Input  
Reference Buffer Output/Reference Input. Bypass REF with a 1µF capacitor to GND. In internal  
reference mode, the reference buffer provides a 4.096V nominal output. For external reference mode,  
disable the internal reference buffer through the serial interface and apply an external reference to REF.  
6
REF  
Active-Low Chip-Select Input. Drive CS low to clock data into the MAX1272/MAX1273. See the Input  
Data Format section.  
7
8
CS  
Serial Data Output. Data clocks out on the falling edge of SCLK. DOUT is high impedance when CS is  
high.  
DOUT  
to convert an analog signal to a 12-bit digital output.  
Figure 2 shows a block diagram of the MAX1272/  
MAX1273.  
DOUT  
C
LOAD  
Analog-Input Track/Hold  
The T/H tracking/acquisition mode begins on the falling  
edge of the fourth clock cycle in the 8-bit input control  
word and enters hold/conversion mode on the falling  
edge of the eighth clock cycle.  
1kΩ  
A) TEST CIRCUIT FOR V  
OH  
The MAX1272/MAX1273 input architecture includes a  
resistor-divider and a T/H system (Figure 3). When  
operating in bipolar or unipolar mode, the resistor-  
divider network formed by R1, R2, and R3 scales the  
signal applied at the input channel. Use a low source  
impedance (<4) to minimize gain error.  
DOUT  
C
LOAD  
1kΩ  
Input Bandwidth  
The ADCs small-signal input bandwidth depends on  
the selected input range and varies from 1.25MHz to  
5MHz (see the Electrical Characteristics). The maxi-  
mum sampling rate for the MAX1272/MAX1273 is  
87ksps (16 clocks per conversion). Use undersampling  
techniques to digitize high-speed transient events and  
measure periodic signals with bandwidths exceeding  
the ADCs sampling rate.  
5V  
B) TEST CIRCUIT FOR V  
OL  
f
= 1.4MHz, C  
= 50pF  
LOAD  
SCLK  
Figure 1. Output Load Circuit for Timing Characteristics  
Detailed Description  
Converter Operation  
The MAX1272/MAX1273 multirange ADCs use succes-  
sive approximation and internal track/hold (T/H) circuitry  
Use anti-alias filtering to avoid the aliasing of high-fre-  
quency signals into the frequency band of interest. An  
anti-aliasing filter must limit the input bandwidth to no  
more than one half of the sampling frequency.  
8
_______________________________________________________________________________________  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
DIN DOUT CS  
SCLK  
SERIAL INTERFACE  
LOGIC  
V
DD  
GND  
MAX1272  
MAX1273  
OUT  
12-BIT  
SAR ADC  
SIGNAL  
CONDITIONING  
T/H  
AIN  
IN  
CLK  
REF  
REF  
4.096V  
REFERENCE  
Figure 2. Simplified Block Diagram  
Table 1. Control-Byte Format  
BIT 7  
ꢀMSBꢁ  
BIT 0  
ꢀLSBꢁ  
BIT 6  
BIT 5  
BIT 4  
Bit 3  
BIT 2  
BIT 1  
RESERVED  
START  
RNG  
BIP  
PD  
MODE1  
MODE0  
REF  
BIT  
NAME  
START  
RNG  
DESCRIPTION  
7 (MSB)  
Write a logic 1 (see the Input Data Format section)  
Selects the full-scale input voltage range (Tables 2, 3)  
Selects unipolar or bipolar conversion mode (Tables 2, 3)  
6
5
BIP  
4
PD  
Selects normal operation (PD = 1) or power-down (PD = 0) mode  
Selects standby power-down (STBYPD) or full power-down (FULLPD) mode (Table 4)  
Selects delayed or immediate power-down mode (Table 4)  
Write a logic 0  
3
MODE1  
MODE0  
RESERVED  
REF  
2
1
0 (LSB)  
Selects external (REF = 0, default) or internal (REF = 1) reference mode  
Overvoltage circuitry at the analog input provides 12V  
fault protection for the MAX1272. This circuit limits the  
current going into or out of the device to less than 2mA,  
providing an added layer of protection from momentary  
over/undervoltages at the analog input. The overvoltage  
protection activates when the device enters power-  
Input Range and Protection  
The MAX1272/MAX1273 provide software-selectable  
analog input voltage ranges. Program the analog input  
to one of four ranges by setting the appropriate control  
bits (RNG, BIP) in the control byte (Table 1). The  
MAX1272 has selectable input voltage ranges extend-  
ing to 10V ( V  
2.4414), while the MAX1273 has  
REF  
down mode or if V  
= 0.  
DD  
selectable input voltage ranges extending to  
Figure 3 shows the equivalent input circuit.  
V
.
REF  
_______________________________________________________________________________________  
9
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
Table 2. Input Range and Polarity Selection for MAX1272  
NEGATIVE  
FULL SCALE  
INPUT RANGE  
RNG  
BIP  
ZERO SCALE  
FULL SCALE  
0 to 5V  
5V  
0
0
1
1
0
1
0
1
0
0
0
0
V
V
V
V
× 1.2207  
× 1.2207  
× 2.4414  
× 2.4414  
REF  
REF  
REF  
REF  
-V  
REF  
-V  
REF  
× 1.2207  
0 to 10V  
10V  
× 2.4414  
Table 3. Input Range and Polarity Selection for MAX1273  
NEGATIVE  
FULL SCALE  
INPUT RANGE  
RNG  
BIP  
ZERO SCALE  
FULL SCALE  
0 to V / 2  
0
0
1
1
0
1
0
1
0
0
0
0
V
V
/ 2  
/ 2  
REF  
REF  
REF  
V
REF  
/ 2  
-V  
/ 2  
REF  
0 to V  
V
V
REF  
REF  
REF  
V
REF  
-V  
REF  
Table 4. Power-Down Selection  
PD  
MODE1  
MODE0  
MODE  
Normal operation (ADCs always active). Automatically enters delayed  
standby power-down mode between conversions.  
1
X
X
0
1
0
1
Delayed standby power-down mode.  
Immediate standby power-down mode.  
Delayed full power-down mode.  
0
1
0
Immediate full power-down mode.  
Input Data Format  
Input data (control byte) clocks in at DIN on the rising  
edge of SCLK. CS enables communication with the  
MAX1272/MAX1273. After CS falls, the first arriving 1  
represents the start bit (MSB) of the input control byte.  
The start bit is defined as follows:  
BIPOLAR  
VOLTAGE  
REFERENCE  
S1  
UNIPOLAR  
OFF  
R3  
4.8kΩ  
1) The first high bit clocked into DIN with CS low any  
time the converter is idle (e.g., after applying V ).  
DD  
R1  
C
HOLD  
2) The first high bit clocked into DIN after bit 4 (D4) of a  
conversion in progress clocks out on DOUT.  
See Table 1 for programming the control byte. Figure 4  
shows the detailed serial interface timing.  
AIN  
S2  
R2  
T/H  
OUT  
ON  
HOLD  
S3  
TRACK  
HOLD  
TRACK  
S4  
Output Data Format  
Output data (DOUT) clocks out MSB first on the falling  
edge of SCLK. The unipolar mode provides a straight  
binary output. The bipolar mode provides a twos com-  
plement binary output. For output binary codes, see the  
Transfer Function section.  
S1 = BIPOLAR/UNIPOLAR SWITCH  
S2 = INPUT MUX SWITCH  
S3, S4 = T/H SWITCH  
R1 = 11.3k(MAX1272)  
or 4.8k(MAX1273)  
R2 = 7.8k(MAX1272)  
or (OPEN) (MAX1273)  
Figure 3. Equivalent Input Circuit  
10 ______________________________________________________________________________________  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
• • •  
CS  
t
t
t
CSH  
t
CL  
CSS  
CH  
t
CSH  
SCLK  
• • •  
t
DS  
t
DH  
DIN  
• • •  
• • •  
t
t
DV  
t
TR  
DO  
DOUT  
Figure 4. Detailed Serial Interface Timing  
CS  
DIN  
HI-Z  
MSB  
LSB  
HI-Z  
DOUT  
SCLK  
AUTO STANDBY  
ACQUISITION  
4 SCLKs  
CONVERSION  
12 SCLKs  
Figure 5. Conversion Timing, 21 Clocks/Conversion  
______________________________________________________________________________________ 11  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
CS  
CONTROL BYTE 2  
CONTROL BYTE 0  
CONTROL BYTE 1  
DIN  
DOUT  
SCLK  
HI-Z  
MSB  
LSB  
MSB  
LSB  
RESULT 0  
RESULT 1  
ACQUISITION  
4 SCLKs  
CONVERSION  
12 SCLKs  
ACQUISITION  
4 SCLKs  
CONVERSION  
12 SCLKs  
Figure 6. Conversion Timing, 16 Clocks/Conversion  
Starting a Conversion  
The MAX1272/MAX1273 use the serial clock to complete  
an acquisition. The falling edge of CS does not start a  
conversion on the MAX1272/MAX1273. Each conversion  
requires a control byte. Programming the fourth bit in the  
control byte starts the acquisition sequence. Conversion  
starts on the falling edge of the eighth clock cycle after  
the start bit.  
To achieve the maximum throughput, keep CS low, and  
start the control byte after bit 4 (D4) of the conversion in  
progress clocks out on DOUT.  
If CS is low and SCLK is continuous, guarantee a start  
bit by first clocking in 16 zeros.  
Applications Information  
Keep CS low during successive conversions. If a start bit  
is received after CS transitions from high to low, but before  
the output bit 4 (D4) becomes available, the current con-  
version terminates and a new conversion begins. DOUT  
enters high-impedance state when CS transitions high.  
Power-On Reset  
The MAX1272/MAX1273 power-up in normal operating  
mode (all internal circuitry active), and external reference  
mode. The MAX1272/MAX1273 require a start bit to initi-  
ate a conversion. The contents of the output data register  
clear during power-up.  
SCLK shifts data in and out of the MAX1272/MAX1273  
and controls both acquisition and conversion timing.  
Conversion begins immediately after the end of the  
acquisition cycle. Successive-approximation bit deci-  
sions appear at DOUT on each of the following 12 clock  
falling edges (Figure 5). Additional clock falling edges  
result in trailing zeros at DOUT.  
Internal or External Reference  
Operate the MAX1272/MAX1273 with an internal or an  
external reference. Configure REF as an internal refer-  
ence output or an external reference input using the  
serial interface. When changing from external reference  
mode to internal reference mode, allow 2ms (C  
=
REF  
1µF) for the reference to stabilize before taking any  
measurement.  
The maximum running rate of the MAX1272/MAX1273 is  
16 clocks per conversion. A clock speed of 1.4MHz  
allows for a maximum sampling rate of 87ksps (Figure 6).  
Internal Reference  
The internally trimmed reference provides 4.096V at REF.  
Bypass REF to GND with a 1.0µF capacitor (Figure 7a).  
12 ______________________________________________________________________________________  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
5V  
IN  
MAX6064  
REF  
OUT  
REF  
C
REF  
MAX1272  
MAX1273  
1.0µF  
REF  
MAX1272  
MAX1273  
1.0µF  
C
GND  
Figure 7a. Internal Reference Configuration  
Figure 7b. External Reference Configuration  
External Reference  
To use an external reference, disable the internal buffer  
by setting the REF bit in the 8-bit control word to zero  
(see Table 1), and apply a reference voltage to REF. Use  
an external reference voltage ranging from 2.40V to  
4.18V. External reference voltages less than 4.096V  
increase the ratio of RMS noise to the LSB value (full  
scale / 4096) resulting in performance degradation (loss  
of effective bitsENOB).  
serial clock cycle and no conversion takes place  
(Figure 9). In all power-down modes, the interface  
remains active with the conversion results available at  
DOUT. Additionally, the input overvoltage protection  
remains active in all power-down modes (MAX1272).  
The first high bit on DIN after CS falls (start condition)  
powers up the MAX1272/MAX1273 from any software-  
selected power-down condition. With external refer-  
ence mode, device power-up time from full power-  
down is typically 10µs. Send a control byte and allow  
10µs for the device to wake up from full power-down.  
The next received control byte initiates a conversion.  
The REF input impedance is a minimum of 4.8kfor  
DC currents; therefore, the external reference must be  
able to source 850µA during conversions and have an  
output impedance of less than 10. Bypass REF with a  
1µF capacitor to GND as close to REF as possible  
(Figure 7b).  
When in internal reference mode, full power-down  
mode disables the internal reference and reference  
buffer. Only the interface circuitry remains active for  
reading conversion results. Send a control byte and  
Power-Down Modes  
To save power, configure the ADC for a low-current  
shutdown mode by setting the PD bit in the control  
byte. The MAX1272/MAX1273 features four program-  
mable power-down modes: delayed standby power-  
down, immediate standby power-down, delayed full  
power-down, and immediate full power-down. Select  
standby or full power-down by programming MODE1 in  
the input control byte (Table 4). Select delayed or  
immediate power-down by programming MODE0 in the  
input control byte. Use the MODE0 bit to choose when  
the part enters the power-down state. For example,  
when MODE0 of the control byte is 0, the device  
remains powered up until after the current conversion  
ends (Figure 8). On the other hand, if MODE0 = 1, the  
device powers down on the falling edge of the eighth  
allow 2ms (C  
= 1µF) for the internal reference to set-  
REF  
tle and the MAX1272/MAX1273 to wake up from full  
power-down mode. The next received control byte initi-  
ates a conversion.  
AutoShutdown™  
The MAX1272/MAX1273 automatically enter standby  
power-down mode after each conversion without requir-  
ing any startup time on the next conversion.  
Digital Interface  
The MAX1272/MAX1273 feature a fully compatible  
SPI/QSPI and MICROWIRE serial interface. For SPI and  
QSPI, clear CPOL and CPHA in the microcontrollers  
SPI control registers.  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
______________________________________________________________________________________ 13  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
CS  
DIN  
HI-Z  
MSB  
LSB  
HI-Z  
DOUT  
SCLK  
ACQUISITION  
4 SCLKs  
CONVERSION  
12 SCLKs  
POWERED UP  
POWERED UP  
POWERED DOWN  
Figure 8. Delayed Power-Down Timing  
CS  
DIN  
HI-Z  
HI-Z  
DOUT  
SCLK  
ACQUISITION  
4 SCLKs  
POWERED DOWN  
POWERED UP  
POWERED UP  
Figure 9. Immediate Power-Down Timing  
bit data stream contains all leading zeros. The second  
8-bit data stream contains a leading zero followed by  
the MSB through D5. The third 8-bit data stream con-  
tains D4D0 followed by trailing zeros.  
SPI and MICROWIRE Interface  
When using the SPI (Figure 10a) or MICROWIRE (Figure  
10b) interfaces, set CPOL = 0 and CPHA = 0 in the SPI  
master. Conversion begins with a falling edge on CS.  
Three consecutive 8-bit readings are necessary to  
obtain the entire 12-bit result from the ADC. DOUT data  
transitions on the serial clocks falling edge. The first 8-  
14 ______________________________________________________________________________________  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
µC on SCLKs rising edge. The first 8-bit data stream  
contains all zeros. The second 8-bit data stream con-  
tains a leading zero followed by the MSB through D5.  
The third 8-bit data stream contains bits D4D0 fol-  
lowed by trailing zeros.  
QSPI Interface  
Using the high-speed QSPI interface with CPOL = 0  
and CPHA = 0, the MAX1272/MAX1273 support a max-  
imum f  
of 1.4MHz. Figure 11 shows the MAX1272/  
SCLK  
MAX1273 connected to a QSPI master.  
Transfer Function  
Output data coding for the MAX1272/MAX1273 is bina-  
ry in unipolar mode with:  
PIC16 with SSP Module and  
PIC17 Interface  
The MAX1272/MAX1273 are compatible with a  
PIC16/PIC17 controller (µC) using the synchronous ser-  
ial-port (SSP) module.  
FS  
1LSB=  
4096  
To establish SPI communication, connect the controller  
as shown in Figure 12 and configure the PIC16/PIC17  
as system master by initializing its synchronous serial-  
port control register (SSPCON) and synchronous serial-  
port status register (SSPSTAT) to the bit patterns shown  
in Tables 5 and 6.  
and twos complement binary in bipolar mode with:  
2 × |FS|  
4096  
1LSB=  
Code transitions occur halfway between successive  
integer LSB values. Figures 13a and 13b show the  
input/output transfer functions for uni-polar and bipolar  
operations, respectively. For full-scale (FS) values, see  
Tables 2 and 3.  
In SPI mode, the PIC16/PIC17 µCs allow 8 bits of data  
to be transmitted and received simultaneously. Three  
consecutive 8-bit readings are necessary to obtain the  
entire 12-bit result from the ADC. DOUT data transitions  
on the serial clocks falling edge and is clocked into the  
I/O  
SCK  
CS  
I/O  
SCK  
SI  
CS  
SCLK  
DOUT  
SCLK  
DOUT  
MISO  
SPI  
MICROWIRE  
V
DD  
MAX1272  
MAX1273  
MAX1272  
MAX1273  
SS  
Figure 10a. SPI Connections  
Figure 10b. MICROWIRE Connections  
V
V
DD  
DD  
SCK  
SDI  
SCLK  
DOUT  
CS  
SCK  
CS  
SCLK  
DOUT  
I/O  
CS  
MISO  
QSPI  
V
DD  
PIC16/PIC17  
MAX1272  
MAX1273  
MAX1272  
MAX1273  
SS  
GND  
Figure 12. SPI Interface Connection for a PIC16/PIC17  
______________________________________________________________________________________ 15  
Figure 11. QSPI Connections  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
Table 5. Detailed SSPCON Register ContentsPIC16/PIC17  
CONTROL BIT  
BIT7  
SYNCHRONOUS SERIAL-PORT CONTROL REGISTER (SSPCON)  
Write Collision Detection Bit  
WCOL  
SSPOV  
X
X
BIT6  
Receive Overflow Detection Bit  
Synchronous Serial-Port Enable Bit:  
0: Disables serial port and configures these pins as I/O port pins.  
1: Enables serial port and configures SCK, SDO, and SCI pins as serial port pins.  
SSPEN  
CKP  
BIT5  
BIT4  
1
0
Clock Polarity Select Bit. CKP = 0 for SPI master mode section.  
SSPM3  
SSPM2  
BIT3  
BIT2  
0
0
Synchronous Serial-Port Mode-Select Bit. Sets SPI master mode and selects f  
= f  
OSC  
/ 16.  
CLK  
SSPM1  
SSPM0  
BIT1  
BIT0  
0
1
X = Dont care.  
Table 6. Detailed SSPSTAT Register Contents—PIC16/PIC17  
CONTROL BIT  
SYNCHRONOUS SERIAL-PORT STATUS REGISTER ꢀSSPSTATꢁ  
SPI Data Input Sample Phase. Input data is sampled at the middle of the data output  
time.  
SMP  
BIT7  
0
CKE  
D/A  
P
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
1
X
X
X
X
X
X
SPI Clock Edge-Select Bit. Data is transmitted on the rising edge of the serial clock.  
Data Address Bit  
Stop Bit  
S
Start Bit  
R/W  
UA  
BF  
Read/Write Bit Information  
Update Address  
Buffer Full Status Bit  
X = Dont care.  
2FS  
4096  
FS  
4096  
OUTPUT CODE  
(TWO’S COMPLEMENT)  
1 LSB =  
1 LSB =  
OUTPUT CODE  
0111  
0110  
0101  
0100  
1111  
1110  
1101  
1100  
0001  
0000  
1111  
1011  
0011  
1010  
1001  
1000  
0010  
0001  
0000  
-2048 -2046  
+2045 +2047  
4092 4094  
FS  
-1  
0 +1  
0
1
2
3
INPUT VOLTAGE (LSB)  
INPUT VOLTAGE (LSB)  
Figure 13b. Bipolar Transfer Function  
Figure 13a. Unipolar Transfer Function  
16 ______________________________________________________________________________________  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
The ideal, theoretical minimum analog-to-digital noise is  
caused by quantization noise error only and results  
directly from the ADCs resolution (N-bits):  
Layout, Grounding, and Bypassing  
For best performance, use printed circuit (PC) boards.  
Wire-wrap configurations are not recommended since  
the layout should ensure proper separation of analog  
and digital traces. Do not run analog and digital lines  
parallel to each other, and do not lay out digital signal  
paths underneath the ADC package. Use separate  
analog and digital PC board ground sections with only  
one star point (Figure 14), connecting the two ground  
systems (analog and digital). For lowest-noise opera-  
tion, ensure that the ground return to the star grounds  
power supply is low impedance and as short as possi-  
ble. Route digital signals far away from sensitive analog  
and reference inputs.  
SNR = (6.02 N + 1.76) dB  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequencys RMS amplitude to the  
RMS equivalent of all the other ADC output signals:  
High-frequency noise in the power supply (V ) can  
DD  
degrade the performance of the ADCs fast compara-  
SINAD (dB) = 20 log [Signal  
/ (Noise +  
RMS  
tor. Bypass V  
to the star ground with a 0.1µF capaci-  
DD  
Distortion)  
]
RMS  
tor located as close as possible to the MAX1272/  
MAX1273s power-supply input. Minimize capacitor lead  
length for best supply-noise rejection. Add an attenua-  
tion resistor (5) to extremely noisy power supplies.  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADCs error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
of bits as follows:  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the endpoints of the transfer function,  
once offset and gain errors have been nullified. The  
static linearity parameters for the MAX1272/MAX1273  
are measured using the endpoint method.  
ENOB = (SINAD - 1.76) / 6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step-width and the ideal value of 1 LSB. A  
DNL error specification of 1 LSB guarantees no missing  
codes and a monotonic transfer function.  
2
2
2
2
V
+ V + V + V  
3 4 5  
2
THD = 20 × log  
V
1
where V is the fundamental amplitude and V through  
V are the 2nd- through 5th-order harmonics.  
5
1
2
Aperture Definitions  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between samples. Aperture delay (t ) is the  
time between the falling edge of the sampling clock  
and the instant when the actual sample is taken.  
AD  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest fre-  
quency component, excluding DC offset.  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of the  
full-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error).  
______________________________________________________________________________________ 17  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
Typical Operating Circuit  
5V  
SUPPLIES  
0.1µF  
5V  
V
LOGIC  
= 5V  
GND  
V
DD  
AIN  
REF  
CS  
SCLK  
DIN  
I/O  
R* = 5Ω  
SCK  
MOSI  
µP  
0.1µF  
MAX1272  
MAX1273  
DOUT  
MISO  
V
DD  
GND  
5V  
DGND  
GND  
1.0µF  
MAX1272  
MAX1273  
DIGITAL  
CIRCUITRY  
*OPTIONAL  
Figure 14. Power-Supply Grounding Connections  
Chip Information  
TRANSISTOR COUNT: 6146  
PROCESS: BiCMOS  
18 ______________________________________________________________________________________  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 19  
Fault-Protected, 12-Bit ADCs  
with Software-Selectable Input Range  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
4X S  
8
8
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
MAX  
MIN  
-
-
0.043  
0.006  
0.037  
0.014  
0.007  
0.120  
1.10  
0.15  
0.95  
0.36  
0.18  
3.05  
A
0.002  
0.030  
0.010  
0.005  
0.116  
0.05  
0.75  
0.25  
0.13  
2.95  
A1  
A2  
b
E
H
ÿ 0.50 0.1  
c
D
e
0.0256 BSC  
0.65 BSC  
0.6 0.1  
E
H
0.116  
0.188  
0.016  
0∞  
0.120  
2.95  
4.78  
0.41  
0∞  
3.05  
5.03  
0.66  
6∞  
0.198  
0.026  
6∞  
L
1
1
α
S
0.6 0.1  
0.0207 BSC  
0.5250 BSC  
BOTTOM VIEW  
D
TOP VIEW  
A1  
A2  
A
c
α
e
L
b
SIDE VIEW  
FRONT VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 8L uMAX/uSOP  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0036  
J
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

MAX1273EUA 相关器件

型号 制造商 描述 价格 文档
MAX1273EUA+ MAXIM ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, ROHS COMPLIANT, UMAX-8 获取价格
MAX1273EUA+T MAXIM ADC Single SAR 87ksps 12-bit Serial 8-Pin uMAX 获取价格
MAX1273EUA-T MAXIM ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, MO-187CAA, USOP-8 获取价格
MAX1274 MAXIM 1.8Msps, Single-Supply, Low-Power, True-Differential, 12-Bit ADCs 获取价格
MAX1274ACTC+ MAXIM ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, MO-220, TQFN-12 获取价格
MAX1274ACTC+T MAXIM 暂无描述 获取价格
MAX1274ACTC-T MAXIM 1.8Msps, Single-Supply, Low-Power, True-Differential, 12-Bit ADCs 获取价格
MAX1274AETC+ MAXIM ADC, Successive Approximation, 12-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, 4 X 4 MM, 0.80 MM HEIGHT, MO-220, TQFN-12 获取价格
MAX1274AETC+T MAXIM 1.8Msps, Single-Supply, Low-Power, True-Differential, 12-Bit ADCs 获取价格
MAX1274AETC-T MAXIM 1.8Msps, Single-Supply, Low-Power, True-Differential, 12-Bit ADCs 获取价格

MAX1273EUA 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6