MAX1315ECM [MAXIM]

1075ksps, 12-Bit, Parallel-Output ADCs with ±10V, ±5V, and 0 to 5V Analog Input Ranges;
MAX1315ECM
型号: MAX1315ECM
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1075ksps, 12-Bit, Parallel-Output ADCs with ±10V, ±5V, and 0 to 5V Analog Input Ranges

信息通信管理 转换器
文件: 总28页 (文件大小:349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3481; Rev 0; 10/04  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
General Description  
Features  
±±1 LS1ꢀI ꢁ1±ꢂꢃ01 LS1BI 1ꢄꢅ(ma  
84dSc1LFBRꢁ1-86dSc1THBꢁ17±dS1LꢀIABꢁ1  
=15ꢂꢂkHz1(t1-ꢂꢃ4dSFL  
The MAX1307/MAX1311/MAX1315 12-bit, analog-to-digi-  
tal converters (ADCs) feature a 1075ksps sampling rate, a  
20MHz input bandwidth, and three analog input ranges.  
The MAX1307 provides a 0 to +5V input range, with ±±V  
fault-tolerant inputs. The MAX1311 provides a ±5V input  
range with ±1±.5V fault-tolerant inputs. The MAX1315 pro-  
vides a ±10V input range with ±1±.5V fault-tolerant inputs.  
f
ꢀI  
Emtended1ꢀnput1R(nges  
ꢂ1to1+5V1ꢄMAX±3ꢂ7a  
-5V1to1+5V1ꢄMAX±3±±a  
-±ꢂV1to1+±ꢂV1ꢄMAX±3±5a  
The MAX1307/MAX1311/MAX1315 include an on-chip  
2.5V reference. These devices also accept an external  
+2V to +3V reference.  
F(ult-Toler(nt1ꢀnputs  
±6V1ꢄMAX±3ꢂ7a  
±±6ꢃ5V1ꢄMAX±3±±ꢆMAX±3±5a  
All devices operate from a +4.75 to +5.25V analog sup-  
ply, and a +2.7V to +5.25V digital supply. The devices  
consume 3±mA total supply current when fully opera-  
tional. A 0.±2µA shutdown mode is available to save  
power during idle periods.  
F(st1ꢂꢃ72µs1Conversion1Tiꢅe  
±2-Sitꢁ12ꢂMHz1P(r(llel1ꢀnterf(ce  
ꢀntern(l1or1Emtern(l1Clock  
A 20MHz, 12-bit, parallel data bus provides the conver-  
sion results. An internal 15MHz oscillator, or an externally  
applied clock, drives conversions.  
+2ꢃ5V1ꢀntern(l1Reference1or1+2ꢃꢂV1to1+3ꢃꢂV  
Emtern(l1Reference  
+5V1An(log1Lupplyꢁ1+3V1to1+5V1Bigit(l1Lupply  
36ꢅA1An(log1Lupply1Current  
±ꢃ3ꢅA1Bigit(l1Lupply1Current  
Lhutdown1Mode  
Each device is available in a 48-pin 7mm x 7mm  
TQFP package and operates over the extended  
(-40°C to +85°C) temperature range.  
Applications  
48-Pin1TQFP1P(ck(ge1ꢄ7ꢅꢅ1m17ꢅꢅ1Footprinta  
Industrial Process Control and Automation  
Vibration and Waveform Analysis  
Data-Acquisition Systems  
Pin Configuration  
Ordering Information  
TOP VIEW  
PART  
TEMP1RAIGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PꢀI-PACKAGE  
48 TQFP  
MAX±3ꢂ7ECM  
MAX±3±±ECM  
MAX±3±5ECM  
48 TQFP  
48 TQFP  
AVDD  
AGND  
AGND  
AIN  
1
2
36 D10  
35 D9  
34 D8  
33 D7  
32 D6  
31 D5  
30 D4  
29 D3  
3
4
I.C.  
5
MSV  
I.C.  
6
MAX1307  
MAX1311  
MAX1315  
7
Selector Guide  
I.C.  
8
I.C.  
D2  
9
28  
27  
26  
25  
ꢀIPUT  
RAIGE1ꢄVa  
CHAIIE  
COUIT  
PKG  
COBE  
I.C.  
D1  
10  
11  
12  
PART  
I.C.  
D0  
I.C.  
DVDD  
MAX1307EC  
MAX1311EC  
MAX1315EC  
0 to +5  
±5  
1
1
1
C48-±  
C48-±  
C48-±  
±10  
TQFP  
________________________________________________________________ Maxim Integrated Products  
±
For pricing delivery, and ordering information please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
ASLO UTE1MAXꢀMUM1RATꢀIGL  
AV to AGND .........................................................-0.3V to +±V  
REF , REF, MSV to AGND.....................-0.3V to (AV + 0.3V)  
MS DD  
DD  
DV  
to DGND.........................................................-0.3V to +±V  
REF+, COM, REF- to AGND.....................-0.3V to (AV + 0.3V)  
DD  
DD  
AGND to DGND.....................................................-0.3V to +0.3V  
CH0, I.C. to AGND (MAX1307)..............................................±±V  
CH0, I.C. to AGND (MAX1311) .............................................±1±.5V  
CH0, I.C. to AGND (MAX1315) .............................................±1±.5V  
D0–D11 to DGND ....................................-0.3V to (DV + 0.3V)  
EOC, EOLC, RD, WR, CS to DGND.........-0.3V to (DV + 0.3V)  
Maximum Current into Any Pin Except AV  
,
DD  
DV , AGND, DGND....................................................±50mA  
DD  
Continuous Power Dissipation (T = +70°C)  
A
TQFP (derate 22.7mW/°C above +70°C)................1818.2mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-±5°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
DD  
DD  
DD  
CONVST, CLK, SHDN, CHSHDN to DGND...-0.3V to (DV + 0.3V)  
INTCLK/EXTCLK to AGND.......................-0.3V to (AV + 0.3V)  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
E ECTRꢀCA 1CHARACTERꢀLTꢀCL  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipo-  
REF-  
REF+-to-REF-  
COM  
MSV  
lar devices), f  
= 1±.±7MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), SHDN = DGND, T = T  
to T  
,
MAX  
CLK  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.) (See Figures 3 and 4)  
A
PARAMETER  
LTATꢀC1PERFORMAICE1ꢄIote1±a  
Resolution  
LYMSO  
COIBꢀTꢀOIL  
MꢀI  
TYP  
MAX  
UIꢀTL  
N
12  
Bits  
LSB  
LSB  
Integral Nonlinearity  
INL  
DNL  
±0.5  
±0.3  
±3  
±3  
7
±1.0  
±0.ꢀ  
±10  
±15  
Differential Nonlinearity  
No missing codes  
Unipolar, 0x000 to 0x001  
Bipolar, 0xFFF to 0x000  
Unipolar, 0x000 to 0x001  
Bipolar, 0xFFF to 0x000  
Offset Error  
LSB  
Offset-Error Temperature Drift  
ppm/°C  
7
Gain Error  
±2  
4
±1±  
-80  
LSB  
Gain-Error Temperature Drift  
ppm/°C  
BYIAMꢀC1PERFORMAICE1AT1f 1=15ꢂꢂkHzꢁ1A =1-ꢂꢃ4dSFL  
ꢀI  
ꢀI1  
Signal-to-Noise Ratio  
SNR  
SINAD  
THD  
±8  
±8  
71  
71  
dB  
dB  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
AIA OG1ꢀIPUTL ꢄAꢀIa  
-8±  
84  
dBc  
dBc  
SFDR  
MAX1307  
MAX1311  
MAX1315  
MAX1307  
MAX1311  
MAX1315  
0
+5  
+5  
Input Voltage  
V
-5  
V
AIN  
-10  
+10  
7.58  
8.±±  
Input Resistance  
(Note 2)  
R
kΩ  
AIN  
14.2±  
0.54  
V
V
V
V
V
V
= +5V  
= 0V  
0.72  
0.3ꢀ  
0.74  
CH  
CH  
CH  
CH  
CH  
CH  
MAX1307  
MAX1311  
MAX1315  
-0.157  
-1.1±  
-1.13  
-0.12  
0.2ꢀ  
= +5V  
= -5V  
Input Current  
(Note 2)  
I
mA  
AIN  
-0.87  
0.5±  
= +10V  
= -10V  
-0.85  
2
_______________________________________________________________________________________  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
E ECTRꢀCA 1CHARACTERꢀLTꢀCL1ꢄcontinueda  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipo-  
REF-  
REF+-to-REF-  
COM  
MSV  
lar devices), f  
= 1±.±7MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), SHDN = DGND, T = T  
to T  
,
MAX  
CLK  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.) (See Figures 3 and 4)  
A
PARAMETER  
Input Capacitance  
LYMSO  
COIBꢀTꢀOIL  
MꢀI  
TYP  
MAX  
UIꢀTL  
C
15  
pF  
AIN  
TRACKꢆHO B  
External-Clock Throughput Rate  
Internal-Clock Throughput Rate  
Small-Signal Bandwidth  
Full-Power Bandwidth  
Aperture Delay  
f
f
(Note 3)  
(Note 3)  
1075  
ꢀ83  
20  
ksps  
ksps  
MHz  
MHz  
ns  
TH  
TH  
20  
t
8
AD  
Aperture Jitter  
t
50  
ps  
RMS  
AJ  
ꢀITERIA 1REFEREICE  
REF Output Voltage  
V
2.475  
2.475  
2.500  
30  
2.525  
2.525  
V
REF  
Reference Output-Voltage  
Temperature Drift  
ppm/°C  
REF  
Output Voltage  
V
2.500  
3.850  
2.±00  
1.350  
V
V
V
V
MS  
REFMS  
REF+ Output Voltage  
COM Output Voltage  
REF- Output Voltage  
V
REF+  
V
COM  
V
REF-  
V
V
-
REF+  
Differential Reference Voltage  
2.500  
V
-
REF  
EXTERIA 1REFEREICE ꢄREF1(nd1REF 1(re1emtern(lly1drivena  
ML  
REF Input Voltage Range  
REF Input Resistance  
REF Input Capacitance  
V
2.0  
2.0  
2.5  
5
3.0  
3.0  
V
kΩ  
pF  
V
REF  
R
(Note 4)  
(Note 5)  
REF  
15  
REF  
REF  
REF  
Input Voltage Range  
Input Resistance  
V
2.5  
MS  
MS  
MS  
REFMS  
R
5
kΩ  
pF  
V
REFMS  
Input Capacitance  
15  
REF+ Output Voltage  
COM Output Voltage  
REF- Output Voltage  
V
V
V
V
= +2.5V  
= +2.5V  
= +2.5V  
3.850  
2.±00  
1.350  
REF+  
REF  
REF  
REF  
V
V
COM  
V
V
REF-  
V
V
-
REF+  
Differential Reference Voltage  
V
= +2.5V  
2.500  
V
REF  
-
REF  
BꢀGꢀTA 1ꢀIPUTL RDꢁ1WRꢁ1CSꢁ1C Kꢁ1LHBIꢁ1CHSHDNꢁ1COIVLTa  
Input-Voltage High  
Input-Voltage Low  
Input Hysteresis  
V
0.7 x DV  
V
V
IH  
DD  
V
0.3 x DV  
DD  
IL  
20  
mV  
_______________________________________________________________________________________  
3
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
E ECTRꢀCA 1CHARACTERꢀLTꢀCL1ꢄcontinueda  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipo-  
REF-  
REF+-to-REF-  
COM  
MSV  
lar devices), f  
= 1±.±7MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), SHDN = DGND, T = T  
to T  
,
MAX  
CLK  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.) (See Figures 3 and 4)  
A
PARAMETER  
Input Capacitance  
Input Current  
C OCK-LE ECT1ꢀIPUT ꢄꢀITC KꢆEXTCLKa  
LYMSO  
COIBꢀTꢀOIL  
MꢀI  
TYP  
15  
MAX  
UIꢀTL  
pF  
C
IN  
I
V
= 0 or DV  
DD  
0.02  
±1  
µA  
IN  
IN  
Input-Voltage High  
Input-Voltage Low  
V
0.7 x AV  
V
V
IH  
DD  
V
0.3 x AV  
DD  
IL  
BꢀGꢀTA 1OUTPUTL ꢄBꢂ–B±±ꢁ1EOCꢁ1EOLCa  
Output-Voltage High  
V
I
I
= 0.8mA, Figure 1  
DV - 0.±  
DD  
V
V
OH  
SOURCE  
Output-Voltage Low  
V
= 1.±mA, Figure 1  
SINK  
0.4  
1
OL  
D0–D11 Tri-State Leakage Current  
RD = high or CS = high  
0.0±  
15  
µA  
D0–D11 Tri-State Output  
Capacitance  
RD = high or CS = high  
pF  
POWER1LUPP ꢀEL  
Analog Supply Voltage  
Digital Supply Voltage  
AV  
DV  
4.75  
2.70  
5.25  
5.25  
3ꢀ  
V
V
DD  
DD  
MAX1307  
MAX1311  
MAX1315  
MAX1307  
MAX1311  
MAX1315  
3±  
34  
Analog Supply Current  
I
mA  
mA  
3±  
AVDD  
34  
3±  
1.3  
1.3  
1.3  
0.±  
0.02  
50  
2.±  
2.±  
2.±  
10  
Digital Supply Current  
I
DVDD  
(C  
= 100pF) (Note ±)  
LOAD  
I
SHDN = DV , V  
= float  
AVDD  
DD CH  
Shutdown Current  
(Note 7)  
µA  
dB  
I
SHDN = DV , RD = WR = high  
1
DVDD  
DD  
Power-Supply Rejection Ratio  
PSRR  
AV  
= +4.75V to +5.25V  
DD  
TꢀMꢀIG1CHARACTERꢀLTꢀCL1ꢄFigure1±a  
Internal clock, Figure ±  
External clock, Figure 7  
800  
12  
ꢀ00  
ns  
Time to Conversion Result  
t
CONV  
CLK  
cycles  
CONVST Pulse-Width Low  
(Acquisition Time)  
t
Figures ±, 7 (Note 8)  
0.1  
1000.0  
µs  
ACQ  
CS to RD  
RD to CS  
t
t
Figures ±, 7  
Figures ±, 7  
(Note ꢀ)  
(Note ꢀ)  
ns  
ns  
CTR  
RTC  
Data Access Time  
(RD Low to Valid Data)  
t
Figures ±, 7  
30  
30  
ns  
ACC  
Bus Relinquish Time (RD High)  
CLK Rise to EOC Delay  
t
Figures ±, 7  
Figure 7  
5
ns  
ns  
ns  
ns  
REQ  
t
20  
20  
20  
EOCD  
CLK Rise to EOLC Fall Delay  
CONVST Fall to EOLC Rise Delay  
t
Figure 7  
EOLCD  
t
Figures ±, 7  
CVEOLCD  
4
_______________________________________________________________________________________  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
E ECTRꢀCA 1CHARACTERꢀLTꢀCL1ꢄcontinueda  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipo-  
REF-  
REF+-to-REF-  
COM  
MSV  
lar devices), f  
= 1±.±7MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), SHDN = DGND, T = T  
to T  
,
MAX  
CLK  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.) (See Figures 3 and 4)  
A
PARAMETER  
LYMSO  
COIBꢀTꢀOIL  
Internal clock, Figure ±  
MꢀI  
TYP  
MAX  
UIꢀTL  
50  
ns  
EOC Pulse Width  
t
EOC  
CLK  
cycles  
External clock, Figure 7  
1
External CLK Period  
t
Figure 7  
0.05  
20  
10.00  
20.0  
µs  
ns  
CLK  
External CLK High Period  
External CLK Low Period  
External Clock Frequency  
Internal Clock Frequency  
CONVST High to CLK Edge  
t
Logic sensitive to rising edges, Figure 7  
Logic sensitive to rising edges, Figure 7  
(Note 10)  
CLKH  
t
20  
ns  
CLKL  
f
0.1  
MHz  
MHz  
ns  
CLK  
f
15  
INT  
CNTC  
t
Figure 7  
20  
Iote1±: For the MAX1307, V = 0 to +5V. For the MAX1311, V = -5V to +5V. For the MAX1315, V = -10V to +10V.  
IN  
IN  
IN  
Iote12: The analog input resistance is terminated to an internal bias point (Figure 5). Calculate the analog input current using:  
V
V  
BIAS  
AIN  
I
=
AIN  
R
AIN  
for AIN within the input voltage range.  
Iote13: Throughput rate is a function of clock frequency (f  
). The external clock throughput rate is specified with f  
=
CLK  
CLK  
1±.±7MHz and the internal clock throughput rate is specified with f  
information.  
= 15MHz. See the Data Throughput section for more  
CLK  
Iote14: The REF input resistance is terminated to an internal +2.5V bias point (Figure 2). Calculate the REF input current using:  
VREF 2.5V  
IREF  
=
RREF  
for V  
within the input voltage range.  
REF  
Iote15: The REF input resistance is terminated to an internal +2.5V bias point (Figure 2). Calculate the REF input current using:  
MS  
MS  
VREFMS 2.5V  
IREFMS  
=
RREFMS  
for V  
within the input voltage range.  
REFMS  
Iote16: The analog input is driven with a -0.4dBFS 500kHz sine wave.  
Iote17: Shutdown current is measured with the analog input floating. The large amplitude of the maximum shutdown-current speci-  
fication is due to automated test equipment limitations.  
Iote18: CONVST must remain low for at least the acquisition period. The maximum acquisition time is limited by internal capacitor droop.  
Iote10: CS to WR and CS to RD are internally AND together. Setup and hold times do not apply.  
Iote1±ꢂ: Minimum CLK frequency is limited only by the internal T/H droop rate. Limit the time between the rising edge of CONVST  
and the falling edge of EOLC to a maximum of 1ms.  
_______________________________________________________________________________________  
5
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Typical Operating Characteristics  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipolar  
REF-  
REF+-to-REF-  
COM  
MSV  
devices), f  
= 1±.±7MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), f = 500kHz, A = -0.4dBFS. T = +25°C,  
CLK  
IN IN A  
unless otherwise noted.) (Figures 3 and 4)  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
OFFSET ERROR  
vs. TEMPERATURE  
OFFSET ERROR  
vs. ANALOG SUPPLY VOLTAGE  
16  
1.0  
0.8  
12  
8
0.6  
0.4  
4
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-4  
-8  
-12  
-16  
-40  
-15  
10  
35  
60  
85  
4.7  
4.8  
4.9  
5.0  
AV (V)  
5.1  
5.2  
5.3  
°
TEMPERATURE ( C)  
DD  
GAIN ERROR  
vs. TEMPERATURE  
GAIN ERROR  
vs. ANALOG SUPPLY VOLTAGE  
16  
12  
8
1
0
-1  
4
0
-2  
-3  
-4  
-5  
-4  
-8  
-12  
-16  
-40  
-15  
10  
35  
60  
85  
4.7  
4.8  
4.9  
5.0  
AV (V)  
5.1  
5.2  
5.3  
°
TEMPERATURE ( C)  
DD  
6
_______________________________________________________________________________________  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Typical Operating Characteristics (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipolar  
REF-  
REF+-to-REF-  
COM  
MSV  
devices), f  
= 1±.±7MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), f = 500kHz, A = -0.4dBFS. T = +25°C,  
CLK  
IN IN A  
unless otherwise noted.) (Figures 3 and 4)  
SMALL-SIGNAL BANDWIDTH  
vs. ANALOG INPUT FREQUENCY  
LARGE-SIGNAL BANDWIDTH  
vs. ANALOG INPUT FREQUENCY  
2
0
2
0
A
= -20dBFS  
A
= -0.5dBFS  
IN  
IN  
-2  
-2  
-4  
-4  
-6  
-6  
-8  
-8  
-10  
-12  
-10  
-12  
0.1  
1
10  
100  
0.1  
1
10  
100  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
FFT PLOT  
(2048-POINT DATA RECORD)  
OUTPUT HISTOGRAM (DC INPUT)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
6000  
5000  
4000  
3000  
2000  
1000  
0
f
f
A
= 1.04167Msps  
= 500kHz  
TH  
IN  
5497  
= -0.05dBFS  
IN  
SNR = 70.7dB  
SINAD = 70.6dB  
THD = -87.5dBc  
SFDR = 87.1dBc  
1611  
1084  
0
0
0
100  
200  
300  
400  
500  
2044  
2045  
2046  
2047  
2048  
FREQUENCY (kHz)  
DIGITAL OUTPUT CODE  
_______________________________________________________________________________________  
7
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Typical Operating Characteristics (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipolar  
REF-  
REF+-to-REF-  
COM  
MSV  
devices), f  
= 1±.±7MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), f = 500kHz, A = -0.4dBFS. T = +25°C,  
CLK  
IN IN A  
unless otherwise noted.) (Figures 3 and 4)  
SIGNAL-TO-NOISE RATIO  
vs. CLOCK FREQUENCY  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. CLOCK FREQUENCY  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
60  
0
5
10  
15  
(MHz)  
20  
25  
0
5
10  
15  
(MHz)  
20  
25  
f
f
CLK  
CLK  
TOTAL HARMONIC DISTORTION  
vs. CLOCK FREQUENCY  
SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK FREQUENCY  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
0
5
10  
15  
(MHz)  
20  
25  
0
5
10  
15  
(MHz)  
20  
25  
f
f
CLK  
CLK  
8
_______________________________________________________________________________________  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Typical Operating Characteristics (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipolar  
REF-  
REF+-to-REF-  
COM  
MSV  
devices), f  
= 1±.±7MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), f = 500kHz, A = -0.4dBFS. T = +25°C,  
CLK  
IN IN A  
unless otherwise noted.) (Figures 3 and 4)  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. REFERENCE VOLTAGE  
SIGNAL-TO-NOISE RATIO  
vs. REFERENCE VOLTAGE  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
2.0  
2.2  
2.4  
2.6  
(V)  
2.8  
3.0  
2.0  
2.2  
2.4  
2.6  
(V)  
2.8  
3.0  
V
V
REF  
REF  
TOTAL HARMONIC DISTORTION  
vs. REFERENCE VOLTAGE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. REFERENCE VOLTAGE  
-70  
-72  
-74  
-76  
-78  
-80  
-82  
-84  
-86  
-88  
-90  
100  
95  
90  
85  
80  
75  
70  
2.0  
2.2  
2.4  
2.6  
(V)  
2.8  
3.0  
2.0  
2.2  
2.4  
2.6  
(V)  
2.8  
3.0  
V
REF  
V
REF  
_______________________________________________________________________________________  
0
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Typical Operating Characteristics (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipolar  
REF-  
REF+-to-REF-  
COM  
MSV  
devices), f  
= 1±.±7MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), f = 500kHz, A = -0.4dBFS. T = +25°C,  
CLK  
IN IN A  
unless otherwise noted.) (Figures 3 and 4)  
DIGITAL SUPPLY CURRENT  
vs. DIGITAL SUPPLY VOLTAGE  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
42  
40  
38  
36  
34  
32  
30  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
DV (V)  
DD  
AV (V)  
DD  
ANALOG SHUTDOWN CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
DIGITAL SHUTDOWN CURRENT  
vs. DIGITAL SUPPLY VOLTAGE  
700  
22  
680  
660  
640  
620  
600  
580  
560  
540  
520  
500  
20  
18  
16  
14  
12  
10  
4.7  
4.8  
4.9  
5.0  
AV (V)  
5.1  
5.2  
5.3  
2.5  
3.0  
3.5  
4.0  
DV (V)  
4.5  
5.0  
5.5  
DD  
DD  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.5004  
2.5003  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
-40  
-15  
10  
35  
60  
85  
4.7  
4.8  
4.9  
5.0  
AV (V)  
5.1  
5.2  
5.3  
TEMPERATURE (°C)  
DD  
±ꢂ ______________________________________________________________________________________  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Typical Operating Characteristics (continued)  
(AV  
= +5V, DV  
= +3V, AGND = DGND = 0, V  
= V  
= +2.5V (external reference), C  
= C  
= 0.1µF, C  
=
DD  
DD  
REF  
REFMS  
REF  
REFMS  
REF+  
C
= 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF, C  
= 2.2µF || 0.1µF (unipolar devices), MSV = AGND (bipolar  
REF-  
REF+-to-REF-  
COM  
MSV  
devices), f  
= 1±.±7MHz 50% duty cycle, INTCLK/EXTCLK = AGND (external clock), f = 500kHz, A = -0.4dBFS. T = +25°C,  
CLK  
IN IN A  
unless otherwise noted.) (Figures 3 and 4)  
INTERNAL CLOCK CONVERSION TIME  
INTERNAL CLOCK CONVERSION TIME  
vs. TEMPERATURE  
vs. ANALOG SUPPLY VOLTAGE  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
820  
800  
780  
760  
740  
720  
700  
t
t
CONV  
CONV  
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
-40  
-15  
10  
35  
60  
85  
AV (V)  
DD  
TEMPERATURE (°C)  
ANALOG INPUT CHANNEL CURRENT  
vs. ANALOG INPUT CHANNEL VOLTAGE  
ANALOG INPUT CHANNEL CURRENT  
vs. ANALOG INPUT CHANNEL VOLTAGE  
ANALOG INPUT CHANNEL CURRENT  
vs. ANALOG INPUT CHANNEL VOLTAGE  
2.0  
1.5  
1.0  
0.5  
0
3.0  
2.0  
1.5  
1.0  
0.5  
0
MAX1307  
MAX1311  
MAX1315  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-3.0  
-0.5  
-1.0  
-1.5  
-2.0  
-0.5  
-1.0  
-1.5  
-2.0  
-20 -15 -10 -5  
0
5
10 15 20  
-6  
-4  
-2  
0
2
4
6
-20 -15 -10 -5  
0
5
10 15 20  
V
(V)  
V
(V)  
CH_  
V
(V)  
CH_  
CH_  
______________________________________________________________________________________ ±±  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Pin Description  
PꢀI  
IAME  
AV  
FUICTꢀOI  
is the power input for the analog section of the converter. Apply +5V to AV  
pins together.1See the Layout, Grounding, and Bypassing section for additional  
DD  
Analog Power Input. AV  
Connect all AV  
information.  
.
DD  
DD  
1, 15, 17  
DD  
2, 3, 14,  
1±, 23  
AGND Analog Ground. AGND is the power return for AV .1Connect all AGND pins together.  
DD  
4
A
IN  
Analog Input  
Midscale Voltage Bypass.1For the unipolar MAX1307, connect a 2.2µF and a 0.1µF capacitor from MSV to  
AGND. For the bipolar MAX1311/MAX1315, connect MSV to AGND.  
±
MSV  
INTCLK/ Clock-Mode Select Input.1Connect INTCLK/EXTCLK to AV  
EXTCLK INTCLK/EXTCLK to AGND to use an external clock connected to CLK.  
to select the internal clock. Connect  
DD  
13  
18  
Midscale Reference Bypass/Input.1REF connects through a 5kresistor to the internal +2.5V bandgap  
MS  
reference buffer.  
For the MAX1307 unipolar devices, V  
is the input to the unity-gain buffer that drives MSV.1MSV sets the  
REFMS  
midpoint of the input voltage range.1For internal reference operation, bypass REF with a 0.01µF capacitor  
MS  
REF  
MS  
to AGND.1For external reference operation, drive REF with an external voltage from +2V to +3V.  
MS  
For the MAX1311/MAX1315 bipolar devices, connect REF to REF.1For internal reference operation, bypass  
MS  
the REF /REF node with a 0.01µF capacitor to AGND.1For external reference operation, drive the  
MS  
REF /REF node with an external voltage from +2V to +3V.  
MS  
ADC Reference Bypass/Input. REF connects through a 5kresistor to the internal +2.5V bandgap  
reference buffer.  
For internal reference operation, bypass REF with a 0.01µF capacitor.  
For external reference operation with the MAX1307 unipolar devices, drive REF with an external voltage  
from +2V to +3V.  
1ꢀ  
REF  
For external reference operation with the MAX1311/MAX1315 bipolar devices, connect REF to REF and  
MS  
drive the REF /REF node with an external voltage from +2V to +3V.  
MS  
Positive Reference Bypass.1Bypass REF+ with a 0.1µF capacitor to AGND. Also bypass REF+ to REF- with  
20  
21  
REF+  
COM  
a 2.2µF and a 0.1µF capacitor.1V  
= V  
+ V  
/ 2.  
REF  
REF+  
COM  
Reference Common Bypass.1Bypass COM to AGND with a 2.2µF and a 0.1µF capacitor.  
= 13 / 25 x AV  
V
.
DD  
COM  
Negative Reference Bypass.1Bypass REF- with a 0.1µF capacitor to AGND. Also bypass REF- to REF+ with  
a 2.2µF and a 0.1µF capacitor.  
22  
REF-  
V
= V  
- V  
/ 2.  
REF+  
COM  
REF  
24, 3ꢀ  
25, 38  
DGND Digital Ground. DGND is the power return for DV .1Connect all DGND pins together.  
DD  
Digital Power Input. DV  
powers the digital section of the converter, including the parallel interface. Apply  
DD  
DV  
DD  
+2.7V to +5.25V to DV . Bypass DV  
to DGND with a 0.1µF capacitor.1Connect all DV  
pins together.  
DD  
DD  
DD  
2±  
27  
28  
2ꢀ  
30  
31  
D0  
Digital Output 0 of 12-Bit Parallel Data Bus.1High impedance when RD = 1 or CS = 1.  
Digital Output 1 of 12-Bit Parallel Data Bus.1High impedance when RD = 1 or CS = 1.  
Digital Output 2 of 12-Bit Parallel Data Bus.1High impedance when RD = 1 or CS = 1.  
Digital Output 3 of 12-Bit Parallel Data Bus.1High impedance when RD = 1 or CS = 1.  
Digital Output 4 of 12-Bit Parallel Data Bus.1High impedance when RD = 1 or CS = 1.  
Digital Output 5 of 12-Bit Parallel Data Bus.1High impedance when RD = 1 or CS = 1.  
D1  
D2  
D3  
D4  
D5  
±2 ______________________________________________________________________________________  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Pin Description (continued)  
PꢀI  
32  
33  
34  
35  
3±  
37  
IAME  
D±  
FUICTꢀOI  
Digital Output ± of 12-Bit Parallel Data Bus.1High impedance when RD = 1 or CS = 1.  
Digital Output 7 of 12-Bit Parallel Data Bus.1High impedance when RD = 1 or CS = 1.  
Digital Output 8 of 12-Bit Parallel Data Bus.1High impedance when RD = 1 or CS = 1.  
Digital Output ꢀ of 12-Bit Parallel Data Bus.1High impedance when RD = 1 or CS = 1.  
Digital Output 10 of 12-Bit Parallel Data Bus.1High impedance when RD = 1 or CS = 1.  
Digital Output 11 of 12-Bit Parallel Data Bus.1High impedance when RD = 1 or CS = 1.  
D7  
D8  
Dꢀ  
D10  
D11  
End-of-Conversion Output. EOC goes low to indicate the end of a conversion.1It returns high on the next rising  
CLK edge or the falling CONVST edge.  
40  
41  
EOC  
End-of-Last-Conversion Output. EOLC goes low to indicate the end of the last conversion.1It returns high  
when CONVST goes low for the next conversion sequence.  
EOLC  
42  
43  
RD  
Read Input. Pulling RD low initiates a read command of the parallel data bus.  
WR  
Write Input. WR is not implemented. Connect WR to RD, CS, DGND, or DV  
DD.  
Chip-Select Input.1Pulling CS low activates the digital interface.1Forcing CS high places D0–D11 in high-  
impedance mode.  
44  
45  
CS  
Conversion Start Input. Driving CONVST high initiates the conversion process. The analog inputs are  
sampled on the rising edge of CONVST.  
CONVST  
External Clock Input.1For external clock operation, connect INTCLK/EXTCLK to DGND and drive CLK with  
an external clock signal from 100kHz to 20MHz.1For internal clock operation, connect INTCLK/EXTCLK to  
4±  
47  
CLK  
DV  
and connect CLK to DGND.  
DD  
Shutdown Input. Driving SHDN high initiates device shutdown. Connect SHDN to DGND for normal  
operation.  
SHDN  
48  
CHSHDN CHSHDN Is Not Implemented. Connect CHSHDN to DGND.  
5, 7–12  
I.C.  
Internally Connected. Connect I.C. to AGND.  
______________________________________________________________________________________ ±3  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Detailed Description  
The MAX1307/MAX1311/MAX1315 contain a 1075ksps 12-  
V
DD  
bit ADC with track and hold (T/H). Input scaling on the  
MAX1307/MAX1311/MAX1315 allows a 0 to +5V, ±5V, or  
±10V analog input signal, respectively. Additionally, the  
MAX1307 features ±±V fault-tolerant inputs, while the  
MAX1311/MAX1315 feature ±1±.5V fault-tolerant inputs.  
The MAX1307/MAX1311/MAX1315 include an on-chip  
+2.5V reference. These devices also accept an external  
+2V to +3V reference.  
I
OL  
= 1.6mA  
1.6V  
DEVICE PIN  
The conversion results are available in 0.72µs with a  
sampling rate of 1075ksps. Internal or external clock  
capabilities offer greater flexibility. A high-speed, 20MHz  
parallel interface outputs the conversion results.  
100pF  
I
= 0.8mA  
OH  
Figure 1. Digital Load Test Circuit  
AV  
DD  
MAX1307  
MAX1311  
MAX1315  
DV  
DD  
D11  
DATA  
REGISTER  
OUTPUT  
DRIVERS  
12-BIT  
ADC  
T/H  
A
IN  
D0  
MSV  
WR  
*
CS  
REF+  
COM  
REF-  
RD  
INTERFACE  
AND  
CONTROL  
CONVST  
SHDN  
5k  
5kΩ  
INTCLK/EXTCLK  
REF  
CLK  
CHSHDN  
REF  
MS  
EOC  
2.500V  
EOLC  
DGND  
AGND  
*SWITCH CLOSED ON UNIPOLAR DEVICES, OPEN ON BIPOLAR DEVICES  
Figure 2. Functional Diagram  
±4 ______________________________________________________________________________________  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
25, 38  
+5V  
+2.7V TO +5.25V  
DV  
DD  
0.1µF  
0.1µF  
0.1µF  
1
15  
17  
0.1µF  
AV  
AV  
AV  
DD  
DD  
DD  
24, 39  
48  
DGND  
GND  
CHSHDN  
SHDN  
CLK  
47  
46  
45  
44  
43  
42  
41  
40  
6
18  
19  
MSV  
BIPOLAR  
CONFIGURATION  
0.01µF  
REF  
REF  
MS  
CONVST  
CS  
DIGITAL  
INTERFACE  
AND  
MAX1311  
MAX1315  
CONTROL  
WR  
0.1µF  
20  
REF+  
REF-  
RD  
0.1µF  
2.2µF  
EOLC  
EOC  
22  
0.1µF  
2.2µF  
0.1µF  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
21  
COM  
2, 3, 14, 16, 23  
GND  
AGND  
12  
11  
10  
9
I.C.  
I.C.  
I.C.  
I.C.  
I.C.  
I.C.  
I.C.  
PARALLEL  
DIGITAL  
OUTPUT  
8
7
5
BIPOLAR  
ANALOG  
INPUT  
4
A
IN  
13  
INTCLK/EXTCLK  
Figure 3. Typical Bipolar Operating Circuit  
______________________________________________________________________________________ ±5  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
+5V  
0.1µF  
25, 38  
1
15  
17  
+2.7V TO +5.25V  
DV  
DD  
AV  
AV  
AV  
DD  
DD  
DD  
0.1µF  
0.1µF  
0.1µF  
24, 39  
48  
DGND  
GND  
2.2µF  
0.1µF  
CHSHDN  
SHDN  
CLK  
6
MSV  
REF  
47  
46  
45  
44  
43  
42  
41  
40  
0.01µF  
0.01µF  
UNIPOLAR  
CONFIGURATION  
18  
19  
CONVST  
CS  
MS  
DIGITAL  
INTERFACE  
AND  
MAX1307  
REF  
CONTROL  
WR  
0.1µF  
RD  
20  
REF+  
REF-  
EOLC  
EOC  
0.1µF  
2.2µF  
22  
0.1µF  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
2.2µF  
0.1µF  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
21  
COM  
2, 3, 14, 16, 23  
GND  
AGND  
I.C.  
I.C.  
I.C.  
I.C.  
I.C.  
I.C.  
I.C.  
12  
11  
10  
9
PARALLEL  
DIGITAL  
OUTPUT  
8
7
5
UNIPOLAR  
ANALOG  
INPUTS  
4
A
IN  
13  
INTCLK/EXTCLK  
Figure 4. Typical Unipolar Operating Circuit  
±6 ______________________________________________________________________________________  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Due to the analog input resistive divider formed by R1  
and R2 in Figure 5, any significant analog input source  
resistance (R  
) results in gain error. Further-  
SOURCE  
more, R  
causes distortion due to nonlinear  
SOURCE  
analog input currents. Limit R  
of 100.  
to a maximum  
SOURCE  
MAX1307  
MAX1311  
MAX1315  
Selecting an Input Buffer  
To improve the input signal bandwidth under AC condi-  
tions, drive the input with a wideband buffer (>50MHz)  
that can drive the ADC’s input capacitance (15pF) and  
settle quickly. For example, the MAX4431 or the  
MAX42±5 can be used for 0 to +5V unipolar devices, or  
the MAX4350 can be used for ±5V bipolar inputs.  
AV  
DD  
C
HOLD  
OVERVOLTAGE  
PROTECTION  
CLAMP  
2.5pF  
*R  
SOURCE  
R1  
CH_  
C
SAMPLE  
ANALOG  
SIGNAL  
SOURCE  
UNDERVOLTAGE  
PROTECTION  
CLAMP  
R2  
Most applications require an input buffer to achieve 12-bit  
accuracy. Although slew rate and bandwidth are impor-  
tant, the most critical input buffer specification is settling  
time. At the beginning of the acquisition, the ADC internal  
sampling capacitor array connects to the analog inputs,  
causing some disturbance. Ensure the amplifier is capa-  
ble of settling to at least 12-bit accuracy during the acqui-  
V
BIAS  
*MINIMIZE R  
TO AVOID GAIN ERROR AND DISTORTION.  
SOURCE  
PART INPUT RANGE (V) R1 (k) R2 (k)  
V
(V)  
BIAS  
sition time (t  
). Use a low-noise, low-distortion,  
ACQ  
MAX1307  
MAX1311  
MAX1315  
0 TO +5  
3.33  
6.67  
5.00  
2.86  
2.35  
0.90  
2.50  
2.06  
wideband amplifier that settles quickly and is stable with  
the ADC’s 15pF input capacitance.  
5
10  
13.33  
Refer to the Maxim website at www.maxim-ic.com for  
application notes on how to choose the optimum buffer  
amplifier for your ADC application.  
R1 | | R2 = 2kΩ  
Input Bandwidth  
The input-tracking circuitry has a 20MHz small-signal  
bandwidth, making it possible to digitize high-speed  
transient events and measure periodic signals with  
bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. To avoid high-fre-  
quency signals being aliased into the frequency band  
of interest, anti-alias filtering is recommended.  
Figure 5. Equivalent Analog Input T/H Circuit  
Analog Input  
Track and Hold (T/H)  
The input T/H circuit is controlled by the CONVST input.  
When CONVST is low, the T/H circuit tracks the analog  
input. When CONVST is high, the T/H circuit holds the  
analog input. The rising edge of CONVST is the analog  
Input Range and Protection  
The MAX1307 provides a 0 to +5V input voltage range  
with fault protection of ±±V. The MAX1311 provides a  
±5V input voltage range with fault protection of ±1±.5V.  
The MAX1315 provides a ±10V input voltage range with  
fault protection of ±1±.5V. Figure 5 shows the equiva-  
lent analog input circuit.  
input sampling instant. There is an aperture delay (t  
)
AD  
of 8ns and a 50ps  
aperture jitter (t ).  
AJ  
RMS  
To settle the charge on C  
to 12-bit accuracy,  
SAMPLE  
use a minimum acquisition time (t  
) of 100ns.  
ACQ  
Therefore, CONVST must be low for at least 100ns.  
Although longer acquisition times allow the analog input  
to settle to its final value more accurately, the maximum  
acquisition time must be limited to 1ms. Accuracy with  
conversion times longer than 1ms cannot be guaran-  
teed due to capacitor droop in the input circuitry.  
______________________________________________________________________________________ ±7  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Data Throughput  
The data throughput (f ) of the MAX1307/MAX1311/  
Starting a Conversion  
To start a conversion using internal clock mode, pull  
TH  
MAX1315 is a function of the clock speed (f  
). In  
CONVST low for the acquisition time (t  
). The T/H  
ACQ  
CLK  
internal clock mode, f  
= 15MHz (typ). In external  
acquires the signal while CONVST is low, and conver-  
sion begins on the rising edge of CONVST. The end-of-  
conversion (EOC) signal and end-of-last-conversion  
signal (EOLC) pulse low whenever a conversion result  
is available for reading (Figure ±).  
CLK  
clock mode, these devices accept an f  
between  
CLK  
100kHz and 20MHz. Figures ± and 7 calculate f  
follows:  
as  
TH  
1
f
=
TH  
To start a conversion using external clock mode, pull  
13  
CONVST low for the acquisition time (t  
). The T/H  
ACQ  
t
+ t  
+
ACQ  
QUIET  
f
acquires the signal while CONVST is low. The rising  
edge of CONVST is the sampling instant. Apply an  
external clock to CLK to start the conversion. To avoid  
T/H droop degrading the sampled analog input signals,  
the first CLK pulse must occur within 10µs from the  
rising edge of CONVST. Additionally, the external clock  
frequency must be greater than 100kHz to avoid T/H  
droop degrading accuracy. The conversion result is  
available for read when EOC or ELOC goes low on the  
rising edge of the 13th clock cycle (Figure 7).  
CLK  
where t  
is the period of bus inactivity before the  
QUIET  
rising edge of CONVST (50ns). See the Starting a  
Conversion section for more information.  
Clock Modes  
The MAX1307/MAX1311/MAX1315 perform conversions  
using either an internal clock or external clock. There are  
13 clock periods per conversion.  
In both internal and external clock modes, hold  
CONVST high until the conversion result is read. If  
CONVST goes low in the middle of a conversion, the  
current conversion is aborted and a new conversion is  
initiated. Furthermore, there must be a period of bus  
Internal Clock  
Internal clock mode frees the microprocessor from the  
burden of running the ADC conversion clock. For inter-  
nal clock operation, connect INTCLK/EXTCLK to AV  
DD  
and connect CLK to DGND. Note that INTCLK/EXTCLK  
is referenced to AV , not DV  
inactivity (t  
) for 50ns or longer before the falling  
QUIET  
.
DD  
DD  
edge of CONVST for the specified ADC performance.  
External Clock  
Reading a Conversion Result  
Figures ± and 7 show the interface signals to initiate a  
read operation. CS can be low at all times, low during the  
RD cycles, or the same as RD.  
For external clock operation, connect INTCLK/EXTCLK  
to AGND and connect an external clock source to CLK.  
Note that INTCLK/EXTCLK is referenced to AV , not  
DD  
DV . The external clock frequency can be up to  
DD  
After initiating a conversion by bringing CONVST high,  
wait for EOC or EOLC to go low. In internal clock mode,  
EOC or EOLC goes low within ꢀ00ns. In external clock  
mode, EOC or EOLC goes low on the rising edge of the  
13th CLK cycle. To read the conversion result, drive CS  
and RD low to latch data to the parallel digital output  
bus. Bring RD high to release the digital bus.  
20MHz. Linearity is not guaranteed with clock frequen-  
cies below 100kHz due to droop in the T/H circuits.  
Applications Information  
Digital Interface  
Conversion results are available through the 12-bit digital  
interface (D0–D11). The interface includes the following  
control signals: chip select (CS), read (RD), end of con-  
version (EOC), end of last conversion (EOLC), conversion  
start (CONVST), shutdown (SHDN), internal clock select  
(INTCLK/EXTCLK), and external clock input (CLK).  
Figures ± and 7 and the Timing Characteristics show the  
operation of the interface. D0–D11 go high impedance  
when RD = 1 or CS = 1.  
±8 ______________________________________________________________________________________  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
SAMPLE  
INSTANT  
NEXT SAMPLE  
INSTANT  
t
ACQ  
HOLD  
CONVST  
TRACK  
TRACK  
t
CONV  
EOC  
t
EOC  
t
CVEOLCD  
EOLC  
t
50ns  
QUIET  
t
RTC  
CS*  
t
CTR  
RD  
t
RDL  
AIN  
D0–D11  
t
ACC  
t
REQ  
*CS CAN BE LOW AT ALL TIMES, LOW DURING THE RD CYCLES, OR THE SAME AS RD.  
Figure 6. Reading a Conversion—Internal Clock  
The state of the digital outputs D0–D11 is independent  
of the state of SHDN. If CS and RD are low, the digital  
outputs D0–D11 are active regardless of SHDN. The  
digital outputs only go high impedance when CS or RD  
is high. When the digital outputs are powered down,  
the digital supply current drops to 20nA.  
Power-Up Reset  
After applying power, allow a 1ms wake-up time to  
elapse and then initiate a conversion and discard the  
results. After the conversion is complete, accurate con-  
versions can be obtained.  
Shutdown Modes  
During shutdown the internal reference and analog  
circuits in the device shutdown and the analog supply  
current drops to 0.±µA (typ). Set SHDN high to enter  
shutdown mode.  
Exiting shutdown (falling edge of SHDN) starts a con-  
version in the same way as the rising edge of CONVST.  
After coming out of shutdown, initiate a conversion and  
discard the results. Allow a 1ms wake-up time to expire  
before initiating the first accurate conversion.  
EOC and EOLC are high when the MAX1307/MAX1311/  
MAX1315 are shut down.  
______________________________________________________________________________________ ±0  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
SAMPLE  
INSTANT  
NEXT SAMPLE  
INSTANT  
t
ACQ  
CONVST  
CLK  
HOLD  
TRACK  
t
TRACK  
t
CLK  
t
t
CLKL  
CLKH  
CNTC  
1
2
3
8
9
10  
12  
13  
14  
15  
16  
1
t
t
EOCD  
EOCD  
EOC  
t
EOC  
t
t
EOLCD  
CVEOLCD  
EOLC  
CS*  
t
CONV  
t
= 50ns  
QUIET  
t
RTC  
t
CTR  
RD  
t
RDL  
D0–D11  
AIN  
t
ACC  
*CS CAN BE LOW AT ALL TIMES, LOW DURING THE RD CYCLES, OR THE SAME AS RD.  
t
REQ  
Figure 7. Reading a Conversion—External Clock  
2ꢂ ______________________________________________________________________________________  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Reference  
Midscale ꢀoltage (MSꢀ)  
) sets the midpoint of the ADC  
The voltage at MSV (V  
MSV  
Internal Reference  
The internal reference circuits provide for analog input  
voltages of 0 to +5V for the unipolar MAX1307, ±5V for  
the bipolar MAX1311, or ±10V for the bipolar MAX1315.  
Install external capacitors for reference stability, as indi-  
cated in Table 1 and shown in Figures 3 and 4.  
transfer functions. For the 0 to +5V input range (unipolar  
devices), the midpoint of the transfer function is +2.5V.  
For the ±5V and ±10V input range devices, the midpoint  
of the transfer function is zero.  
As shown in Figure 2, there is a unity-gain buffer  
between REF  
and MSV in the unipolar MAX1307. This  
MS  
As illustrated in Figure 2, the internal reference voltage  
midscale buffer sets the midpoint of the unipolar transfer  
functions to either the internal +2.5V reference or an  
is 2.5V (V  
). This 2.5V is internally buffered to create  
REF  
the voltages at REF+ and REF-. Table 2 shows the volt-  
ages at COM, REF+, and REF-.  
externally applied voltage at REF . V  
REFMS  
follows  
MSV  
MS  
V
within ±3mV.  
External Reference  
External reference operation is achieved by overriding  
the internal reference voltage. Override the internal ref-  
erence voltage by driving REF with a +2.0V to +3.0V  
external reference. As shown in Figure 2, the REF input  
impedance is 5k. For more information about using  
external references, see the Transfer Functions section.  
The midscale buffer is not active for the bipolar  
devices. For these devices, MSV must be connected to  
AGND or externally driven. REF  
must be bypassed  
MS  
with a 0.01µF capacitor to AGND.  
See the Transfer Functions section for more information  
about MSV.  
T(ble1±ꢃ1Reference1Syp(ss1C(p(citors  
ꢀIPUT1VO TAGE1RAIGE  
 OCATꢀOI  
UIꢀPO AR1ꢄµFa  
SꢀPO AR1ꢄµFa  
N/A  
MSV Bypass Capacitor to AGND  
2.2 || 0.1  
0.01  
REF  
Bypass Capacitor to AGND  
0.01  
MS  
REF Bypass Capacitor to AGND  
REF+ Bypass Capacitor to AGND  
REF+ to REF- Capacitor  
0.01  
0.01  
0.1  
0.1  
2.2 || 0.1  
0.1  
2.2 || 0.1  
0.1  
REF- Bypass Capacitor to AGND  
COM Bypass Capacitor to AGND  
2.2 || 0.1  
2.2 || 0.1  
N/A = Not applicable. Connect MSV directly to AGND.  
T(ble12ꢃ1Reference1Volt(ges  
CA CU ATEB1VA UE1ꢄVa CA CU ATEB1VA UE1ꢄVa CA CU ATEB1VA UE1ꢄVa  
1=12ꢃꢂꢂꢂVꢁ 1=12ꢃ5ꢂꢂVꢁ =13ꢃꢂꢂꢂVꢁ  
V
REF  
V
REF  
V
REF1  
PARAMETER  
EQUATꢀOI  
(
(
)
(
)
)
AV =15ꢃꢂV  
BB1  
AV =15ꢃꢂV  
BB1  
AV =15ꢃꢂV  
BB1  
V
V
= 13 / 25 x AV  
DD  
2.±00  
3.±00  
1.±00  
2.000  
2.±00  
3.850  
1.350  
2.500  
2.±00  
4.100  
1.100  
3.000  
COM  
COM  
V
V
= V  
= V  
+ V  
/ 2  
REF  
REF+  
REF+  
COM  
COM  
V
V
- V  
/ 2  
REF-  
REF-  
REF  
V
- V  
V
= V  
- V  
REF- REF+  
REF+  
REF-  
REF  
______________________________________________________________________________________   
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
The input range is centered about V  
, internally set  
Transfer Functions  
MSV  
to +2.5V. For a custom midscale voltage, drive REF  
MS  
Unipolar 0 to +5V Devices  
Table 3 and Figure 8 show the offset binary transfer  
function for the MAX1307 with a 0 to +5V input range.  
The full-scale input range (FSR) is two times the voltage  
at REF. The internal +2.5V reference gives a +5V FSR,  
while an external +2V to +3V reference allows an FSR  
of +4V to +±V, respectively. Calculate the LSB size  
using:  
with an external voltage source and MSV will follow  
REF . Noise present on MSV or REF directly cou-  
ples into the ADC result. Use a precision, low-drift volt-  
age reference with adequate bypassing to prevent  
MSV from degrading ADC performance. For maximum  
FSR, do not violate the absolute maximum voltage rat-  
ings of the analog inputs when choosing MSV.  
MS  
MS  
Determine the input voltage as a function of V  
MSV  
,
REF  
V
, and the output code in decimal using:  
2 x V  
REF  
1 LSB =  
12  
2
V
CH_  
= LSB x CODE + V  
- 2.500V  
10  
MSV  
which equals 1.22mV when using a 2.5V reference.  
T(ble13ꢃ1ꢂ1to15V1Unipol(r1Code1T(ble  
BECꢀMA  
ꢀIPUT1VO TAGE  
EQUꢀVA EIT  
BꢀGꢀTA 1OUTPUT  
COBE  
SꢀIARY  
BꢀGꢀTA  
OUTPUT1COBE  
ꢄVa  
2 x V  
REF  
V
1=1+2ꢃ5V  
1=1+2ꢃ5V  
REF  
0xFFF  
0xFFE  
0xFFD  
0xFFC  
(
)
V
REFML  
ꢄCOBE  
a
±ꢂ  
1111 1111 1111  
= 0xFFF  
40ꢀ5  
40ꢀ4  
204ꢀ  
2048  
2047  
1
+4.ꢀꢀꢀ4 ± 0.5 LSB  
+4.ꢀꢀ82 ± 0.5 LSB  
+2.5018 ± 0.5 LSB  
+2.500± ± 0.5 LSB  
+2.4ꢀꢀ4 ± 0.5 LSB  
+0.0018 ± 0.5 LSB  
+0.000± ± 0.5 LSB  
0x801  
0x800  
0x7FF  
1111 1111 1110  
= 0xFFE  
1000 0000 0001  
= 0x801  
1000 0000 0000  
= 0x800  
0x0003  
0x0002  
0x0001  
0x0000  
2 x V  
212  
REF  
1 LSB =  
0111 1111 1111  
= 0x7FF  
0000 0000 0001  
= 0x001  
0
1
2
2046 2048 2050  
(MSV)  
4093 4095  
3
INPUT VOLTAGE (LSBs)  
0000 0000 0000  
= 0x000  
0
Figure 8. 0 to +5V Unipolar Transfer Function  
22 ______________________________________________________________________________________  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Bipolar 5V Devices  
Table 4 and Figure ꢀ show the two’s complement trans-  
fer function for the ±5V input range MAX1311. The FSR is  
four times the voltage at REF. The internal +2.5V refer-  
ence gives a +10V FSR, while an external +2V to +3V  
reference allows an FSR of +8V to +12V respectively.  
Calculate the LSB size using:  
The input range is centered about V  
. Normally, MSV  
MSV  
= AGND, and the input is symmetrical about zero. For a  
custom midscale voltage, drive MSV with an external  
voltage source. Noise present on MSV directly couples  
into the ADC result. Use a precision, low-drift voltage  
reference with adequate bypassing to prevent MSV  
from degrading ADC performance. For maximum FSR,  
do not violate the absolute maximum voltage ratings of  
the analog inputs when choosing MSV.  
4 x V  
REF  
1 LSB =  
12  
2
Determine the input voltage as a function of V  
,
REF  
V
MSV  
, and the output code in decimal using:  
which equals 2.44mV when using a 2.5V reference.  
V
CH_  
= LSB x CODE + V  
10  
MSV  
T(ble14ꢃ1±5V1Sipol(r1Code1T(ble  
BECꢀMA  
TWO’s  
COMP EMEIT  
BꢀGꢀTA 1OUTPUT  
COBE  
ꢀIPUT1VO TAGE  
ꢄVa  
EQUꢀVA EIT  
BꢀGꢀTA 1OUTPUT  
COBE  
4 x V  
REF  
V
1=1+2ꢃ5V  
0x7FF  
0x7FE  
0x7FD  
0x7FC  
REF  
V
(
)
1=1ꢂ  
MLV  
ꢄCOBE  
a
±ꢂ  
0111 1111 1111 =  
0x7FF  
+2047  
+204±  
+1  
+4.ꢀꢀ88 ± 0.5 LSB  
+4.ꢀꢀ±3 ± 0.5 LSB  
+0.0037 ± 0.5 LSB  
+0.0012 ± 0.5 LSB  
-0.0012 ± 0.5 LSB  
-4.ꢀꢀ±3 ± 0.5 LSB  
-4.ꢀꢀ88 ± 0.5 LSB  
0x001  
0x000  
0xFFF  
0111 1111 1110 =  
0x7FE  
0000 0000 0001 =  
0x001  
0000 0000 0000 =  
0x000  
0
0x803  
0x802  
0x801  
0x800  
4 x V  
212  
REF  
1 LSB =  
1111 1111 1111 =  
0xFFF  
-1  
1000 0000 0001 =  
0x801  
-2048 -2046  
-1  
(MSV)  
INPUT VOLTAGE (V  
0
+1  
+2045 +2047  
IN LSBs)  
MSV  
-2047  
-2048  
- V  
CH_  
1000 0000 0000 =  
0x800  
Figure 9. 5V Bipolar Transfer Function  
______________________________________________________________________________________ 23  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Bipolar 10V Devices  
Table 5 and Figure 10 show the two’s complement trans-  
fer function for the ±10V input range MAX1315. The FSR  
is eight times the voltage at REF. The internal +2.5V refer-  
ence gives a +20V FSR, while an external +2V to +3V ref-  
erence allows an FSR of +1±V to +24V, respectively.  
Calculate the LSB size using:  
The input range is centered about V  
. Normally,  
MSV  
MSV = AGND, and the input is symmetrical about zero.  
For a custom midscale voltage, drive MSV with an  
external voltage source. Noise present on MSV directly  
couples into the ADC result. Use a precision, low-drift  
voltage reference with adequate bypassing to prevent  
MSV from degrading ADC performance. For maximum  
FSR, do not violate the absolute maximum voltage rat-  
ings of the analog inputs when choosing MSV.  
8 x V  
REF  
12  
1 LSB =  
2
Determine the input voltage as a function of V  
,
REF  
V
MSV  
, and the output code in decimal using:  
which equals 4.88mV with a +2.5V internal reference.  
V
CH_  
= LSB x CODE + V  
10 MSV  
T(ble15ꢃ1±±ꢂV1Sipol(r1Code1T(ble  
BECꢀMA  
TWO’s  
COMP EMEIT  
BꢀGꢀTA 1OUTPUT  
COBE  
ꢀIPUT1VO TAGE  
ꢄVa  
EQUꢀVA EIT  
BꢀGꢀTA 1OUTPUT  
COBE  
8 x V  
REF  
0x7FF  
0x7FE  
0x7FD  
0x7FC  
V
1=1+2ꢃ5V  
REF  
V
(
)
1=1ꢂ  
MLV  
ꢄCOBE  
a
±ꢂ  
0111 1111 1111 =  
0x7FF  
+2047  
+204±  
+1  
+ꢀ.ꢀꢀ7± ± 0.5 LSB  
+ꢀ.ꢀꢀ27 ± 0.5 LSB  
+0.0073 ± 0.5 LSB  
0.0024 ± 0.5 LSB  
-0.0024 ± 0.5 LSB  
-ꢀ.ꢀꢀ27 ± 0.5 LSB  
-ꢀ.ꢀꢀ7± ± 0.5 LSB  
0x001  
0x000  
0xFFF  
0111 1111 1110 =  
0x7FE  
0000 0000 0001 =  
0x001  
0000 0000 0000 =  
0x000  
0x803  
0x802  
0x801  
0x800  
0
8 x V  
212  
REF  
1 LSB =  
1111 1111 1111 =  
0xFFF  
-1  
-2048 -2046  
-1  
(MSV)  
INPUT VOLTAGE (V  
0
+1  
+2045 +2047  
IN LSBs)  
MSV  
1000 0000 0001 =  
0x801  
-2047  
-2048  
- V  
CH_  
1000 0000 0000 =  
0x800  
Figure 10. 10V Bipolar Transfer Function  
24 ______________________________________________________________________________________  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Layout, Grounding, and Bypassing  
For best performance use PC boards. Board layout must  
ensure that digital and analog signal lines are separated  
from each other. Do not run analog and digital lines paral-  
lel to one another (especially clock lines), and do not run  
digital lines underneath the ADC package.  
DIGITAL  
GROUND  
POINT  
ANALOG SUPPLY  
+5V RETURN  
DIGITAL SUPPLY  
RETURN +3V TO +5V  
Figure 11 shows the recommended system ground con-  
nections. Establish an analog ground point at AGND and  
a digital ground point at DGND. Connect all analog  
grounds to the analog ground point. Connect all digital  
grounds to the digital ground point. For lowest-noise  
operation, make the power-supply ground returns as low  
impedance and as short as possible. Connect the analog  
ground point to the digital ground point at one location.  
ANALOG  
GROUND  
POINT  
OPTIONAL  
FERRITE  
BEAD  
AV  
DGND  
DD  
AGND  
DV  
DD  
DGND  
DV  
DD  
High-frequency noise in the power supplies degrades  
the ADC’s performance. Bypass the analog power  
plane to the analog ground plane with a 2.2µF capaci-  
DIGITAL  
CIRCUITRY  
DATA  
MAX1307  
MAX1311  
MAX1315  
tor within one inch of the device. Bypass each AV  
to  
DD  
AGND pair of pins with a 0.1µF capacitor as close to  
the device as possible. AV to AGND pairs are pin 1  
DD  
to pin 2, pin 14 to pin 15, and pin 1± to pin 17.  
Likewise, bypass the digital power plane to the digital  
ground plane with a 2.2µF capacitor within one inch of  
Figure 11. Power-Supply Grounding and Bypassing  
the device. Bypass each DV  
to DGND pair of pins  
DD  
with a 0.1µF capacitor as close to the device as possi-  
ble. DV to DGND pairs are pin 24 to pin 25, and pin  
38 to pin 3ꢀ. If a supply is very noisy use a ferrite bead  
as a lowpass filter as shown in Figure 11.  
DD  
Offset Error  
Offset error is a figure of merit that indicates how well  
the actual transfer function matches the ideal transfer  
function at a single point. Typically, the point at which  
offset error is specified is either at or near the zero-  
scale point of the transfer function or at or near the mid-  
scale point of the transfer function.  
Definitions  
Integral Nonlinearity (INL)  
INL is the deviation of the values on an actual transfer  
function from a straight line. For these devices, this  
straight line is drawn between the end points of the  
transfer function, once offset and gain errors have  
been nullified.  
For the unipolar devices (MAX1307), the ideal zero-scale  
transition from 0x000 to 0x001 occurs at 1 LSB above  
AGND (Figure 8, Table 3). Unipolar offset error is the  
amount of deviation between the measured zero-scale  
transition point and the ideal zero-scale transition point.  
Differential Nonlinearity (DNL)  
DNL is the difference between an actual step width and  
the ideal value of 1 LSB. For these devices, the DNL of  
each digital output code is measured and the worst-  
case value is reported in the Electrical Characteristics  
table. A DNL error specification of less than ±1 LSB  
guarantees no missing codes and a monotonic  
transfer function.  
For the bipolar devices (MAX1311/MAX1315), the ideal  
midscale transition from 0xFFF to 0x000 occurs at MSV  
(Figures ꢀ and 10, Tables 4 and 5). The bipolar offset  
error is the amount of deviation between the measured  
midscale transition point and the ideal midscale transi-  
tion point.  
______________________________________________________________________________________ 25  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Gain Error  
Gain error is a figure of merit that indicates how well the  
slope of the actual transfer function matches the slope  
of the ideal transfer function. For the MAX1307/  
MAX1311/MAX1315, the gain error is the difference of  
the measured full-scale and zero-scale transition points  
minus the difference of the ideal full-scale and zero-  
scale transition points.  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS signal  
to the RMS noise plus distortion. RMS noise plus distor-  
tion includes all spectral components to the Nyquist fre-  
quency excluding the fundamental and the DC offset.  
Signal  
2
RMS  
SINAD(dB) = 20 x log  
2 ⎟  
For the unipolar devices (MAX1307), the full-scale tran-  
sition point is from 0xFFE to 0xFFF and the zero-scale  
transition point is from 0x000 to 0x001.  
Noise  
+ Distortion  
RMS  
RMS  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at  
a specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. ENOB for  
a full-scale sinusoidal input waveform is computed as:  
For the bipolar devices (MAX1311/MAX1315), the full-  
scale transition point is from 0x7FE to 0x7FF and the  
zero-scale transition point is from 0x800 to 0x801.  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADC’s reso-  
lution (N bits):  
SINAD 1.7±  
ENOB =  
±.02  
Total Harmonic Distortion (THD)  
THD is the ratio of the RMS sum of the first five harmon-  
ics to the fundamental itself. This is expressed as:  
SNR  
= ±.02 × N + 1.7±  
dB dB  
dB[max]  
2
2
2
2
2
V
+ V + V + V + V  
3 5 ±  
4
2
In reality, there are other noise sources such as thermal  
noise, reference noise, and clock jitter.  
=
THD 20 x log  
V
1
For these devices, SNR is computed by taking the ratio  
of the RMS signal to the RMS noise. RMS noise  
includes all spectral components to the Nyquist fre-  
quency excluding the fundamental, the first five har-  
monics, and the DC offset.  
where V is the fundamental amplitude, and V through  
±
order harmonics.  
1
2
V
are the amplitudes of the 2nd- through ±th-  
26 ______________________________________________________________________________________  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the RMS amplitude of the fundamen-  
tal (maximum signal component) to the RMS value of the  
next-largest spurious component, excluding DC offset.  
SFDR is specified in decibels relative to the carrier (dBc).  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC so that the signal’s slew rate does not limit the  
ADC’s performance. The input frequency is then swept  
up to the point where the amplitude of the digitized  
conversion result has decreased by -3dB.  
Aperture Delay  
Aperture delay (t ) is the time delay from the CONVST  
AD  
Full-Power Bandwidth  
A large, -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by -3dB. This point is defined as full-  
power input bandwidth frequency.  
rising edge to the instant when an actual sample is taken.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
aperture delay.  
Jitter is a concern when considering an ADC’s dynamic  
performance, e.g., SNR. To reconstruct an analog input  
from the ADC digital outputs, it is critical to know the  
time at which each sample was taken. Typical applica-  
tions use an accurate sampling clock signal that has  
low jitter from sampling edge to sampling edge. For a  
system with a perfect sampling clock signal, with no  
clock jitter, the SNR performance of an ADC is limited  
by the ADC’s internal aperture jitter as follows:  
DC Power-Supply Rejection (PSRR)  
DC PSRR is defined as the change in the positive full-  
scale transfer-function point caused by a ±5% variation  
in the analog power-supply voltage (AV ).  
DD  
Chip Information  
TRANSISTOR COUNT: 50,000  
PROCESS: 0.±µm BiCMOS  
1
=
SNR 20 x log  
2 x π x f x t  
IN  
AJ  
where f represents the analog input frequency and  
IN  
t
AJ  
is the time of the aperture jitter.  
______________________________________________________________________________________ 27  
1075ksps, 12-Bit, Parallel-Output ADCs with  
10, 5, and 0 to +5ꢀ Analog Input Ranges  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to wwwꢃꢅ(miꢅ-icꢃcoꢅꢆp(ck(ges.)  
PACKAGE OUTLINE, 32/48L TQFP, 7x7x1.4mm  
1
21-0054  
E
2
PACKAGE OUTLINE, 32/48L TQFP, 7x7x1.4mm  
2
21-0054  
E
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
28 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1315ECM+

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBC, TQFP-48
MAXIM

MAX1315ECM+T

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, BICMOS, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBC, TQFP-48
MAXIM

MAX1316

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with 10V, 5V, and 0 to +5V Analog Input Ranges
MAXIM

MAX1316ECM

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with 10V, 5V, and 0 to +5V Analog Input Ranges
MAXIM

MAX1316ECM+

暂无描述
MAXIM

MAX1316ECM+T

暂无描述
MAXIM

MAX1316ECM-T

ADC, Proprietary Method, 14-Bit, 1 Func, 8 Channel, Parallel, Word Access, BICMOS, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBC, TQFP-48
MAXIM

MAX1316_08

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with ±10V, ±5V, and 0 to +5V Analog Input Ranges
MAXIM

MAX1317

8-/4-/2-Channel, 14-Bit, Simultaneous-Sampling ADCs with 10V, 5V, and 0 to +5V Analog Input Ranges
MAXIM

MAX13170E

Fully Assembled and Tested
MAXIM

MAX13170ECAI+

Line Transceiver, 3 Func, 3 Driver, 3 Rcvr, BICMOS, PDSO28, 5.30 X 10.20 MM, LEAD FREE, SSOP-28
MAXIM

MAX13170EEVKIT+

Fully Assembled and Tested
MAXIM