MAX12930EASA+ [MAXIM]

Two-Channel, Low-Power, 3kVRMS and 5kVRMS Digital Isolators;
MAX12930EASA+
型号: MAX12930EASA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Two-Channel, Low-Power, 3kVRMS and 5kVRMS Digital Isolators

文件: 总24页 (文件大小:1313K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here to ask about the production status of specific part numbers.  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
3kV  
and 5kV  
Digital Isolators  
RMS  
RMS  
General Description  
The MAX12930/MAX12931 are a family of 2-channel,  
Benefits and Features  
Robust Galvanic Isolation of Digital Signals  
3kV/5kV  
digital galvanic isolators using Maxim’s  
• Withstands 5kV  
for 60s (V ) Wide-Body  
ISO  
RMS  
RMS  
proprietary process technology. These devices transfer  
digital signals between circuits with different power domains  
while using as little as 0.65mW per channel at 1Mbps with 1.8V.  
• Withstands 3kV  
• Continuously Withstands 848V  
Body  
• Continuously Withstands 445V  
Narrow-Body  
• Withstands ±10kV Surge Between GNDA and  
GNDB with 1.2/50µs Waveform  
for 60s (V  
) Narrow-Body  
RMS  
ISO  
(V  
) Wide-  
)
RMS IOWM  
(V  
RMS IOWM  
The two channels of the MAX12931 transfer data in  
opposite directions, and this makes the MAX12931 ideal  
for isolating the TX and RX lines of a transceiver. The  
MAX12930 features two channels transferring data in the  
same direction.  
• High CMTI (50kV/µs, typ)  
Options to Support a Broad Range of Applications  
• 2 Data Rates (25Mbps/150Mbps)  
2 Channel Direction Configurations  
• 2 Output Default States (High or Low)  
Low Power Consumption  
Both devices are available with a maximum data rate  
of either 25Mbps or 150Mbps and with the default  
outputs that are either high or low. The default is  
the state the output assumes when the input is not  
powered, or if the input is open-circuit. See the  
Ordering Information and Product Selector Guide for  
suffixes associated with each option. Independent 1.71V  
to 5.5V supplies on each side of the isolator also make  
the devices suitable for use as level translators.  
• 1.3mW per Channel at 1Mbps with V  
= 3.3V  
DD  
• 3.3mW per Channel at 100Mbps with V  
= 1.8V  
DD  
Safety Regulatory Approvals  
(see Safety Regulatory Approvals)  
UL According to UL1577  
cUL According to CSA Bulletin 5A  
VDE 0884-11 Basic Insulation (Narrow SOIC)  
The MAX12930/MAX12931 are available in an 8-pin,  
narrow-body SOIC package. In addition, the MAX12931  
is available in a 16-pin, wide-body SOIC package. The  
package material of the 8-pin narrow-body SOIC package  
has a minimum comparative tracking index (CTI) of 400V,  
which gives it a group II rating in creepage tables. The  
package material of the 16-pin wide-body SOIC package  
has a CTI of 600V, which gives it a group I rating in creep-  
age tables. All devices are rated for operation at ambient  
temperatures of -40°C to +125°C.  
Applications  
Fieldbus Communications for Industrial Automation  
Isolated RS232, RS-485/RS-422, CAN  
General Isolation Application  
Battery Management  
Medical Systems  
Ordering Information and Product Selector Guide appear at  
end of data sheet.  
Functional Diagrams  
MAX12930  
MAX12931  
V
V
V
V
DDB  
DDA  
IN1  
DDB  
DDA  
OUT1  
OUT1  
IN1  
OUT2  
GNDB  
OUT2  
GNDB  
IN2  
IN2  
GNDA  
GNDA  
19-8563; Rev 9; 11/20  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
Absolute Maximum Ratings  
V
to GNDA........................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
DDA  
V
to GNDB........................................................-0.3V to +6V  
Wide SOIC (derate 14.1mW/°C above +70°C) ......1126.8mW  
Narrow SOIC (derate 5.79mW/°C above +70°C)...462.96mW  
Operating Temperature Range......................... -40°C to +125°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range............................ -60°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
DDB  
IN_ on Side A to GNDA...........................................-0.3V to +6V  
IN_ on Side B to GNDB ..........................................-0.3V to +6V  
OUT_ on Side A to GNDA........................ -0.3V to V  
OUT_ on Side B to GNDB ....................... -0.3V to V  
Short-Circuit Duration  
+ 0.3V  
+ 0.3V  
DDA  
DDB  
OUT_ on Side A to GNDA,  
OUT_ on Side B to GNDB.....................................Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 8 NARROW SOIC  
Package Code  
S8MS-22  
21-0041  
90-0096  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
172.8°C/W  
67.6°C/W  
JA  
Junction to Case (θ  
)
JC  
PACKAGE TYPE: 16 WIDE SOIC  
Package Code  
W16MS-11  
21-0042  
Outline Number  
Land Pattern Number  
90-0107  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
71°C/W  
23°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
DC Electrical Characteristics  
(V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, C = 15pF, T = -40°C to +125°C, unless otherwise noted. Typical  
DDA  
GNDA  
DDB  
GNDB L A  
values are at V  
- V  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Note 1)  
DDA  
GNDA  
DDB  
GNDB A  
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Relative to GNDA  
Relative to GNDB  
_ rising  
1.71  
1.71  
5.5  
5.5  
DDA  
Supply Voltage  
V
DDB  
Undervoltage-Lockout  
Threshold  
Undervoltage-Lockout  
Threshold Hysteresis  
V
V
1.5  
1.6  
45  
1.66  
V
UVLO_  
DD  
V
mV  
UVLO_HYST  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
= 5V  
0.32  
0.31  
0.3  
0.58  
0.54  
0.53  
0.39  
1.26  
1.20  
1.18  
1.01  
3.00  
2.91  
2.88  
2.62  
0.83  
0.79  
0.76  
0.67  
1.83  
1.40  
1.22  
1.00  
4.99  
3.39  
2.69  
2.04  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
1MHz square  
wave, C = 0pF  
L
0.29  
0.81  
0.8  
12.5MHz square  
wave, C = 0pF  
L
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
I
mA  
DDA  
0.78  
0.77  
2.15  
2.09  
2.06  
2
50MHz square  
wave, C = 0pF  
L
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
Supply Current (MAX12930_)  
(Note 2)  
0.5  
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
0.47  
0.45  
0.4  
1MHz square  
wave, C = 0pF  
L
1.37  
1.02  
0.87  
0.71  
4.21  
2.81  
2.21  
1.69  
12.5MHz square  
wave, C = 0pF  
L
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
I
mA  
DDB  
50MHz square  
= 3.3V  
= 2.5V  
= 1.8V  
wave, C = 0pF  
L
Maxim Integrated  
3  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
DC Electrical Characteristics (continued)  
(V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, C = 15pF, T = -40°C to +125°C, unless otherwise noted. Typical  
DDA  
GNDA  
DDB  
GNDB L A  
values are at V  
- V  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Note 1)  
DDA  
GNDA  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.42  
0.39  
0.38  
0.36  
1.07  
0.89  
0.81  
0.73  
3.06  
2.37  
2.08  
1.82  
0.42  
MAX  
0.70  
0.67  
0.64  
0.56  
1.52  
1.29  
1.19  
1.03  
3.87  
3.06  
2.72  
2.33  
0.70  
UNITS  
V
= 5V  
DDA  
V
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
1MHz square  
wave, C = 0pF  
L
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
DDB  
V
V
V
V
V
V
V
V
V
V
V
12.5MHz square  
wave, C = 0pF  
L
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
I
mA  
DDA  
50MHz square  
wave, C = 0pF  
L
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
Supply Current (MAX12931_)  
(Note 2)  
V
V
V
V
V
V
V
V
V
V
V
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
0.39  
0.38  
0.36  
1.07  
0.89  
0.81  
0.73  
3.06  
2.37  
2.08  
1.82  
0.67  
0.64  
0.56  
1.52  
1.29  
1.19  
1.03  
3.87  
3.06  
2.72  
2.33  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
1MHz square  
wave, C = 0pF  
L
12.5MHz square  
wave, C = 0pF  
L
= 3.3V  
= 2.5V  
= 1.8V  
= 5V  
mA  
I
DDB  
50MHz square  
= 3.3V  
= 2.5V  
= 1.8V  
wave, C = 0pF  
L
LOGIC INPUTS AND OUTPUTS  
2.25V ≤ V  
1.71V ≤ V  
2.25V ≤ V  
≤ 5.5V  
0.7 x V  
DD_  
DD_  
DD_  
DD_  
Input High Voltage  
V
V
V
IH  
< 2.25V  
≤ 5.5V  
0.75 x V  
DD_  
0.8  
0.7  
Input Low Voltage  
Input Hysteresis  
V
IL  
1.71V ≤ V  
< 2.25V  
DD_  
MAX1293_B/E  
MAX1293_C/F  
410  
80  
-5  
5
V
mV  
HYS  
Input Pullup Current (Note 3)  
Input Pulldown Current (Note 3)  
Input Capacitance  
I
IN_, MAX1293_B/C  
IN_, MAX1293_E/F  
-10  
1.5  
-1.5  
10  
µA  
µA  
pF  
PU  
PD  
I
C
IN_, f  
= 1MHz  
2
IN  
SW  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
DC Electrical Characteristics (continued)  
(V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, C = 15pF, T = -40°C to +125°C, unless otherwise noted. Typical  
DDA  
GNDA  
DDB  
GNDB L A  
values are at V  
- V  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Note 1)  
DDA  
GNDA  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
= 4mA source  
MIN  
TYP  
MAX  
UNITS  
Output Voltage High (Note 3)  
Output Voltage Low (Note 3)  
V
I
I
V - 0.4  
DD_  
V
V
OH  
OUT  
OUT  
V
= 4mA sink  
0.4  
OL  
Dynamic Characteristics MAX1293_B/E  
(V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, C = 15pF, T = -40°C to +125°C, unless otherwise noted. Typical  
DDA  
GNDA  
DDB  
GNDB L A  
values are at V  
- V  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Notes 1, 2)  
DDA  
GNDA  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
IN_ = GND_ or V _ (Note 4)  
MIN  
TYP  
MAX  
UNITS  
Common-Mode Transient  
Immunity  
50  
CMTI  
kV/µs  
DD  
Maximum Data Rate  
Minimum Pulse Width  
Glitch Rejection  
DR  
25  
Mbps  
ns  
MAX  
PW  
40  
MIN  
ns  
10  
17  
29  
4.5V ≤ V  
3.0V ≤ V  
≤ 5.5V  
≤ 3.6V  
≤ 2.75V  
17.4  
17.6  
18.3  
20.7  
16.9  
17.2  
17.8  
19.8  
23.9  
24.4  
25.8  
29.6  
23.4  
24.2  
25.4  
29.3  
0.4  
32.5  
33.7  
36.7  
43.5  
33.6  
35.1  
38.2  
45.8  
4
DD_  
DD_  
t
PLH  
2.25V ≤ V  
1.71V ≤ V  
4.5V ≤ V  
DD_  
≤ 1.89V  
DD_  
Propagation Delay  
(Figure 1)  
ns  
ns  
ns  
≤ 5.5V  
≤ 3.6V  
≤ 2.75V  
DD_  
3.0V ≤ V  
DD_  
t
PHL  
2.25V ≤ V  
DD_  
1.71V ≤ V  
≤ 1.89V  
DD_  
Pulse Width Distortion  
PWD  
4.5V ≤ V  
≤ 5.5V  
≤ 3.6V  
≤ 2.75V  
15.1  
15  
DD_  
3.0V ≤ V  
DD_  
t
SPLH  
2.25V ≤ V  
1.71V ≤ V  
4.5V ≤ V  
15.4  
20.5  
13.9  
14.2  
16  
DD_  
≤ 1.89V  
DD_  
Propagation Delay Skew  
Part-to-Part (same channel)  
≤ 5.5V  
≤ 3.6V  
≤ 2.75V  
DD_  
3.0V ≤ V  
DD_  
t
SPHL  
2.25V ≤ V  
DD_  
1.71V ≤ V  
≤ 1.89V  
21.8  
DD_  
t
2
2
Propagation Delay Skew Chan-  
nel-to-Channel (Same Direction)  
MAX12930 only  
SCSLH  
ns  
t
SCSHL  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
Dynamic Characteristics MAX1293_B/E (continued)  
(V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, C = 15pF, T = -40°C to +125°C, unless otherwise noted. Typical  
DDA  
GNDA  
DDB  
GNDB L A  
values are at V  
- V  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Notes 1, 2)  
DDA  
GNDA  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
Propagation Delay Skew  
Channel-to-Channel  
(Opposite Direction)  
MAX12931 Only  
t
2
SCOLH  
t
2
SCOHL  
Peak Eye Diagram Jitter  
T
25Mbps  
4.5V ≤ V  
3.0V ≤ V  
250  
ps  
JIT(PK)  
≤ 5.5V  
≤ 3.6V  
1.6  
2.2  
3
DD_  
DD_  
Rise Time  
(Figure 1)  
t
ns  
ns  
R
2.25V ≤ V  
≤ 2.75V  
≤ 1.89V  
DD_  
DD_  
1.71V ≤ V  
4.5  
1.4  
2
4.5V ≤ V  
3.0V ≤ V  
≤ 5.5V  
≤ 3.6V  
DD_  
DD_  
Fall Time  
(Figure 1)  
t
F
2.25V ≤ V  
1.71V ≤ V  
≤ 2.75V  
≤ 1.89V  
2.8  
5.1  
DD_  
DD_  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
Dynamic Characteristics MAX1293_C/F  
(V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, C = 15pF, T = -40°C to +125°C, unless otherwise noted. Typical  
DDA  
GNDA  
DDB  
GNDB L A  
values are at V  
- V  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Notes 2,3)  
DDA  
GNDA  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
IN_ = GND_ or V (Note 4)  
MIN  
150  
TYP  
50  
MAX  
UNITS  
kV/μs  
Mbps  
Common-Mode Transient  
Immunity  
CMTI  
DD_  
Maximum Data Rate  
DR  
MAX  
2.25V ≤ V _ ≤ 5.5V  
5
DD  
Minimum Pulse Width  
PW  
ns  
MIN  
1.71V ≤ V _ ≤ 1.89V  
6.67  
9.2  
10.2  
13.4  
20.3  
9.4  
10.5  
14.1  
21.7  
2
DD  
4.5V ≤ V _ ≤ 5.5V  
4.1  
4.2  
4.9  
7.1  
4.3  
4.4  
5.1  
7.2  
5.4  
5.9  
DD  
3.0V ≤ V _ ≤ 3.6V  
DD  
t
PLH  
2.25V ≤ V _ ≤ 2.75V  
7.1  
DD  
1.71V ≤ V _ ≤ 1.89V  
10.9  
5.6  
DD  
Propagation Delay  
(Figure 1)  
ns  
ns  
ns  
4.5V ≤ V _ ≤ 5.5V  
DD  
3.0V ≤ V _ ≤ 3.6V  
6.2  
DD  
t
PHL  
2.25V ≤ V _ ≤ 2.75V  
7.3  
DD  
1.71V ≤ V _ ≤ 1.89V  
10.9  
0.3  
DD  
Pulse Width Distortion  
PWD  
4.5V ≤ V  
3.0V ≤ V  
≤ 5.5V  
≤ 3.6V  
≤ 2.75V  
3.7  
4.3  
6
DD_  
DD_  
t
SPLH  
2.25V ≤ V  
1.71V ≤ V  
4.5V ≤ V  
DD_  
≤ 1.89V  
10.3  
3.8  
4.7  
6.5  
11.5  
2
DD_  
Propagation Delay Skew  
Part-to-Part (Same Channel)  
≤ 5.5V  
≤ 3.6V  
≤ 2.75V  
DD_  
3.0V ≤ V  
DD_  
t
SPHL  
2.25V ≤ V  
DD_  
1.71V ≤ V  
≤ 1.89V  
DD_  
Propagation Delay Skew  
Channel-to-Channel (Same  
Direction) MAX12930 Only  
t
t
SCSLH  
SCSHL  
SCOLH  
ns  
ns  
2
Propagation Delay Skew  
Channel-to-Channel (Opposite  
Direction) MAX12931 Only  
t
t
2
2
SCOHL  
Peak Eye Diagram Jitter  
Clock Jitter RMS  
t
150Mbps  
90  
ps  
ps  
JIT(PK)  
500kHz Clock Input Rising/Falling  
Edges  
t
6.5  
JCLK(RMS)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
Dynamic Characteristics MAX1293_C/F (continued)  
(V  
- V  
= 1.71V to 5.5V, V  
- V  
= 1.71V to 5.5V, C = 15pF, T = -40°C to +125°C, unless otherwise noted. Typical  
DDA  
GNDA  
DDB  
GNDB L A  
values are at V  
- V  
= 3.3V, V  
- V  
= 3.3V, GNDA = GNDB, T = 25°C, unless otherwise noted.) (Notes 2,3)  
DDA  
GNDA  
DDB  
GNDB A  
PARAMETER  
SYMBOL  
CONDITIONS  
≤ 5.5V  
MIN  
TYP  
MAX  
1.6  
2.2  
3
UNITS  
4.5V ≤ V  
3.0V ≤ V  
DD_  
DD_  
≤ 3.6V  
Rise Time  
(Figure 1)  
t
ns  
R
2.25V ≤ V  
1.71V ≤ V  
≤ 2.75V  
≤ 1.89V  
DD_  
DD_  
4.5  
1.4  
2
4.5V ≤ V  
3.0V ≤ V  
≤ 5.5V  
≤ 3.6V  
DD_  
DD_  
Fall Time  
(Figure 1)  
t
ns  
F
2.25V ≤ V  
≤ 2.75V  
≤ 1.89V  
2.8  
5.1  
DD_  
DD_  
1.71V ≤ V  
Note 1: All devices are 100% production tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 2: Not production tested. Guaranteed by design and characterization.  
Note 3: All currents into the device are positive. All currents out of the device are negative. All voltages are referenced to their  
respective ground (GNDA or GNDB), unless otherwise noted.  
Note 4: CMTI is the maximum sustainable common-mode voltage slew rate while maintaining the correct output. CMTI applies to  
both rising and falling common-mode voltage sedges. Tested with the transient generator connected between GNDA and  
GNDB (V  
= 1000V).  
CM  
ESD Protection  
PARAMETER  
ESD  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Human Body Model, all pins  
±3  
kV  
MAX12930  
MAX12931  
Figure 1. Test Circuit (A) and Timing Diagram (B)  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
Safety Regulatory Approvals  
UL  
The MAX12930–MAX12931 narrow-body SOIC are certified under UL1577. For more details, refer to file E351759.  
Rated up to 3000V isolation voltage for single protection.  
RMS  
cUL (Equivalent to CSA Notice 5A)  
The MAX12930–MAX12931 narrow-body SOIC are certified up to 3000V  
for single protection. For more details, refer to file E351759.  
RMS  
UL  
The MAX12931 wide-body SOIC is certified under UL1577. For more details, refer to file E351759.  
Rated up to 5000V isolation voltage for single protection.  
RMS  
cUL (Equivalent to CSA notice 5A)  
The MAX12931 wide-body SOIC is certified up to 5000V  
for single protection. For more details, refer to file E351759.  
RMS  
VDE  
The MAX12930–MAX12931 narrow-body SOIC are certified to DIN VDE V 0884-11: 2017-01  
Basic Insulation, Maximum Transient Isolation Voltage 4200V , Maximum Repetitive Peak Isolation Voltage 630V  
PK  
.
PK  
For details, see file ref. 5015017-4880-0001/272147/TL7/SCT.  
This coupler is suitable for “safe electrical insulation” only within the safety ratings. Compliance with the safety ratings shall be  
ensured by means of suitable protective circuits.  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
Insulation Characteristics  
Table 1. Narrow SOIC Insulation Characteristic  
PARAMETER  
SYMBOL  
CONDITIONS  
VALUE  
1182  
UNITS  
Method B1 = V x 1.875  
IORM  
Partial Discharge Test Voltage  
V
V
V
PR  
P
P
(t = 1s, partial discharge < 5pC)  
Maximum Repetitive Peak Isolation  
Voltage  
V
(Note 5)  
630  
445  
IORM  
IOWM  
Maximum Working Isolation  
Voltage  
Continuous RMS voltage  
(Note 5)  
V
V
V
RMS  
Maximum Transient Isolation  
Voltage  
V
t = 1s (Note 5)  
4200  
3000  
5000  
V
P
IOTM  
Maximum Withstand Isolation  
Voltage  
V
f
= 60Hz, duration = 60s (Note 5, 6)  
ISO  
SW  
RMS  
Basic Insulation, 1.2/50µs pulse per  
IEC 61000-4-5 (Note 5, 8)  
Maximum Surge Isolation Voltage  
V
V
P
IOSM  
12  
V
V
V
= 500V, T = 25°C  
> 10  
IO  
A
11  
9
Insulation Resistance  
R
C
= 500V, 100°C ≤ T ≤ 125°C  
> 10  
IO  
IO  
IO  
A
= 500V at T = 150°C  
S
> 10  
IO  
Barrier Capacitance Side A to Side B  
Minimum Creepage Distance  
Minimum Clearance Distance  
Internal Clearance  
f
= 1MHz (Note 7)  
2
4
pF  
SW  
CPG  
CLR  
Narrow SOIC  
mm  
mm  
mm  
Narrow SOIC  
4
Distance through insulation  
Material Group II (IEC 60112)  
0.015  
> 400  
40/125/21  
Comparative Tracking Index  
Climate Category  
CTI  
Pollution Degree  
(DIN VDE 0110, Table 1)  
2
Maxim Integrated  
10  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
Table 2. Wide SOIC Insulation Characteristic  
PARAMETER  
SYMBOL  
CONDITIONS  
VALUE  
2250  
UNITS  
Method B1 = V x 1.875  
IORM  
Partial Discharge Test Voltage  
V
V
PR  
P
P
(t = 1s, partial discharge < 5pC)  
Maximum Repetitive Peak  
Isolation Voltage  
V
(Note 5)  
1200  
848  
V
IORM  
IOWM  
Maximum Working Isolation  
Voltage  
Continuous RMS voltage  
(Note 5)  
V
V
V
RMS  
Maximum Transient Isolation  
Voltage  
V
t = 1s (Note 5)  
8400  
5000  
10000  
V
P
IOTM  
Maximum Withstand Isolation  
Voltage  
V
f
= 60Hz, duration = 60s (Note 5, 6)  
SW  
ISO  
RMS  
Basic Insulation, 1.2/50µs pulse per  
IEC 61000-4-5 (Note 5, 8)  
Maximum Surge Isolation Voltage  
V
V
P
IOSM  
12  
V
V
V
= 500V, T = 25°C  
> 10  
IO  
A
11  
Insulation Resistance  
R
C
= 500V, 100°C ≤ T ≤ 125°C  
> 10  
IO  
IO  
IO  
A
9
= 500V at T = 150°C  
S
> 10  
IO  
Barrier Capacitance Side A to Side B  
Minimum Creepage Distance  
Minimum Clearance Distance  
Internal Clearance  
f
= 1MHz (Note 7)  
2
8
pF  
SW  
CPG  
CLR  
Wide SOIC  
mm  
mm  
mm  
Wide SOIC  
8
Distance through insulation  
Material Group I (IEC 60112)  
0.015  
>600  
40/125/21  
Comparative Tracking Index  
Climate Category  
CTI  
Pollution Degree  
(DIN VDE 0110, Table 1)  
2
Note 5: V  
Note 6: Product is qualified at V  
Note 7: Capacitance is measured with all pins on side A and side B tied together.  
Note 8: Devices are immersed in oil during surge characterization.  
, V  
, V  
, V  
, and V  
IORM  
are defined by the IEC 60747-5-5 standard.  
for 60s and 100% production tested at 120% of V for 1s.  
ISO  
ISO IOTM IOSM IOWM  
ISO  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
Figure 2 and Figure 3 show the thermal derating curves  
for the safety power limiting of the devices and Figure 4  
shows the thermal derating curve for the safety current  
limiting of the devices. Ensure that the junction tempera-  
ture does not exceed 150°C.  
Safety Limits  
Damage to the IC can result in a low-resistance path  
to ground or to the supply and, without current limiting,  
the MAX12930–MAX12931 could dissipate excessive  
amounts of power. Excessive power dissipation can dam-  
age the die and result in damage to the isolation barrier,  
potentially causing downstream issues. Table 3 shows the  
safety limits for the MAX12930–MAX12931.  
THERMAL DERATING CURVE  
FOR SAFETY POWER LIMITING  
800  
The maximum safety temperature (T ) for the device is  
S
the 150°C maximum junction temperature specified in  
the Absolute Maximum Ratings. The power dissipation  
8 NARROW SOIC PACKAGE,  
MULTILAYER BOARD  
700  
600  
500  
400  
300  
200  
100  
0
(P ) and junction-to-ambient thermal impedance (θ  
)
JA  
D
determine the junction temperature. Thermal imped-  
ance values (θ and θ ) are available in the Package  
JA  
JC  
Information section of the datasheet and power dissipa-  
tion calculations are discussed in the Calculating Power  
Dissipation section. Calculate the junction temperature  
(T ) as:  
J
T = T + (P x θ )  
JA  
0
25  
50  
75 100 125 150 175 200  
J
A
D
AMBIENT TEMPERATURE (°C)  
Figure 3. Thermal Derating Curve for Safety Power  
Limiting—8 Narrow SOIC  
THERMAL DERATING CURVE  
FOR SAFETY CURRENT LIMITING  
THERMAL DERATING CURVE  
FOR SAFETY POWER LIMITING  
350  
1800  
1600  
1400  
1200  
1000  
800  
MULTILAYER BOARD  
300  
16 WIDE SOIC PACKAGE,  
MULTILAYER BOARD  
250  
200  
150  
100  
50  
600  
400  
200  
0
0
0
25  
50  
75 100 125 150 175 200  
0
25  
50  
75 100 125 150 175 200  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Figure 4. Thermal Derating Curve for Safety Current Limiting  
Figure 2. Thermal Derating Curve for Safety Power  
Limiting—16 Wide SOIC  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
Table 3. Safety Limiting Values for the MAX12930–MAX12931  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MAX  
UNITS  
Safety Current on Any Pin  
(No Damage to Isolation Barrier)  
I
T = 150°C, T = 25°C  
300  
mA  
S
J
A
16 Wide SOIC  
8 Narrow SOIC  
1760  
723  
Total Safety Power Dissipation  
Maximum Safety Temperature  
P
T = 150°C, T = 25°C  
mW  
°C  
S
J
A
T
150  
S
Typical Operating Characteristics  
(V  
- V  
= +3.3V, V  
- V  
= +3.3V, V  
= V  
, T = +25°C, unless otherwise noted.)  
VDDA  
GNDA  
VDDB  
GNDB  
GNDA  
GNDB A  
SIDE A SUPPLY CURRENT  
vs. DATA RATE  
SIDE A SUPPLY CURRENT  
vs. DATA RATE  
SIDE A SUPPLY CURRENT  
vs. DATA RATE  
toc01  
toc02  
toc03  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
DRIVING ONE CHANNEL ON SIDE A  
OTHER CHANNEL IS HIGH  
MAX12930B/E  
DRIVING ONE CHANNEL ON SIDE A  
OTHER CHANNEL IS HIGH  
MAX12930C/F  
DRIVING ONE CHANNEL ON SIDE A  
OTHER CHANNEL IS HIGH  
MAX12931B/E  
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
V
V
V
V
= 5.0V  
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
V
V
V
= 3.3V  
= 2.5V  
= 1.8V  
V
V
V
DDA  
DDA  
DDA  
DDA  
DDA  
DDA  
0.0  
0
0
5
10  
15  
20  
25  
25  
50  
75  
100  
125  
150  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
SIDE A SUPPLY CURRENT  
vs. DATA RATE  
toc04  
toc05  
toc06  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
DRIVING ONE CHANNEL ON SIDE A  
OTHER CHANNEL IS HIGH  
MAX12931C/F  
DRIVING ONE CHANNEL ON SIDE A  
= 0pF, OTHER CHANNEL IS HIGH,  
MAX12930B/E  
DRIVING ONE CHANNEL ON SIDE A  
C = 15pF, OTHER CHANNEL IS HIGH,  
L
C
L
MAX12930B/E  
0.8  
0.6  
0.4  
0.2  
0.0  
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
DDA  
DDB  
DDB  
DDB  
DDB  
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
DDB  
DDB  
DDB  
DDB  
V
V
V
V
V
V
DDA  
DDA  
DDA  
V
V
V
0
25  
50  
75  
100  
125  
150  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
3kV  
and 5kV  
Digital Isolators  
RMS  
RMS  
Typical Operating Characteristics (continued)  
(V  
- V  
= +3.3V, V  
- V  
= +3.3V, V  
= V , T = +25°C, unless otherwise noted.)  
GNDB A  
VDDA  
GNDA  
VDDB  
GNDB  
GNDA  
toc07  
toc08  
toc09  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
1.0  
DRIVING ONE CHANNEL ON SIDE A  
DRIVING ONE CHANNEL ON SIDE A  
DRIVING ONE CHANNEL ON SIDE A  
C = 0pF, OTHER CHANNEL IS HIGH  
L
MAX12931B/E  
C = 0pF, OTHER CHANNEL IS HIGH,  
C = 15pF, OTHER CHANNEL IS HIGH,  
L
L
MAX12930C/F  
MAX12930C/F  
0.8  
0.6  
0.4  
0.2  
0.0  
V
V
V
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
V
V
V
V
= 5.0V  
= 3.3V  
= 2.5V  
= 1.8V  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
DDB  
VDDB = 5.0V  
VDDB = 3.3V  
VDDB = 2.5V  
VDDB = 1.8V  
0.0  
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
0
5
10  
15  
20  
25  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
toc10  
toc11  
toc12  
2.500  
2.000  
1.500  
1.000  
0.500  
0.000  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
8.0  
DRIVING ONE CHANNEL ON SIDE A  
CL = 0pF, OTHER CHANNEL IS HIGH  
MAX12931C/F  
DRIVING ONE CHANNEL ON SIDE A  
DRIVING ONE CHANNEL ON SIDE A  
CL = 15pF, OTHER CHANNEL IS HIGH  
MAX12931B/E  
7.0 CL = 15pF, OTHER CHANNEL IS HIGH  
MAX12931C/F  
6.0  
VDDB = 5.0V  
VDDB = 3.3V  
VDDB = 2.5V  
VDDB = 1.8V  
VDDB = 5.0V  
VDDB = 3.3V  
VDDB = 2.5V  
VDDB = 1.8V  
VDDB = 5.0V  
VDDB = 3.3V  
VDDB = 2.5V  
VDDB = 1.8V  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
0.0  
0
0
5
10  
15  
20  
25  
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
PROPAGATION DELAY  
PROPAGATION DELAY  
vs. TEMPERATURE  
PROPAGATION DELAY  
vs. TEMPERATURE  
vs. V  
VOLTAGE  
DDA  
toc13  
toc14  
toc15  
15.0  
12.0  
9.0  
35  
30  
25  
20  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
V
= V  
DDB  
VDDA = VDDB  
INA TO OUTB  
MAX1293_C/F  
DDA  
V
= 3.3V  
DDB  
INA TO OUTB,  
MAX1293_B/E  
INA TO OUTB  
MAX1293_B/E  
6.0  
MAX1293_C/F  
VDDA = 1.8V  
VDDA = 2.5V  
VDDA = 3.3V  
VDDA = 5.5V  
VDDA = 1.8V  
VDDA = 2.5V  
VDDA = 3.3V  
VDDA = 5.5V  
3.0  
15  
0.0  
0.0  
-50  
-25  
0
25  
50  
75  
100 125  
-50  
-25  
0
25  
50  
75  
100 125  
1.5  
2.5  
3.5  
4.5  
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
VOLTAGE (V)  
DDA  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
Typical Operating Characteristics (continued)  
(V  
- V  
= +3.3V, V  
- V  
= +3.3V, V  
= V  
, T = +25°C, unless otherwise noted.)  
VDDA  
GNDA  
VDDB  
GNDB  
GNDA  
GNDB A  
PROPAGATION DELAY  
vs. VDDB VOLTAGE  
MINIMUM PULSE WIDTH  
toc16  
toc17  
toc18  
35.0  
30.0  
25.0  
20.0  
15.0  
10.0  
5.0  
MAX1293_B/E  
40ns pulse  
V
= 3.3V  
INA TO OUTB  
MAX1293_C/F  
5ns pulse  
DDA  
IN__  
IN__  
1V  
1V  
1V/div  
1V/div  
MAX1293_B/E  
MAX1293_C/F  
OUT__  
OUT__  
0.0  
5ns/div  
1.5  
2.5  
3.5  
4.5  
5.5  
20ns/div  
V
VOLTAGE (V)  
DDB  
CLOCKJITTER RMS ON RISING EDGE  
MAX1293_C/F  
CLOCKJITTER RMS ON FALLING EDGE  
MAX1293_C/F  
EYE DIAGRAM at 150Mbps  
MAX12931C/F  
toc19  
toc20  
toc21  
500kHz Clock Input  
tJCLK(RMS) = 6.5ps  
500kHz Clock Input  
tJCLK(RMS) = 6.3ps  
400mV/div  
OUT_  
OUT_  
400mV/div  
400mV/div  
1ns/div  
125ps/div  
125ps/div  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
3kV  
and 5kV  
Digital Isolators  
RMS  
RMS  
Pin Configurations  
TOP VIEW  
+
+
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
V
V
V
DDB  
DDA  
IN1  
DDB  
DDA  
MAX12930  
MAX12931  
OUT1  
OUT2  
GNDB  
OUT1  
IN2  
IN1  
IN2  
OUT2  
GNDB  
GNDA  
GNDA  
NARROW SOIC  
NARROW SOIC  
+
GNDA  
N.C.  
1
2
3
4
5
6
7
8
16  
15  
14  
GNDB  
N.C.  
MAX12931  
V
V
DDB  
DDA  
OUT1  
IN2  
13  
12  
11  
10  
9
IN1  
OUT2  
N.C.  
N.C.  
GNDA  
N.C.  
N.C.  
GNDB  
WIDE SOIC  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
3kV  
and 5kV  
Digital Isolators  
RMS  
RMS  
Pin Description  
PIN  
NAME  
FUNCTION  
REFERENCE  
MAX12930  
MAX12931  
MAX12931  
8-PIN SOIC 8-PIN SOIC  
16-PIN SOIC  
Power Supply for side A. Bypass V  
with  
DDA  
1
1
3
V
GNDA  
DDA  
a 0.1µF ceramic capacitor to GNDA.  
Logic input for channel 1  
Logic output of channel 1  
Logic input for channel 2  
Ground reference for side A  
Ground reference for side B  
Logic output of channel 2  
Logic output of channel 1  
Logic input for channel 1  
2
3
2
4
IN1  
OUT1  
IN2  
GNDA  
GNDA  
GNDA  
3
5
4
4
1, 7  
9, 16  
12  
GNDA  
GNDB  
OUT2  
OUT1  
IN1  
5
5
6
6
GNDB  
GNDB  
GNDB  
7
7
13  
Power Supply for side B. Bypass V  
a 0.1µF ceramic capacitor to GNDB.  
with  
DDB  
8
8
14  
V
GNDB  
DDB  
2, 6, 8, 10, 11, 15  
N.C.  
Not internally connected  
Typical Application Circuits  
2.5V  
3.3V  
0.1µF  
0.1µF  
MICRO  
CONTROLLER  
TRANSCEIVER  
MAX12931  
V
V
V
V
DD  
DD  
DDA  
DDB  
A
B
RX  
OUT1  
IN1  
RXD  
Y
Z
TXD  
TX  
OUT2  
GNDB  
IN2  
GND  
GNDA  
GND  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
in the narrow SOIC package and up to 1200V  
continuous isolation is supported in the wide SOIC pack-  
age. The devices withstand differences of up to 3kV  
of  
PEAK  
Detailed Description  
The MAX12930/MAX12931 are a family of 2-channel  
digital isolators. The MAX12930 transfers digital signals  
between circuits with different power domain in one  
direction, which is convenient for applications such as  
digital I/O. The MAX12931 transfers digital signals in  
opposite directions, which is necessary for isolated  
RS-485 or other UART applications.  
RMS  
in the  
in the 8-pin narrow SOIC package or 5kV  
RMS  
16-pin wide SOIC package for up to 60 seconds.  
Level-Shifting  
The wide supply voltage range of both V  
and V  
DDB  
DDA  
allows the MAX12930/MAX12931 family to be used for  
Devices available in the 8-pin narrow body SOIC  
level translation in addition to isolation. V and V  
DDA  
DDB  
package are rated for up to 3kV  
isolation voltage for  
can be independently set to any voltage from 1.71V to  
5.5V. The supply voltage sets the logic level on the  
corresponding side of the isolator.  
RMS  
60 seconds and the device in the 16-pin wide body SOIC  
package is rated for up to 5kV . This family of digital  
RMS  
isolators offers low-power operation, high electromagnetic  
interference (EMI) immunity, and stable temperature  
performance through Maxim’s proprietary process technology.  
The devices isolate different ground domains and block  
high-voltage/high-current transients from sensitive or  
human interface circuitry.  
Unidirectional Channels  
Each channel of the MAX12930/MAX12931 is  
unidirectional; it only passes data in one direction, as  
indicated in the functional diagram. Each device features  
two unidirectional channels that operate independently  
with guaranteed data rates from DC up to 25Mbps (B/E  
versions), or DC to 150Mbps (C/F versions). The output  
driver of each channel is push-pull, eliminating the need  
for pullup resistors. The outputs are able to drive both TTL  
and CMOS logic inputs.  
Devices are available with data rates from DC to 25Mbps  
(B/E versions) or 150Mbps (C/F versions). Each device  
can be ordered with default-high or default-low outputs.  
The default is the state the output assumes when the  
input is not powered, or if the input is open circuit.  
Startup and Undervoltage-Lockout  
The devices have two supply inputs (V  
and V  
)
DDB  
DDA  
that independently set the logic levels on either side of  
device. V and V are referenced to GNDA and  
GNDB, respectively. The MAX12930/MAX12931 family  
also features a refresh circuit to ensure output accuracy  
when an input remains in the same state indefinitely.  
The V  
and V  
supplies are both internally  
DDA  
DDB  
monitored for undervoltage conditions. Undervoltage  
events can occur during power-up, power-down, or during  
normal operation due to a sagging supply voltage. When  
an undervoltage condition is detected on either supply, all  
outputs go to their default states regardless of the state of  
the inputs (Table 4). Figure 5 through Figure 8 show the  
behavior of the outputs during power-up and power-down.  
DDA  
DDB  
Digital Isolation  
The device family provides galvanic isolation for digital  
signals that are transmitted between two ground domains.  
Up to 630V  
of continuous isolation is supported  
PEAK  
Table 4. Output Behavior During Undervoltage Conditions  
V
V
V
V
V
OUTB_  
IN_  
VDDA  
VDDB  
OUTA_  
1
Powered  
Powered  
Powered  
Powered  
1
1
0
X
X
0
0
Undervoltage  
Powered  
Powered  
Default  
Default  
Default  
Default  
Undervoltage  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
3kV  
and 5kV  
Digital Isolators  
RMS  
RMS  
MAX1293_B/Cꢀ  
MAX1293_E/Fꢀ  
INPUT SET TO HIGH  
INPUT SET TO HIGH  
VDDA  
VDDB  
VDDA  
VDDB  
2V/div  
2V/div  
OUT_A  
OUT_B  
OUT_A  
OUT_B  
200µs/div  
200µs/div  
Figure 5. Undervoltage Lockout Behavior (MAX1293_B/C High)  
Figure 6. Undervoltage Lockout Behavior (MAX1293_B/C Low)  
MAX1293_E/Fꢀ  
MAX1293_E/Fꢀ  
INPUT SET TO LOW  
INPUT SET TO LOW  
VDDA  
VDDA  
2V/div  
2V/div  
VDDB  
VDDB  
OUT_A  
OUT_A  
OUT_B  
OUT_B  
200µs/div  
200µs/div  
Figure 7. Undervoltage Lockout Behavior (MAX1293_E/F High)  
Figure 8. Undervoltage Lockout Behavior (MAX1293_E/F Low)  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
I
= C × f  
× V  
CL  
L
SW DD  
Application Information  
where,  
Power-Supply Sequencing  
The MAX12930/MAX12931 do not require special power  
supply sequencing. The logic levels are set independently  
I
= Current required to drive the capacitive load.  
CL  
C = Load capacitance on the isolator’s output pin.  
L
on either side by V  
and V  
. Each supply can be  
DDA  
DDB  
f
= Switching frequency (bits per second/2).  
SW  
present over the entire specified range regardless of the  
level or presence of the other supply.  
V
DD  
= Supply voltage on the output side of the isolator.  
Current into a resistive load depends on the load resistance,  
the supply voltage and the average duty cycle of the data  
waveform. The DC load current can be conservatively  
estimated by assuming the output is always high.  
Power-Supply Decoupling  
To reduce ripple and the chance of introducing data  
errors, bypass V  
and V  
with 0.1µF low-ESR  
DDA  
DDB  
ceramic capacitors to GNDA and GNDB, respectively.  
Place the bypass capacitors as close to the power supply  
input pins as possible.  
I
= V ÷ R  
DD L  
RL  
where,  
= Current required to drive the resistive load.  
I
RL  
Layout Considerations  
V
DD  
= Supply voltage on the output side of the isolator.  
The PCB designer should follow some critical  
recommendation in order to get the best performance  
from the design.  
R = Load resistance on the isolator’s output pin.  
L
Example (shown in Figure 11): A MAX12931F is operating  
with V  
= 2.5V, V  
= 3.3V, channel 1 operating at  
Keep the input/output traces as short as possible. To  
DDA  
DDB  
100Mbps with a 15pF capacitive load, and channel 2  
operating at 20Mbps with a 10pF capacitive load. Refer  
keep signal paths low-inductance, avoid using vias.  
Have a solid ground plane underneath the high-  
to Table 5 and Table 6 for V  
calculation worksheets.  
and V  
supply current  
DDA  
DDB  
speed signal layer.  
Keep the area underneath the MAX12930/MAX12931  
free from ground and signal planes. Any galvanic or  
metallic connection between the field-side and logic-  
side defeats the isolation.  
V
must supply:  
DDA  
Channel 1 is an output channel operating at 2.5V and  
100Mbps, consuming 1.02mA, estimated from Figure 10.  
Channel 2 is an input channel operating at 2.5V and  
20Mbps, consuming 0.33mA, estimated from Figure 9.  
Calculating Power Dissipation  
The required current for a given supply (V  
or V  
)
DDB  
I
on channel 1 for 15pF capacitor at 2.5V and 100Mbps  
DDA  
CL  
can be estimated by summing the current required for  
each channel. The supply current for a channel depends  
on whether the channel is an input or an output, the channel’s  
data rate, and the capacitive or resistive load if it is an  
output. The typical current for an input or output at any  
data rate can be estimated from the graphs in Figure 9  
and Figure 10. Please note that the data in Figure 9  
and Figure 10 are extrapolated from the supply current  
measurements in a typical operating condition.  
is 1.875mA.  
Total current for side A = 1.02+ 0.33 + 1.875 = 3.225mA,  
typical  
V
must supply:  
DDB  
Channel 1 is an input channel operating at 3.3V and  
100Mbps, consuming 1.13mA, estimated from Figure 9.  
Channel 2 is an output channel operating at 3.3V and  
20Mbps, consuming 0.42mA, estimated from Figure 10.  
I
on channel 2 for 10pF capacitor at 3.3V and 20Mbps  
CL  
The total current for a single channel is the sum of the  
“no load” current (shown in Figure 9 and Figure 10) which  
is a function of Voltage and Data Rate, and the “load  
current” which depends upon the type of load. Current  
into a capacitive load is a function of the load capacitance,  
the switching frequency, and the supply voltage.  
is 0.33mA.  
Total current for side B = 1.13 + 0.42 + 0.33 = 1.88mA,  
typical  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
SUPPLY CURRENT PER INPUT CHANNEL  
vs. DATA RATE  
SUPPLY CURRENT PER OUTPUT CHANNEL  
vs. DATA RATE  
2.0  
1.6  
1.2  
0.8  
0.4  
0.0  
4.0  
VDD_ = 1.8V  
V
= 2.5V  
DD_
V
= 3.3V  
3.2  
2.4  
1.6  
0.8  
0.0  
DD_
V
= 5.0V  
DD_
CL = 0pF  
VDD_ = 1.8V  
VDD_ = 2.5V  
VDD_ 3.3V  
V
= 5.0V  
DD_
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
DATA RATE (Mbps)  
DATA RATE (Mbps)  
Figure 9. Supply Current per Input Channel Versus Data Rate  
Figure 10. Supply Current per Output Channel Versus Data Rate  
2.5V  
3.3V  
V
V
DDB  
DDA  
MAX12931F  
100Mbps  
100Mbps  
20Mbps  
OUT1  
IN1  
15pF  
20Mbps  
IN2  
OUT2  
GNDB  
10pF  
GNDA  
Figure 11. Example Circuit for Supply Current Calculation  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
Table 5. Side A Supply Current Calculation Worksheet  
SIDE A  
V
= 2.5V  
DDA  
FREQUENCY  
(Mbps)  
LOAD  
TYPE  
CHANNEL IN/OUT  
LOAD  
“NO LOAD” CURRENT (mA)  
LOAD CURRENT (mA)  
1
2
OUT  
IN  
100  
20  
Capacitive  
15pF  
1.02  
0.33  
2.5V x 50MHz x 15pF = 1.875mA  
Total:  
3.225mA  
Table 6. Side B Supply Current Calculation Worksheet  
SIDE B  
V
= 3.3V  
DDB  
FREQUENCY  
(Mbps)  
LOAD  
TYPE  
CHANNEL IN/OUT  
LOAD  
“NO LOAD” CURRENT (mA)  
LOAD CURRENT (mA)  
1
2
IN  
100  
20  
1.13  
0.42  
OUT  
Capacitive  
10pF  
3.3V x 10MHz x 10pF = 0.33mA  
1.88mA  
Total:  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
and 5kV Digital Isolators  
3kV  
RMS  
RMS  
Product Selector Guide  
MAX1293  
1
F A  
S
A +  
CHANNEL  
CONFIGURATION  
0: 2/0  
MAX DATA RATE  
DEVICE CONFIGURATION  
1: 1/1  
25 Mbps  
150Mbps  
MAXIMUM DATA RATE  
DEFAULT OUTPUT  
(SEE TABLE)  
DEFAULT-HIGH OUTP UT  
DEFAULT-LOW OUTPUT  
B
E
C
F
TEMP RANGE: -40°C TO +125°C  
PACKAGE  
S: N SOIC  
W: W SOIC  
PINS  
A: 8  
E: 16  
LEAD-FREE/RoHS COMPLIANT  
Ordering Information  
ISOLATION  
VOLTAGE  
CHANNEL  
CONFIGURATION  
DATA RATE DEFAULT  
TEMP  
RANGE  
PIN-  
PACKAGE  
PART  
(Mbps)  
OUTPUT  
(kV  
)
RMS  
MAX12930BASA+  
MAX12930CASA+  
MAX12930EASA+  
MAX12930FASA+  
MAX12931BASA+  
MAX12931CASA+  
MAX12931EASA+  
MAX12931FASA+  
MAX12931BAWE+  
2/0  
2/0  
2/0  
2/0  
1/1  
1/1  
1/1  
1/1  
1/1  
25  
150  
25  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
3
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
-40°C to 125°C  
8 Narrow SOIC  
8 Narrow SOIC  
8 Narrow SOIC  
8 Narrow SOIC  
8 Narrow SOIC  
8 Narrow SOIC  
8 Narrow SOIC  
8 Narrow SOIC  
16 Wide SOIC  
3
3
150  
25  
3
3
150  
25  
3
3
150  
25  
3
5
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX12930/MAX12931  
Two-Channel, Low-Power,  
3kV  
and 5kV  
Digital Isolators  
RMS  
RMS  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
6/16  
Initial release  
Added Safety Regulatory Approvals section, updated Absolute Maximum Rating,  
Package Thermal Characteristics, and Electrical Characteristics sections, and  
removed future product status from MAX12930FASA+ and MAX12931BASA+  
1, 2, 5, 7–13,  
15–19  
1
3/17  
2
3
8/17  
Removed future asterisk from MAX12931FASA+ in Ordering Information table  
Removed future asterisk from MAX12930BASA+ in Ordering Information table  
21  
21  
10/17  
Removed future asterisk from MAX12930EASA+ and MAX12931EASA+ in Ordering  
Information table  
4
5
6
11/18  
3/19  
8/19  
21  
Added “VDE 0884-10 Basic” under Safety Regulatory Approvals, and updated the  
table. Updated Table 1 and Table 2  
1, 8, 9, 10  
1, 9, 10  
Updated the General Description, Table 1, and Table 2; corrected subscripts in the  
Benefits and Features section  
7
8
10/19  
11/19  
Removed future product asterisk from MAX12930CASA+  
Removed future product asterisk from MAX12931CASA+  
21  
21  
Updated General Description, Safety Regulatory Approvals, Absolute Maximum  
Ratings, Package Information, Dynamic Characteristics MAX1293_B/E,  
Dynamic Characteristics MAX1293_C/F, Safety Regulatory Approvals, Insulation  
Characteristics, Typical Operating Circuit, and Layout Considerations sections;  
added Safety Limits and Product Selector Guide sections; added new Figure 2‒4  
and renumbered subsequent figures; replaced Figure 9‒10; updated Tables 1 and 2;  
added Table 3 and renumbered subsequent tables  
1–2, 5–11,  
15–21  
9
11/20  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2020 Maxim Integrated Products, Inc.  
24  

相关型号:

MAX12930EASA+*

Two-Channel Digital Isolators
MAXIM

MAX12930FASA+

Two-Channel, Low-Power, 3kVRMS and 5kVRMS Digital Isolators
MAXIM

MAX12930FASA+*

Two-Channel Digital Isolators
MAXIM

MAX12930_V01

Two-Channel, Low-Power, 3kVRMS and 5kVRMS Digital Isolators
MAXIM

MAX12931

Broad Range of Data Transfer Rates (from DC to 150Mbps)
MAXIM

MAX12931BASA+

Two-Channel, Low-Power, 3kVRMS and 5kVRMS Digital Isolators
MAXIM

MAX12931BASA+*

Two-Channel Digital Isolators
MAXIM

MAX12931BAWE+

Two-Channel Digital Isolators
MAXIM

MAX12931BSEVKIT

Broad Range of Data Transfer Rates (from DC to 150Mbps)
MAXIM

MAX12931CASA+

Two-Channel, Low-Power, 3kVRMS and 5kVRMS Digital Isolators
MAXIM

MAX12931CASA+*

Two-Channel Digital Isolators
MAXIM

MAX12931EASA+

Two-Channel, Low-Power, 3kVRMS and 5kVRMS Digital Isolators
MAXIM