MAX1338ETN-T [MAXIM]

ADC, Proprietary Method, 14-Bit, 1 Func, 4 Channel, Parallel, Word Access, BICMOS, 8 X 8 MM, 0.80 MM HEIGHT, MO-220, QFN-56;
MAX1338ETN-T
型号: MAX1338ETN-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Proprietary Method, 14-Bit, 1 Func, 4 Channel, Parallel, Word Access, BICMOS, 8 X 8 MM, 0.80 MM HEIGHT, MO-220, QFN-56

文件: 总24页 (文件大小:704K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3151; Rev 1; 7/04  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
General Description  
Features  
The MAX1338 14-bit, analog-to-digital converter (ADC)  
offers four simultaneously sampled, fully differential input  
channels, with independent track-and-hold (T/H) circuitry  
for each channel. The input channels are individually  
software programmable for input ranges of ±1ꢀ0, ±0,  
±±.ꢁ0, and ±1.±ꢁ0. The input channels feature fault tol-  
erance to ±1ꢂ0. The internal T/H circuits have a 1ꢃns  
aperture delay and 1ꢀꢀps aperture-delay matching.  
150ksps Sample Rate per Channel  
All Four Input Channels Simultaneously Sampled  
16ns Aperture Delay  
100ps Aperture-Delay Matching  
Channel-Independent Software-Selectable Input  
Range: ±10ꢀV ±5ꢀV ±,ꢁ5ꢀV ±1ꢁ,5ꢀ  
±1ꢂꢀ Fault-ꢃolerant Inputs  
A 14-bit parallel bus provides the conversion result with  
a maximum per-channel output rate of 1ꢁꢀksps  
(ꢃꢀꢀksps for all four channels). The MAX1338 has an  
on-board oscillator and ±.ꢁ0 internal reference. An  
external clock and/or reference can also be used.  
Dynamic Performance at 10kHz Input  
SNR: ꢂꢂdB  
SINAD: ꢂ6dB  
SFDR: 98dBc  
The MAX1338 operates from a +ꢁ0 supply for analog  
inputs and digital core. The device operates from a +±.ꢂ0  
to +ꢁ.±ꢁ0 supply for the digital I/O lines. The MAX1338  
features two power-saving modes: standby mode and  
shutdown mode. Standby mode allows rapid wake-up  
and reduces quiescent current to 4mA (typ), and shut-  
down mode reduces sleep current to less than 1ꢀµA (typ).  
ꢃHD: -83dBc  
DC Performance  
INL: ±, LSB  
DNL: ±1 LSB  
Offset Error: ±± LSB  
Gain Error: ±0ꢁ1ꢄ FSR  
The MAX1338 is available in an 8mm x 8mm x ꢀ.8mm,  
ꢁꢃ-pin, thin QFN package. The device operates over  
the extended -4ꢀ°C to +8ꢁ°C temperature range.  
1±-Bit Parallel Interface  
Internal Clock and Reference ꢀoltage  
+5ꢀ Analog and Digital Supplies  
+,ꢁꢂꢀ to +5ꢁ,5ꢀ Digital I/O Supply  
56-Pin ꢃhin QFN Package (8mm x 8mm x 0ꢁ8mm)  
Applications  
Multiple-Channel Data Recorders  
0ibration Analysis  
Motor Control: 3-Phase 0oltage, Current, and  
Power Measurement  
Ordering Information  
PARꢃ  
ꢃEMP RANGE  
PIN-PACKAGE  
Optical Communication Equipment  
MAX1338ETN  
-4ꢀ°C to +8ꢁ°C  
ꢁꢃ Thin QFN-EP*  
*EP = Exposed pad.  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
ABSOLUꢃE MAXIMUM RAꢃINGS  
A0  
D0  
DR0  
A0  
to AGND .........................................................-ꢀ.30 to +ꢃ0  
to DGND.........................................................-ꢀ.30 to +ꢃ0  
to DRGND....................................................-ꢀ.30 to +ꢃ0  
CS, RD, WR, CON0ST, to DRGND........-ꢀ.30 to (DR0  
SHDN, STANDBY, CLK, EOC,  
+ ꢀ.30)  
+ ꢀ.30)  
DD  
DD  
DD  
DD  
EOLC to DRGND................................-ꢀ.30 to (DR0  
DD  
to D0 .......................................................-ꢀ.30 to +ꢀ.30  
Maximum Current into Any Pin .........................................±ꢀmA  
DD  
DD  
DGND to DRGND..................................................-ꢀ.30 to +ꢀ.30  
AGND to DGND.....................................................-ꢀ.30 to +ꢀ.30  
AGND to DRGND ..................................................-ꢀ.30 to +ꢀ.30  
AINꢀ+, AINꢀ-, AIN1+, AIN1-, AIN±+, AIN±-, AIN3+,  
Continuous Power Dissipation (T = +ꢂꢀ°C)  
A
ꢁꢃ-Pin Thin QFN (derate 31.3mW /°C above +ꢂꢀ°C)....±ꢁꢀꢀmW  
Operating Temperature Range ...........................-4ꢀ°C to +8ꢁ°C  
Storage Temperature Range.............................-ꢃꢁ°C to +1ꢁꢀ°C  
Maximum Junction Temperature .....................................+1ꢁꢀ°C  
Lead Temperature (soldering, 1ꢀs) .................................+3ꢀꢀ°C  
AIN3- to AGND.....................................................-1ꢂ0 to +1ꢂ0  
Dꢀ–D13 to DRGND................................-ꢀ.30 to (DR0  
+ ꢀ.30)  
DD  
REFADC, REFP1, REFP±, REFN1, REFN±, COM1, COM± to  
Junction to Ambient Thermal Resistance θ ..................3±°C/W  
JA  
AGND....................................................-ꢀ.30 to (A0  
INTCLK/EXTCLK to AGND.......................-ꢀ.30 to (A0  
+ ꢀ.30)  
+ ꢀ.30)  
Junction to Case Thermal Resistance θ .........................±°C/W  
DD  
DD  
JC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECꢃRICAL CHARACꢃERISꢃICS  
(A0  
= D0  
= +ꢁ.ꢀ0, DR0  
= +3.ꢀ0, AGND = DGND = DRGND = ꢀ, INTCLK/EXTCLK = AGND, f  
= ꢁMHz, input range =  
DD  
DD  
DD  
CLK  
±1ꢀ0, REFP± = REFP1, REFN± = REFN1, COM1 = COM±, 1.ꢀnF from REFADC to AGND, 1.ꢀµF and ꢀ.1µF from COM1 to AGND,  
ꢀ.1µF from REFP1 to AGND, ꢀ.1µF from REFN1 to AGND, 1.ꢀµF from REFP1 to REFN1. Typical values are at T = +±ꢁ°C. T = T  
MIN  
A
A
to T  
, unless otherwise noted.)  
MAX  
PARAMEꢃER  
SYMBOL  
CONDIꢃIONS  
MIN  
ꢃYP  
MAX  
UNIꢃS  
SꢃAꢃIC PERFORMANCE  
Resolution  
N
14  
Bits  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
(Note 1)  
1
ꢀ.±ꢁ  
4
3
1
No missing codes (Note 1)  
(Note 1)  
1ꢃ  
Offset-Error Temperature  
Coefficient  
ppm/°C  
Offset-Error Matching  
Gain Error  
1ꢀ  
ꢀ.1  
±ꢀ  
LSB  
%FSR  
LSB  
Offset nulled (Notes 1, ±)  
Offset nulled  
ꢀ.3ꢁ  
Channel Gain-Error Matching  
Gain-Error Temperature  
Coefficient  
Offset nulled  
1ꢀ  
ppm/°C  
DYNAMIC PERFORMANCE (at f = 10kHzV A = -0ꢁ,dBFS)  
IN  
IN  
Sampling Rate Per Channel  
Signal-to-Noise Ratio  
Simultaneous on all channels  
(Note 1)  
1ꢁꢀ  
-8ꢀ  
ksps  
dB  
SNR  
SINAD  
THD  
ꢂꢁ  
ꢂ4  
ꢂꢂ  
ꢂꢃ  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Channel-to-Channel Isolation  
ANALOG INPUꢃS (AIN_)  
(Note 1)  
dB  
(Note 1)  
-83  
dBc  
dBc  
dB  
SFDR  
Range ꢀ (Note 1)  
(Note 1)  
8ꢁ  
8ꢀ  
Range set bits = (ꢀ,ꢀ)  
Range set bits = (ꢀ,1)  
Range set bits = (1,ꢀ)  
Range set bits = (1,1)  
-1ꢀ  
-ꢁ  
+1ꢀ  
+ꢁ  
Input Differential 0oltage Range  
0
-±.ꢁ  
-1.±ꢁ  
+±.ꢁ  
+1.±ꢁ  
,
_______________________________________________________________________________________  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
ELECꢃRICAL CHARACꢃERISꢃICS (continued)  
(A0  
= D0  
= +ꢁ.ꢀ0, DR0  
= +3.ꢀ0, AGND = DGND = DRGND = ꢀ, INTCLK/EXTCLK = AGND, f  
= ꢁMHz, input range =  
DD  
DD  
DD  
CLK  
±1ꢀ0, REFP± = REFP1, REFN± = REFN1, COM1 = COM±, 1.ꢀnF from REFADC to AGND, 1.ꢀµF and ꢀ.1µF from COM1 to AGND,  
ꢀ.1µF from REFP1 to AGND, ꢀ.1µF from REFN1 to AGND, 1.ꢀµF from REFP1 to REFN1. Typical values are at T = +±ꢁ°C. T = T  
MIN  
A
A
to T  
, unless otherwise noted.)  
MAX  
PARAMEꢃER  
SYMBOL  
CONDIꢃIONS  
Range set bits = (ꢀ,ꢀ)  
MIN  
-ꢁ  
ꢃYP  
MAX  
+ꢁ  
UNIꢃS  
Range set bits = (ꢀ,1)  
Range set bits = (1,ꢀ)  
Range set bits = (1,1)  
All settings  
-±.ꢁ  
+±.ꢁ  
Input Common-Mode Range  
0
-1.±ꢁ  
-ꢀ.ꢃ±ꢁ  
+1.±ꢁ  
+ꢀ.ꢃ±ꢁ  
Input Resistance  
ꢃ.±ꢁ  
1ꢁ  
1
kΩ  
pF  
Input Capacitance  
Small-Signal Bandwidth  
Full-Power Bandwidth  
INꢃERNAL REFERENCE (REFADC)  
Output 0oltage  
SSBW  
FPBW  
(Note 1)  
(Note 1)  
MHz  
kHz  
ꢂꢁ  
±.4ꢂꢁ  
±.ꢁ  
±.ꢁ  
±.ꢁ±ꢁ  
0
0
REFP–  
REFN  
Differential Reference 0oltage  
Output-0oltage Temperature  
Coefficient  
ꢁꢀ  
ppm/°C  
Load Regulation  
0/mA  
EXꢃERNAL REFERENCE  
REFADC 0oltage Input Range  
REFADC Input Current  
REFADC Input Resistance  
REFADC Input Capacitance  
ꢃRACK/HOLD (ꢃ/H)  
Aperture Delay  
±.ꢀ  
±.ꢁ  
3.ꢀ  
0
(Note 3)  
-±ꢁꢀ  
+±ꢁꢀ  
µA  
kΩ  
pF  
R
t
REF  
1ꢁ  
(Note 1)  
(Note 1)  
1ꢃ  
1ꢀꢀ  
ꢁꢀ  
ns  
ps  
AD  
Aperture-Delay Matching  
Aperture Jitter  
t
ps  
RMS  
AJ  
CLOCK-SELECꢃ INPUꢃ (INꢃCLK/EXTCLK)  
ꢀ.ꢂ x  
Input-0oltage High  
Input-0oltage Low  
0
0
0
IH  
A0  
DD  
ꢀ.3 x  
0
IL  
A0  
DD  
DIGIꢃAL INꢃERFACE AND CONꢃROL INPUꢃS (CSV RDV WRV CONꢀSꢃV SHDNV CLKV SꢃANDBY)  
ꢀ.ꢂ x  
DR0  
Input-0oltage High  
Input-0oltage Low  
0
0
0
IH  
DD  
ꢀ.3 x  
DR0  
0
IL  
DD  
Input Hysteresis  
ꢁꢀ  
1ꢁ  
m0  
pF  
Input Capacitance  
C
IN  
_______________________________________________________________________________________  
3
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
ELECꢃRICAL CHARACꢃERISꢃICS (continued)  
(A0  
= D0  
= +ꢁ.ꢀ0, DR0  
= +3.ꢀ0, AGND = DGND = DRGND = ꢀ, INTCLK/EXTCLK = AGND, f  
= ꢁMHz, input range =  
DD  
DD  
DD  
CLK  
±1ꢀ0, REFP± = REFP1, REFN± = REFN1, COM1 = COM±, 1.ꢀnF from REFADC to AGND, 1.ꢀµF and ꢀ.1µF from COM1 to AGND,  
ꢀ.1µF from REFP1 to AGND, ꢀ.1µF from REFN1 to AGND, 1.ꢀµF from REFP1 to REFN1. Typical values are at T = +±ꢁ°C. T = T  
MIN  
A
A
to T  
, unless otherwise noted.)  
MAX  
PARAMEꢃER  
SYMBOL  
CONDIꢃIONS  
MIN  
ꢃYP  
MAX  
UNIꢃS  
Input Current  
I
0
= ꢀ or DR0  
±1  
µA  
IN  
IN  
DD  
DIGIꢃAL INꢃERFACE AND CONꢃROL OUꢃPUꢃS (EOCV EOLC)  
DR0  
- ꢀ.ꢃ  
DD  
Output-0oltage High  
0
Sourcing ꢀ.8mA  
Sinking 1.ꢃmA  
0
0
OH  
Output-0oltage Low  
0
ꢀ.4  
OL  
PARALLEL DIGIꢃAL I/O (D0–Dꢂ)  
DR0  
-
DD  
Output-0oltage High  
0
Sourcing ꢀ.8mA  
Sinking 1.ꢃmA  
0
OH  
ꢀ.ꢃ  
Output-0oltage Low  
Leakage Current  
0
ꢀ.4  
1
0
OL  
µA  
pF  
Tristate Output Capacitance  
RD = 1 or CS = 1  
1ꢁ  
ꢀ.ꢂ x  
Input-0oltage High  
Input-0oltage Low  
0
0
0
IH  
DR0  
DD  
ꢀ.3 x  
0
IL  
DR0  
DD  
Input Hysteresis  
Input Capacitance  
Input Current  
ꢁꢀ  
1ꢁ  
m0  
pF  
µA  
C
IN  
I
0
= ꢀ or DR0  
±1  
IN  
IN  
DD  
PARALLEL DIGIꢃAL OUꢃPUꢃS (D8–D13)  
DR0  
-
DD  
Output-0oltage High  
0
Sourcing ꢀ.8mA  
Sinking 1.ꢃmA  
0
OH  
ꢀ.ꢃ  
Output-0oltage Low  
0
ꢀ.4  
1
0
OL  
Leakage Current  
µA  
pF  
Tristate Output Capacitance  
POWER SUPPLIES  
1ꢁ  
Analog Supply 0oltage  
Digital Supply 0oltage  
Parallel Digital I/O Supply 0oltage  
A0  
D0  
4.ꢂꢁ  
4.ꢂꢁ  
±.ꢂꢀ  
ꢁ.±ꢁ  
ꢁ.±ꢁ  
ꢁ.±ꢁ  
ꢃꢀ  
0
0
0
DD  
DD  
DR0  
DD  
41  
Analog Supply Current  
Digital Supply Current  
AI  
DI  
SHDN = 1  
ꢀ.ꢀꢀꢁ  
4.±  
ꢀ.1  
mA  
mA  
DD  
STANDBY = 1, SHDN = ꢀ  
3
SHDN = 1  
ꢀ.ꢀꢀ1  
ꢀ.ꢀꢀ1  
ꢀ.ꢀꢁ  
ꢀ.ꢀꢁ  
3
DD  
STANDBY = 1, SHDN = ꢀ  
SHDN = 1  
ꢀ.ꢀꢁ  
Digital Driver Supply Current  
DRI  
mA  
dB  
DD  
STANDBY = 1, SHDN = ꢀ  
4.ꢂꢁ0 to ꢁ.±ꢁ0 (Note 1)  
ꢀ.ꢀꢁ  
Analog Power-Supply Rejection  
ꢂꢁ  
±
_______________________________________________________________________________________  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
ELECꢃRICAL CHARACꢃERISꢃICS (continued)  
(A0  
= D0  
= +ꢁ.ꢀ0, DR0  
= +3.ꢀ0, AGND = DGND = DRGND = ꢀ, INTCLK/EXTCLK = AGND, f  
= ꢁMHz, input range =  
DD  
DD  
DD  
CLK  
±1ꢀ0, REFP± = REFP1, REFN± = REFN1, COM1 = COM±, 1.ꢀnF from REFADC to AGND, 1.ꢀµF and ꢀ.1µF from COM1 to AGND,  
ꢀ.1µF from REFP1 to AGND, ꢀ.1µF from REFN1 to AGND, 1.ꢀµF from REFP1 to REFN1. Typical values are at T = +±ꢁ°C. T = T  
MIN  
A
A
to T  
, unless otherwise noted.)  
MAX  
PARAMEꢃER  
SYMBOL  
CONDIꢃIONS  
MIN  
ꢃYP  
MAX  
UNIꢃS  
ꢃIMING CHARACꢃERISꢃICS (Figures 4, ꢁ, and ꢃ)  
Internal clock  
External clock  
Internal clock  
External clock  
±.9  
3.±  
1ꢃ  
ꢃꢀꢀ  
3
3.ꢁ  
µs  
Time to First Conversion Result  
t
EOC1  
CLK  
Cycles  
ns  
Time to Subsequent Conversions  
CON0ST Pulse-Width Low  
t
NEXT  
CLK  
Cycles  
Internal clock  
External clock  
ꢀ.±  
ꢀ.1  
3ꢀ  
3ꢀ  
3ꢀ  
3ꢀ  
t
µs  
CON0ST  
CS Pulse Width  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS  
RD Pulse-Width Low  
RD Pulse-Width High  
WR Pulse-Width Low  
CS to WR Setup Time  
WR to CS Hold Time  
CS to RD Setup Time  
RD to CS Hold Time  
t
RDL  
RDH  
WRL  
CTW  
WTC  
t
t
t
t
t
CTR  
RTC  
t
Data Access Time  
(RD Low to 0alid Data)  
t
Figure 1  
Figure 1  
3ꢀ  
3ꢀ  
ns  
ns  
ns  
ns  
ACC  
Bus Relinquish Time  
(RD High to D_ High-Z)  
t
REQ  
CLK Rise to End-of-Conversion  
(EOC) Rise/Fall Delay  
t
±ꢀ  
±ꢀ  
EOCD  
CLK Rise to End-of-Last-  
Conversion (EOLC) Fall Delay  
t
EOLCD  
CON0ST Rise to EOLC Fall Delay  
EOC Pulse-Width Low  
t
±ꢀ  
ns  
ns  
C0EOLCD  
Internal clock  
External clock  
18ꢀ  
±ꢀꢀ  
t
EOC  
CLK  
Cycle  
1
Wake-Up Time From Standby  
Wake-Up Time From Shutdown  
µs  
ns  
All bypass capacitors discharged  
_______________________________________________________________________________________  
5
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
ELECꢃRICAL CHARACꢃERISꢃICS (continued)  
(A0  
= D0  
= +ꢁ.ꢀ0, DR0  
= +3.ꢀ0, AGND = DGND = DRGND = ꢀ, INTCLK/EXTCLK = AGND, f  
= ꢁMHz, input range =  
DD  
DD  
DD  
CLK  
±1ꢀ0, REFP± = REFP1, REFN± = REFN1, COM1 = COM±, 1.ꢀnF from REFADC to AGND, 1.ꢀµF and ꢀ.1µF from COM1 to AGND,  
ꢀ.1µF from REFP1 to AGND, ꢀ.1µF from REFN1 to AGND, 1.ꢀµF from REFP1 to REFN1. Typical values are at T = +±ꢁ°C. T = T  
MIN  
A
A
to T  
, unless otherwise noted.)  
MAX  
PARAMEꢃER  
SYMBOL  
CONDIꢃIONS  
MIN  
ꢃYP  
MAX  
UNIꢃS  
EOC Fall to RD Fall Setup Time  
EOLC Fall to RD Fall Setup Time  
Input Data Setup Time  
Input Data Hold Time  
t
ns  
ns  
EOCRD  
t
EOLCRD  
t
t
1ꢀ  
1ꢀ  
1ꢃꢃ  
ꢃꢀ  
ꢃꢀ  
1
ns  
DTW  
WTD  
ns  
External CLK Period  
t
±ꢀꢀ  
ns  
CLK  
External CLK High Period  
External CLK Low Period  
External Clock Frequency  
Internal Clock Frequency  
CON0ST High to CLK Edge  
Quiet Time  
t
Logic sensitive to rising edges  
Logic sensitive to rising edges  
(Note 4)  
ns  
CLKH  
t
ns  
CLKL  
f
MHz  
MHz  
ns  
CLK  
f
ꢁ.ꢀ  
3ꢀ  
ꢃꢀꢀ  
ꢁ.±ꢁ  
ꢁ.ꢁ  
INT  
t
CNTC  
t
ns  
QUIET  
Note 1: See definition for this parameter in the Definitions section.  
Note ,: Differential reference voltage (REFP–REFN) error nulled.  
Note 3: This is the load the MAX1338 presents to an external reference at REFADC.  
Note ±: Minimum CLK frequency is limited only by the internal T/H droop rate. Limit the time between the rising edge of CON0ST to  
the falling edge of EOLC to a maximum of ꢀ.±ꢁms.  
1.6mA  
1.6V  
TO OUTPUT PIN  
50pF  
0.8mA  
Figure 1. Load Circuit for Data Access Time and Bus-  
Relinquish Time  
6
_______________________________________________________________________________________  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
Typical Operating Characteristics  
(A0  
= D0  
= +ꢁ.ꢀ0, DR0  
= +3.ꢀ0, AGND = DGND = DRGND = ꢀ, INTCLK/EXTCLK = AGND, f  
= ꢁMHz, input range =  
DD  
DD  
DD  
CLK  
±1ꢀ0, REFP± = REFP1, REFN± = REFN1, COM1 = COM±, 1.ꢀnF from REFADC to AGND, 1.ꢀµF and ꢀ.1µF from COM1 to AGND,  
ꢀ.1µF from REFP1 to AGND, ꢀ.1µF from REFN1 to AGND, 1.ꢀµF from REFP1 to REFN1.)  
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
OFFSET ERROR  
vs. SUPPLY VOLTAGE  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
0.8  
0.6  
0.4  
0.2  
0
0
-1  
-2  
-3  
-4  
-5  
-6  
0.6  
0.4  
0.2  
0
CHANNEL 0  
CHANNEL 2  
CHANNEL 1  
-0.2  
-0.4  
-0.6  
-0.8  
-0.2  
-0.4  
-0.6  
CHANNEL 3  
4.85  
-8192  
-4096  
0
4096  
8192  
4.75  
4.95  
5.05  
5.15  
5.25  
-8192  
-4096  
0
4096  
8192  
OUTPUT CODE (DECIMAL)  
AV (V)  
DD  
OUTPUT CODE (DECIMAL)  
GAIN ERROR  
vs. SUPPLY VOLTAGE  
OFFSET ERROR  
vs. TEMPERATURE  
GAIN ERROR  
vs. TEMPERATURE  
-0.13  
-0.14  
-0.15  
-0.16  
-0.17  
-0.18  
-0.19  
-0.20  
-0.21  
15  
10  
5
0.15  
0.10  
0.05  
0
CH1  
CH2  
CH3  
0
-5  
-0.05  
-0.10  
-0.15  
-10  
-15  
CH0  
REFERENCE ERROR NULLED  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT HISTOGRAM  
(DC INPUT)  
ANALOG INPUT BANDWIDTH  
6000  
0.1  
OFFSET NORMALIZED  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.6  
-0.7  
-0.8  
5000  
4000  
3000  
2000  
1000  
0
4584.25  
1802.75  
1646.25  
97.25  
-2  
61  
-1  
0
1
2
0
50  
100  
(kHz)  
150  
200  
DIGITAL OUTPUT CODE  
f
IN  
_______________________________________________________________________________________  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
Typical Operating Characteristics (continued)  
(A0  
= D0  
= +ꢁ.ꢀ0, DR0  
= +3.ꢀ0, AGND = DGND = DRGND = ꢀ, INTCLK/EXTCLK = AGND, f  
= ꢁMHz, input range =  
DD  
DD  
DD  
CLK  
±1ꢀ0, REFP± = REFP1, REFN± = REFN1, COM1 = COM±, 1.ꢀnF from REFADC to AGND, 1.ꢀµF and ꢀ.1µF from COM1 to AGND,  
ꢀ.1µF from REFP1 to AGND, ꢀ.1µF from REFN1 to AGND, 1.ꢀµF from REFP1 to REFN1.)  
SIGNAL-TO-NOISE RATIO  
vs. CLOCK FREQUENCY  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. CLOCK FREQUENCY  
FFT AT f  
= 150ksps, f = 10kHz  
IN  
SAMPLE  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
0
-25  
-50  
-75  
-100  
-125  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
3.0  
3.0  
0
15  
30  
45  
60  
75  
f
(MHz)  
f
(MHz)  
CLK  
CLK  
FREQUENCY (kHz)  
TOTAL HARMONIC DISTORTION  
vs. CLOCK FREQUENCY  
SIGNAL-TO-NOISE RATIO  
vs. REFERENCE VOLTAGE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK FREQUENCY  
-90  
-92  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
110  
105  
100  
95  
-94  
-96  
-98  
-100  
-102  
-104  
-106  
-108  
-110  
90  
85  
80  
1
2
3
4
5
6
7
8
9
10  
2.0  
2.2  
2.4  
2.6  
(V)  
2.8  
1
2
3
4
5
6
7
8
9
10  
f
(MHz)  
V
REFADC  
CLK  
f
(MHz)  
CLK  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. REFERENCE VOLTAGE  
TOTAL HARMONIC DISTORTION  
vs. REFERENCE VOLTAGE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. REFERENCE VOLTAGE  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
-85  
-87  
110  
105  
100  
95  
-89  
-91  
-93  
-95  
-97  
90  
-99  
-101  
-103  
-105  
85  
80  
2.0  
2.2  
2.4  
2.6  
(V)  
2.8  
3.0  
2.0  
2.2  
2.4  
2.6  
(V)  
2.8  
3.0  
2.0  
2.2  
2.4  
2.6  
(V)  
2.8  
V
V
V
REFADC  
REFADC  
REFADC  
8
_______________________________________________________________________________________  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
Typical Operating Characteristics (continued)  
(A0  
= D0  
= +ꢁ.ꢀ0, DR0  
= +3.ꢀ0, AGND = DGND = DRGND = ꢀ, INTCLK/EXTCLK = AGND, f  
= ꢁMHz, input range =  
DD  
DD  
DD  
CLK  
±1ꢀ0, REFP± = REFP1, REFN± = REFN1, COM1 = COM±, 1.ꢀnF from REFADC to AGND, 1.ꢀµF and ꢀ.1µF from COM1 to AGND,  
ꢀ.1µF from REFP1 to AGND, ꢀ.1µF from REFN1 to AGND, 1.ꢀµF from REFP1 to REFN1.)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
DRIVER SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
44.0  
43.8  
43.6  
43.4  
43.2  
43.0  
42.8  
42.6  
42.4  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
46  
45  
44  
43  
42  
41  
40  
EXCLUDES DRIVER CURRENT  
EXCLUDES DRIVER CURRENT  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
AV (V)  
DD  
TEMPERATURE (°C)  
DRV (V)  
DD  
DRIVER SUPPLY CURRENT  
vs. TEMPERATURE  
REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
0.98  
0.97  
0.96  
0.95  
0.94  
0.93  
0.92  
0.91  
0.90  
2.4987  
DRV = 3V  
DD  
2.4986  
2.4985  
2.4984  
2.4983  
2.4982  
2.4981  
2.4980  
2.4979  
2.4978  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
TEMPERATURE (°C)  
AV (V)  
DD  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
2.504  
2.502  
2.500  
2.498  
2.496  
2.494  
2.492  
2.490  
70  
65  
60  
55  
50  
45  
40  
SHDN = AV  
DD  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
AV (V)  
DD  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
9
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
Typical Operating Characteristics (continued)  
(A0  
= D0  
= +ꢁ.ꢀ0, DR0  
= +3.ꢀ0, AGND = DGND = DRGND = ꢀ, INTCLK/EXTCLK = AGND, f  
= ꢁMHz, input range =  
DD  
DD  
DD  
CLK  
±1ꢀ0, REFP± = REFP1, REFN± = REFN1, COM1 = COM±, 1.ꢀnF from REFADC to AGND, 1.ꢀµF and ꢀ.1µF from COM1 to AGND,  
ꢀ.1µF from REFP1 to AGND, ꢀ.1µF from REFN1 to AGND, 1.ꢀµF from REFP1 to REFN1.)  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
STANDBY CURRENT  
vs. SUPPLY VOLTAGE  
70  
65  
60  
55  
50  
45  
40  
4.30  
4.25  
4.20  
4.15  
4.10  
4.05  
4.00  
SHDN = AV  
DD  
STANDBY = AV  
DD  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
TEMPERATURE (°C)  
AV (V)  
DD  
STANDBY CURRENT  
vs. TEMPERATURE  
CONVERSION TIME  
vs. SUPPLY VOLTAGE  
4.30  
4.25  
4.20  
4.15  
4.10  
4.05  
4.00  
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
STANDBY = AV  
INTERNAL CLOCK  
DD  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
TEMPERATURE (°C)  
AV (V)  
DD  
CONVERSION TIME  
vs. TEMPERATURE  
ANALOG INPUT CURRENT  
vs. ANALOG INPUT VOLTAGE  
4
3
5.8  
5.6  
5.4  
5.2  
5.0  
4.8  
INTERNAL CLOCK  
2
1
0
-1  
-2  
-3  
-4  
-17.0  
-8.5  
0
8.5  
17.0  
-40  
-15  
10  
35  
60  
85  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
10 ______________________________________________________________________________________  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
Pin Description  
PIN  
NAME  
FUNCꢃION  
Analog Power Input. A0  
is the power input for the analog section of the converter. Connect a  
DD  
1, ꢂ, 9, 1ꢂ,  
19  
+4.ꢂꢁ0 to +ꢁ.±ꢁ0 power supply to A0 . Bypass each A0  
to AGND with a ꢀ.1µF capacitor very  
DD  
DD  
A0  
DD  
close to the device. Bypass A0 to AGND with a bulk capacitor of at least 4.ꢂµF where power enters  
DD  
the board. Connect all A0  
pins to the same potential.  
DD  
±
3
4
AINꢀ+  
AINꢀ-  
AIN1+  
AIN1-  
Channel ꢀ Differential Analog Input  
Channel ꢀ Differential Analog Input  
Channel 1 Differential Analog Input  
Channel 1 Differential Analog Input  
ꢃ, 8, 14, 1ꢃ,  
18, ±ꢀ, ±8  
AGND  
Analog Ground. AGND is the power return for A0 . Connect all AGNDs to the same potential.  
DD  
1ꢀ  
11  
1±  
13  
AIN±+  
AIN±-  
AIN3+  
AIN3-  
Channel ± Differential Analog Input  
Channel ± Differential Analog Input  
Channel 3 Differential Analog Input  
Channel 3 Differential Analog Input  
INTCLK/  
EXTCLK  
Clock-Select Input. Force INTCLK/EXTCLK high for internal clock mode. Force INTCLK/EXTCLK low  
for external clock mode.  
1ꢁ  
ADC Reference Bypass or Input. REFADC is the bypass point for an internally generated reference  
voltage. Bypass REFADC with a 1.ꢀnF capacitor to AGND. REFADC can be driven externally by a  
precision external voltage reference. See the Reference section and the Typical Operating Circuit.  
±1  
REFADC  
±±  
±3  
±4  
±ꢁ  
±ꢃ  
±ꢂ  
REFP1  
REFP±  
COM1  
COM±  
REFN1  
REFN±  
Positive Differential Reference Bypass Point 1. Connect REFP1 to REFP±.  
Positive Differential Reference Bypass Point ±. Connect REFP± to REFP1. Bypass REFP± with a ꢀ.1µF  
capacitor to AGND. Also bypass REFP± to REFN± with a ꢀ.1µF capacitor.  
Common-Mode 0oltage Bypass Point 1. Connect COM1 to COM±.  
Common-Mode 0oltage Bypass Point ±. Connect COM± to COM1. Connect a 1.ꢀµF capacitor from  
COM± to AGND.  
Negative Differential Reference Bypass Point 1. Connect REFN1 to REFN±.  
Negative Differential Reference Bypass Point ±. Connect REFN± to REFN1. Bypass REFN± with a  
ꢀ.1µF capacitor to AGND. Also bypass REFN± to REFP± with a ꢀ.1µF capacitor.  
±9  
3ꢀ  
31  
3±  
33  
34  
3ꢁ  
3ꢃ  
3ꢂ  
38  
39  
4ꢀ  
Dꢀ  
D1  
D±  
D3  
D4  
Dꢁ  
Dꢃ  
Dꢂ  
D8  
D9  
D1ꢀ  
D11  
Data Input/Output Bit ꢀ (LSB)  
Data Input/Output Bit 1  
Data Input/Output Bit ±  
Data Input/Output Bit 3  
Data Input/Output Bit 4  
Data Input/Output Bit ꢁ  
Data Input/Output Bit ꢃ  
Data Input/Output Bit ꢂ  
Data Output Bit 8  
Data Output Bit 9  
Data Output Bit 1ꢀ  
Data Output Bit 11  
______________________________________________________________________________________ 11  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
Pin Description (continued)  
PIN  
41  
NAME  
D1±  
FUNCꢃION  
Data Output Bit 1±  
4±  
D13  
Data Output Bit 13 (MSB)  
Digital I/O Power-Supply Input. DR0  
is the power input for the digital I/O buffers and drivers.  
DD  
Connect a +±.ꢂ0 to +ꢁ.±ꢁ0 power supply to DR0 . Bypass DR0  
DD  
to DRGND with a ꢀ.1µF  
43  
DR0  
DD  
DD  
capacitor very close to the device.  
44  
4ꢁ  
DRGND  
Driver Ground. DRGND is the power-supply return for DR0  
.
DD  
End-of-Conversion Output. EOC goes low to indicate the end of a conversion. EOC returns high after  
one clock period.  
EOC  
End-of-Last-Conversion Output. EOLC goes low to indicate the end of the last conversion. EOLC  
returns high when CON0ST goes low for the next conversion sequence.  
4ꢃ  
EOLC  
Read Input. Forcing RD low initiates a read command of the parallel data bus, Dꢀ–D13. Dꢀ–D13 are  
high impedance while either RD or CS is high.  
4ꢂ  
48  
49  
RD  
WR  
CS  
Write Input. Forcing WR low initiates a write command for configuring the device through Dꢀ–Dꢂ.  
Chip-Select Input. Forcing CS low activates the digital interface. Dꢀ–D13 are high impedance while  
either CS or RD is high.  
Convert Start Input. CON0ST initiates the conversion process. The analog inputs are sampled on the  
rising edge of CON0ST.  
ꢁꢀ  
ꢁ1  
ꢁ±  
ꢁ3  
ꢁ4  
CON0ST  
CLK  
External-Clock Input. CLK accepts a 1MHz to ꢃMHz external clock signal. For externally clocked  
conversions, apply the clock signal to CLK and force INTCLK/EXTCLK low. For internally clocked  
conversions, connect CLK to DGND and force INTCLK/EXTCLK high.  
Standby-Control Input. Forcing STANDBY high partially powers down the device but leaves all the  
reference-related circuitry alive. Use STANDBY instead of SHDN when quick wake-up is required.  
STANDBY  
SHDN  
Shutdown-Control Input. Force SHDN high to place the device into full shutdown. When in full  
shutdown, all circuitry within the device is powered down and all reference capacitors are allowed to  
discharge. Allow 1ms for wake-up from full shutdown before starting a conversion.  
Digital Power-Supply Input. D0 is the power input for the digital circuitry. Connect a +4.ꢂꢁ0 to +ꢁ.±ꢁ0  
DD  
D0  
DD  
power supply to D0 . Bypass D0 to DGND with a ꢀ.1µF capacitor very close to the device.  
DD  
DD  
ꢁꢁ, ꢁꢃ  
DGND  
EP  
Digital Ground. Power return for D0  
.
DD  
Exposed Pad. Connect to AGND.  
external reference. All channels offer input protection to  
±1ꢂ0, independent of the selected input range.  
Detailed Description  
The MAX1338 simultaneously samples four differential  
analog inputs with internal T/H circuits, and sequentially  
converts them to a digital code with a 14-bit ADC.  
Output data is provided by a 14-bit parallel interface. At  
power-up, all channels default to a ±1ꢀ0 input range.  
Program different input ranges (±1ꢀ0, ±0, ±±.ꢁ0, or  
±1.±ꢁ0) using the configuration register. Different input  
ranges between ±1±0 and ±1.ꢀ0 are realized using an  
The internal clock operates the ADC at ꢁMHz, or uses  
an external conversion clock from 1MHz to ꢃMHz. EOC  
goes low when the result of each conversion is avail-  
able, and EOLC goes low when the last conversion  
result is available. Standby and shutdown modes,  
selectable through logic-control inputs, save power  
between conversions. Figure ± shows a block diagram  
of the MAX1338.  
1, ______________________________________________________________________________________  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
DV  
DD  
DRV  
DD  
AV  
DD  
MAX1338  
D13  
AIN0+  
AIN0-  
S/H  
S/H  
4 x 1  
MUX  
14-BIT  
ADC  
D8  
D7  
4 x 14  
SRAM  
OUTPUT  
DRIVERS  
AIN3+  
AIN3-  
D0  
REFP2  
REFP1  
COM2  
COM1  
CONFIGURATION  
REGISTER  
WR  
CS  
INTERFACE  
AND  
CONTROL  
REFN2  
REFN1  
RD  
CONVST  
SHDN  
CLK  
5k  
REFADC  
STANDBY  
EOC  
2.500V  
EOLC  
INTCLK/EXTCLK  
AGND  
DRGND  
DGND  
Figure 2. Functional Diagram  
parallel I/O. See the Configuration Register section for  
Power-Supply Inputs  
Three separate power supplies power the MAX1338. A  
programming details.  
+ꢁ0 analog supply, A0 , powers the analog input and  
DD  
Input Protection  
Protection at the analog inputs provides ±1ꢂ0 fault  
immunity for the MAX1338. This protection circuit limits  
the current at the analog inputs to less than ±±mA.  
Input fault protection is active in standby, in shutdown,  
during normal operation, and over all input ranges.  
converter sections. A +ꢁ0 digital supply, D0 , powers  
DD  
the internal logic circuitry, and a +±.ꢂ0 to +ꢁ0 digital  
supply (DR0 ), powers the parallel I/O and the control  
DD  
I/O (see the Typical Operating Circuit). Bypass the  
power supplies as indicated in the Layout, Grounding,  
and Bypassing section. Power-supply sequencing is  
not required for the MAX1338.  
Track and Hold (T/H)  
To preserve relative phase information between input  
channels, each input channel has a dedicated T/H  
amplifier. The rising edge of CON0ST represents the  
sampling instant for all channels. All samples are taken  
within an aperture delay (t ) of 1ꢃns. The aperture  
AD  
delay of all channels is matched to within 1ꢀꢀps.  
Analog Inputs  
Software-Selectable Input Range  
The MAX1338 provides four independent, software-  
selectable, analog input voltage ranges for each chan-  
nel. The selectable input ranges are ±0  
x 4 (the  
REF  
x ±, ±0  
power-up default condition), ±0  
, and  
REF  
REF  
±0  
x ꢀ.ꢁ. Using the ±.ꢁ0 internal reference, the  
REF  
selectable input ranges are ±1ꢀ0 (power-up default),  
±0, ±±.ꢁ0, and ±1.±ꢁ0. Program the analog input  
ranges with the configuration register through the  
______________________________________________________________________________________ 13  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
Figure 3 shows the equivalent analog input T/H circuit  
for one analog input.  
As conversion begins, the T/H circuits hold the analog  
R1 || R2 = 6.25kΩ  
MAX1338  
signals. After the 1±th clock cycle (or ±.4µs in internal  
clock mode) into the conversion process, the last ana-  
log input sample begins shifting through the converter,  
and the T/H circuits begin to track the analog inputs  
again in preparation for the next CON0ST rising edge.  
R1  
C
AIN_  
HOLD  
R2  
Due to the resistive load presented by the analog  
inputs, any significant analog input source resistance,  
R
, increases gain error. Limit R  
to a  
SOURCE  
1.9V  
SOURCE  
maximum of ±ꢀto limit the effect to less than ꢀ.1%.  
Drive the input with a wideband buffer (>1MHz) that  
can drive the ADC’s input impedance.  
Figure 3. Simplified Typical Input Circuit  
Selecting an Input Buffer  
Most applications require an input buffer to achieve 14-  
bit accuracy. Although slew rate and bandwidth are  
important, the most critical specification is output imped-  
ance. Use a low-noise, low-distortion amplifier with low  
output impedance, for best gain-accuracy performance.  
CONVST  
CONFIGURATION  
REGISTER ACTIVATES  
Input Bandwidth  
The input-tracking circuitry has a 1MHz small-signal  
bandwidth. To avoid high-frequency signals being  
aliased into the frequency band of interest, anti-alias fil-  
tering is recommended.  
RD  
t
CS  
CS  
Data Throughput  
t
t
t
CTW  
WRL  
WTC  
The data throughput (f ) of the MAX1338 is a function  
TH  
WR  
of the clock speed (f  
). The MAX1338 operates from  
CLK  
a ꢁMHz internal clock or an external clock between  
1MHz and ꢃMHz. For fastest throughput, read the con-  
version result during conversion (Figure ꢁ), and calcu-  
late data throughput using:  
t
DTW  
DATA  
IN  
D0–D7  
1
f
=
t
WTD  
TH  
±ꢃ  
t
+
QUIET  
f
CLK  
Figure 4. Write Timing  
where t  
is the period of bus inactivity before the  
QUIET  
Internal Clock  
Internal clock mode frees the microprocessor from the  
burden of running the ADC conversion clock. For inter-  
rising edge of CON0ST.  
Clock Modes  
The MAX1338 provides an internal clock of ꢁMHz.  
Alternatively, use an external clock of 1MHz to ꢃMHz.  
nal-clock operation, connect INTCLK/EXTCLK to A0  
DD  
and CLK to DRGND. Note that INTCLK/EXTCLK is ref-  
erenced to the analog power supply, A0 . Total con-  
DD  
version time for all four channels using the internal  
clock is ꢃµs (typ).  
1± ______________________________________________________________________________________  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
External Clock  
For external clock operation, force INTCLK/EXTCLK low  
ꢃable 1ꢁ Configuration Register  
and connect an external clock source to CLK. Use an  
external clock frequency from 1MHz to ꢃMHz with a  
duty cycle between 4ꢀ% and ꢃꢀ%. Choose a minimum  
clock frequency of 1MHz to prevent linearity errors  
caused by excessive droop in the T/H circuits.  
REGISꢃER  
NAME  
I/O LINE  
FUNCꢃION  
Dꢀ  
D1  
D±  
D3  
D4  
Dꢁ  
Dꢃ  
Dꢂ  
CHꢀRꢀ  
CHꢀR1  
CH1Rꢀ  
CH1R1  
CH±Rꢀ  
CH±R1  
CH3Rꢀ  
CH3R1  
Channel ꢀ input range setting bit ꢀ  
Channel ꢀ input range setting bit 1  
Channel 1 input range setting bit ꢀ  
Channel 1 input range setting bit 1  
Channel ± input range setting bit ꢀ  
Channel ± input range setting bit 1  
Channel 3 input range setting bit ꢀ  
Channel 3 input range setting bit 1  
Applications Sections  
Power-On Reset  
At power-up, all channels default to a ±1ꢀ0 input range.  
After applying power, allow a 1ms wake-up time to  
elapse and perform one dummy conversion before  
initiating first conversion.  
Power Saving  
ꢃable ,ꢁ Input-Range Register Settings  
Full Shutdown  
During shutdown, the analog and digital circuits in the  
MAX1338 power down and the device draws less than  
REGISꢃER  
SEꢃꢃING  
ALLOWABLE  
COMMON-MODE  
RANGE  
SELECꢃED INPUꢃ  
RANGE  
ꢀ.ꢀꢃmA from A0 , and less than 1ꢀµA from D0  
.
DD  
DD  
CH_R0  
CH_R1  
Select shutdown mode using the SHDN input. Force  
SHDN high to enter shutdown mode. When coming out of  
shutdown, allow the 1ms wake-up and then perform one  
dummy conversion before making the first conversion.  
-1ꢀ0 to +1ꢀ0  
-ꢁ0 to +ꢁ0  
±0  
1
1
1
1
±±.ꢁ0  
-±.ꢁ0 to +±.ꢁ0  
-1.±ꢁ0 to +1.±ꢁ0  
±1.±ꢁ0  
±.ꢃ±ꢁ0  
Standby  
Standby is similar to shutdown but the reference cir-  
cuits remain powered up, allowing faster wake-up.  
Enter standby by forcing STANDBY high. After coming  
out of standby, perform a dummy conversion before  
making the first conversion.  
Configuration Register  
The MAX1338 uses an 8-bit configuration word to set the  
input range for each channel. Table 1 and Table ± describe  
the configuration word and the input-range settings.  
Write to the configuration register by forcing CS and WR  
low, loading bits Dꢀ–Dꢂ onto the parallel bus, and then  
forcing WR high. The configuration bits are latched on  
the rising edge of WR (Figure 4). It is possible to write to  
the configuration register at any point during the conver-  
sion sequence. However, it will not be active until the  
next convert-start signal. At power-up, the configuration  
register contains all zeros, making all channels default to  
the maximum input range, -1ꢀ0 to +1ꢀ0. Shutdown and  
standby do not change the configuration register, but  
the configuration register can be programmed while the  
MAX1338 is in shutdown or standby modes.  
Digital Interface  
The digital interface consists of two sections: a control  
I/O section and a parallel I/O section. The control I/O  
section includes the following control signals: chip  
select (CS), read (RD), write (WR), end of conversion  
(EOC), end of last conversion (EOLC), convert start  
(CON0ST), power-down (SHDN), standby (STANDBY),  
and external-clock input (CLK).  
The bidirectional parallel I/O section sets the 8-bit input  
range configuration register using Dꢀ–Dꢂ (see the  
Configuration Register section) and outputs the 14-bit  
conversion result using Dꢀ–D13. The I/O operations are  
controlled by the control I/O signals RD, WR, and CS. All  
parallel I/O bits are high impedance when either RD = 1  
or CS = 1. Figures 4, ꢁ, and ꢃ and the Timing Character-  
istics section detail the operation of the digital interface.  
______________________________________________________________________________________ 15  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
SAMPLE  
t
CONVST  
CONVST  
29  
25  
26  
27  
24  
23  
17  
18  
t
19  
20  
21  
22  
CLK  
EOC  
t
EOC1  
NEXT  
t
EOC  
EOLC  
RD  
t
QUIET  
t
ACC  
t
RDL  
D0–D13  
CH0  
CH1  
CH2  
CH3  
t
REQ  
Figure 5. Reading During a Conversion—Internal or External Clock  
Starting a Conversion  
Reading a Conversion Result  
Internal Clock  
For internal clock operation, force INTCLK/EXTCLK  
high. To start a conversion using internal clock mode,  
Reading During a Conversion  
Figure ꢁ shows the interface signals to initiate a read  
operation during a conversion cycle. CS can be held  
low permanently, low during the RD cycles, or it can be  
the same as RD. After initiating a conversion by bring-  
ing CON0ST high, wait for EOC to go low (about 3.4µs  
in internal clock mode) or 1ꢂ clock cycles (external  
clock mode) before reading the first conversion result.  
Read the conversion result by bringing RD low, which  
latches the data to the parallel digital output bus. Bring  
RD high to release the digital bus. Wait for the next  
falling edge of EOC (about ꢃꢀꢀns in internal clock  
mode or three clock cycles in external clock mode)  
before reading the next result. When the last result is  
available, EOLC goes low, along with EOC. Wait three  
pull CON0ST low for at least t  
. The T/H acquires  
CON0ST  
the signal while CON0ST is low. An EOC signal pulses  
low when the first result becomes available, and for  
each subsequent result until the end of the conversion  
cycle. The EOLC signal goes low when the last conver-  
sion result becomes available (Figure ꢃ).  
External Clock  
For external clock operation, force INTCLK/EXTCLK  
low. To start a conversion using external clock mode,  
pull CON0ST low for at least t  
. The T/H circuits  
CON0ST  
track the input signal while CON0ST is low. Conversion  
begins on the rising edge of CON0ST. Apply an exter-  
nal clock to CLK. To avoid T/H droop degrading the  
sampled analog input signals, the first CLK pulse must  
occur within 1ꢀµs after the rising edge of CON0ST and  
have a minimum 1MHz clock frequency. The first con-  
version result is available for read on the rising edge of  
the 1ꢂth clock cycle, and subsequent conversions on  
every 3rd clock cycle thereafter, as indicated by EOC  
and EOLC.  
clock cycles, t  
sion cycle.  
, before starting the next conver-  
QUIET  
Reading After a Conversion  
Figure ꢃ shows the interface signals for a read operation  
after a conversion using an external clock. At the falling  
of EOLC, on the ±ꢃth clock pulse after the initiation of a  
conversion, driving CS and RD low places the first con-  
version result onto the parallel I/O bus. Read the conver-  
sion result on the rising edge of RD. Successive low  
pulses of RD place the successive conversion results  
16 ______________________________________________________________________________________  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
SAMPLE  
t
CONVST  
CONVST  
t
CLKH  
27  
t
CNTC  
28  
29  
30  
31  
2
26  
1
CLK  
EOC  
t
CLK  
t
CLKL  
ONLY LAST PULSE SHOWN  
t
EOC  
EOLC  
CS  
t
RTC  
t
t
t
t
CTR  
QUIET  
RDH  
RDL  
RD  
t
EOCRD  
t
EOLCRD  
D0–D13  
CH0  
CH2  
CH3  
CH1  
t
t
ACC  
REQ  
Figure 6. Reading After a Conversion—External Clock  
onto the bus. After reading all four channels, bring CS  
ꢃable 3ꢁ Reference Bypass Capacitors  
high to release the parallel I/O. After waiting t  
pulse CON0ST low to initiate the next conversion.  
,
QUIET  
BYPASS  
LOCAꢃION  
CAPACIꢃORS  
Reference  
Bypass the reference inputs as indicated in Table 3.  
REFADC bypass capacitor to AGND  
REFP1 bypass capacitor to AGND  
REFN1 bypass capacitor to AGND  
REFP1 to REFN1 capacitor  
1nF  
ꢀ.1µF  
Internal Reference  
The internal reference supports all input ranges for the  
MAX1338.  
ꢀ.1µF  
1.ꢀµF  
COM1 bypass capacitor to AGND  
1.ꢀµF || ꢀ.1µF  
External Reference  
Implement external-reference operation by overdriving  
the internal reference voltage. Override the internal ref-  
erence voltage by connecting a ±.ꢀ0 to 3.ꢀ0 external  
reference at REF. The REF input impedance is typically  
ꢁk. For more information about using an external ref-  
erence, see the Transfer Functions section.  
Transfer Functions  
Digital Correction  
Factory trim procedures digitally shift the transfer func-  
tion to reduce bipolar zero-code offset to less than  
±4 LSBs (typ). Depending on initial conditions, the  
transfer function is shifted up or down, as required. The  
maximum shift that any transfer function experiences is  
ꢃ4 codes, which can have a small effect at the  
extremes of the transfer function, as shown in Figure ꢂ.  
______________________________________________________________________________________ 1ꢂ  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
8 x V  
REFADC  
0x1FFF  
0x1FFF  
0x1FFE  
0x1FFD  
0x1FFC  
INITIAL  
TRANSFER  
FUNCTION  
ADJUSTED  
TRANSFER  
FUNCTION  
0x0001  
0x0000  
0x3FFF  
0x0000  
MAXIMUM  
64 CODES  
0x2003  
0x2002  
0x2001  
0x2000  
8 x V  
214  
REF  
1 LSB =  
0x2000  
-8192 -8190  
-1 0 +1  
INPUT VOLTAGE (V - V  
+8189 +8191  
IN LSBs)  
AIN_-  
+8191  
-8192  
0
INPUT VOLTAGE (LSBs)  
AIN_+  
Figure 7. Example of Digitally Adjusted Transfer Function—  
Shifted Down to Minimize Zero-Code Offset  
Figure 8. 10ꢀ Transfer Function  
Input Range Settings  
Table 4 shows the two’s complement output for a selec-  
tion of inputs.  
Applications Information  
Layout, Grounding, and Bypassing  
For best performance, the board layout must follow  
some simple guidelines. Separate the control I/O and  
parallel I/O signals from the analog signals, and run the  
clock signals separate from everything. Do not run ana-  
log and digital (especially clock) lines parallel to one  
another, or digital lines underneath the ADC package.  
Run the parallel I/O signals together as a bundle.  
The full-scale input range (FSR) depends on the select-  
ed range, and the voltage at REF, as shown in Table ꢁ.  
Also shown in Table ꢁ are the allowable common-mode  
ranges for the differential inputs.  
Calculate the LSB size using:  
A × 0  
REFADC  
14  
The MAX1338 has an exposed underside pad for a  
low-inductance ground connection and low thermal  
resistance. Connect the exposed pad to the circuit  
board ground plane. Figure 1± shows the recommend-  
ed system ground connections. Establish an analog  
ground point at AGND and a digital ground point at  
DGND. Connect all analog grounds to the analog  
ground point. Connect all digital grounds to the digital  
ground point. For lowest noise operation, make the  
power-supply ground returns as low impedance and as  
short as possible. Connect the analog ground point to  
the digital ground point at one location.  
1 LSB=  
±
where A = gain multiplier for the selected input range,  
from Table ꢃ.  
Determine the input voltage as a function of 0  
the output code using:  
, and  
REF  
CODE  
0
0  
= 0  
× A ×  
AIN_+  
AIN_−  
REFADC  
14  
±
where A = gain multiplier for the selected input range,  
from Table ꢃ.  
High-frequency noise in the power supplies degrades  
the ADC’s performance. Bypass A0  
to AGND with a  
DD  
Figures 8, 9, 1ꢀ, and 11 show the transfer functions for  
the four selectable input ranges.  
parallel combination of ꢀ.1µF and ±.±µF capacitors,  
bypass D0 to DGND with a parallel combination of  
DD  
ꢀ.1µF and ±.±µF capacitors, and bypass DR0  
to  
DD  
DRGND with a parallel combination of ꢀ.1µF and ±.±µF  
capacitors. If the supply is very noisy use a ferrite bead  
as a lowpass filter, as shown in Figure 1±.  
18 ______________________________________________________________________________________  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
ꢃable ±ꢁ Code ꢃable with ꢀ  
= ,ꢁ500ꢀ  
REF  
INPUꢃ ꢀOLꢃAGE (ꢀ)  
DECIMAL  
EQUIꢀALENꢃ  
OUꢃPUꢃ  
ꢃWO’S COMPLEMENꢃ  
BINARY OUꢃPUꢃ CODE  
±10ꢀ INPUꢃ  
RANGE  
±5ꢀ INPUꢃ  
RANGE  
±,ꢁ5ꢀ INPUꢃ  
RANGE  
±1ꢁ,5ꢀ INPUꢃ  
RANGE  
SELECꢃED  
(CODE  
)
10  
SELECꢃED  
SELECꢃED  
SELECꢃED  
9.9988  
9.99ꢂꢃ  
ꢀ.ꢀꢀ1±  
4.9994  
4.9988  
ꢀ.ꢀꢀꢀꢃ  
±.4998  
±.499ꢂ  
ꢀ.ꢀꢀꢀ±  
1.±499  
1.±498  
ꢀ.ꢀꢀꢀ1  
8191  
819ꢀ  
1
ꢀ1 1111 1111 1111 ꢀx1FFF  
ꢀ1 1111 1111 111ꢀ ꢀx1FFE  
ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀ1 ꢀxꢀꢀꢀ1  
ꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀxꢀꢀꢀꢀ  
11 1111 1111 1111 ꢀx3FFF  
1ꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀ1 ꢀx±ꢀꢀ1  
1ꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀꢀꢀꢀ ꢀx±ꢀꢀꢀ  
-ꢀ.ꢀꢀ1±  
-9.9988  
-1ꢀ.ꢀꢀꢀꢀ  
-ꢀ.ꢀꢀꢀꢃ  
-4.9994  
-ꢁ.ꢀꢀꢀꢀ  
-ꢀ.ꢀꢀꢀ±  
-±.4998  
-±.ꢁꢀꢀꢀ  
-ꢀ.ꢀꢀꢀ1  
-1.±499  
-1.±ꢁꢀꢀ  
-1  
-8191  
-819±  
Definitions  
ꢃable 5ꢁ Input Ranges  
Integral Nonlinearity (INL)  
SELECꢃED  
INPUꢃ  
RANGE (ꢀ)  
FULL-SCALE  
INPUꢃ RANGE COMMON-MODE  
ALLOWABLE  
REFADC  
(ꢀ)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. For these  
devices, this straight line is a line drawn between the  
endpoints of the transfer function, once offset and gain  
errors have been nulled.  
(ꢀ)  
RANGE (ꢀ)  
±.ꢀ  
±.ꢁ  
3.ꢀ  
±.ꢀ  
±.ꢁ  
3.ꢀ  
±.ꢀ  
±.ꢁ  
3.ꢀ  
±.ꢀ  
±.ꢁ  
3.ꢀ  
±8  
±1ꢀ  
±1±  
±4  
±ꢁ  
±ꢁ  
±1ꢀ  
±ꢁ  
±ꢁ  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1 LSB. For  
these devices, the DNL of each digital output code is  
measured and the worst-case value is reported in the  
Electrical Characteristics table. A DNL error specifica-  
tion of less than ±1 LSB guarantees no missing codes  
and a monotonic transfer function.  
±±.ꢁ  
±ꢁ  
±±.ꢁ  
±ꢃ  
±±.ꢁ  
±±  
±1.±ꢁ  
±1.±ꢁ  
±1.±ꢁ  
±.ꢃ±ꢁ  
±.ꢃ±ꢁ  
±.ꢃ±ꢁ  
±±.ꢁ  
±1.±ꢁ  
±±.ꢁ  
±3  
±1  
Offset Error  
Offset error indicates how well the actual transfer func-  
tion matches the ideal transfer function at a single point.  
Typically, the point at which the offset error is specified  
is at or near the zero scale of the transfer function or at  
or near the midscale of the transfer function.  
±1.±ꢁ  
±1.ꢁ  
ꢃable 6ꢁ LSB Size with ꢀ  
= ,ꢁ500ꢀ  
REF  
SELECꢃED  
INPUꢃ RANGE  
(ꢀ)  
For the MAX1338, the ideal zero-scale digital output  
transition from ꢀx3FFF to ꢀxꢀꢀꢀꢀ occurs with an analog  
input voltage of zero. Offset error is the amount of ana-  
log input-voltage deviation between the measured input  
voltage and the calculated input voltage at the zero-  
scale transition.  
GAIN MULꢃIPLIER  
(A)  
LSB SIZE (mꢀ)  
±1ꢀ  
±ꢁ  
8
4
±
1
1.±±ꢀꢂ  
ꢀ.ꢃ1ꢀ4  
ꢀ.1ꢁ±ꢃ  
ꢀ.ꢀꢂ3ꢃ  
±±.ꢁ  
±1.±ꢁ  
______________________________________________________________________________________ 19  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
4 x V  
2 x V  
REFADC  
REFADC  
0x1FFF  
0x1FFE  
0x1FFD  
0x1FFC  
0x1FFF  
0x1FFE  
0x1FFD  
0x1FFC  
0x0001  
0x0000  
0x3FFF  
0x0001  
0x0000  
0x3FFF  
0x2003  
0x2002  
0x2001  
0x2000  
0x2003  
0x2002  
0x2001  
0x2000  
4 x V  
214  
2 x V  
214  
REF  
REF  
1 LSB =  
1 LSB =  
-8192 -8190  
-1 0 +1  
+8189 +8191  
IN LSBs)  
-8192 -8190  
-1 0 +1  
INPUT VOLTAGE (V - V  
+8189 +8191  
IN LSBs)  
AIN_-  
INPUT VOLTAGE (V  
- V  
AIN_-  
AIN_+  
AIN_+  
Figure 9. 5ꢀ Transfer Function  
Figure 10. 2.5ꢀ Transfer Function  
V
REFADC  
ANALOG  
POWER SUPPLY  
0x1FFF  
0x1FFE  
0x1FFD  
0x1FFC  
DIGITAL POWER SUPPLIES  
+3V  
+5V  
GND  
+5V  
AGND  
FERRITE  
BEAD  
0x0001  
0x0000  
0x3FFF  
0x2003  
0x2002  
0x2001  
0x2000  
AV  
DV  
DD  
AGND  
+5V  
GND  
V
214  
DD  
DGND  
DRV  
DRGND  
DD  
REF  
1 LSB =  
DIGITAL  
CIRCUITS  
MAX1338  
-8192 -8190  
-1 0 +1  
INPUT VOLTAGE (V - V  
+8189 +8191  
IN LSBs)  
AIN_-  
AIN_+  
Figure 11. 1.25ꢀ Transfer Function  
Figure 12. Power-Supply Grounding and Bypassing  
Gain Error  
Signal-to-Noise Ratio (SNR)  
Gain error indicates how well the slope of the actual  
transfer function matches the slope of the ideal transfer  
function. For the MAX1338, the gain error is the differ-  
ence between the measured positive full-scale and  
negative full-scale transition points minus the difference  
between the ideal positive full-scale and negative full-  
scale bipolar transition points.  
SNR is a measure of the converter’s noise characteris-  
tics. For a waveform perfectly reconstructed from digi-  
tal samples, SNR is the ratio of the full-scale analog  
input (RMS value) to the RMS quantization error (resid-  
ual error). The ideal, theoretical minimum analog-to-dig-  
ital noise is caused by quantization noise error only and  
results directly from the ADC’s resolution (N bits):  
,0 ______________________________________________________________________________________  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
SNR = (ꢃ.ꢀ± x N + 1.ꢂꢃ)dB  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the RMS amplitude of the funda-  
mental (maximum signal component) to the RMS value  
of the next largest spurious component, excluding DC  
offset. SFDR is specified in decibels relative to the car-  
rier (dBc).  
where N = 14 bits. In reality, there are other noise  
sources such as thermal noise, reference noise, and  
clock jitter. SNR is computed by taking the ratio of the  
RMS signal to the RMS noise. RMS noise includes all  
spectral components to the Nyquist frequency exclud-  
ing the fundamental, the first five harmonics, and the  
DC offset.  
Aperture Delay  
Aperture delay (t ) is the time delay from the sampling  
AD  
clock edge to the instant when an actual sample is taken.  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD indicates the converter’s noise and distortion  
performance.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
SINAD is computed by taking the ratio of the RMS sig-  
nal to the RMS noise plus distortion. RMS noise plus  
distortion includes all spectral components to the  
Nyquist frequency excluding the fundamental and the  
DC offset.  
aperture delay.  
Channel-to-Channel Isolation  
Channel-to-channel isolation indicates how well each  
analog input is isolated from the others. The channel-to-  
channel isolation for the MAX1338 is measured by  
applying a DC -ꢀ.ꢁdBFS sine wave to the ON channel  
while a high frequency 1ꢀkHz -ꢀ.ꢁdBFS sine wave is  
applied to all OFF channels. An FFT is taken for the ON  
channel. From the FFT data, channel-to-channel  
crosstalk is expressed in dB as the power ratio of the  
DC signal applied to the ON channel and the high-fre-  
quency crosstalk signal from the OFF channels.  
SIGNAL  
RMS  
SINAD(dB) = ±ꢀ × log  
(NOISE + DISTORTION)  
RMS  
Effective Number of Bits (ENOB)  
ENOB specifies the global accuracy of an ADC at a spe-  
cific input frequency and sampling rate. An ideal ADC’s  
error consists of quantization noise only. ENOB for a full-  
scale sinusoidal input waveform is computed from:  
Power-Supply Rejection (PSRR)  
PSRR is defined as the shift in gain error when the ana-  
log power supply is changed from 4.ꢂꢁ0 to ꢁ.±ꢁ0.  
SINAD 1.ꢂꢃ  
ENOB =  
Small-Signal Bandwidth  
A -±ꢀdBFS sine wave is applied to the MAX1338 input.  
The frequency is increased until the amplitude of the  
digitized conversion result decreases 3dB.  
ꢃ.ꢀ±  
Total Harmonic Distortion (THD)  
THD is a dynamic indication of how much harmonic  
distortion the converter adds to the signal.  
Full-Power Bandwidth  
A -ꢀ.ꢁdBFS sine wave is applied to the MAX1338 input.  
The frequency is increased until the amplitude of the  
digitized conversion result decreases 3dB.  
THD is the ratio of the RMS sum of the first five harmon-  
ics of the fundamental signal to the fundamental itself.  
This is expressed as:  
±
±
±
±
±
0
+ 0 + 0 + 0 + 0  
±
3
4
THD = ±ꢀ × log  
0
1
where 0 is the fundamental amplitude and 0 –0 are  
1
±
the amplitudes of the ±nd- through ꢃth-order harmonics.  
______________________________________________________________________________________ ,1  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
Typical Operating Circuit  
54  
15  
+5V  
0.1µF  
DV  
INTCLK/EXTCLK  
DD  
+5V  
1
7
MAX1338  
AV  
DD  
55, 56  
GND  
DGND  
0.1µF  
0.1µF  
AV  
DD  
53  
51  
50  
49  
48  
47  
46  
45  
52  
SHDN  
CLK  
9
17  
19  
21  
AV  
AV  
DD  
DD  
0.1µF  
0.1µF  
0.1µF  
CONVST  
CS  
CONTROL I/O  
AV  
WR  
DD  
RD  
REFADC  
EOLC  
EOC  
0.001µF  
22  
23  
REFP1  
REFP2  
0.1µF  
STANDBY  
1.0µF  
43  
44  
DRV  
DD  
+3V TO +5V  
27  
26  
REFN2  
REFN1  
0.1µF  
0.1µF  
1.0µF  
0.1µF  
GND  
DRGND  
24  
25  
COM1  
COM2  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
D13  
D12  
D11  
D10  
D9  
6, 8, 14, 16, 18, 20, 28  
GND  
AGND  
DIGITAL  
OUTPUT  
2
AIN0+  
AIN0-  
AIN1+  
AIN1-  
AIN2+  
AIN2-  
AIN3+  
AIN3-  
3
4
D8  
D7  
PARALLEL I/O  
D6  
5
ANALOG  
INPUTS  
D5  
10  
11  
12  
13  
D4  
DIGITAL  
I/O  
32  
31  
30  
29  
D3  
D2  
D1  
D0  
,, ______________________________________________________________________________________  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
Pin Configuration  
Chip Information  
TRANSISTOR COUNT: ±ꢂ,ꢀꢀꢀ  
TOP VIEW  
PROCESS: BiCMOS  
EXPOSED PAD: Connect to AGND  
D13  
41 D12  
40  
1
42  
AV  
DD  
2
AIN0+  
AIN0-  
AIN1+  
AIN1-  
AGND  
3
D11  
4
39 D10  
38 D9  
5
6
37  
36 D7  
D6  
D8  
7
AV  
DD  
MAX1338  
AGND  
8
35  
AV  
DD  
9
34 D5  
33 D4  
AIN2+  
AIN2-  
AIN3+  
AIN3-  
AGND  
10  
11  
12  
13  
14  
D3  
31 D2  
32  
30  
29  
D1  
D0  
ꢃHIN QFN  
______________________________________________________________________________________ ,3  
14-Bit, 4-Channel, Software-Programmable,  
Multiranging, Simultaneous-Sampling ADC  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to wwwꢁmaxim-icꢁcom/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© ±ꢀꢀ4 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX133C/D

3 Digit DMM Circuit
MAXIM

MAX133CMH

Analog-to-Digital Converter, 3-3/4-Digit
MAXIM

MAX133CMH+

A/D Converter, 1 Func, Bipolar, PQFP44
MAXIM

MAX133CMH+TD

ADC, Proprietary Method, 1 Func, 1 Channel, 0.181 INCH, ROHS COMPLIANT, MQFP-44
MAXIM

MAX133CMH-D

ADC, Proprietary Method, 1 Func, 1 Channel, 0.181 INCH, MQFP-44
MAXIM

MAX133CMH-TD

ADC, Proprietary Method, 1 Func, 1 Channel, 0.181 INCH, MQFP-44
MAXIM

MAX133CPL

3 Digit DMM Circuit
MAXIM

MAX133CPL+

ADC, Proprietary Method, 4-Bit, 1 Func, 1 Channel, Parallel, Word Access, Bipolar, PDIP40, 0.600 INCH, ROHS COMPLIANT, PLASTIC, DIP-40
MAXIM

MAX133CQH

3 Digit DMM Circuit
MAXIM

MAX133CQH+TD

ADC, Proprietary Method, 4-Bit, 1 Func, 1 Channel, Parallel, Word Access, Bipolar, PQCC44, ROHS COMPLIANT, PLASTIC, LCC-44
MAXIM

MAX133CQH-D

ADC, Proprietary Method, 4-Bit, 1 Func, 1 Channel, Parallel, Word Access, Bipolar, PQCC44, PLASTIC, LCC-44
MAXIM

MAX133EPL

3 Digit DMM Circuit
MAXIM