MAX13044EEBC+T [MAXIM]

Interface Circuit, BICMOS, PBGA12, 1.54 X 2.12 MM, LEAD FREE, UCSP-12;
MAX13044EEBC+T
型号: MAX13044EEBC+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Interface Circuit, BICMOS, PBGA12, 1.54 X 2.12 MM, LEAD FREE, UCSP-12

信息通信管理
文件: 总14页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0792; Rev 0; 4/07  
1.62V to 3.6V Improved High-Speed LLT  
General Description  
Features  
The MAX13042E–MAX13045E 4-channel, bidirectional  
level translators provide the level shifting necessary for  
100Mbps data transfer in multivoltage systems. The  
MAX13042E–MAX13045E are ideally suited for level  
translation in systems with four channels. Externally  
Compatible with 4mA Input Drivers or Larger  
100Mbps Guaranteed Data Rate  
Four Bidirectional Channels  
Enable Input  
applied voltages, V  
and V , set the logic levels on  
L
CC  
either side of the device. Logic signals present on the  
V side of the device appear as a high-voltage logic  
1ꢀ5k EꢁD ꢂrotection on Iꢃ/ k  
Lines  
CC_  
L
+1.62k k +3.2k and +2.2k k  
+3.6k  
L
CC  
signal on the V  
side of the device and vice-versa.  
CC  
ꢁupply koltage Range  
The MAX13042E–MAX13045E operate at full speed  
with external drivers that source as little as 4mA output  
current or larger. Each input/output (I/O) channel is  
12-Bump UCꢁꢂ (1.ꢀ4mm x 2.12mm) and  
14-ꢂin TDFN (3mm x 3mm) Lead-Free ꢂac5ages  
pulled up to V  
or V by an internal 30µA current  
L
CC  
source, allowing the MAX13042E–MAX13045E to be  
driven by either push-pull or open-drain drivers.  
Typical Operating Circuit  
The MAX13042E–MAX13045E feature an enable (EN)  
input that places the devices into a low-power shutdown  
mode when driven low. The MAX13042E–MAX13045E  
feature an automatic shutdown mode that disables the  
+3.3V  
+1.8V  
0.1μF  
1μF  
0.1μF  
part when V  
is less than V . The state of I/O V  
and  
CC  
L
CC_  
I/O V during shutdown is chosen by selecting the  
L_  
V
V
appropriate part version. (See the Ordering Information/  
Selector Guide).  
L
CC  
+1.8V  
SYSTEM  
+3.3V  
SYSTEM  
MAX13042E–  
MAX13045E  
CONTROLLER  
The MAX13042E–MAX13045E operate with V  
volt-  
CC  
ages from +2.2V to +3.6V and V voltages from +1.62V  
L
EN  
DATA  
EN  
to +3.2V, making them ideal for data transfer between  
low-voltage ASIC/PLDs and higher voltage systems.  
The MAX13042E–MAX13045E are available in 12-bump  
UCSP™ (1.54mm x 2.12mm) and 14-pin TDFN (3mm x  
3mm) packages, and operate over the extended -40°C  
to +85°C temperature range.  
I/O V  
I/O V  
CC_  
DATA  
L_  
4
4
GND  
GND  
GND  
Applications  
Portable POS Systems  
UCSP is a trademark of Maxim Integrated Products, Inc.  
SPI is a trademark of Motorola, Inc.  
CMOS Logic-Level  
Translation  
MICROWIRE is a trademark of National Semiconductor Corp.  
Portable Communication  
Devices  
Low-Voltage ASIC Level  
Translation  
Pin Configurations appear at end of data sheet.  
GPS  
Cell Phones  
Telecommunications  
Equipment  
Ordering Information/Selector Guide continued at end of  
data sheet.  
SPI™, MICROWIRE™  
Level Translation  
Ordering Information/Selector Guide  
ꢂIN-  
ꢂACKAGE  
Iꢃ/ k ꢁTATE DURING  
L_  
Iꢃ/ k  
ꢁTATE DURING  
ꢁHUTD/WN  
T/ꢂ  
MARK  
CC_  
ꢂART  
ꢂKG C/DE  
ꢁHUTD/WN  
High Impedance  
High Impedance  
MAX13042EEBC+T 12 UCSP-12  
MAX13042EETD+T 14 TDFN-EP**  
High Impedance  
High Impedance  
ADQ  
ADE  
B12-3  
T1433-2  
Note: All devices operate over the -40°C to +85°C temperature  
range.  
*Future product—contact factory for availability.  
**EP = Exposed paddle.  
+Denotes a lead-free package.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
1.62V to 3.6V Improved High-Speed LLT  
ABꢁ/LUTE MAXIMUM RATINGꢁ  
(All voltages referenced to GND.)  
Operating Temperature Range ...........................-40°C to +85°C  
V
I/O V  
, V .....................................................................-0.3V to +4V  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
L
..................................................... -0.3V to (V  
+ 0.3V)  
CC_  
CC  
I/O V ...........................................................-0.3V to (V + 0.3V)  
L_  
L
EN.............................................................................-0.3V to +4V  
Short-Circuit Duration I/O V , I/O V to GND .......Continuous  
L_  
CC_  
Continuous Power Dissipation (T = +70°C)  
A
12-Bump UCSP (derate 6.5mW/°C above +70°C) ......519mW  
14-Pin TDFN (derate 24.4mW/°C above +70°C) .......1951mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERIꢁTICꢁ  
(V  
= +2.2V to +3.6V, V = +1.62V to +3.2V, EN = V , T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
=
CC  
CC  
L
L
A
+3.3V, V = +1.8V, and T = +25°C.) (Notes 1, 2)  
L
A
ꢂARAMETER  
ꢂ/WER ꢁUꢂꢂLIEꢁ  
V Supply Range  
ꢁYMB/L  
C/NDITI/Nꢁ  
MIN  
TYꢂ  
MAX  
UNITꢁ  
V
1.62  
2.2  
3.2  
3.6  
25  
10  
1
V
L
L
V
Supply Range  
V
V
CC  
CC  
Supply Current from V  
Supply Current from V  
I
I/O V  
I/O V  
= V , I/O V = V  
L
µA  
µA  
µA  
CC  
QVCC  
CC_  
CC  
L_  
I
= V , I/O V = V  
L
QVL  
SHDN-VCC  
CC_  
CC  
L_  
L
V
Shutdown Supply Current  
I
T
A
T
A
T
A
= +25°C, EN = GND  
= +25°C, EN = GND  
0.1  
0.1  
0.1  
CC  
1
V Shutdown-Mode Supply  
L
Current  
I
µA  
SHDN-VL  
= +25°C, EN = V , V  
L
= GND  
4
CC  
I/O V  
Leakage Current  
, I/O V Tri-State  
L_  
CC_  
I
T
T
= +25°C, EN = GND  
= +25°C  
0.1  
2
1
µA  
µA  
V
LEAK  
A
A
EN Input Leakage Current  
I
LEAK_EN  
V - V  
L
High  
Shutdown Threshold  
Shutdown Threshold  
Pulldown Resistance  
CC  
V
V
V
rising (Note 3)  
falling (Note 3)  
0
0
0.1V  
L
0.8  
TH_H  
CC  
CC  
V - V  
L
Low  
CC  
V
0.12V  
16.5  
0.8  
23  
23  
V
TH_L  
L
I/O V  
CC_  
R
R
MAX13043E/MAX13045E  
MAX13044E/MAX13045E  
10  
10  
kΩ  
kΩ  
VCC_PD_SD  
During Shutdown  
I/O V Pulldown Resistance  
L_  
During Shutdown  
R
16.5  
VL_PD_SD  
I/O V Pullup Current  
I
I/O V = GND, I/O V = GND  
CC_  
20  
20  
65  
65  
µA  
µA  
L_  
VL_PU_  
L_  
I/O V  
Pullup Current  
I
I/O V  
= GND, I/O V = GND  
CC_ L_  
CC_  
VCC_PU_  
I/O V to I/O V  
L_  
Resistance  
DC  
CC_  
(Note 4)  
3
kΩ  
IOVL_IOVCC  
2
_______________________________________________________________________________________  
1.62V to 3.6V Improved High-Speed LLT  
ELECTRICAL CHARACTERIꢁTICꢁ (continued)  
(V  
= +2.2V to +3.6V, V = +1.62V to +3.2V, EN = V , T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
=
CC  
CC  
L
L
A
+3.3V, V = +1.8V, and T = +25°C.) (Notes 1, 2)  
L
A
ꢂARAMETER  
EꢁD ꢂR/TECTI/N  
ꢁYMB/L  
C/NDITI/Nꢁ  
MIN  
TYꢂ  
MAX  
UNITꢁ  
I/O V , EN  
L_  
Human Body Model  
2
kV  
Human Body Model, C  
= 1µF  
15  
VCC  
IEC 61000-4-2 Air-Gap Discharge,  
= 1µF  
15  
8
C
I/O V  
CC_  
kV  
VCC  
IEC 61000-4-2 Contact Discharge,  
= 1µF  
C
VCC  
L/GIC LEkELꢁ  
I/O V Input-Voltage High  
L_  
Threshold  
V
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
V - 0.2  
V
V
V
V
V
V
IHL  
L
I/O V Input-Voltage Low  
L_  
Threshold  
V
0.15  
0.2  
ILL  
I/O V  
Input-Voltage High  
V
-
CC  
CC_  
V
IHC  
Threshold  
0.4  
I/O V Input-Voltage Low  
CC_  
V
ILC  
Threshold  
EN Input-Voltage-High  
Threshold  
V
V - 0.4  
L
IH  
EN Input-Voltage-Low  
Threshold  
V
0.4  
IL  
I/O V Output-Voltage High  
V
I/O V source current = 20µA  
2/3 V  
V
V
V
L_  
OHL  
L_  
L
I/O V Output-Voltage Low  
V
I/O V sink current = 20µA, I/O V  
< 0.2V  
1/3 V  
L_  
OLL  
L_  
CC_  
L
I/O V  
Output-Voltage High  
V
I/O V  
source current = 20µA  
2/3 V  
CC  
CC_  
OHC  
CC_  
I/O V  
I/O V < 0.15V  
L_  
sink current = 20µA,  
CC_  
I/O V  
Output-Voltage Low  
V
1/3 V  
V
CC_  
OLC  
CC  
RIꢁE-ꢃFALL-TIME ACCELERAT/R ꢁTAGE  
On falling edge  
On rising edge  
3.5  
3.5  
24  
11  
13  
9
Accelerator Pulse Duration  
ns  
Ω
Ω
Ω
Ω
V = 1.62V  
L
V Output Accelerator Source  
L
Impedance  
V = 3.2V  
L
V
V
= 2.2V  
= 3.6V  
CC  
CC  
V
Output Accelerator Source  
CC  
Impedance  
V = 1.62V  
L
14  
10  
11  
9
V Output Accelerator Sink  
L
Impedance  
V = 3.2V  
L
V
V
= 2.2V  
= 3.6V  
CC  
CC  
V
Output Accelerator Sink  
CC  
Impedance  
_______________________________________________________________________________________  
3
1.62V to 3.6V Improved High-Speed LLT  
TIMING CHARACTERIꢁTICꢁ  
(+2.2V V  
+3.6V, +1.62V V +3.2V; C  
15pF, C  
10pF; R  
< 150Ω, rise/fall time < 3ns, EN = V ,  
SOURCE L  
CC  
L
IOVL_  
IOVCC_  
T
= -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +3.3V, V = +1.8V, and T = +25°C.) (Notes 1, 2)  
A
CC  
L
A
ꢂARAMETER  
Rise Time  
ꢁYMB/L  
C/NDITI/Nꢁ  
MIN  
TYꢂ  
MAX  
2.5  
UNITꢁ  
ns  
I/O V  
I/O V  
t
Figure 1  
Figure 1  
Figure 2  
Figure 2  
CC_  
RVCC  
Fall Time  
t
2.5  
ns  
CC_  
FVCC  
I/O V Rise Time  
t
2.5  
ns  
L_  
RVL  
I/O V Fall Time  
L_  
t
2.5  
ns  
FVL  
Propagation Delay  
t
t
Figure 1  
6.5  
ns  
PVL-VCC  
(Driving I/O V  
)
L_  
Propagation Delay  
(Driving I/O V  
Figure 2  
(Note 4)  
Figure 3  
6.5  
0.7  
ns  
ns  
µs  
PVCC-VL  
)
CC_  
Channel-to-Channel Skew  
t
SKEW  
Propagation Delay From I/O V  
L_  
t
5
5
EN-VCC  
to I/O V  
after EN  
CC_  
Propagation Delay From I/O V  
to I/O V after EN  
L_  
CC_  
t
Figure 3  
µs  
EN-VL  
Maximum Data Rate  
Push-pull operation  
100  
Mbps  
Note 1: All units are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by  
A
correlation and design and not production tested.  
Note 2: V must be less than or equal to V  
during normal operation. However, V can be greater than V  
during startup and  
L
CC  
L
CC  
shutdown conditions.  
Note 3: When V  
is below V by more than the V - V shutdown threshold, the device turns off its pullup generators and the I/Os  
CC  
L
L
CC  
enter their respective shutdown states.  
Note 4: Guaranteed by design.  
Note ꢀ: Input thresholds are referenced to the boost circuit.  
Typical Operating Characteristics  
(V  
= 3.3V, V = 1.8V, C  
= 10pF, C  
= 15pF, R  
= 150Ω, data rate = 100Mbps, push-pull driver, T = +25°C,  
CC  
L
IOVCC_  
IOVL_  
SOURCE A  
unless otherwise noted.)  
V
CC  
SUPPLY CURRENT vs. V SUPPLY  
CC  
V SUPPLY CURRENT vs. V SUPPLY  
L
CC  
V SUPPLY CURRENT vs. V SUPPLY  
L L  
VOLTAGE (DRIVING ONE I/O V  
)
VOLTAGE (DRIVING ONE I/O V  
)
L_  
L_  
VOLTAGE (DRIVING ONE I/O V  
)
CC_  
15  
12  
400  
390  
10  
8
V
= 3.6V  
CC  
380  
370  
360  
9
6
3
6
4
350  
340  
330  
320  
310  
300  
2
0
0
3.6  
3.2 3.4  
2.2  
2.6 2.8 3.0  
2.4  
3.4 3.6  
2.2 2.4  
2.6 2.8  
3.0 3.2  
1.6  
2.0  
2.4  
2.8  
3.2  
V SUPPLY VOLTAGE (V)  
L
V
SUPPLY VOLTAGE (V)  
V SUPPLY VOLTAGE (V)  
L
CC  
4
_______________________________________________________________________________________  
1.62V to 3.6V Improved High-Speed LLT  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, V = 1.8V, C  
= 10pF, C  
= 15pF, R  
= 150Ω, data rate = 100Mbps, push-pull driver, T = +25°C,  
CC  
L
IOVCC_  
IOVL_  
SOURCE A  
unless otherwise noted.)  
SUPPLY CURRENT vs. TEMPERATURE  
V
CC  
SUPPLY CURRENT vs. V SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
L
(DRIVING ONE I/O V  
)
L_  
(DRIVING ONE I/O V _)  
(DRIVING ONE I/O V  
)
CC  
CC_  
10  
8
10  
7
6
5
4
3
2
1
0
V
= 3.6V  
CC  
9
8
7
6
5
4
I
I
VCC  
VCC  
6
I
VL  
4
I
VL  
3
2
1
0
2
0
85  
-40  
35  
10  
TEMPERATURE (°C)  
60  
-15  
1.6  
2.0  
2.4  
2.8  
3.2  
-40  
-15  
10  
35  
60  
85  
V SUPPLY VOLTAGE (V)  
L
TEMPERATURE (°C)  
V
SUPPLY CURRENT vs. CAPACITIVE  
RISE/FALL TIME vs. CAPACITIVE LOAD ON  
CC  
LOAD ON I/O V  
(DRIVING ONE I/O V )  
I/O V  
(DRIVING I/O V )  
)
CC_  
L_  
CC_  
L_  
16  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5000  
4000  
3000  
2000  
1000  
0
14  
12  
10  
8
t
RVCC  
t
FVCC  
6
4
2
0
10  
15  
20  
25  
30  
35  
40  
10  
15  
20  
25  
30  
35  
40  
10  
15  
20  
25  
30  
35  
40  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
RISE/FALL TIME vs. CAPACITIVE LOAD ON  
I/O V (DRIVING I/O V  
PROPAGATION DELAY vs. CAPACITIVE  
LOAD ON I/O V (DRIVING I/O V  
PROPAGATION DELAY vs. CAPACITIVE  
LOAD ON I/O V (DRIVING I/O V  
)
CC_  
)
CC_  
)
L_  
L_  
L_  
CC_  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
t
PHL  
t
RVL  
t
PLH  
t
FVL  
2.0  
1.5  
1.0  
t
PLH  
t
PHL  
0.5  
0
40  
10  
15  
20  
25  
30  
35  
40  
10  
20  
25  
30  
35  
15  
10  
15  
20  
25  
30  
35  
40  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
CAPACITIVE LOAD (pF)  
_______________________________________________________________________________________  
1.62V to 3.6V Improved High-Speed LLT  
Typical Operating Characteristics (continued)  
(V  
= 3.3V, V = 1.8V, C  
= 10pF, C  
= 15pF, R  
= 150Ω, data rate = 100Mbps, push-pull driver, T = +25°C,  
CC  
L
IOVCC_  
IOVL_  
SOURCE A  
unless otherwise noted.)  
TYPICAL I/O V DRIVING  
TYPICAL I/O V  
(FREQUENCY = 26MHz, C  
DRIVING  
L_  
CC_  
(FREQUENCY = 26MHz, C  
= 40pF)  
= 15pF)  
IOVCC_  
IOVL_  
I/O V  
2V/div  
CC_  
I/O V  
1V/div  
L_  
I/O V  
2V/div  
CC_  
I/O V  
1V/div  
L_  
10ns/div  
10ns/div  
Pin Description  
ꢂIN  
NAME  
FUNCTI/N  
UCꢁꢂ  
A1  
TDFN  
8
I/O V  
I/O V  
I/O V  
I/O V  
4
3
2
1
Input/Output 4. Referenced to V  
Input/Output 3. Referenced to V  
Input/Output 2. Referenced to V  
Input/Output 1. Referenced to V  
.
.
.
.
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
A2  
10  
A3  
12  
A4  
14  
Power-Supply Voltage, +2.2V to +3.6V. Bypass V  
to GND with a  
CC  
0.1µF ceramic capacitor. For full ESD protection, connect an  
additional 1µF ceramic capacitor from V to GND as close to the  
B1  
9
V
CC  
CC  
V
input as possible.  
CC  
Logic Supply Voltage, +1.62V to +3.2V. Bypass V to GND with a  
L
0.1µF ceramic capacitor placed as close to the device as possible.  
B2  
B3  
6
2
V
L
Enable Input. Drive EN to GND for shutdown mode, or drive EN to  
EN  
V or V  
L
for normal operation.  
CC  
B4  
C1  
C2  
C3  
C4  
13  
7
GND  
Ground  
Input/Output 4. Referenced to V .  
I/O V 4  
L
L
5
I/O V 3  
Input/Output 3. Referenced to V .  
L
L
3
I/O V 2  
Input/Output 2. Referenced to V .  
L
L
1
I/O V 1  
L
Input/Output 1. Referenced to V .  
L
4, 11  
EP  
N.C.  
EP  
No Connection. Leave N.C. unconnected.  
Exposed Pad. Connect exposed pad to GND.  
6
_______________________________________________________________________________________  
1.62V to 3.6V Improved High-Speed LLT  
Test Circuits/Timing Diagrams  
t
t
RVCC  
FVCC  
V
V
L
CC  
90%  
90%  
V
EN  
V
CC  
L
I/O V  
MAX13042E–MAX13045E  
L_  
50%  
50%  
V
V
L
CC  
50%  
50%  
I/O V  
I/O V  
CC_  
L_  
10%  
I/O V  
10%  
CC_  
150Ω  
C
IOVCC  
t
t
PHL  
PLH  
t
= t OR t  
PVL-VCC PLH PHL  
Figure 1. Push-Pull Driving I/O V Test Circuit and Timing  
L_  
t
t
FVL  
RVL  
V
L
V
CC  
I/O V  
90%  
CC_  
EN  
V
V
CC  
L
MAX13042E–MAX13045E  
V
V
L
CC  
90%  
50%  
50%  
50%  
50%  
I/O V  
I/O V  
CC_  
L_  
10%  
150Ω  
10%  
I/O V  
L_  
C
IOVL  
t
t
PHL  
PLH  
t = t OR t  
PVCC-VL PLH PHL  
Figure 2. Push-Pull Driving I/O V  
Test Circuit and Timing  
CC_  
_______________________________________________________________________________________  
7
1.62V to 3.6V Improved High-Speed LLT  
Test Circuits/Timing Diagrams (continued)  
V
L
EN  
EN  
MAX13042E–  
MAX13045E  
V
V
CC  
L
t'  
EN-VCC  
0V  
I/O V  
CC_  
SOURCE  
V
L
I/O V  
L_  
I/O V  
L_  
0V  
V
C
IOVCC  
CC  
R
LOAD  
V
/ 2  
I/O V  
CC  
CC_  
V
L
0V  
V
CC  
V
L
EN  
EN  
R
LOAD  
t"  
MAX13042E–  
MAX13045E  
EN-VCC  
V
V
CC  
L
0V  
SOURCE  
V
L
I/O V  
L_  
0V  
I/O V  
L_  
I/O V  
CC_  
V
I/O V  
CC  
CC_  
V
/ 2  
CC  
C
IOVCC  
0V  
t
IS WHICHEVER IS LARGER BETWEEN t'  
AND t"  
.
EN-VCC  
EN-VCC  
EN-VCC  
V
L
EN  
EN  
V
MAX13042E–  
MAX13045E  
V
CC  
t'  
L
EN-VL  
0V  
SOURCE  
V
CC  
I/O V  
CC_  
I/O V  
I/O V  
CC_  
L_  
0V  
V
L
C
IOVL  
V
CC  
R
LOAD  
V / 2  
L
I/O V  
L_  
0V  
V
L
EN  
EN  
t"  
EN-VL  
0V  
V
MAX13042E–  
MAX13045E  
V
CC  
L
V
CC  
V
L
I/O V  
CC_  
SOURCE  
0V  
R
LOAD  
I/O V  
CC_  
V
I/O V  
L
L_  
I/O V  
L_  
V / 2  
L
0V  
AND t"  
C
IOVL  
t
IS WHICHEVER IS LARGER BETWEEN t'  
.
EN-VCC  
EN-VCC  
EN-VCC  
Figure 3. Enable Test Circuit and Timing  
8
_______________________________________________________________________________________  
1.62V to 3.6V Improved High-Speed LLT  
feature an automatic shutdown mode that disables the  
Functional Diagram  
part when V  
is less than V . The state of I/O V  
and  
CC  
L
CC_  
I/O V during shutdown is chosen by selecting the  
L_  
V
V
L
CC  
appropriate part version (see the Ordering Information/  
Selector Guide).  
The MAX13042E–MAX13045E operate with V  
volt-  
CC  
MAX13042E–MAX13045E  
ages from +2.2V to +3.6V and V voltages from +1.62V  
L
to +3.2V.  
Level Translation  
I/O V 1  
L
I/O V  
1
CC  
For proper operation, ensure that +2.2V V  
CC  
+3.6V, +1.62V V V  
- 0.2V. When power is  
is missing or less than V , the  
L
L
CC  
supplied to V while V  
L
CC  
MAX13042E–MAX13045E automatically enter a low-  
power mode. The devices will also enter shutdown mode  
I/O V  
I/O V  
2
3
I/O V 2  
L
CC  
CC  
when EN = 0V. This allows V  
to be disconnected and  
CC  
still have a known state on I/O V . The maximum data  
L_  
rate depends heavily on the load capacitance (see the  
Rise/Fall Time vs. Capacitive Load graphs in the Typical  
Operating Characteristics), output impedance of the  
driver, and the operating voltage range.  
I/O V 3  
L
Input Driver Requirements  
The MAX13042E–MAX13045E architecture is based on  
an nMOS pass gate and output accelerator stages  
(Figure 6). The accelerators are active only when there  
is a rising/falling edge on a given I/O. A short pulse is  
then generated where the output accelerator stages  
become active and charge/discharge the capacitances  
at the I/Os. Due to its architecture, both input stages  
become active during the one-shot pulse. This can lead  
to current feeding into the external source that is driving  
the translator. However, this behavior helps to speed  
up the transition on the driven side.  
I/O V 4  
L
I/O V  
4
CC  
EN  
GND  
Detailed Description  
The MAX13042E–MAX13045E 4-channel, bidirectional  
level translators provide the level shifting necessary for  
100Mbps data transfer in multivoltage systems. The  
MAX13042E–MAX13045E are ideally suited for level  
translation in systems with four channels. Externally  
The MAX13042E–MAX13045E have internal current  
sources capable of sourcing 30µA to pull up the I/O  
lines. These internal-pullup current sources allow the  
inputs to be driven with open-drain drivers as well as  
push-pull drivers. It is not recommended to use external  
pullup resistors on the I/O lines. The architecture of the  
MAX13042E–MAX13045E permits either side to be dri-  
ven with a minimum of 4mA drivers or larger.  
applied voltages, V  
and V , set the logic levels on  
L
CC  
either side of the device. Logic signals present on the  
V side of the device appear as a high-voltage logic  
L
signal on the V  
side of the device and vice-versa.  
CC  
The MAX13042E–MAX13045E operate at full speed  
with external drivers that source as little as 4mA output  
Output Load Requirements  
The MAX13042E–MAX13045E I/O are designed to drive  
CMOS inputs. Do not load the I/O lines with a resistive  
load less than 25kΩ and do not place an RC circuit at  
the input of these devices to slow down the edges. If a  
slower rise/fall time is required, refer to the MAX3000E/  
MAX3001E logic-level translator data sheet.  
current. Each I/O channel is pulled up to V  
or V by  
L
CC  
an internal 30µA current source, allowing the  
MAX13042E–MAX13045E to be driven by either push-  
pull or open-drain drivers.  
The MAX13042E–MAX13045E feature an enable (EN)  
input that places the devices into a low-power shutdown  
mode when driven low. The MAX13042E–MAX13045E  
_______________________________________________________________________________________  
9
1.62V to 3.6V Improved High-Speed LLT  
late signals without inversion. These devices provide  
the smallest solution (UCSP package) for unidirectional  
level translation without inversion.  
V
CC  
V
L
ENABLE  
ENABLE  
ENABLE  
ESD Test Conditions  
ESD performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents  
test setup, test methodology, and test results.  
30μA  
30μA  
I/O V  
L_  
I/O V  
CC_  
Use with External Pullup/  
Pulldown Resistors  
Due to the architecture of the MAX13042E–MAX13045E,  
it is not recommended to use external pullup or pull-  
down resistors on the bus. In certain applications, the  
use of external pullup or pulldown resistors is desired to  
have a known bus state when there is no active driver  
on the bus. The MAX13042E–MAX13045E include inter-  
nal pullup current sources that set the bus state when  
the device is enabled. In shutdown mode, the state of  
V
V
V
V
L
CC  
BOOST  
CIRCUIT  
L
CC  
BOOST  
CIRCUIT  
NOTE: THE MAX13042E–MAX13045E ARE ENABLED WHEN  
V < AND EN = V .  
I/O V  
and I/O V is dependent on the selected part  
L_  
V
CC_  
L
CC  
L
version (see the Ordering Information/Selector Guide).  
Figure 4. Simplified Functional Diagram for One I/O Line  
Open-Drain Signaling  
The MAX13042E–MAX13045E are designed to pass open-  
drain as well as CMOS push-pull signals. When used with  
open-drain signaling, the rise time will be dominated by the  
interaction of the internal pullup current source and the par-  
asitic load capacitance. The MAX13042E–MAX13045E  
include internal rise-time accelerators to speed up transi-  
tions, eliminating any need for external pullup resistors. For  
Shutdown Mode  
The MAX13042E–MAX13045E feature an enable (EN)  
input that places the devices into a low-power shutdown  
mode when driven low. The MAX13042E–MAX13045E  
feature an automatic shutdown mode that disables the  
part when V is unconnected or less than V .  
CC  
L
2
applications such as I C or 1-wire that require an external  
Applications Information  
Layout Recommendations  
Use standard high-speed layout practices when  
laying out a board with the MAX13042E–MAX13045E.  
For example, to minimize line coupling, place all other  
signal lines not connected to the MAX13042E–  
MAX13045E at least 1x the substrate height of the  
PCB away from the input and output lines of the  
MAX13042E–MAX13045E.  
pullup resistor, please consult the MAX3378E and  
MAX3396E data sheets.  
UCSP Applications Information  
For the latest application details on UCSP construction,  
dimensions, tape carrier information, PCB techniques,  
bump-pad layout, and recommended reflow temperature  
profiles, as well as the latest information on reliability testing  
results, go to Maxim’s website at www.maxim-ic.com/ucsp  
to find the Application Note: UCSP – A Wafer-Level Chip-  
Scale Package.  
Power-Supply Decoupling  
To reduce ripple and the chance of introducing data  
errors, bypass V and V  
to ground with 0.1µF ceram-  
CC  
L
Chip Information  
ic capacitors. Place all capacitors as close to the  
power-supply inputs as possible. For full ESD protec-  
PROCESS: BiCMOS  
tion, bypass V  
with a 1µF ceramic capacitor located  
CC  
CC  
as close to the V  
input as possible.  
Unidirectional vs. Bidirectional  
Level Translator  
The MAX13042E–MAX13045E bidirectional level trans-  
lators can operate as a unidirectional device to trans-  
10 ______________________________________________________________________________________  
1.62V to 3.6V Improved High-Speed LLT  
Pin Configurations  
TOP VIEW  
TOP VIEW  
(BUMPS ON BOTTOM)  
1
2
3
4
+
+
MAX13042E–MAX13045E  
14  
13  
I/O V  
GND  
1
I/O V 1  
L
1
2
3
4
5
6
7
CC  
A
EN  
I/O V  
4
I/O V 2  
CC  
I/O V  
3
I/O V 1  
CC  
CC  
CC  
12 I/O V  
11 N.C.  
2
I/O V 2  
L
CC  
B
V
EN  
N.C.  
V
GND  
CC  
L
MAX13042E–MAX13045E  
I/O V 3  
L
I/O V  
3
4
C
10  
9
CC  
I/O V 4  
I/O V 2  
L
I/O V 3  
I/O V 1  
L
L
L
V
V
L
CC  
*EP  
UCꢁꢂ  
(1.ꢀ4mm x 2.12mm)  
8
I/O V  
I/O V 4  
L
CC  
TDFN  
(3mm x 3mm)  
*CONNECT EXPOSED PAD TO GROUND  
Ordering Information/Selector Guide (continued)  
ꢂIN-  
ꢂACKAGE  
Iꢃ/ k ꢁTATE DURING  
L_  
Iꢃ/ k  
ꢁTATE DURING  
ꢁHUTD/WN  
T/ꢂ  
MARK  
CC_  
ꢂART  
ꢂKG C/DE  
ꢁHUTD/WN  
MAX13043EEBC+T 12 UCSP-12  
MAX13043EETD+T 14 TDFN-EP**  
High Impedance  
High Impedance  
16.5kΩ to GND  
16.5kΩto GND  
16.5kΩ to GND  
16.5kΩ to GND  
16.5kΩ to GND  
16.5kΩ to GND  
ADR  
ADF  
ADS  
ADG  
ADT  
ADH  
B12-3  
T1433-2  
B12-3  
MAX13044EEBC+T* 12 UCSP-12  
MAX13044EETD+T* 14 TDFN-EP**  
MAX1304ꢀEEBC+T* 12 UCSP-12  
MAX13045EETD+T* 14 TDFN-EP**  
High Impedance  
High Impedance  
16.5kΩ to GND  
16.5kΩ to GND  
T1433-2  
B12-3  
T1433-2  
Note: All devices operate over the -40°C to +85°C temperature  
range.  
*Future product—contact factory for availability.  
**EP = Exposed paddle.  
+Denotes a lead-free package.  
______________________________________________________________________________________ 11  
1.62V to 3.6V Improved High-Speed LLT  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.comꢃpac5ages.)  
PACKAGE OUTLINE, 4x3 UCSP  
1
21-0104  
F
1
12 ______________________________________________________________________________________  
1.62V to 3.6V Improved High-Speed LLT  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.comꢃpac5ages.)  
______________________________________________________________________________________ 13  
1.62V to 3.6V Improved High-Speed LLT  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.comꢃpac5ages.)  
PACKAGE VARIATIONS  
COMMON DIMENSIONS  
SYMBOL  
A
MIN.  
0.70  
MAX.  
0.80  
PKG. CODE  
T633-2  
N
6
D2  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEC  
MO229 / WEEC  
MO229 / WEED-3  
MO229 / WEED-3  
- - - -  
b
[(N/2)-1] x e  
1.90 REF  
1.95 REF  
1.95 REF  
1.50±0.10  
1.50±0.10  
1.50±0.10  
1.50±0.10  
1.50±0.10  
1.70±0.10  
1.70±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
2.30±0.10  
0.95 BSC  
0.65 BSC  
0.65 BSC  
0.50 BSC  
0.50 BSC  
0.40 BSC  
0.40 BSC  
0.40±0.05  
0.30±0.05  
0.30±0.05  
0.25±0.05  
0.25±0.05  
0.20±0.05  
0.20±0.05  
T833-2  
8
D
E
2.90  
2.90  
3.10  
3.10  
T833-3  
8
A1  
0.00  
0.20  
0.05  
0.40  
T1033-1  
T1033-2  
T1433-1  
T1433-2  
10  
10  
14  
14  
2.00 REF  
2.00 REF  
2.40 REF  
2.40 REF  
L
k
0.25 MIN.  
0.20 REF.  
- - - -  
A2  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
Springer  

相关型号:

MAX13045E

1.62V to 3.6V Improved High-Speed LLT
MAXIM

MAX13045EEBC+T

Interface Circuit, BICMOS, PBGA12, 1.54 X 2.12 MM, LEAD FREE, UCSP-12
MAXIM

MAX13046E

Single- and Dual-Bidirectional Low-Level Translator
MAXIM

MAX13046EELT+

Single- and Dual-Bidirectional Low-Level Translator
MAXIM

MAX13046EELT+T

Interface Circuit, BICMOS, PDSO6, 1.50 X 1 MM, ROHS COMPLIANT, UDFN-6
MAXIM

MAX13047E

Single- and Dual-Bidirectional Low-Level Translator
MAXIM

MAX13047EETA+T

Interface Circuit
MAXIM

MAX13047EETB+T

Interface Circuit
MAXIM

MAX13047EEVB+

Single- and Dual-Bidirectional Low-Level Translator
MAXIM

MAX1304ECM

8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs with 【10V, 【5V, and 0 to +5V Analog Input Ranges
MAXIM

MAX1304ECM+

8-/4-/2-Channel, 12-Bit, Simultaneous-Sampling ADCs with ±10V, ±5V, and 0 to +5V Analog Input Ranges
MAXIM

MAX1304ECM-T

ADC, Proprietary Method, 12-Bit, 1 Func, 8 Channel, Parallel, Word Access, BICMOS, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBC, TQFP-48
MAXIM