MAX1300AEUG+ [MAXIM]

8- and 4-Channel, ±3 x VREF Multirange Inputs, Serial 16-Bit ADCs;
MAX1300AEUG+
型号: MAX1300AEUG+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

8- and 4-Channel, ±3 x VREF Multirange Inputs, Serial 16-Bit ADCs

信息通信管理 光电二极管 转换器
文件: 总31页 (文件大小:2467K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
Serial 16-Bit ADCs  
REF  
General Description  
Features  
Software-Programmable Input Range for Each Channel  
The MAX1300/MAX1301 multirange, low-power, 16-bit,  
successive-approximation, analog-to-digital converters  
(ADCs) operate from a single +5V supply and achieve  
throughput rates up to 115ksps. A separate digital sup-  
ply allows digital interfacing with 2.7V to 5.25V systems  
Single-Ended Input Ranges (V  
= 4.096V)  
REF  
)/2 to 0, 0 to 3 x V  
0 to (3 x V  
)/2, (-3 x V  
,
REF  
REF  
REF  
-3 x V  
to 0, (±3 x V  
REF  
)/4, (±3 x V  
, ±6 x V  
REF  
)/2, ±3 x V  
REF  
REF  
REF  
Differential Input Ranges  
(±3 x V )/2, ±3 x V  
®
using the SPI-/QSPI™-/MICROWIRE -compatible serial  
REF  
REF  
interface. Partial power-down mode reduces the supply  
current to 1.3mA (typ). Full power-down mode reduces  
the power-supply current to 1µA (typ).  
Eight Single-Ended or Four Differential Analog Inputs  
(MAX1300)  
Four Single-Ended or Two Differential Analog Inputs  
(MAX1301)  
The MAX1300 provides eight (single-ended) or four (true  
differential) analog input channels. The MAX1301 pro-  
vides four (single-ended) or two (true differential) analog  
input channels. Each analog input channel is indepen-  
dently software programmable for seven single-ended  
±16.5V Overvoltage Tolerant Inputs  
Internal or External Reference  
115ksps Maximum Sample Rate  
Single +5V Power Supply  
input ranges [0 to (3 x V  
)/2, (-3 x V  
)/2 to 0, 0 to 3  
REF  
REF  
20-/24-Pin TSSOP Package  
x V  
x V  
, -3 x V  
to 0, (±3 x V  
)/4, (±3 x V )/2, ±3  
REF  
REF  
REF  
REF  
REF  
] and three differential input ranges [(±3 x V  
)/2,  
Ordering Information  
REF  
±3 x V  
, ±6 x V  
].  
REF  
REF  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
CHANNELS  
An on-chip +4.096V reference offers a small convenient  
ADC solution. The MAX1300/MAX1301 also accept an  
external reference voltage between 3.800V and 4.136V.  
MAX1300AEUG+ -40°C to +85°C 24 TSSOP  
MAX1300BEUG+ -40°C to +85°C 24 TSSOP  
MAX1301AEUP+ -40°C to +85°C 20 TSSOP  
8
8
4
4
The MAX1300 is available in a 24-pin TSSOP package  
and the MAX1301 is available in a 20-pin TSSOP pack-  
age. Each device is specified for operation from -40°C to  
+85°C.  
MAX1301BEUP+ -40°C to +85°C 20 TSSOP  
+Denotes lead(Pb)-free/RoHS-compliant package.  
Pin Configurations  
Applications  
Industrial Control Systems  
Data-Acquisition Systems  
Avionics  
TOP VIEW  
+
AVDD1  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
1
2
3
4
5
6
7
8
9
24 AGND1  
23 AGND2  
22 AVDD2  
21 AGND3  
20 REF  
Robotics  
MAX1300  
19 REFCAP  
18 DVDD  
17 DVDD0  
16 DGND  
15 DGNDO  
14 DOUT  
13 SCLK  
CS 10  
DIN 11  
SSTRB 12  
QSPI is a trademark of Motorola, Inc.  
MICROWIRE is a registered trademark of National  
Semiconductor Corp.  
TSSOP  
Pin Configurations continued at end of data sheet.  
19-3575; Rev 3; 12/11  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Absolute Maximum Ratings  
AVDD1 to AGND1 ...................................................-0.3V to +6V  
AVDD2 to AGND2 ...................................................-0.3V to +6V  
DVDD to DGND.......................................................-0.3V to +6V  
DVDDO to DGNDO.................................................-0.3V to +6V  
DVDD to DVDDO ....................................................-0.3V to +6V  
DVDD, DVDDO to AVDD1.......................................-0.3V to +6V  
AVDD1, DVDD, DVDDO to AVDD2.........................-0.3V to +6V  
DGND, DGNDO, AGND3, AGND2 to AGND1 .....-0.3V to +0.3V  
CS, SCLK, DIN, DOUT, SSTRB to  
CH0–CH7 to AGND1........................................-16.5V to +16.5V  
REF, REFCAP to AGND1................... -0.3V to (V + 0.3V)  
Continuous Current (any pin)...........................................±50mA  
AVDD1  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin TSSOP (derate 11mW/°C above +70°C).........879mW  
24-Pin TSSOP (derate 12.2mW/°C above +70°C)......976mW  
Operating Temperature Range........................... -40°C to +85°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DGNDO ......................................... -0.3V to (V  
+ 0.3V)  
DVDDO  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V  
= 0V, f  
= 3.5MHz (50% duty  
AVDD1  
AVDD2  
DVDD  
DVDDO  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
CLK  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range (±3 x V  
), C  
= 50pF, C  
= 50pF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
REF  
DOUT  
SSTRB  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (Notes 1, 2)  
Resolution  
16  
Bits  
LSB  
LSB  
MAX130_A  
MAX130_B  
±1.0  
±1.0  
±2  
±4  
+2  
Integral Nonlinearity  
INL  
Differential Nonlinearity  
Transition Noise  
DNL  
No missing codes  
-1  
External or internal reference  
1
LSB  
RMS  
Unipolar  
Bipolar  
Bipolar  
0
±20  
±12  
±20  
Single-ended inputs  
Offset Error  
-1.0  
-2.0  
mV  
Differential inputs (Note 3)  
Unipolar or bipolar  
Channel-to-Channel Gain  
Matching  
0.025  
1.0  
%FSR  
mV  
Channel-to-Channel Offset Error  
Matching  
Unipolar or bipolar  
Unipolar  
3
1
2
Offset Temperature Coefficient  
Gain Error  
Bipolar  
µV/°C  
%FSR  
ppm/°C  
Fully differential  
Unipolar  
±0.5  
±0.8  
±1  
Bipolar  
Fully differential  
Unipolar  
2
1
2
Gain Temperature Coefficient  
Bipolar  
Fully differential  
DYNAMIC SPECIFICATIONS f  
= 5kHz, V = FSR - 0.05dB (Notes 1, 2)  
IN  
IN(SINE-WAVE)  
Differential inputs, FSR = ±6 x V  
91  
89  
86  
83  
REF  
Single-ended inputs, FSR = ±3 x V  
REF  
Signal-to-Noise Plus Distortion  
SINAD  
dB  
Single-ended inputs, FSR = (±3 x V  
Single-ended inputs, FSR = (±3 x V  
)/2  
)/4  
REF  
REF  
80  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Electrical Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V  
= 0V, f  
= 3.5MHz (50% duty  
AVDD1  
AVDD2  
DVDD  
DVDDO  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
CLK  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range (±3 x V  
), C  
= 50pF, C  
= 50pF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
REF  
DOUT  
SSTRB A A  
PARAMETER  
SYMBOL  
CONDITIONS  
Differential inputs, FSR = ±6 x V  
MIN  
TYP  
91  
MAX  
UNITS  
REF  
Single-ended inputs, FSR = ±3 x V  
89  
REF  
Signal-to-Noise Ratio  
SNR  
dB  
Single-ended inputs, FSR = (±3 x V  
Single-ended inputs, FSR = (±3 x V  
)/2  
)/4  
86  
REF  
REF  
83  
Total Harmonic Distortion  
(Up to the 5th Harmonic)  
THD  
-97  
dB  
Spurious-Free Dynamic Range  
Aperture Delay  
SFDR  
92  
99  
15  
dB  
ns  
ps  
dB  
t
Figure 21  
Figure 21  
AD  
Aperture Jitter  
t
100  
105  
AJ  
Channel-to-Channel Isolation  
CONVERSION RATE  
External clock mode, Figure 2  
External acquisition mode, Figure 3  
Internal clock mode, Figure 4  
114  
84  
Byte-Wide Throughput Rate  
f
ksps  
SAMPLE  
106  
ANALOG INPUTS (CH0–CH3 MAX1301, CH0–CH7 MAX1300, AGND1)  
Small-Signal Bandwidth  
Full-Power Bandwidth  
All input ranges, V = 100mV  
(Note 2)  
P-P  
2
MHz  
kHz  
IN  
All input ranges, V = 4V  
IN  
(Note 2)  
700  
P-P  
(-3 x V  
4
)/  
(+3 x V  
)/  
REF  
REF  
R[2:1] = 001  
R[2:1] = 010  
R[2:1] = 011  
R[2:1] = 100  
4
(-3 x V  
2
)/  
REF  
0
(+3 x V  
2
)/  
)/  
REF  
0
Input Voltage Range (Table 6)  
V
V
CH_  
(-3 x V  
2
)/  
(+3 x V  
2
REF  
REF  
R[2:1] = 101  
R[2:1] = 110  
R[2:1] = 111  
-3 x V  
0
0
REF  
+3 x V  
+3 x V  
REF  
-3 x V  
REF  
REF  
True-Differential Analog Common-  
Mode Voltage Range  
V
DIF/SGL = 1 (Note 4)  
DIF/SGL = 1,  
-14  
+9  
V
CMDR  
Common-Mode Rejection  
Ratio  
CMRR  
75  
dB  
input voltage range = (±3 x V  
)/4  
REF  
Input Current  
I
-3 x V  
< V  
< +3 x V  
REF  
-1250  
+900  
µA  
pF  
kΩ  
CH_  
REF  
CH_  
Input Capacitance  
Input Resistance  
C
5
CH_  
CH_  
R
17  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Electrical Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V  
= 0V, f  
= 3.5MHz (50% duty  
AVDD1  
AVDD2  
DVDD  
DVDDO  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
CLK  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range (±3 x V  
), C  
= 50pF, C  
= 50pF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
REF  
DOUT  
SSTRB A A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INTERNAL REFERENCE (Bypass REFCAP with 0.1µF to AGND1 and REF with 1.0µF to AGND1)  
Reference Output Voltage  
V
4.056  
4.096  
±30  
4.136  
V
REF  
Reference Temperature  
Coefficient  
TC  
ppm/°C  
REF  
REF shorted to AGND1  
REF shorted to AVDD  
10  
-1  
Reference Short-Circuit Current  
Reference Load Regulation  
I
mA  
mV  
REFSC  
I
= 0 to 0.5mA  
0.1  
10  
REF  
EXTERNAL REFERENCE (REFCAP = AVDD)  
Reference Input Voltage Range  
V
3.800  
4.136  
V
V
REF  
REFCAP Buffer Disable  
Threshold  
V
V
AVDD1  
- 0.4  
AVDD1  
- 0.1  
V
(Note 5)  
= +4.096V, external clock mode,  
external acquisition mode, internal clock  
mode, or partial power-down mode  
RCTH  
V
REF  
90  
±0.1  
45  
200  
±10  
Reference Input Current  
I
µA  
REF  
V
= +4.096V, full power-down mode  
REF  
External clock mode, external acquisition  
mode, internal clock mode, or partial  
power-down mode  
20  
kΩ  
Reference Input Resistance  
R
REF  
Full power-down mode  
40  
MΩ  
DIGITAL INPUTS (DIN, SCLK, CS)  
0.7 x  
DVDDO  
Input High Voltage  
V
V
V
IH  
V
0.3 x  
DVDDO  
Input Low Voltage  
V
IL  
V
Input Hysteresis  
V
0.2  
10  
V
HYST  
Input Leakage Current  
Input Capacitance  
I
V
= 0 to V  
DVDDO  
-10  
+10  
µA  
pF  
IN  
IN  
C
IN  
DIGITAL OUTPUTS (DOUT, SSTRB)  
V
V
= 4.75V, I  
= 10mA  
0.4  
0.4  
DVDDO  
SINK  
Output Low Voltage  
V
V
OL  
= 2.7V, I  
= 5mA  
DVDDO  
SINK  
V
DVDDO  
- 0.4  
Output High Voltage  
V
I
= 0.5mA  
V
OH  
SOURCE  
DOUT Tri-State Leakage Current  
I
CS = V  
-10  
+10  
µA  
DDO  
DVDDO  
POWER REQUIREMENTS (AVDD1 and AGND1, AVDD2 and AGND2, DVDD and DGND, DVDDO and DGNDO)  
Analog Supply Voltage  
Digital Supply Voltage  
AVDD1  
DVDD  
4.75  
4.75  
5.25  
5.25  
V
V
Maxim Integrated  
4  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Electrical Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V  
= 0V, f  
= 3.5MHz (50% duty  
AVDD1  
AVDD2  
DVDD  
DVDDO  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
CLK  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range (±3 x V  
), C  
= 50pF, C  
= 50pF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
REF  
DOUT  
SSTRB A A  
PARAMETER  
SYMBOL  
AVDD2  
CONDITIONS  
MIN  
4.75  
2.70  
TYP  
MAX  
5.25  
5.25  
UNITS  
Preamplifier Supply Voltage  
V
V
Digital I/O Supply Voltage  
DVDDO  
External clock mode,  
external acquisition  
mode, or internal  
clock mode  
Internal reference  
External reference  
3
3.5  
3
AV  
Supply Current  
I
mA  
DD1  
AVDD1  
2.3  
External clock mode, external acquisition  
mode, or internal clock mode  
DV  
Supply Current  
Supply Current  
I
0.8  
2
20  
1
mA  
mA  
mA  
DD  
DVDD  
External clock mode, external acquisition  
mode, or internal clock mode  
AV  
I
13.5  
0.01  
DD2  
AVDD2  
External clock mode, external acquisition  
mode, or internal clock mode  
DV  
Supply Current  
I
DDO  
DVDDO  
Partial power-down mode  
Full power-down mode  
All analog input ranges  
1.3  
0.5  
mA  
µA  
Total Supply Current  
Power-Supply Rejection Ratio  
PSRR  
±0.5  
LSB  
TIMING CHARACTERISTICS (Figures 15 and 16)  
External clock mode  
0.272  
0.228  
0.1  
109  
92  
62  
62  
SCLK Period  
t
External acquisition mode  
Internal clock mode  
µs  
ns  
ns  
CP  
External clock mode  
External acquisition mode  
Internal clock mode  
SCLK High Pulse Width (Note 6)  
SCLK Low Pulse Width (Note 6)  
t
CH  
40  
External clock mode  
External acquisition mode  
Internal clock mode  
109  
92  
t
CL  
40  
DIN to SCLK Setup  
t
40  
ns  
ns  
ns  
ns  
DS  
DH  
DO  
DIN to SCLK Hold  
t
0
SCLK Fall to DOUT Valid  
CS Fall to DOUT Enable  
t
40  
40  
t
DV  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Electrical Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V  
= 0V, f  
= 3.5MHz (50% duty  
AVDD1  
AVDD2  
DVDD  
DVDDO  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
CLK  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range (±3 x V  
), C  
= 50pF, C  
= 50pF, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
REF  
DOUT  
SSTRB  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ns  
CS Rise to DOUT Disable  
t
40  
TR  
CS Fall to SCLK Rise Setup  
CS High Minimum Pulse Width  
SCLK Fall to CS Rise Hold  
SSTRB Rise to CS Fall Setup  
DOUT Rise/Fall Time  
t
40  
40  
0
ns  
CSS  
t
ns  
CSPW  
t
ns  
CSH  
(Note 4)  
40  
ns  
C = 50pF  
10  
10  
ns  
L
SSTRB Rise/Fall Time  
C = 50pF  
ns  
L
Note 1: Parameter tested at V  
= V  
= V  
= V  
= 5V.  
AVDD1  
AVDD2  
DVDD  
DVDDO  
Note 2: See definitions in the Parameter Definitions section at the end of the data sheet.  
Note 3: Guaranteed by correlation with single-ended measurements.  
Note 4: Not production tested. Guaranteed by design.  
Note 5: To ensure external reference operation, V  
must exceed (V  
- 0.1V). To ensure internal reference operation,  
REFCAP  
AVDD1  
V
must be below (V  
- 0.4V). Bypassing REFCAP with a 0.1μF or larger capacitor to AGND1 sets V  
REFCAP  
REFCAP  
AVDD1  
4.096V. The transition point between internal reference mode and external reference mode lies between the REFCAP buffer  
disable threshold minimum and maximum values (Figures 17 and 18).  
Note 6: The SCLK duty cycle can vary between 40% and 60%, as long as the t and t  
timing requirements are met.  
CL  
CH  
Typical Operating Characteristics  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V  
= 0V, f  
= 3.5MHz (50% duty  
AVDD1  
AVDD2  
DVDD  
DVDDO  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
CLK  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range, C  
= 50pF, C  
= 50pF; unless otherwise noted.)  
DOUT  
SSTRB  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
PREAMPLIFIER SUPPLY CURRENT  
vs. PREAMPLIFIER SUPPLY VOLTAGE  
DIGITAL SUPPLY CURRENT  
vs. DIGITAL SUPPLY VOLTAGE  
2.6  
2.5  
2.4  
2.3  
2.2  
18  
17  
16  
15  
14  
13  
12  
11  
10  
0.95  
0.90  
0.85  
0.80  
0.75  
EXTERNAL CLOCK MODE  
EXTERNAL CLOCK MODE  
DATA RATE = 115ksps  
T
= +85°C  
A
A
T
A
= +85°C  
T
A
= +25°C  
T
= +25°C  
= -40°C  
T
= -40°C  
A
T
= +85°C  
A
T
A
T
A
= +25°C  
EXTERNAL CLOCK MODE  
AIN1–AIN7 = AGND2  
AIN0 = +FS  
T
A
= -40°C  
4.85  
2.1  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
4.75  
4.95  
5.05  
(V)  
5.15  
5.25  
V
V
V
DVDD  
AVDD1  
AVDD2  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V  
= 0V, f  
= 3.5MHz (50% duty  
AVDD1  
AVDD2  
DVDD  
DVDDO  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
CLK  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range, C  
= 50pF, C  
= 50pF; unless otherwise noted.)  
DOUT  
SSTRB  
DIGITAL I/O SUPPLY CURRENT  
ANALOG SUPPLY CURRENT  
vs. DIGITAL I/O SUPPLY VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
21  
20  
19  
18  
17  
16  
0.46  
0.45  
0.44  
0.43  
0.42  
0.41  
0.40  
EXTERNAL CLOCK MODE  
DATA RATE = 115ksps  
T
= +85°C  
A
T
A
= +25°C  
= -40°C  
T
A
= +85°C  
T
A
T
A
= +25°C  
T
= -40°C  
4.85  
A
PARTIAL POWER-DOWN MODE  
4.75  
4.95  
5.05  
(V)  
5.15  
5.25  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
V
V
AVDD1  
DVDDO  
PREAMPLIFIER SUPPLY CURRENT  
DIGITAL SUPPLY CURRENT  
vs. PREAMPLIFIER SUPPLY VOLTAGE  
vs. DIGITAL SUPPLY VOLTAGE  
0.20  
0.18  
0.16  
0.14  
0.12  
0.10  
0.115  
0.114  
0.113  
0.112  
0.111  
0.110  
PARTIAL POWER-DOWN MODE  
AIN1 - AIN7 = AGND2  
AIN0 = +FS  
PARTIAL POWER-DOWN MODE  
T
A
= +85°C  
T
A
= +85°C  
T
= +25°C  
A
T
A
= +25°C  
T
A
= -40°C  
T
= -40°C  
5.05  
A
4.75  
4.85  
4.95  
5.15  
5.25  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
V
(V)  
V
DVDD  
AVDD2  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V  
= 0V, f  
= 3.5MHz (50% duty  
AVDD1  
AVDD2  
DVDD  
DVDDO  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
CLK  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range, C  
= 50pF, C  
= 50pF; unless otherwise noted.)  
DOUT  
SSTRB  
ANALOG SUPPLY CURRENT  
vs. CONVERSION RATE  
ANALOG SUPPLY CURRENT  
vs. CONVERSION RATE  
2.39  
13.95  
13.94  
13.93  
13.92  
13.91  
13.90  
13.89  
13.88  
13.87  
13.86  
13.85  
CONTINUOUS EXTERNAL CLOCK MODE  
CONTINUOUS EXTERNAL CLOCK MODE  
2.38  
2.37  
2.36  
2.35  
2.34  
2.33  
2.32  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
CONVERSION RATE (ksps)  
CONVERSION RATE (ksps)  
DIGITAL SUPPLY CURRENT  
vs. CONVERSION RATE  
DIGITAL I/O SUPPLY CURRENT  
vs. CONVERSION RATE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0
CONTINUOUS EXTERNAL CLOCK MODE  
CONTINUOUS EXTERNAL CLOCK MODE  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
CONVERSION RATE (ksps)  
CONVERSION RATE (ksps)  
Note 7: For partial power-down and full power-down modes, external clock mode was used for a burst of continuous samples.  
Partial power-down or full power-down modes were entered thereafter. By using this method, the conversion rate was found  
by averaging the number of conversions over the time starting from the first conversion to the end of the partial power-down  
or full power-down modes.  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V  
= 0V, f  
= 3.5MHz (50% duty  
AVDD1  
AVDD2  
DVDD  
DVDDO  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
CLK  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range, C  
= 50pF, C  
= 50pF; unless otherwise noted.)  
DOUT  
SSTRB  
EXTERNAL REFERENCE INPUT CURRENT  
vs. EXTERNAL REFERENCE INPUT VOLTAGE  
GAIN DRIFT vs. TEMPERATURE  
OFFSET DRIFT vs. TEMPERATURE  
85  
0.10  
0.08  
0.06  
0.04  
0.02  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
83  
81  
79  
77  
75  
±3 x V  
BIPOLAR RANGE  
REF  
±3 x V  
BIPOLAR RANGE  
REF  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
(±3 x V )/4 BIPOLAR RANGE  
REF  
(±3 x V )/4 BIPOLAR RANGE  
REF  
3.8  
3.9  
4.0  
4.1  
4.2  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
EXTERNAL REFERENCE VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
CHANNEL-TO-CHANNEL ISOLATION  
vs. INPUT FREQUENCY  
0
-20  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
2.0  
1.5  
1.0  
0.5  
0
f
= 115ksps  
f
= 115ksps  
f
= 115ksps  
SAMPLE  
SAMPLE  
SAMPLE  
±3 x V  
CH0 TO CH2  
BIPOLAR RANGE  
±3 x V  
BIPOLAR RANGE  
±3 x V  
BIPOLAR RANGE  
REF  
REF  
REF  
-40  
-60  
-0.5  
-1.0  
-1.5  
-2.0  
-80  
-100  
-120  
1
10  
100  
1000  
10,000  
1
10  
100  
1000  
10,000  
0
13,107 26,214 39,321 52,428 65,535  
DIGITAL OUTPUT CODE  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
FFT AT 5kHz  
2.0  
1.5  
1.0  
0.5  
0
0
f
= 115ksps  
f
f
= 115ksps  
SAMPLE  
SAMPLE  
IN(SINE WAVE)  
±3 x V  
BIPOLAR RANGE  
= 5kHz  
REF  
-20  
±3 x V  
BIPOLAR RANGE  
REF  
-40  
-60  
-80  
-0.5  
-1.0  
-1.5  
-2.0  
-100  
-120  
-140  
0
13,107 26,214 39,321 52,428 65,535  
DIGITAL OUTPUT CODE  
0
10  
20  
30  
40  
50  
FREQUENCY (kHz)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V  
= 0V, f  
= 3.5MHz (50% duty  
AVDD1  
AVDD2  
DVDD  
DVDDO  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
CLK  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range, C  
= 50pF, C  
= 50pF; unless otherwise noted.)  
DOUT  
SSTRB  
SNR, SINAD, ENOB  
vs. ANALOG INPUT FREQUENCY  
SNR, SINAD, ENOB vs. SAMPLE RATE  
MAX1300 toc21  
MAX1300 toc20  
100  
80  
60  
40  
20  
0
16  
14  
12  
10  
8
100  
16  
15  
14  
13  
12  
11  
10  
9
SNR, SINAD  
SNR  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
ENOB  
SINAD  
ENOB  
8
f = 5kHz  
IN(SINE WAVE)  
f
= 115ksps  
SAMPLE  
7
±3 x V BIPOLAR RANGE  
±3 x V  
BIPOLAR RANGE  
REF  
REF  
6
6
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
SAMPLE RATE (ksps)  
FREQUENCY (kHz)  
-SFDR, THD  
-SFDR, THD vs. SAMPLE RATE  
vs. ANALOG INPUT FREQUENCY  
0
-20  
0
-20  
f
= 5kHz  
BIPOLAR RANGE  
f
= 115ksps  
IN(SINE WAVE)  
SAMPLE  
±3 x V  
±3 x V  
BIPOLAR RANGE  
REF  
REF  
-40  
-40  
-60  
-60  
-80  
-80  
THD  
-SFDR  
-100  
-120  
-100  
-120  
THD  
-SFDR  
100  
0.1  
1
10  
1000  
1
10  
100  
1000  
SAMPLE RATE (ksps)  
FREQUENCY (kHz)  
ANALOG INPUT CURRENT  
vs. ANALOG INPUT VOLTAGE  
SMALL-SIGNAL BANDWIDTH  
1.0  
0.6  
0
-5  
ALL MODES  
V
REF  
= 4.096V  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
0.2  
-0.2  
-0.6  
-1.0  
-3 x V  
(-3 x V )/2  
0
(+3 x V )/2 +3 x V  
REF  
1
10  
100  
1000  
10,000  
REF  
REF  
REF  
ANALOG INPUT VOLTAGE (V)  
FREQUENCY (kHz)  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
= V  
= 5V, V  
= V  
= V  
= V  
= V  
= 0V, f  
= 3.5MHz (50% duty  
AVDD1  
AVDD2  
DVDD  
DVDDO  
AGND1  
DGND  
DGNDO  
AGND2  
AGND3  
CLK  
cycle), external clock mode, V  
= 4.096V (external reference operation), REFCAP = AVDD1, maximum single-ended bipolar input  
REF  
range, C  
= 50pF, C  
= 50pF; unless otherwise noted.)  
DOUT  
SSTRB  
FULL-POWER BANDWIDTH  
REFERENCE VOLTAGE vs. TIME  
MAX1300 toc27  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
1V/div  
0V  
4ms/div  
1
10  
100  
1000  
10,000  
FREQUENCY (kHz)  
NOISE HISTOGRAM  
(CODE EDGE)  
NOISE HISTOGRAM  
(CODE CENTER)  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5,000  
0
40,000  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5,000  
0
65,534 SAMPLES  
65,534 SAMPLES  
32,785  
32,787  
32,789  
32,774  
32,776  
32,778  
32,780  
32,786  
32,788  
CODE  
32,790  
32,775  
32,777  
CODE  
32,779  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX1300 MAX1301  
Analog Supply Voltage 1. Connect AVDD1 to a +4.75V to +5.25V power-supply voltage. Bypass  
AVDD1 to AGND1 with a 0.1µF capacitor.  
1
2
AVDD1  
2
3
4
5
6
7
8
9
3
4
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
Analog Input Channel 0  
Analog Input Channel 1  
Analog Input Channel 2  
Analog Input Channel 3  
Analog Input Channel 4  
Analog Input Channel 5  
Analog Input Channel 6  
Analog Input Channel 7  
5
6
Active-Low Chip-Select Input. When CS is low, data is clocked into the device from DIN on the  
rising edge of SCLK. With CS low, data is clocked out of DOUT on the falling edge of SCLK.  
When CS is high, activity on SCLK and DIN is ignored and DOUT is high impedance.  
10  
11  
7
8
CS  
Serial Data Input. When CS is low, data is clocked in on the rising edge of SCLK. When CS is  
high, transitions on DIN are ignored.  
DIN  
Serial-Strobe Output. When using the internal clock, SSTRB rising edge transitions indicate that  
data is ready to be read from the device. When operating in external clock mode, SSTRB is  
always low. SSTRB does not tri-state, regardless of the state of CS, and therefore requires  
a dedicated I/O line.  
12  
9
SSTRB  
Serial Clock Input. When CS is low, transitions on SCLK clock data into DIN and out of DOUT.  
When CS is high, transitions on SCLK are ignored.  
13  
14  
10  
11  
SCLK  
DOUT  
Serial Data Output. When CS is low, data is clocked out of DOUT with each falling SCLK  
transition. When CS is high, DOUT is high impedance.  
15  
16  
12  
13  
DGNDO Digital I/O Ground. DGND, DGNDO, AGND3, AGND2, and AGND1 must be connected together.  
DGND Digital Ground. DGND, DGNDO, AGND3, AGND2, and AGND1 must be connected together.  
Digital I/O Supply Voltage Input. Connect DVDDO to a +2.7V to +5.25V power-supply voltage.  
Bypass DVDDO to DGNDO with a 0.1µF capacitor.  
17  
18  
14  
15  
DVDDO  
Digital-Supply Voltage Input. Connect DVDD to a +4.75V to +5.25V power-supply voltage.  
Bypass DVDD to DGND with a 0.1µF capacitor.  
DVDD  
Bandgap-Voltage Bypass Node. For external reference operation, connect REFCAP to AVDD.  
REFCAP For internal reference operation, bypass REFCAP with a 0.01µF capacitor to AGND1  
19  
20  
16  
17  
(V  
≈ 4.096V).  
REFCAP  
Reference-Buffer Output/ADC Reference Input. For external reference operation, apply an  
external reference voltage from 3.800V to 4.136V to REF. For internal reference operation,  
REF  
bypassing REF with a 1µF capacitor to AGND1 sets V  
= 4.096V ±1%.  
REF  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX1300 MAX1301  
Analog Signal Ground 3. AGND3 is the ADC negative reference potential. Connect AGND3 to  
AGND1. DGND, DGNDO, AGND3, AGND2, and AGND1 must be connected together.  
21  
22  
18  
19  
AGND3  
AVDD2  
AGND2  
Analog Supply Voltage 2. Connect AVDD2 to a +4.75V to +5.25V power-supply voltage. Bypass  
AVDD2 to AGND2 with a 0.1µF capacitor.  
Analog Ground 2. This ground carries approximately five times more current than AGND1.  
DGND, DGNDO, AGND3, AGND2, and AGND1 must be connected together.  
23  
24  
20  
1
AGND1 Analog Ground 1. DGND, DGNDO, AGND3, AGND2, and AGND1 must be connected together.  
5.0V  
5.0V  
5.0V  
0.1µF  
0.1µF  
0.1µF  
AVDD2  
CHO  
AVDD1  
DVDD  
3.3V  
CH1  
DVDDO  
V
DD  
4–20mA  
PLC  
CH2  
0.1µF  
MC68HCXX  
µC  
CH3  
ACCELERATION  
PRESSURE  
MAX1300  
CH4  
CH5  
SCLK  
CS  
SCK  
I/O  
TEMPERATURE  
WHEATESTONE  
WHEATESTONE  
CH6  
CH7  
DIN  
MOSI  
I/O  
REF  
SSTRB  
DOUT  
AGND1  
REFCAP  
AGND2  
MISO  
1µF  
V
SS  
AGND3 DGND DGNDO  
0.1µF  
Figure 1. Typical Application Circuit  
The MAX1300 has eight single-ended analog input chan-  
nels or four differential channels (see the Block Diagram  
at the end of the data sheet). The MAX1301 has four  
single-ended analog input channels or two differential  
channels. Each analog input channel is independently  
software programmable for seven single-ended input  
Detailed Description  
The MAX1300/MAX1301 multirange, low-power, 16-bit  
successive-approximation ADCs operate from a single  
+5V supply and have a separate digital supply allowing  
digital interface with 2.7V to 5.25V systems. These 16-bit  
ADCs have internal track-and-hold (T/H) circuitry that sup-  
ports single-ended and fully differential inputs. For single-  
ended conversions, the valid analog input voltage range  
ranges [0 to (+3 x V  
)/2, (-3 x V  
)/2 to 0, 0 to +3 x  
REF  
REF  
V
V
, -3 x V  
to 0, (±3 x V  
)/4, (±3 x V  
)/2, ±3 x  
REF  
REF  
REF  
REF  
REF  
] and three differential input ranges [(±3 x V  
)/2,  
REF  
spans from -3 x V  
below ground to +3 x V  
above  
REF  
REF  
±3 x V  
, ±6 x V  
]. Additionally, all analog input chan-  
REF  
REF  
ground. The maximum allowable differential input voltage  
spans from -6 x V to +6 x V . Data can be con-  
nels are fault tolerant to ±16.5V. A fault condition on an  
idle channel does not affect the conversion result of other  
channels.  
REF  
REF  
verted in a variety of software-programmable channel and  
data-acquisition configurations. Microprocessor (μP) con-  
trol is made easy through an SPI-/QSPI-/ MICROWIRE-  
compatible serial interface.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Power Supplies  
Track-and-Hold Circuitry  
The MAX1300/MAX1301 feature a switched-capacitor  
T/H architecture that allows the analog input signal to be  
stored as charge on sampling capacitors. See Figures 2,  
3, and 4 for T/H timing and the sampling instants for each  
operating mode. The MAX1300/MAX1301 analog input  
circuitry buffers the input signal from the sampling capaci-  
tors, resulting in a constant input impedance with varying  
input voltage (Figure 5).  
To maintain a low-noise environment, the MAX1300  
and MAX1301 provide separate power supplies for  
each section of circuitry. Table 1 shows the four sepa-  
rate power supplies. Achieve optimal performance using  
separate AVDD1, AVDD2, DVDD, and DVDDO supplies.  
Alternatively, connect AVDD1, AVDD2, and DVDD togeth-  
er as close to the device as possible for a convenient  
power connection. Connect AGND1, AGND2, AGND3,  
DGND, and DGNDO together as close to the device  
as possible. Bypass each supply to the corresponding  
ground using a 0.1μF capacitor (Table 1). If significant  
low-frequency noise is present, add a 10μF capacitor in  
parallel with the 0.1μF bypass capacitor.  
Analog Input Circuitry  
Select differential or single-ended conversions using the  
associated analog input configuration byte (Table 2). The  
analog input signal source must be capable of driving the  
ADC’s 17kΩ input resistance (Figure 6).  
Converter Operation  
Figure 6 shows the simplified analog input circuit. The ana-  
log inputs are ±16.5V fault tolerant and are protected by  
The MAX1300/MAX1301 ADCs feature a fully differen-  
tial, successive-approximation register (SAR) conversion  
technique and an on-chip T/H block to convert voltage  
signals into a 16-bit digital result. Both single-ended and  
differential configurations are supported with program-  
mable unipolar and bipolar signal ranges.  
back-to-back diodes. The summing junction voltage, V  
,
SJ  
is a function of the channel’s input common-mode voltage:  
R1  
R1  
V
=
× 2.375V + 1+  
× V  
CM  
SJ  
R1 + R 2  
R1 + R 2  
As a result, the analog input impedance is relatively con-  
stant over input voltage as shown in Figure 5.  
Table 1. MAX1300/MAX1301 Power Supplies and Bypassing  
POWER  
SUPPLY/GROUND  
SUPPLY VOLTAGE  
RANGE (V)  
TYPICAL SUPPLY  
CURRENT (mA)  
CIRCUIT SECTION  
BYPASSING  
DVDDO/DGNDO  
AVDD2/AGND2  
AVDD1/AGND1  
DVDD/DGND  
2.7 to 5.25  
4.75 to 5.25  
4.75 to 5.25  
4.75 to 5.25  
0.03  
135  
3.0  
Digital I/O  
0.1µF to DGNDO  
0.1µF to AGND2  
0.1µF to AGND1  
0.1µF to DGND  
Analog Circuitry  
Analog Circuitry  
0.8  
Digital Control Logic and Memory  
Table 2. Analog Input Configuration Byte  
BIT  
NUMBER  
NAME  
DESCRIPTION  
7
6
5
4
START  
C2  
Start Bit. The first logic 1 after CS goes low defines the beginning of the analog input configuration byte.  
C1  
Channel-Select Bits. SEL[2:0] select the analog input channel to be configured (Tables 4 and 5).  
C0  
Differential or Single-Ended Configuration Bit. DIF/SGL = 0 configures the selected analog input channel  
for single-ended operation. DIF/SGL = 1 configures the channel for differential operation. In single-ended  
DIF/SGL mode, input voltages are measured between the selected input channel and AGND1, as shown in  
Table 4. In differential mode, the input voltages are measured between two input channels, as shown in  
Table 5. Be aware that changing DIF/SGL adjusts the FSR, as shown in Table 6.  
3
2
1
0
R2  
R1  
R0  
Input-Range-Select Bits. R[2:0] select the input voltage range, as shown in Table 6 and Figure 7.  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
CS  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15 16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31 32  
SCLK  
BYTE 2  
BYTE 3  
BYTE 4  
BYTE 1  
SSTRB  
S
C2 C1 C0  
0
0
0
0
DIN  
f
f
/ 32  
SAMPLE SCLK  
SAMPLING INSTANT  
t
ACQ  
ANALOG INPUT  
TRACK AND HOLD*  
HOLD  
TRACK  
HOLD  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
B15 B14 B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DOUT  
*TRACK AND HOLD TIMING IS CONTROLLED BY SCLK.  
Figure 2. External Clock-Mode Conversion (Mode 0)  
Single-ended conversions are internally referenced to  
AGND1 (Tables 3 and 4). In differential mode, IN+ and  
IN- are selected according to Tables 3 and 5. When con-  
figuring differential channels, the differential pair follows  
the analog configuration byte for the positive channel.  
Analog Input Bandwidth  
The MAX1300/MAX1301 input-tracking circuitry has a  
2MHz small-signal bandwidth. The 2MHz input band-  
width makes it possible to digitize high-speed transient  
events. Harmonic distortion increases when digitizing  
signal frequencies above 15kHz as shown in the THD and  
-SFDR vs. Input Frequency plot in the Typical Operating  
Characteristics.  
For example, to configure CH2 and CH3 for a ±3 x V  
REF  
differential conversion, set the CH2 analog configuration  
byte for a differential conversion with the ±3 x V range  
REF  
(1010 1100). To initiate a conversion for the CH2 and CH3  
differential pair, issue the command 1010 0000.  
Analog Input Range and Fault Tolerance  
Figure 7 illustrates the software-selectable single-ended  
analog input voltage range that produces a valid digital  
output. Each analog input channel can be independently  
programmed to one of seven single-ended input ranges  
by setting the R[2:0] control bits with DIF/SGL = 0.  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
CS  
SSTRB  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15 16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
SCLK  
BYTE 1  
BYTE 2  
BYTE 3  
BYTE 4  
S
C2 C1 C0  
0
0
0
0
DIN  
HIGH IMPEDANCE  
B15 B14 B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DOUT  
f
f
/ 32 + f  
/ 17  
INTCLK  
SAMPLE SCLK  
SAMPLING INSTANT  
t
ACQ  
ANALOG INPUT  
TRACK AND HOLD*  
HOLD  
TRACK  
HOLD  
100ns to 400ns  
1
2
3
14  
15  
16  
17  
INTCLK**  
f
4.5MHz  
INTCLK  
*TRACK AND HOLD TIMING IS CONTROLLED BY SCLK.  
**INTCLK IS AN INTERNAL SIGNAL AND IS NOT ACCESSIBLE TO THE USER.  
Figure 3. External Acquisition-Mode Conversion (Mode 1)  
Figure 8 illustrates the software-selectable differential  
analog input voltage range that produces a valid digital  
output. Each analog input differential pair can be inde-  
pendently programmed to one of three differential input  
ranges by setting the R[2:0] control bits with DIF/SGL = 1.  
range, applied to an analog input results in a full-scale  
output voltage for that channel.  
Clamping diodes with breakdown thresholds in excess of  
16.5V protect the MAX1300/MAX1301 analog inputs dur-  
ing ESD and other transient events (Figure 6). The clamp-  
ing diodes do not conduct during normal device opera-  
tion, nor do they limit the current during such transients.  
When operating in an environment with the potential for  
high-energy voltage and/or current transients, protect the  
MAX1300/MAX1301 externally.  
Regardless of the specified input voltage range and  
whether the channel is selected, each analog input is  
±16.5V fault tolerant. The analog input fault protection is  
active whether the device is unpowered or powered. Any  
voltage beyond FSR, but within the ±16.5V fault tolerant  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
CS  
SSTRB  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
SCLK  
BYTE 1  
BYTE 2  
BYTE 3  
S
C2 C1 C0  
0
0
0
0
DIN  
HIGH IMPEDANCE  
B15 B14 B13 B12 B11 B10 B9  
B8  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DOUT  
f
f
/ 24 + f  
/ 28  
INTCLK  
SAMPLE SCLK  
SAMPLING INSTANT  
t
ACQ  
ANALOG INPUT  
TRACK AND HOLD*  
HOLD  
TRACK  
HOLD  
100ns to 400ns  
1
2
3
10  
11  
12  
13  
14  
25  
26  
27  
28  
INTCLK**  
f
4.5MHz  
INTCLK  
*TRACK AND HOLD TIMING IS CONTROLLED BY INTCLK, AND IS NOT ACCESSIBLE TO THE USER.  
**INTCLK IS AN INTERNAL SIGNAL AND IS NOT ACCESSIBLE TO THE USER.  
Figure 4. Internal Clock-Mode Conversion (Mode 2)  
R2  
MAX1300  
MAX1301  
1.0  
*R  
SOURCE  
R1  
ALL MODES  
IN_+  
0.6  
0.2  
ANALOG  
SIGNAL  
SOURCE  
V
SJ  
R2  
-0.2  
-0.6  
-1.0  
*R  
R1  
SOURCE  
IN_+  
ANALOG  
SIGNAL  
SOURCE  
V
SJ  
-3 x V  
(-3 x V )/2  
0
+3 x V  
(+3 x V )/2  
REF  
REF  
REF  
REF  
ANALOG INPUT VOLTAGE (V)  
*MINIMIZE R  
TO AVOID GAIN ERROR AND DISTORTION.  
SOURCE  
Figure 5. Analog Input Current vs. Input Voltage  
Figure 6. Simplified Analog Input Circuit  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Table 3. Input Data Word Formats  
DATA BIT  
OPERATION  
D7  
(START)  
D6  
C2  
C2  
M2  
D5  
C1  
C1  
M1  
D4  
C0  
C0  
M0  
D3  
D2  
D1  
0
D0  
0
Conversion-Start Byte  
(Tables 4 and 5)  
1
1
1
0
0
R2  
0
Analog-Input Configuration Byte  
R1  
0
R0  
0
DIF/SGL  
(Table 2)  
Mode-Control Byte  
1
(Table 7)  
Table 4. Channel Selection in Single-Ended Mode (DIF/SGL = 0)  
CHANNEL-SELECT BIT  
CHANNEL  
CH4  
C2  
0
C1  
0
C0  
0
CH0  
CH1  
CH2  
CH3  
CH5  
CH6  
CH7  
AGND1  
+
-
-
-
-
-
-
-
-
0
0
1
+
0
1
0
+
0
1
1
+
1
0
0
+
1
0
1
+
1
1
0
+
1
1
1
+
Table 5. Channel Selection in True-Differential Mode (DIF/SGL = 1)  
CHANNEL-SELECT BIT  
CHANNEL  
CH4  
C2  
0
C1  
0
C0  
0
CH0  
CH1  
CH2  
CH3  
CH5  
CH6  
CH7  
AGND1  
+
-
0
0
1
RESERVED  
0
1
0
+
-
0
1
1
RESERVED  
+
1
0
0
-
1
0
1
RESERVED  
1
1
0
+
-
1
1
1
RESERVED  
The range-select bits R[2:0] in the analog input con-  
figuration bytes determine the full-scale range for the  
corresponding channel (Tables 2 and 6). Figures 9, 10,  
and 11 show the valid analog input voltage ranges for  
the MAX1300/MAX1301 when operating with FSR = (±3  
Differential Common-Mode Range  
The MAX1300/MAX1301 differential common-mode  
range (V ) must remain within -14V to +10V to obtain  
CMDR  
valid conversion results. The differential common-mode  
range is defined as:  
x V  
)/2, FSR = ±3 x V  
, and FSR = ±6 x V  
,
REF  
REF  
REF  
CH_+ + CH_−  
(
)
(
)
respectively. The shaded area contains the valid com-  
mon-mode voltage ranges that support the entire FSR.  
V
=
CMDR  
2
In addition to the common-mode input voltage limitations,  
each individual analog input must be limited to ±16.5V  
with respect to AGND1.  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
+3 x V  
+6 x V  
+3 x V  
REF  
REF  
(+3 x V )/2  
REF  
REF  
0
0
(-3 x V )/2  
-3 x V  
-6 x V  
REF  
REF  
REF  
-3 x V  
REF  
INPUT RANGE SELECTION BITS, R[2:0]  
INPUT RANGE SELECTION BITS, R[2:0]  
EACH INPUT IS FAULT TOLERANT TO 16.5V.  
EACH INPUT IS FAULT TOLERANT TO 16.5V.  
V
= 4.096V.  
V
REF  
= 4.096V.  
REF  
Figure 7. Single-Ended Input Voltage Ranges  
Figure 8. Differential Input Voltage Ranges  
Chip Select (CS)  
Digital Interface  
CS enables communication with the MAX1300/MAX1301.  
When CS is low, data is clocked into the device from DIN  
on the rising edge of SCLK and data is clocked out of  
DOUT on the falling edge of SCLK. When CS is high,  
activity on SCLK and DIN is ignored and DOUT is high  
impedance allowing DOUT to be shared with other periph-  
erals. SSTRB is never high impedance and therefore can-  
not be shared with other peripherals.  
The MAX1300/MAX1301 feature a serial interface that  
is compatible with SPI/QSPI and MICROWIRE devices.  
DIN, DOUT, SCLK, CS, and SSTRB facilitate bidirectional  
communication between the MAX1300/MAX1301 and  
the master at SCLK rates up to 10MHz (internal clock  
mode, mode 2), 3.67MHz (external clock mode, mode  
0), or 4.39MHz (external acquisition mode, mode 1). The  
master, typically a microcontroller, should use the CPOL =  
0, CPHA = 0, SPI transfer format, as shown in the timing  
diagrams of Figures 2, 3, and 4.  
Serial Strobe Output (SSTRB)  
As shown in Figures 3 and 4, the SSTRB transitions high  
to indicate that the ADC has completed a conversion  
and results are ready to be read by the master. SSTRB  
remains low in the external clock mode (Figure 2) and  
consequently may be left unconnected. SSTRB is driven  
high or low regardless of the state of CS, therefore SSTRB  
cannot be shared with other peripherals.  
The digital interface is used to:  
Select single-ended or true-differential input channel  
configurations  
Select the unipolar or bipolar input range  
Select the mode of operation:  
External clock (mode 0)  
External acquisition (mode 1)  
Internal clock (mode 2)  
Reset (mode 4)  
Partial power-down (mode 6)  
Full power-down (mode 7)  
Initiate conversions and read results  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Table 6. Range-Select Bits  
R2  
R1  
R0  
MODE  
TRANSFER FUNCTION  
DIF/SGL  
0
0
0
0
No Range Change*  
Single-Ended  
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
Bipolar (-3 x V  
Full-Scale Range (FSR) = (3 x V  
)/4 to (+3 x V  
)/4  
Figure 12  
Figure 13  
Figure 14  
Figure 12  
Figure 13  
Figure 14  
REF  
REF  
)/2  
REF  
Single-Ended  
Unipolar (-3 x V  
)/2 to 0  
REF  
FSR = (3 x V  
)/2  
REF  
Single-Ended  
Unipolar 0 to (+3 x V  
FSR = (+3 x V  
)/2  
REF  
)/2  
REF  
Single-Ended  
Bipolar (-3 x V  
)/2 to (+3 x V  
)/2  
REF  
REF  
FSR = 3 x V  
REF  
Single-Ended  
Unipolar -3 x V  
to 0  
REF  
REF  
FSR = 3 x V  
Single-Ended  
Unipolar 0 to +3 x V  
REF  
FSR = 3 x V  
REF  
DEFAULT SETTING  
Single-Ended  
0
1
1
1
Figure 12  
Bipolar -3 x V  
to +3 x V  
REF  
REF  
FSR = 6 x V  
REF  
1
1
0
0
0
0
0
1
No Range Change**  
Differential  
Bipolar (-3 x V  
)/2 to (+3 x V  
)/2  
Figure 12  
REF  
REF  
FSR = 3 x V  
REF  
1
1
0
0
1
1
0
1
Reserved  
Reserved  
Differential  
1
1
0
0
Bipolar -3 x V  
to +3 x V  
Figure 12  
REF  
REF  
FSR = 6 x V  
REF  
1
1
1
1
0
1
1
0
Reserved  
Reserved  
Differential  
1
1
1
1
Bipolar -6 x V  
FSR = 12 x V  
to +6 x V  
Figure 12  
REF  
REF  
REF  
*Conversion-Start Byte (see Table 3).  
**Mode-Control Byte (see Table 3).  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
12  
8
12  
8
4
4
0
0
-4  
-8  
-12  
-16  
-4  
-8  
-12  
-16  
-18  
-12  
-6  
0
6
12  
18  
-18  
-12  
-6  
0
6
12  
18  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 9. Common-Mode Voltage vs. Input Voltage (FSR = 3 x V  
)
Figure 10. Common-Mode Voltage vs. Input Voltage (FSR = 6 x V  
)
REF  
REF  
Output Data Format  
12  
8
Output data is clocked out of DOUT in offset binary format  
on the falling edge of SCLK, MSB first (B15). For output  
binary codes, see the Transfer Function section and  
Figures 12, 13, and 14.  
4
0
Configuring Analog Inputs  
-4  
-8  
-12  
-16  
Each analog input has two configurable parameters:  
Single-ended or true-differential input  
Input voltage range  
These parameters are configured using the analog input  
configuration byte as shown in Table 2. Each analog input  
has a dedicated register to store its input configuration  
information. The timing diagram of Figure 15 shows how  
to write to the analog input configuration registers. Figure  
16 shows DOUT and SSTRB timing.  
-18  
-12  
-6  
0
6
12  
18  
INPUT VOLTAGE (V)  
Figure 11. Common-Mode Voltage vs. Input Voltage (FSR = 12 x V  
)
REF  
Start Bit  
Transfer Function  
Communication with the MAX1300/MAX1301 is accom-  
plished using the three input data word formats shown in  
Table 3. Each input data word begins with a start bit. The  
start bit is defined as the first high bit clocked into DIN with  
CS low when any of the following are true:  
An ADC’s transfer function defines the relationship  
between the analog input voltage and the digital out-  
put code. Figures 12, 13, and 14 show the MAX1300/  
MAX1301 transfer functions. The transfer function is  
determined by the following characteristics:  
Data conversion is not in process and all data from the  
previous conversion has clocked out of DOUT.  
Analog input voltage range  
Single-ended or differential configuration  
Reference voltage  
The device is configured for operation in external clock  
mode (mode 0) and previous conversion-result bits  
B15–B3 have clocked out of DOUT.  
The axes of an ADC transfer function are typically in least  
significant bits (LSBs). For the MAX1300/MAX1301, an  
LSB is calculated using the following equation:  
The device is configured for operation in external  
acquisition mode (mode 1) and previous conversion-  
result bits B15–B7 have clocked out of DOUT.  
FSR × V  
REF  
1 L S B =  
The device is configured for operation in internal clock  
mode, (mode 2) and previous conversion result bits  
B15–B4 have clocked out of DOUT.  
N
2
× 4.096V  
where N is the number of bits (N = 16) and FSR is the  
full-scale range (see Figures 7 and 8).  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
FSR  
FFFF  
FFFE  
FFFD  
FSR  
FFFF  
FFFE  
FFFD  
8001  
8000  
7FFF  
8001  
8000  
7FFF  
0003  
0002  
0001  
0000  
0003  
0002  
0001  
0000  
FSR x V  
REF  
65,536 x 4.096V  
1 LSB =  
FSR x V  
REF  
65,536 x 4.096V  
1 LSB =  
-32,768 -32,766  
-1  
0
+1  
+32,765 +32,767  
0
1
2
3
32,768  
INPUT VOLTAGE (LSB [DECIMAL])  
65,533 65,535  
(AGND1)  
AGND1 (DIF/SGL = 0)  
OV (DIF/SGL = 1)  
INPUT VOLTAGE (LSB [DECIMAL])  
Figure 12. Ideal Bipolar Transfer Function, Single-Ended or  
Differential Input  
Figure 13. Ideal Unipolar Transfer Function, Single-Ended  
Input, -FSR to 0  
Selecting the Conversion Method  
FSR  
The conversion method is selected using the mode-con-  
trol byte (see the Mode Control section), and the conver-  
sion is initiated using a conversion-start command (Table  
3, and Figures 2, 3, and 4).The MAX1300/MAX1301  
convert analog signals to digital data using one of three  
methods:  
FFFF  
FFFE  
FFFD  
8001  
8000  
7FFF  
External Clock Mode, Mode 0 (Figure 2)  
• Highest maximum throughput (see the Electrical  
Characteristics table)  
• User controls the sample instant  
CS remains low during the conversion  
0003  
FSR x V  
REF  
65,536 x 4.096V  
0002  
0001  
0000  
1 LSB =  
User supplies SCLK throughout the ADC conversion  
and reads data at DOUT  
External Acquisition Mode, Mode 1 (Figure 3)  
• Lowest maximum throughput (see the Electrical  
Characteristics table)  
0
1
2
3
32,768  
INPUT VOLTAGE (LSB [DECIMAL])  
65,533 65,535  
(AGND1)  
• User controls the sample instant  
Figure 14. Ideal Unipolar Transfer Function, Single-Ended  
Input, 0 to +FSR  
• User supplies two bytes of SCLK, then drives  
CS high to relieve processor load while the ADC  
converts  
• After SSTRB transitions high, the user supplies  
two bytes of SCLK and reads data at DOUT  
Mode Control  
The MAX1300/MAX1301 contain one byte-wide mode-  
control register. The timing diagram of Figure 15 shows  
how to use the mode-control byte, and the mode-control  
byte format is shown in Table 7. The mode-control byte is  
used to select the conversion method and to control the  
power modes of the MAX1300/MAX1301.  
• Internal Clock Mode, Mode 2 (Figure 4)  
• High maximum throughput (see the Electrical  
Characteristics table)  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
t
CSPW  
t
CSS  
CS  
t
CL  
t
t
CSH  
CH  
SCLK  
DIN  
1
8
1
8
t
CP  
t
DS  
t
DH  
START  
SEL2  
SEL1  
SEL0 DIF/SGL  
R2  
R1  
R0  
START  
M2  
M1  
M0  
1
0
0
0
ANALOG INPUT CONFIGURATION BYTE  
MODE CONTROL BYTE  
t
t
TR  
DV  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
HIGH  
IMPEDANCE  
DOUT  
Figure 15. Analog Input Configuration Byte and Mode-Control Byte Timing  
After SSTRB transitions high, the user supplies two  
bytes of SCLK and reads data at DOUT  
SSTRB  
External Clock Mode (Mode 0)  
t
SSCS  
The MAX1300/MAX1301’s fastest maximum throughput  
rate is achieved operating in external clock mode. SCLK  
controls both the acquisition and conversion of the analog  
signal, facilitating precise control over when the analog  
signal is captured. The analog input sampling instant is at  
the falling edge of the 14th SCLK (Figure 2).  
CS  
SCLK  
DOUT  
t
CSS  
t
DO  
Since SCLK drives the conversion in external clock mode,  
the SCLK frequency should remain constant while the  
conversion is clocked. The minimum SCLK frequency  
prevents droop in the internal sampling capacitor voltages  
during conversion.  
HIGH  
IMPEDANCE  
MSB  
NOTE: SSTRB AND CS REMAIN LOW IN EXTERNAL CLOCK MODE (MODE 0).  
Figure 16. DOUT and SSTRB Timing  
SSTRB remains low in the external clock mode, and as a  
result may be left unconnected if the MAX1300/ MAX1301  
will always be used in the external clock mode.  
The internal clock controls the sampling instant  
User supplies one byte of SCLK, then drives CS high  
to relieve processor load while the ADC converts  
Table 7. Mode-Control Byte  
BIT NUMBER  
BIT NAME  
DESCRIPTION  
7
6
5
4
3
2
1
0
START  
Start Bit. The first logic 1 after CS goes low defines the beginning of the mode-control byte.  
M2  
M1  
M0  
1
Mode-Control Bits. M[2:0] select the mode of operation as shown in Table 8.  
Bit 3 must be a logic 1 for the mode-control byte.  
Bit 2 must be a logic 0 for the mode-control byte.  
Bit 1 must be a logic 0 for the mode-control byte.  
Bit 0 must be a logic 0 for the mode-control byte.  
0
0
0
Maxim Integrated  
23  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Table 8. Mode-Control Bits M[2:0]  
M2  
0
M1  
0
M0  
0
MODE  
External Clock (DEFAULT)  
0
0
1
External Acquisition  
Internal Clock  
Reserved  
0
1
0
0
1
1
1
0
0
Reset  
1
0
1
Reserved  
1
1
0
Partial Power-Down  
Full Power-Down  
1
1
1
External Acquisition Mode (Mode 1)  
Reset (Mode 4)  
The slowest maximum throughput rate is achieved with  
the external acquisition method. SCLK controls the acqui-  
sition of the analog signal in external acquisition mode,  
facilitating precise control over when the analog signal is  
captured. The internal clock controls the conversion of the  
analog input voltage. The analog input sampling instant is  
at the falling edge of the 16th SCLK (Figure 3).  
As shown in Table 8, set M[2:0] = 100 to reset the  
MAX1300/MAX1301 to its default conditions. The default  
conditions are full power operation with each channel  
configured for ±3 x V  
, bipolar, single-ended conver-  
REF  
sions using external clock mode (mode 0).  
Partial Power-Down Mode (Mode 6)  
As shown in Table 8, when M[2:0] = 110, the device enters  
partial power-down mode. In partial power-down, all ana-  
log portions of the device are powered down except for  
the reference voltage generator and bias supplies.  
For the external acquisition mode, CS must remain low  
for the first 15 clock cycles and the rise on or after the  
falling edge of the 16th SCLK cycle as shown in Figure 3.  
For optimal performance, idle DIN and SCLK during the  
conversion. With careful board layout, transitions at DIN  
and SCLK during the conversion have a minimal impact  
on the conversion result.  
To exit partial power-down, change the mode by issuing  
one of the following mode-control bytes (see the Mode  
Control section):  
External-Clock-Mode Control Byte  
External-Acquisition-Mode Control Byte  
Internal-Clock-Mode Control Byte  
Reset Byte  
After the conversion is complete, SSTRB asserts high  
and CS can be brought low to read the conversion result.  
SSTRB returns low on the rising SCLK edge of the sub-  
sequent start bit.  
Internal Clock Mode (Mode 2)  
Full Power-Down-Mode Control Byte  
In internal clock mode, the internal clock controls both  
acquisition and conversion of the analog signal. The inter-  
nal clock starts approximately 100ns to 400ns after the  
falling edge of the eighth SCLK and has a rate of about  
4.5MHz. The analog input sampling instant occurs at the  
falling edge of the 11th internal clock signal (Figure 4).  
This prevents the MAX1300/MAX1301 from inadvertently  
exiting partial power-down mode because of a CS glitch  
in a noisy digital environment.  
Full Power-Down Mode (Mode 7)  
When M[2:0] = 111, the device enters full power-down  
mode and the total supply current falls to 1μA (typ). In full  
power-down, all analog portions of the device are powered  
down. When using the internal reference, upon exiting full  
power-down mode, allow 10ms for the internal reference  
voltage to stabilize prior to initiating a conversion.  
For the internal clock mode, CS must remain low for the  
first seven SCLK cycles and then rise on or after the fall-  
ing edge of the eighth SCLK cycle. After the conversion  
is complete, SSTRB asserts high and CS can be brought  
low to read the conversion result. SSTRB returns low on  
the rising SCLK edge of the subsequent start bit.  
To exit full power-down, change the mode by issuing one  
of the following mode-control bytes (see the Mode Control  
section):  
External-Clock-Mode Control Byte  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
External-Acquisition-Mode Control Byte  
Internal-Clock-Mode Control Byte  
Reset Byte  
External Reference  
For external reference operation, disable the internal  
reference and reference buffer by connecting REFCAP  
to AVDD1. With AVDD1 connected to REFCAP, REF  
becomes a high-impedance input and accepts an external  
reference voltage. The MAX1300/MAX1301 can accept  
an external reference voltage of 4.096V or less. However,  
to meet all of the electrical characteristic specifications,  
Partial Power-Down-Mode Control Byte  
This prevents the MAX1300/MAX1301 from inadvertently  
exiting full power-down mode because of a CS glitch in a  
noisy digital environment.  
V
must be > 38V. The MAX1300/ MAX1301 external  
REF  
Power-On Reset  
reference current varies depending on the applied refer-  
ence voltage and the operating mode (see the External  
Reference Input Current vs. External Reference Input  
Voltage graph in the Typical Operating Characteristics).  
The MAX1300/MAX1301 power up in normal operation  
configured for external clock mode with all circuitry active  
(Tables 7 and 8). Each analog input channel (CH0–CH7) is  
set for single-ended conversions with a ±3 x V  
input range (Table 6).  
bipolar  
REF  
Applications Information  
Allow the power supplies to stabilize after power-up. Do not  
initiate any conversions until the power supplies have sta-  
bilized. Additionally, allow 10ms for the internal reference to  
Noise Reduction  
Additional samples can be taken and averaged (oversam-  
pling) to remove the effect of transition noise on conver-  
sion results. The square root of the number of samples  
stabilize when C  
= 1.0μF and C = 0.1μF. Larger  
REF  
REFCAP  
reference capacitors require longer stabilization times.  
determines the improvement in performance. For example,  
2
with 2/3LSB  
(4LSB ) transition noise, 16 (4 = 16)  
P-P  
Internal or External Reference  
RMS  
samples must be taken to reduce the noise to 1LSB  
.
P-P  
The MAX1300/MAX1301 operate with either an internal  
or external reference. The reference voltage impacts the  
ADC’s FSR (Figures 12, 13, and 14). An external refer-  
ence is recommended if more accuracy is required than  
the internal reference provides, and/or multiple converters  
require the same reference voltage.  
Interface with 0 to 10V Signals  
In industrial control applications, 0 to 10V signaling is  
common. For 0 to 10V applications, configure the selected  
MAX1300/MAX1301 input channel for the single-ended 0  
to 3 x V  
input range (R[2:0] = 110, Table 6). The 0 to 3  
REF  
Internal Reference  
x V  
range accommodates 0 to 10V where the signals  
REF  
saturate at approximately 3 x V  
if out of range.  
The MAX1300/MAX1301 contain an internal 4.096V  
bandgap reference. This bandgap reference is connected  
to REFCAP through a nominal 5kΩ resistor (Figure 17).  
The voltage at REFCAP is buffered creating 4.096V at  
REF. When using the internal reference, bypass REFCAP  
with a 0.1μF or greater capacitor to AGND1 and bypass  
REF with a 1.0μF or greater capacitor to AGND1.  
REF  
Interface with 4–20mA Signals  
Figure 19 illustrates a simple interface between the  
MAX1300/MAX1301 and a 4–20mA signal. 4–20mA sig-  
naling can be used as a binary switch (4mA represents  
a logic-low signal, 20mA represents a logic-high signal),  
or for precision communication where currents between  
4mA and 20mA represent intermediate analog data. For  
binary switch applications, connect the 4–20mA signal  
to the MAX1300/MAX1301 with a resistor to ground. For  
example, a 250Ω resistor converts the 4–20mA signal to  
a 1V to 5V signal. Adjust the resistor value so the parallel  
combination of the resistor and the MAX1300/MAX1301  
source impedance is 250Ω. In this application, select the  
4.096V  
REF  
SAR  
ADC  
REF  
1.0µF  
0.1µF  
1x  
REFCAP  
MAX1300  
MAX1301  
single-ended 0 to (3 x V  
)/2 range (R[2:0] = 011, Table  
REF  
5k  
6). For applications that require precision measurements  
of continuous analog currents between 4mA and 20mA,  
use a buffer to prevent the MAX1300/MAX1301 input from  
diverting current from the 4–20mA signal.  
V
RCTH  
4.096V  
BANDGAP  
REFERENCE  
AGND1  
Figure 17. Internal Reference Operation  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
V+  
IN  
1.0µF  
4.096V  
REF  
SAR  
OUT  
REF  
ADC  
1.0µF  
MAX6341  
AV  
DD1  
1x  
GND  
REFCAP  
MAX1300  
MAX1301  
5k  
V
RCTH  
4.096V  
BANDGAP  
REFERENCE  
AGND1  
Figure 18. External Reference Operation  
Bridge Application  
Layout, Grounding, and Bypassing  
The MAX1300/MAX1301 convert 1kHz signals more  
accurately than a similar sigma-delta converter that might  
be considered in bridge applications. The input impedance  
of the MAX1300, in combination with the current-limiting  
resistors, can affect the gain of the MAX1300. In many  
applications this error is acceptable, but for applications  
that cannot tolerate this error, the MAX1300 inputs can be  
buffered (Figure 20). Connect the bridge to a low-offset  
differential amplifier and then the true-differential inputs of  
the MAX1300/MAX1301. Larger excitation voltages take  
Careful PCB layout is essential for best system perfor-  
mance. Boards should have separate analog and digital  
ground planes and ensure that digital and analog signals  
are separated from each other. Do not run analog and  
digital (especially clock) lines parallel to one another, or  
digital lines underneath the device package.  
Figure 1 shows the recommended system ground con-  
nections. Establish an analog ground point at AGND1  
and a digital ground point at DGND. Connect all analog  
grounds to the star analog ground. Connect the digital  
grounds to the star digital ground. Connect the digital  
ground plane to the analog ground plane at one point.  
For lowest noise operation, make the ground return to the  
star ground’s power-supply low impedance and as short  
as possible.  
advantage of more of the (±3 x V  
)/4 differential input  
REF  
voltage range. Select an input voltage range that matches  
the amplifier output. Be aware of the amplifier offset and  
offset-drift errors when selecting an appropriate amplifier.  
Dynamically Adjusting the Input Range  
High-frequency noise in the AVDD1 power supply  
degrades the ADC’s high-speed comparator performance.  
Bypass AVDD1 to AGND1 with a 0.1μF ceramic surface-  
mount capacitor. Make bypass capacitor connections as  
short as possible.  
Software control of each channel’s analog input range  
and the unipolar endpoint overlap specification make it  
possible for the user to change the input range for a chan-  
nel dynamically and improve performance in some appli-  
cations. Changing the input range results in a small LSB  
step-size over a wider output voltage range. For example,  
Parameter Definitions  
by switching between a (-3 x V  
)/2 to 0V range and a 0  
REF  
to (+3 x V  
)/2 range, an LSB is  
REF  
Integral Nonlinearity (INL)  
INL is the deviation of the values on an actual transfer  
function from a straight line. This straight line is either a  
best straight-line fit or a line drawn between the endpoints  
of the transfer function once offset and gain errors have  
been nullified. The MAX1300/MAX1301 INL is measured  
using the endpoint method.  
(+3× V  
) / 2× V  
REF  
REF  
65,536× 4.096  
but the input voltage range effectively spans from (-3 x  
V
REF  
)/2 to (+3 x V )/2 (FSR = 3 x V ).  
REF  
REF  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
4–20mA INPUT  
CH0  
µC  
250  
MAX1300  
4–20mA INPUT  
CH8  
250Ω  
Figure 19. 4–20mA Application  
LOW-OFFSET  
CH0  
DIFFERENTIAL  
µP  
CH1  
AMPLIFIER  
MAX1300  
MAX1301  
REF  
BRIDGE  
Figure 20. Bridge Application  
Differential Nonlinearity (DNL)  
Channel-to-Channel Isolation  
DNL is the difference between an actual step width and  
the ideal value of 1 LSB. A DNL error specification of  
greater than -1 LSB guarantees no missing codes and a  
monotonic transfer function.  
Channel-to-channel isolation indicates how well each  
analog input is isolated from the others. The channel-  
to-channel isolation for these devices is measured by  
applying a near full-scale magnitude 5kHz sine wave  
to the selected analog input channel while applying an  
equal magnitude sine wave of a different frequency to all  
unselected channels. An FFT of the selected channel out-  
put is used to determine the ratio of the magnitudes of the  
signal applied to the unselected channels and the 5kHz  
signal applied to the selected analog input channel. This  
ratio is reported, in dB, as channel-to-channel isolation.  
Transition Noise  
Transition noise is the amount of noise that appears at a  
code transition on the ADC transfer function. Conversions  
performed with the analog input right at the code transi-  
tion can result in code flickering in the LSBs.  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Full-Power Bandwidth  
Unipolar Offset Error  
-FSR to 0V  
A 95% of full-scale sine wave is applied to the ADC, and  
the input frequency is then swept up to the point where  
the amplitude of the digitized conversion result has  
decreased by -3dB.  
When a zero-scale analog input voltage is applied to the  
converter inputs, the digital output is all ones (0xFFFF).  
Ideally, the transition from 0xFFFF to 0xFFFE occurs at  
AGND1 - 0.5 LSB. Unipolar offset error is the amount  
of deviation between the measured zero-scale transition  
point and the ideal zero-scale transition point, with all  
untested channels grounded.  
Common-Mode Rejection Ratio (CMRR)  
CMRR is the ability of a device to reject a signal that is  
“common” to or applied to both input terminals. The com-  
mon-mode signal can be either an AC or a DC signal or  
a combination of the two. CMR is expressed in decibels.  
Common-mode rejection ratio is the ratio of the differen-  
tial signal gain to the common-mode signal gain. CMRR  
applies only to differential operation.  
0V to +FSR  
When a zero-scale analog input voltage is applied to the  
converter inputs, the digital output is all zeros (0x0000).  
Ideally, the transition from 0x0000 to 0x0001 occurs at  
AGND1 + 0.5 LSB. Unipolar offset error is the amount  
of deviation between the measured zero-scale transition  
point and the ideal zero-scale transition point, with all  
untested channels grounded.  
Power-Supply Rejection Ratio (PSRR)  
PSRR is the ratio of the output-voltage shift to the  
power-supply-voltage shift for a fixed input voltage. For  
the MAX1300/MAX1301, AV  
can vary from 4.75V to  
DD1  
5.25V. PSRR is expressed in decibels and is calculated  
using the following equation:  
Bipolar Offset Error  
When a zero-scale analog input voltage is applied to the  
converter inputs, the digital output is a one followed by  
5.25V 4.75V  
all zeros (0x8000). Ideally, the transition from 0x7FFF to  
PSRR[dB] = 20× log  
N-1  
V
(5.25V) V  
(4.75V)  
OUT  
0x8000 occurs at (2  
- 0.5)LSB. Bipolar offset error is  
OUT  
the amount of deviation between the measured midscale  
transition point and the ideal midscale transition point,  
with untested channels grounded.  
For the MAX1300/MAX1301, PSRR is tested in bipolar  
operation with the analog inputs grounded.  
Aperture Jitter  
Gain Error  
Aperture jitter, t , is the statistical distribution of the  
variation in the sampling instant (Figure 21).  
When a positive full-scale voltage is applied to the con-  
verter inputs, the digital output is all ones (0xFFFF). The  
transition from 0xFFFE to 0xFFFF occurs at 1.5 LSB  
below full scale. Gain error is the amount of deviation  
between the measured full-scale transition point and  
the ideal full-scale transition point with the offset error  
removed and all untested channels grounded.  
AJ  
Aperture Delay  
Aperture delay, t , is the time from the falling edge of  
AD  
SCLK to the sampling instant (Figure 21).  
Signal-to-Noise Ratio (SNR)  
Unipolar Endpoint Overlap  
SNR is computed by taking the ratio of the RMS signal to  
the RMS noise. RMS noise includes all spectral compo-  
nents to the Nyquist frequency excluding the fundamen-  
tal, the first five harmonics, and the DC offset.  
Unipolar endpoint overlap is the change in offset when  
switching between complementary input voltage ranges.  
For example, the difference between the voltage that  
results in a 0xFFFF output in the -3 x V  
voltage range and the voltage that results in a 0x0000  
/2 to 0V input  
REF  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS signal  
to the RMS noise plus distortion. RMS noise plus dis-  
tortion includes all spectral components to the Nyquist  
frequency excluding the fundamental and the DC offset.  
output in the 0 to +3 x V /2 input voltage range is the  
REF  
unipolar endpoint overlap. The unipolar endpoint overlap  
is positive for the MAX1300/MAX1301, preventing loss of  
signal or a dead zone when switching between adjacent  
analog input voltage ranges.  
Signal  
Noise  
RMS  
RMS  
SINAD(dB) = 20× log  
Small-Signal Bandwidth  
A 100mV  
sine wave is applied to the ADC, and the  
P-P  
input frequency is then swept up to the point where  
the amplitude of the digitized conversion result has  
decreased by -3dB.  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Effective Number of Bits (ENOB)  
ENOB indicates the global accuracy of an ADC at a  
specific input frequency and sampling rate. With an input  
range equal to the ADC’s full-scale range, calculate the  
ENOB as follows:  
SCLK  
(MODE 0)  
14  
15  
13  
SCLK  
(MODE 1)  
16  
11  
15  
10  
SINAD 1.76  
ENOB =  
6.02  
INTCLK  
(MODE 2)  
12  
Total Harmonic Distortion (THD)  
For the MAX1300/MAX1301, THD is the ratio of the RMS  
sum of the input signal’s first four harmonic components  
to the fundamental itself. This is expressed as:  
t
AJ  
t
AD  
SAMPLE INSTANT  
HOLD  
2
2
2
2
ANALOG INPUT  
TRACK AND HOLD  
V
+ V + V + V  
3 4 5  
2
TRACK  
THD = 20× log  
V
1
Figure 21. Aperture Diagram  
where V is the fundamental amplitude, and V through V  
5
1
2
are the amplitudes of the 2nd- through 5th-order harmonic  
components.  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of RMS amplitude of the fundamental  
(maximum signal component) to the RMS value of the  
next-largest spectral component.  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Block Diagram  
DVDDO  
CS  
DIN  
CONTROL LOGIC AND REGISTERS  
SERIAL I/O  
SSTRB  
DOUT  
SCLK  
DGNDO  
CH0  
CH1  
AV  
DD2  
CLOCK  
DVDD  
ANALOG  
INPUT MUX  
AND  
MULTIRANGE  
CIRCUITRY  
CH2  
CH3  
CH4  
CH5  
CH6  
SAR  
ADC  
IN  
OUT  
FIFO  
PGA  
DGND  
AVDD1  
AGND3  
REF  
CH7  
AGND1  
AGND2  
5k  
4.096V  
BANDGAP  
REFERENCE  
1x  
AVDD2  
AGND2  
MAX1300  
REFCAP  
REF  
Pin Configurations (continued)  
Chip Information  
PROCESS: BiCMOS  
TOP VIEW  
AGND1  
AVDD1  
CH0  
1
2
3
4
5
6
7
8
9
20 AGND2  
19 AVDD2  
18 AGND3  
17 REF  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
CH1  
MAX1301  
CH2  
16 REFCAP  
15 DVDD  
CH3  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
CS  
14  
DVDDO  
PATTERN NO.  
DIN  
13 DGND  
12 DGNDO  
11 DOUT  
20 TSSOP  
24 TSSOP  
U20+2  
U24+1  
90-0116  
90-0118  
SSTRB  
21-0066  
SCLK 10  
TSSOP  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX1300/MAX1301  
8- and 4-Channel, ±3 x V  
Multirange Inputs,  
REF  
Serial 16-Bit ADCs  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
DESCRIPTION  
PAGES CHANGED  
0
2
3
11/06  
6/10  
Initial release  
1
1–10, 13, 14, 15, 17–21,  
24, 25, 26, 28, 31  
Updated Electrical Characteristics tables, TOCs to optimize yield.  
Released MAX1300 and updated the Electrical Characteristics table.  
12/11  
1, 2  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2011 Maxim Integrated Products, Inc.  
31  

相关型号:

MAX1300AEUG+T

ADC, Successive Approximation, 16-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO24, ROHS COMPLIANT, TSSOP-24
MAXIM

MAX1300BEUG

8-/4-Channel, 12V Multirange Inputs, Serial 16-Bit ADCs
MAXIM

MAX1300BEUG*

8-/4-Channel, 12V Multirange Inputs, Serial 16-Bit ADCs
MAXIM

MAX1300BEUG+

ADC, Successive Approximation, 16-Bit, 1 Func, 8 Channel, Serial Access, BICMOS, PDSO24, 4.40 MM, ROHS COMPLIANT, MO-153AD, TSSOP-24
MAXIM

MAX1300BEUG+T

暂无描述
MAXIM

MAX1300_10

8- and 4-Channel, ±3 x VREF Multirange Inputs, Serial 16-Bit ADCs
MAXIM

MAX1300_V01

8- and 4-Channel, ±3 x VREF Multirange Inputs, Serial 16-Bit ADCs
MAXIM

MAX1301

8-/4-Channel, 12V Multirange Inputs, Serial 16-Bit ADCs
MAXIM

MAX13013

+1.2V to +3.6V, 0.1uA, 100Mbps, Single-/Dual-/Quad-Level Translators
MAXIM

MAX13013EXT

+1.2V to +3.6V, 0.1uA, 100Mbps, Single-/Dual-/Quad-Level Translators
MAXIM

MAX13013EXT+

暂无描述
MAXIM

MAX13013EXT+T

Interface Circuit, BICMOS, PDSO6, EIAJ, SC-70, 6 PIN
MAXIM