MAX13431EEUB+T [MAXIM]

Line Driver/Receiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO10, 3 X 3 MM, ROHS COMPLIANT, USOP, UMAX-10;
MAX13431EEUB+T
型号: MAX13431EEUB+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Driver/Receiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO10, 3 X 3 MM, ROHS COMPLIANT, USOP, UMAX-10

文件: 总20页 (文件大小:220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4322; Rev 1; 5/09  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
0–MAX143E  
General Description  
Features  
The MAX13430E–MAX13433E are full- and half-duplex  
RS-485 transceivers that feature an adjustable low-volt-  
age logic interface for operation in multivoltage systems.  
This allows direct interfacing to low-voltage ASIC/FPGAs  
without extra components. The MAX13430E–MAX13433E  
o Wide +3V to +5V Input Supply Range  
o Low-Voltage Logic Interface +1.62V (min)  
o Ultra-Low Supply Current in Shutdown Mode  
10µA I  
(max), 1µA I (max)  
L
CC  
RS-485 transceivers operate with a V  
voltage supply  
CC  
from +3V to +5V. The low-voltage logic interface operates  
with a voltage supply from +1.62V to V  
o Thermal Shutdown Protection  
.
CC  
o Hot-Swap Input Structures on DE and RE  
The MAX13430E/MAX13432E feature reduced slew-  
rate drivers that minimize EMI and reduce reflections  
caused by improperly terminated cables, allowing  
error-free data transmission up to 500kbps. The  
MAX13431E/MAX13433E driver slew rates are not limit-  
ed, enabling data transmission up to 16Mbps. The  
MAX13430E/MAX13431E are intended for half-duplex  
communications, and the MAX13432E/MAX13433E are  
intended for full-duplex communications.  
o 1/8-Unit Load Allows Up to 256 Transceivers on  
the Bus  
o Enhanced Slew-Rate Limiting  
(MAX13430E/MAX13432E)  
o Extended ESD Protection for RS-485 I/O Pins  
30ꢀV Human Body Model  
15ꢀV Air-ꢁap Discharge per IEC 61000-4-2  
10ꢀV Contact Discharge per IEC 61000-4-2  
The MAX13430E/MAX13431E are available in 10-pin  
®
µMAX and 10-pin TDFN packages. The MAX13432E/  
MAX13433E are available in 14-pin TDFN and 14-pin  
SO packages.  
o Extended -40°C to +85°C Operating Temperature  
Range  
Applications  
Motor Control  
o Space-Saving TDFN and µMAX Pacꢀages  
Industrial Control  
Systems  
HVAC  
Pin Configurations and Functional Diagrams appear at end  
of data sheet.  
Portable Industrial  
Equipment  
Ordering Information/Selector Guide  
FULL/HALF DATA RATE SLEW RATE TRANSCEIVERS  
TOP  
MARK  
PACKAꢁE  
CODE  
PART  
PIN-PACKAꢁE  
DUPLEX  
(Mbps)  
LIMITED  
ON BUS  
10 TDFN-EP*  
(3mm x 3mm)  
MAX13430EETB+  
MAX13430EEUB+  
MAX13431EETB+  
Half  
0.5  
Yes  
256  
AUS  
T1033-1  
U10-2  
10 µMAX  
(3mm x 3mm)  
Half  
Half  
0.5  
16  
Yes  
No  
256  
256  
10 TDFN-EP*  
(3mm x 3mm)  
AUT  
T1033-1  
10 µMAX  
(3mm x 3mm)  
MAX13431EEUB+  
MAX13432EESD+  
MAX13432EETD+  
MAX13433EESD+  
MAX13433EETD+  
Half  
Full  
Full  
Full  
Full  
16  
0.5  
0.5  
16  
No  
Yes  
Yes  
No  
256  
256  
256  
256  
256  
U10-2  
S14-1  
14 SO  
14 TDFN-EP*  
(3mm x 3mm)  
AEG  
T1433-2  
S14-1  
14 SO  
14 TDFN-EP*  
(3mm x 3mm)  
16  
No  
AEH  
T1433-2  
Note: All devices are specified over the extended -40°C to +85°C operating temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
ABSOLUTE MAXIMUM RATINꢁS  
(All voltages referenced to GND.)  
14-Pin TDFN (derate 24.4mW/°C above +70°C) ......1951mW  
14-Pin SO (derate 11.9mW/°C above +70°C) .............952mW  
Supply Voltage (V ) ...............................................-0.3V to +6V  
CC  
Logic Supply Voltage (V ......................................-0.3V to +6V  
Junction-to-Ambient Thermal Resistance (Θ ) (Note 1)  
L )  
JA  
Control Input Voltage (RE) .............................-0.3V to (V +0.3V)  
10-Pin µMAX ...........................................................113.1°C/W  
10-Pin TDFN.................................................................41°C/W  
14-Pin TDFN ................................................................41°C/W  
14-Pin SO ....................................................................84°C/W  
L
Control Input Voltage (DE) ......................................-0.3V to +6V  
Driver Input Voltage (DI) ..........................................-0.3V to +6V  
Driver Output Voltage (Y, Z, A, B) ............................-8V to +13V  
Receiver Input Voltage (A, B)  
(MAX13430E/MAX13431E)....................................-8V to +13V  
Receiver Input Voltage (A, B)  
Junction-to-Ambient Thermal Resistance (Θ ) (Note 1)  
JC  
10-Pin µMAX ................................................................42°C/W  
10-Pin TDFN...................................................................9°C/W  
14-Pin TDFN ..................................................................8°C/W  
14-Pin SO ....................................................................34°C/W  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature..................................................... +150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
(MAX13432E/MAX13433E)..................................-25V to +25V  
Receiver Output Voltage (RO) .....................-0.3V to (V + 0.3V)  
L
Driver Output Current .................................................... 250mA  
Short-Circuit Duration (RO, A, B) to GND .................Continuous  
Power Dissipation (T = +70°C)  
A
10-Pin µMAX (derate 8.8mW/°C above +70°C) ..........707mW  
10-Pin TDFN (derate 24.4mW/°C above +70°C) ......1951mW  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to http://www.maxim-ic.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICAL CHARACTERISTICS  
0–MAX143E  
(V  
= +3V to +5.5V, V = +1.8V to V , T = -40°C to +85°C, unless otherwise noted. Typical values are V  
= +5V, V = +1.8V at  
CC L  
CC  
L
CC  
A
T
A
= +25°C.) (Notes 2, 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
Supply-Voltage Range  
V
V
3
5.5  
V
V
CC  
CC  
V Supply-Voltage Range  
L
V
1.62  
V
L
CC  
DE = RE = high, no load  
I
Supply Current  
I
DE = RE = low, no load  
2
mA  
CC  
CC  
DE = high, RE = low, no load  
I
Supply Current in Shutdown  
CC  
I
DE = low, RE = high, no load  
10  
1
µA  
µA  
SHDN  
Mode  
V Supply Current  
L
I
RO = no load  
L
DRIVER  
R = 100, V  
= +3V  
2
V
L
CC  
CC  
CC  
CC  
CC  
R = 54, V  
= +3V  
1.5  
V
V
V
L
CC  
Differential Driver Output  
(Figure 1)  
V
V
OD  
R = 100, V  
L
= +4.5V  
CC  
2.25  
2.25  
R = 54, V  
= +4.5V  
L
CC  
Change in Magnitude of  
Differential Output Voltage  
V  
R = 100or 54, Figure 1 (Note 4)  
0.2  
3
V
V
V
OD  
L
Driver Common-Mode Output  
Voltage  
V
R = 100or 54, Figure 1  
L
V
/2  
CC  
OC  
Change in Magnitude of  
Common-Mode Voltage  
V  
R = 100or 54, Figure 1 (Note 4)  
L
0.2  
OC  
2
_______________________________________________________________________________________  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
0–MAX143E  
DC ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +3V to +5.5V, V = +1.8V to V , T = -40°C to +85°C, unless otherwise noted. Typical values are V  
= +5V, V = +1.8V at  
CC L  
CC  
L
CC  
A
T
A
= +25°C.) (Notes 2, 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
= +12V  
= -7V  
125  
IN  
IN  
Output Leakage Current  
(Y and Z)  
DE = GND,  
= V  
I
µA  
OLK  
V
or +5.5V  
CC  
GND  
-100  
0 V  
+12V  
+250  
-15  
OUT  
Driver Short-Circuit Output  
Current (Note 5)  
I
mA  
mA  
OSD  
-7V V  
V  
-250  
15  
OUT  
CC  
(V  
CC  
- 1V) V  
+12V  
OUT  
Driver Short-Circuit Output  
Foldback Current (Note 5)  
I
OSDF  
-7V V  
+1V  
OUT  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
RECEIVER  
T
+150  
15  
°C  
°C  
TS  
T
TSH  
V
V
= +12V  
= -7V  
125  
-50  
CM  
CM  
DE = GND,  
= V  
Input Current (A and B)  
I
µA  
A, B  
V
or +5.5V  
CC  
GND  
-100  
-200  
Receiver Differential Threshold  
Voltage  
V
-7V V  
+12V  
mV  
TH  
CM  
Receiver Input Hysteresis  
Receiver Input Resistance  
LOꢁIC INTERFACE  
V  
V
= 0  
15  
mV  
TH  
CM  
R
V
-7V V  
+12V  
96  
kΩ  
IN  
CM  
Input High Logic Level  
(DI, DE, RE)  
2/3 x  
V
L
V
IH  
Input Low Logic Level  
(DI, DE, RE)  
1/3 x  
V
V
IL  
V
L
Input Current (DI, DE, RE)  
I
V
= V = V = V = +5.5V  
1
µA  
kΩ  
IN  
DI  
DE  
RE  
L
Input Impedance on First  
Transition  
R
,
1
10  
DE RE  
Output High Logic Level (RO)  
Output Low Logic Level (RO)  
V
I
I
= -1mA, V - V = V  
V - 0.4  
L
V
V
OH  
O
A
B
TH  
TH  
V
= 1mA, V - V = -V  
0.4  
+1  
OL  
O
A
B
Receiver Three-State Output  
Current (RO)  
I
0 V  
0 V  
V  
V  
-1  
0.01  
µA  
OZR  
OSR  
RO  
RO  
L
Receiver Output Short-Circuit  
Current (RO)  
I
-110  
+110  
mA  
L
ESD PROTECTION  
IEC 61000-4-2 Air Gap Discharge  
IEC 61000-4-2 Contact Discharge  
Human Body Model  
15  
10  
30  
A, B, Y, Z to GND  
kV  
kV  
All Other Pins  
(Except A, B, Y, and Z)  
Human Body Model  
2
_______________________________________________________________________________________  
3
RS-485 Transceivers with Low-Voltage  
Logic Interface  
SWITCHINꢁ CHARACTERISTICS (MAX13431E/MAX13433E (16 Mbps))  
(V  
= +3V to +5.5V, V = +1.8V to V , T = -40°C to +85°C, unless otherwise noted. Typical values are V  
= +5V, V = +1.8V at  
CC L  
CC  
L
CC  
A
T
A
= +25°C.) (Notes 2, 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER  
t
t
50  
50  
DPLH  
Driver Propagation Delay  
(Figures 2 and 3)  
C = 50pF, R  
= 54  
DIFF  
ns  
ns  
ns  
L
DPHL  
Driver Differential Output Rise or  
Fall Time  
t , t  
C = 50pF, R = 54, Figures 2 and 3  
L
15  
8
R
F
L
Differential Driver Output Skew  
t
C = 50pF, R = 54, Figures 2 and 3  
L L  
DSKEW  
|t  
- t  
|
DPLH DPHL  
Maximum Data Rate  
16  
Mbps  
ns  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
t
C = 50pF, R = 500, Figure 4  
150  
150  
100  
120  
DZH  
L
L
t
C = 50pF, R = 500, Figure 5  
ns  
DZL  
DLZ  
DHZ  
L
L
t
C = 50pF, R = 500, Figure 4  
ns  
L
L
t
C = 50pF, R = 500, Figure 5  
ns  
L
L
Driver Enable from Shutdown  
to Output High  
t
C = 50pF, R = 500, Figure 4  
5
5
µs  
µs  
DZH(SHDN)  
L
L
Driver Enable from Shutdown  
to Output Low  
t
C = 50pF, R = 500, Figure 5  
L L  
DZL(SHDN)  
0–MAX143E  
RECEIVER  
t
t
80  
80  
13  
RPLH  
Receiver Propagation Delay  
(Figures 6 and 7)  
C = 15pF  
ns  
L
RPHL  
Receiver Output Skew  
t
C = 15pF, Figures 6 and 7  
L
ns  
Mbps  
ns  
RSKEW  
Maximum Data Rate  
16  
Receiver Enable to Output Low  
Receiver Enable to Output High  
Receiver Disable Time from Low  
Receiver Disable Time from High  
t
Figure 8  
Figure 8  
Figure 8  
Figure 8  
50  
50  
50  
50  
RZL  
t
ns  
RZH  
t
ns  
RLZ  
t
ns  
RHZ  
Receiver Enable from  
Shutdown to Output High  
t
Figure 8  
Figure 8  
5
5
µs  
µs  
RZH(SHDN)  
Receiver Enable from  
Shutdown to Output Low  
t
RZL(SHDN)  
DRIVER/RECEIVER  
Time to Shutdown  
t
50  
340  
700  
ns  
SHDN  
4
_______________________________________________________________________________________  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
0–MAX143E  
DRIVER SWITCHINꢁ CHARACTERISTICS (MAX13430E/MAX13432E (500 ꢀbps))  
(V  
= +3V to +5.5V, V = +1.8V to V , T = -40°C to +85°C, unless otherwise noted. Typical values are V  
= +5V, V = +1.8V at  
CC L  
CC  
L
CC  
A
T
A
= +25°C.) (Notes 2, 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER  
t
t
180  
180  
800  
800  
DPLH  
Driver Propagation Delay  
(Figures 2 and 3)  
C = 50pF, R = 54Ω  
ns  
ns  
ns  
L
L
DPHL  
Driver Differential Output Rise or  
Fall Time  
t , t  
C = 50pF, R = 54, Figures 2 and 3  
200  
800  
100  
R
F
L
L
Differential Driver Output Skew  
t
C = 50pF, R = 54, Figures 2 and 3  
L L  
DSKEW  
|t  
- t  
|
DPLH DPHL  
Maximum Data Rate  
500  
kbps  
µs  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
t
t
C = 50pF, R = 500, Figure 4  
2.5  
2.5  
DZH  
L
L
t
C = 50pF, R = 500, Figure 5  
µs  
DZL  
DLZ  
DHZ  
L
L
C = 50pF, R = 500, Figure 4  
100  
120  
ns  
L
L
t
C = 50pF, R = 500, Figure 5  
ns  
L
L
Driver Enable from Shutdown  
to Output High  
t
C = 50pF, R = 500, Figure 4  
5
5
µs  
µs  
DZH(SHDN)  
L
L
Driver Enable from Shutdown  
to Output Low  
t
C = 50pF, R = 500, Figure 5  
L L  
DZL(SHDN)  
RECEIVER  
t
t
200  
200  
30  
RPLH  
Receiver Propagation Delay  
(Figures 6 and 7)  
C = 15pF  
ns  
L
RPHL  
Receiver Output Skew  
Maximum Data Rate  
t
C = 15pF, Figures 6 and 7  
L
ns  
RSKEW  
500  
kbps  
Receiver Enable to  
Output Low  
t
Figure 8  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
Figure 8  
50  
50  
50  
50  
5
ns  
ns  
ns  
ns  
µs  
µs  
RZL  
Receiver Enable to  
Output High  
t
RZH  
Receiver Disable Time  
from Low  
t
RLZ  
Receiver Disable Time  
from High  
t
RHZ  
Receiver Enable from  
Shutdown to Output High  
t
RZH(SHDN)  
Receiver Enable from  
Shutdown to Output Low  
t
5
RZL(SHDN)  
_______________________________________________________________________________________  
5
RS-485 Transceivers with Low-Voltage  
Logic Interface  
DRIVER SWITCHINꢁ CHARACTERISTICS (MAX13430E/MAX13432E (500 ꢀbps)) (continued)  
(V  
= +3V to +5.5V, V = +1.8V to V , T = -40°C to +85°C, unless otherwise noted. Typical values are V  
= +5V, V = +1.8V at  
CC L  
CC  
L
CC  
A
T
A
= +25°C.) (Notes 2, 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER/RECEIVER  
Time to Shutdown  
t
50  
340  
700  
ns  
SHDN  
Note 2: Parameters are 100% production tested at T = +25°C, unless otherwise noted. Limits over temperature are guaranteed by  
A
design.  
Note 3: All currents into the device are positive. All currents out of the device are negative. All voltages are referenced to device  
ground, unless otherwise noted.  
Note 4: V  
and V  
are the changes in V and V , respectively, when the DI input changes state.  
OD OC  
OD  
OC  
Note 5: The short-circuit output current is the peak current just prior to current limiting; the short-circuit foldback output current  
applies during current limiting to allow a recovery from bus contention.  
Typical Operating Characteriststics  
(V = +5V, V = +5V, T = +25°C, unless otherwise noted.)  
CC  
L
A
OUTPUT CURRENT vs. RECEIVER  
OUTPUT-HIGH VOLTAGE  
OUTPUT CURRENT vs. RECEIVER  
OUTPUT-LOW VOLTAGE  
V
SUPPLY CURRENT vs. TEMPERATURE  
CC  
MAX13430E-3E toc02  
MAX13430E-3E toc03  
100  
60  
50  
40  
30  
20  
10  
0
6
5
4
3
2
1
0
80  
60  
40  
20  
0
8
6
4
2
0
0–MAX143E  
DE = HIGH, MAX13432E  
DE = HIGH, MAX13433E  
V = 1.8V  
L
10  
1
V = 5V  
L
V = 5V  
L
DE = LOW, MAX13433E  
V = 1.8V  
L
V = 5V  
L
DE = LOW, MAX13432E  
R
= 54  
DIFF  
DI = RE =LOW  
0
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
OUTPUT-HIGH VOLTAGE, V (V)  
OH  
OUTPUT-LOW VOLTAGE, V (V)  
OL  
RECEIVER OUTPUT-HIGH  
RECEIVER OUTPUT-LOW VOLTAGE  
vs. TEMPERATURE  
DIFFERENTIAL OUTPUT CURRENT  
vs. DIFFERENTIAL OUTPUT VOLTAGE  
VOLTAGE vs. TEMPERATURE  
MAX13430E-3E toc04  
6.0  
5.5  
5.0  
4.5  
4.0  
2.0  
1.9  
1.8  
1.7  
1.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
140  
120  
100  
80  
V = 5V  
L
I
O
= 1mA  
I
O
= 1mA  
V = 5V  
L
60  
V = 1.8V  
L
40  
V = 5V  
L
V = 1.8V  
L
20  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
5
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
6
_______________________________________________________________________________________  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
0–MAX143E  
Typical Operating Characteristics (continued)  
(V = +5V, V = +5V, T = +25°C, unless otherwise noted.)  
CC  
L
A
DRIVER DIFFERENTIAL OUTPUT  
VOLTAGE vs. TEMPERATURE  
OUTPUT CURRENT vs. TRANSMITTER  
OUTPUT-HIGH VOLTAGE  
OUTPUT CURRENT vs. TRANSMITTER  
OUTPUT-LOW VOLTAGE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
140  
120  
100  
80  
160  
140  
120  
100  
80  
V = 5V  
L
V = 5V  
L
60  
60  
40  
40  
20  
R
DIFF  
= 54Ω  
20  
V = 5V  
L
0
0
-40  
-15  
10  
35  
60  
85  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
0
2
4
6
8
10  
12  
TEMPERATURE (°C)  
OUTPUT-HIGH VOLTAGE (V)  
OUTPUT-LOW VOLTAGE (V)  
DRIVER PROPAGATION vs. TEMPERATURE  
(MAX13432E)  
DRIVER PROPAGATION vs. TEMPERATURE  
(MAX13433E)  
SHUTDOWN CURRENT vs. TEMPERATURE  
600  
80  
70  
10  
9
V = 5V  
L
V = 5V  
L
V = 5V  
L
500  
400  
8
60  
50  
40  
30  
t
7
6
5
4
3
2
1
0
RLPH  
t
RLPL  
300  
200  
100  
I
CC  
t
RPHL  
20  
10  
0
t
RPLH  
I
L
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX13432E DRIVER PROPAGATION  
DELAY (500kbps)  
MAX13433E DRIVER PROPAGATION  
DELAY (20Mbps)  
RECEIVER PROPAGATION vs. TEMPERATURE  
MAX13430E-3E toc14  
MAX13430E-3E toc15  
60  
V = 1.8V  
L
V = 5V  
L
R = 54Ω  
L
V = 5V  
L
R = 54Ω  
L
t
RPHL  
DI  
2V/div  
t
RPLH  
45  
30  
15  
0
V
Z
2V/div  
V
Y
2V/div  
-40  
-15  
10  
35  
60  
85  
10ns/div  
10ns/div  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
RS-485 Transceivers with Low-Voltage  
Logic Interface  
Test Circuits and Waveforms  
V
L
Y
DE  
R /2  
L
Y
Z
V
OD  
DI  
R
L
C
L
V
OD  
D
V
OC  
R /2  
L
Z
Figure 1. Driver DC Test Load  
Figure 2. Driver Timing Test Circuit  
V
L
DI  
V /2  
L
0
t
t
DPHL  
1/2 V  
DPLH  
O
Z
V
O
Y
1/2 V  
O
0–MAX143E  
V
DIFF  
= V (Y) - V (Z)  
V
0
O
90%  
90%  
V
DIFF  
10%  
10%  
-V  
O
t
t
F
R
t
= | t  
- t  
|
SKEW  
DPLH DPHL  
Figure 3. Driver Propagation Delays  
8
_______________________________________________________________________________________  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
0–MAX143E  
Test Circuits and Waveforms (continued)  
Y
S1  
0 OR V  
D
OUT  
L
R = 500  
L
Z
C
L
50pF  
DE  
GENERATOR  
50Ω  
V
0
V
L
DE  
V /2  
L
t
, t  
DZH DZH(SHDN)  
0.25V  
OH  
OUT  
V
= (0 + V )/2  
OH  
OM  
0
t
DHZ  
Figure 4. Driver Enable and Disable Times (t  
, t  
, and t  
)
DHZ DZH  
DZHZ(SHDN)  
V
CC  
R = 500Ω  
L
Y
Z
S1  
0 OR V  
D
OUT  
L
C
L
50pF  
DE  
GENERATOR  
50Ω  
V
L
DE  
V /2  
L
t
, t  
DZL DZL(SHDN)  
0
t
DLZ  
V
CC  
V
= (V + V )/2  
OL CC  
OM  
OUT  
0.25V  
V
OL  
Figure 5. Driver Enable and Disable Times (t  
, t  
, and t  
)
DLZ(SHDN)  
DZL DLZ  
_______________________________________________________________________________________  
9
RS-485 Transceivers with Low-Voltage  
Logic Interface  
Test Circuits and Waveforms (continued)  
A
B
+1V  
-1V  
RECEIVER  
OUTPUT  
B
A
t
V
ID  
R
RPLH  
ATE  
V
OH  
t
RPHL  
V
L/2  
V
OL  
RO  
THE RISE TIME AND FALL TIME OF INPUTS A AND B < 4ns  
Figure 6. Receiver Propagation Delay Test Circuit  
Figure 7. Receiver Propagation Delays  
S1  
+1.5V  
-1.5V  
S3  
V
L
1kΩ  
RO  
V
R
ID  
C
L
15pF  
S2  
RE  
GENERATOR  
50Ω  
0–MAX143E  
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
S1 CLOSED  
S2 OPEN  
S3 = -1.5V  
V
V
L
L
V /2  
L
RE  
RE  
0
0
t
, t  
RZH RZH(SHDN)  
t
, t  
RZL RZL(SHDN)  
V
V
L
OH  
RO  
V
OH  
/2  
(V + V )/2  
OL  
L
RO  
V
OL  
0
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
S1 CLOSED  
S2 OPEN  
S3 = -1.5V  
V
0
V
L
V
L
V /2  
L
V /2  
L
RE  
RE  
0
t
RHZ  
t
RLZ  
V
L
OH  
0.25V  
RO  
RO  
0.25V  
V
0
OL  
Figure 8. Receiver Enable and Disable Times  
10 ______________________________________________________________________________________  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
0–MAX143E  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX13430E/MAX13431E  
µMAX  
TDFN  
V Input Logic-Supply Voltage. Bypass V with a 0.1µF ceramic capacitor located as  
close as possible to the input.  
L
L
1
1
V
L
Receiver Output. When RE is low and if (A - B) -50mV, RO is high; if (A - B) -200mV,  
RO is low.  
2
3
2
3
RO  
DE  
Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high  
impedance when DE is low. Drive RE high and DE low to enter low-power shutdown  
mode. DE is a hot-swap input (see the Hot-Swap Capability section for details.)  
Active-Low Receiver Output Enable. Drive RE low to enable RO; RO is high impedance  
when RE is high. Drive RE high and DE low to enter low-power shutdown mode. RE is a  
hot-swap input (see the Hot-Swap Capability section for details.)  
4
5
4
5
RE  
Driver Input. With DE high, a low on DI forces noninverting output low and inverting output  
high. Similarly, a high on DI forces noninverting output high and inverting output low.  
DI  
6
7
8
9
6
7
8
9
GND  
N.C.  
A
Ground  
No Connection. Not internally connected. N.C. can be connected to GND.  
Noninverting Receiver Input and Noninverting Driver Output  
Inverting Receiver Input and Inverting Driver Output  
B
V
Input Supply Voltage. Bypass V  
with a 1µF ceramic capacitor located as close  
CC  
CC  
10  
10  
V
as possible to the input for full ESD protection. If full ESD protection is not required,  
bypass V with a 0.1µF ceramic capacitor.  
CC  
CC  
EP  
Exposed Pad (TDFN Only). Connect EP to GND.  
______________________________________________________________________________________ 11  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX13432E/MAX13433E  
SO  
TDFN  
V Input Logic Supply Voltage. Bypass V with a 0.1µF ceramic capacitor located as  
close as possible to the input.  
L
L
1
1
V
L
Receiver Output. When RE is low and if (A - B) -50mV, RO is high; if (A - B) -200mV,  
RO is low.  
2
3
2
3
RO  
DE  
Driver Output Enable. Drive DE high to enable driver outputs. These outputs are high  
impedance when DE is low. Drive RE high and DE low to enter low-power shutdown  
mode. DE is a hot-swap input (see the Hot-Swap Capability section for details.)  
Active-Low Receiver Output Enable. Drive RE low to enable RO; RO is high impedance  
when RE is high. Drive RE high and DE low to enter low-power shutdown mode. RE is a  
hot-swap input (see the Hot-Swap Capability section for details.)  
4
5
4
5
RE  
Driver Input. With DE high, a low on DI forces noninverting output low and inverting output  
high. Similarly, a high on DI forces noninverting output high and inverting output low.  
DI  
6
7, 13  
8
6
7, 13  
8
GND  
N.C.  
GND  
Y
Ground  
No Connection. Not internally connected. N.C. can be connected to GND.  
Ground  
9
9
Noninverting Driver Output  
Inverting Driver Output  
Inverting Receiver Input  
Noninverting Receiver Input  
0–MAX143E  
10  
11  
12  
10  
11  
12  
Z
B
A
V
Input Supply Voltage. Bypass V  
with a 1µF ceramic capacitor located as close  
CC  
CC  
as possible to the input for full ESD protection. If full ESD protection is not required,  
bypass V with a 0.1µF ceramic capacitor.  
14  
14  
V
CC  
CC  
EP  
Exposed Pad (TDFN Only). Connect EP to GND.  
12 ______________________________________________________________________________________  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
0–MAX143E  
Function Tables  
MAX13430E/MAX13431E (Full Duplex)  
MAX13432E/MAX13433E (Half Duplex)  
TRANSMITTINꢁ  
TRANSMITTINꢁ  
INPUTS  
OUTPUTS  
INPUTS  
OUTPUTS  
RE  
X
DE  
1
DI  
1
Z
Y
1
RE  
X
DE  
1
DI  
1
B
0
A
1
0
0
1
X
1
0
0
X
1
0
1
High-  
Impedance  
High-  
Impedance  
High-  
Impedance  
High-  
Impedance  
0
1
0
0
X
X
1
0
0
0
X
X
Shutdown  
Shutdown*  
RECEIVINꢁ  
RECEIVINꢁ  
INPUTS  
OUTPUT  
INPUTS  
OUTPUT  
RE  
0
DE  
X
A-B  
RO  
1
RE  
0
DE  
X
A-B  
RO  
1
-50mV  
-50mV  
0
X
-200mV  
0
0
X
-200mV  
0
Open/  
Shorted  
Open/  
Shorted  
0
X
1
0
X
1
1
1
1
0
X
X
High-Impedance  
Shutdown  
1
1
1
0
X
X
High-Impedance  
Shutdown*  
X = Don’t care.  
*Shutdown mode, driver and receiver outputs are in high impedance.  
Functional Diagrams  
V
V
CC  
V
L
V
L
CC  
MAX13430E  
MAX13431E  
MAX13432E  
MAX13433E  
Z
DI  
DI  
D
D
Y
DE  
DE  
B
A
RE  
RE  
B
RO  
RO  
R
R
A
GND  
GND  
______________________________________________________________________________________ 13  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
If (A - B) is less than or equal to -200mV, RO is logic-  
Detailed Description  
low. In the case of a terminated bus with all transmitters  
disabled, the receiver’s differential input voltage is  
pulled to 0V by the termination. With the receiver  
thresholds of the MAX13430E family, this results in a  
logic-high with a 50mV minimum noise margin. The  
-50mV to -200mV threshold complies with the 200mV  
EIA/TIA/RS-485 standard.  
The MAX13430E–MAX13433E are full- and half-duplex  
RS-485 transceivers that feature an adjustable low-  
voltage logic interface for application in multivoltage  
systems. This allows direct interfacing to low-  
voltage ASIC/FPGAs without extra components. The  
MAX13430E–MAX13433E RS-485 transceivers operate  
with a V  
voltage supply from +3V to +5V. The low-  
CC  
voltage logic interface operates with a voltage supply  
from +1.62V to V  
Hot-Swap Capability  
When circuit boards are inserted into a hot or powered  
backplane, differential disturbances to the data bus can  
lead to data errors. Upon initial circuit-board insertion,  
the data communication processor undergoes its own  
power-up sequence. During this period, the processor’s  
logic-output drivers are high impedance and are unable  
to drive the DE and RE inputs of these devices to a  
defined logic level. Leakage currents up to 10µA from  
the high-impedance state of the processor’s logic drivers  
could cause standard CMOS enable inputs of a trans-  
ceiver to drift to an incorrect logic level. Additionally, par-  
asitic circuit-board capacitance could cause coupling of  
.
CC  
The MAX13430E–MAX13433E are 30kV ESD-protect-  
ed RS-485 transceivers with one driver and one receiv-  
er. All devices have a 1/8-unit load receiver input  
impedance, allowing up to 256 transceivers on the bus.  
These devices include fail-safe circuitry, guaranteeing  
a logic-high receiver output when receiver inputs are  
open or shorted. The receivers output a logic-high if all  
transmitters on a terminated bus are disabled (high  
impedance). All devices feature hot-swap capability to  
eliminate false transitions on the bus during power-up  
or hot insertion.  
V or GND to the enable inputs. Without the hot-swap  
L
The MAX13430E/MAX13432E feature reduced slew-  
rate drivers that minimize EMI and reduce reflections  
caused by improperly terminated cables, allowing  
error-free data transmission up to 500kbps. The  
MAX13431E/MAX13433E driver slew rates are not limit-  
ed, enabling data transmission up to 16Mbps.  
capability, these factors could improperly enable the  
transceiver’s driver or receiver. When V rises, an inter-  
L
nal pulldown circuit holds DE low and RE high. After the  
initial power-up sequence, the pulldown circuit becomes  
transparent, resetting the hot-swap tolerable input.  
0–MAX143E  
30ꢀV ESD Protection  
ESD-protection structures are incorporated on all pins  
to protect against electrostatic discharges encoun-  
tered during handling and assembly. The driver out-  
puts and receiver inputs of the MAX13430E family of  
devices have extra protection against static electricity.  
Maxim’s engineers have developed state-of-the-  
art structures to protect these pins against ESD of  
30kV without damage. The ESD structures withstand  
high ESD in all states: normal operation, shutdown,  
and powered down. After an ESD event, the  
MAX13430E–MAX13433E keep working without latchup  
or damage. ESD protection can be tested in various  
ways. The transmitter outputs and receiver inputs of the  
MAX13430E–MAX13433E are characterized for protec-  
tion to the following limits:  
The MAX13430E–MAX13433E transceivers draw 2mA  
of supply current when unloaded or when fully loaded  
with the drivers disabled. The MAX13430E/  
MAX13431E are intended for half-duplex communica-  
tions, and the MAX13432E/MAX13433E are intended  
for full-duplex communications.  
Low-Voltage Logic Interface  
V is the voltage supply for the low-voltage logic inter-  
L
face and receiver output. V operates with voltage sup-  
L
ply from +1.62V to V  
.
CC  
Fail Safe  
The MAX13430E family guarantees a logic-high receiv-  
er output when the receiver inputs are shorted or open,  
or when they are connected to a terminated transmis-  
sion line with all drivers disabled. This is done by set-  
ting the receiver input threshold between -50mV and  
-200mV. If the differential receiver input voltage (A - B)  
is greater than or equal to -50mV, RO is logic-high.  
30kV using the Human Body Model  
10kV using the Contact Discharge method specified  
in IEC 61000-4-2  
15kV using the Air Gap Discharge method specified  
in IEC 61000-4-2  
14 ______________________________________________________________________________________  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
0–MAX143E  
ESD Test Conditions  
ESD performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents  
test setup, test methodology, and test results.  
not specifically refer to integrated circuits. The  
MAX13430E family of devices helps you design equip-  
ment to meet IEC 61000-4-2, without the need for addi-  
tional ESD-protection components.  
The major difference between tests done using the  
Human Body Model and IEC 61000-4-2 is higher peak  
current in IEC 61000-4-2 because series resistance is  
lower in the IEC 61000-4-2 model. Hence, the ESD with-  
stand voltage measured to IEC 61000-4-2 is generally  
lower than that measured using the Human Body  
Model. Figure 10c shows the IEC 61000-4-2 model, and  
Figure 10d shows the current waveform for IEC 61000-  
4-2 ESD Contact Discharge test.  
Human Body Model  
Figure 10a shows the Human Body Model, and Figure  
10b shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of a  
100pF capacitor charged to the ESD voltage of interest,  
which is then discharged into the test device through a  
1.5kresistor.  
IEC 61000-4-2  
The IEC 61000-4-2 standard covers ESD testing and  
performance of finished equipment. However, it does  
R
R
C
D
1M  
1500Ω  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I 100%  
P
90%  
I
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
AMPS  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
36.8%  
C
100pF  
STORAGE  
CAPACITOR  
s
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 10a. Human Body ESD Test Model  
Figure 10b. Human Body Current Waveform  
R
C
R
D
I
50MTO 100MΩ  
330Ω  
100%  
90%  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
150pF  
STORAGE  
CAPACITOR  
SOURCE  
10%  
t = 0.7ns TO 1ns  
r
t
30ns  
60ns  
Figure 10c. IEC 61000-4-2 ESD Test Model  
Figure 10d. IEC 61000-4-2 ESD Generator Current Waveform  
______________________________________________________________________________________ 15  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
Driver Output Protection  
Applications Information  
Two mechanisms prevent excessive output current and  
power dissipation caused by faults or by bus con-  
tention. The first, a foldback current limit on the output  
stage, provides immediate protection against short cir-  
cuits over the whole common-mode voltage range (see  
the Typical Operating Characteristics.) The second, a  
thermal-shutdown circuit, forces the driver outputs into  
a high-impedance state if the die temperature exceeds  
+150°C (typ).  
256 Transceivers on the Bus  
The standard RS-485 receiver input impedance is a  
one-unit load (12k), and the standard driver can drive  
up to 32 unit loads. The MAX13430E family of trans-  
ceivers has a 1/8-unit load receiver input impedance  
(96k), allowing up to 256 transceivers to be connect-  
ed in parallel on one communication line. Any combina-  
tion of these devices, as well as other RS-485  
transceivers with a total of 32-unit loads or less, can be  
connected to the line.  
Typical Applications  
The MAX13430E/MAX13433E transceivers are  
designed for bidirectional data communications on mul-  
tipoint bus transmission lines. Figures 12 and 13 show  
typical network applications circuits. To minimize reflec-  
tions, terminate the line at both ends with its character-  
istic impedance, and keep stub lengths off the main  
line as short as possible. The slew-rate-limited  
MAX13430E/MAX13432E allow the RS-485 network to  
be more tolerant of imperfect termination.  
Reduced EMI and Reflections  
The MAX13430E/MAX13432E feature reduced slew-  
rate drivers that minimize EMI and reduce reflections  
caused by improperly terminated cables, allowing  
error-free data transmission up to 500kbps.  
0–MAX143E  
16 ______________________________________________________________________________________  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
0–MAX143E  
Typical Application Circuits  
120Ω  
120Ω  
DE  
DI  
B
A
B
A
DI  
D
D
DE  
B
A
B
A
RO  
RE  
RO  
RE  
R
R
R
R
D
D
MAX13430E  
MAX13431E  
DE  
DI  
DI  
RO  
DE RO  
RE  
RE  
Figure 11. Typical Half-Duplex RS-485 Network  
A
Y
120Ω  
120Ω  
120Ω  
R
RO  
RE  
DE  
D
DI  
B
Z
DE  
RE  
Z
B
D
DI  
R
RO  
Y
A
Y
Z
B
A
Y
Z
B
A
MAX13432E  
MAX13433E  
R
R
D
D
DI  
DI  
DE  
DE  
RE RO  
RE RO  
Figure 12. Typical Full-Duplex RS-485 Network  
______________________________________________________________________________________ 17  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
Pin Configurations  
TOP VIEW  
V
B
9
A
8
N.C. GND  
V
N.C.  
13  
A
B
Z
Y
9
GND  
8
CC  
CC  
10  
7
6
14  
12  
11  
10  
MAX13430E  
MAX13431E  
MAX13432E  
MAX13434E  
*EP  
*EP  
+
+
1
2
3
4
5
1
2
3
4
RE  
5
6
7
V
L
RO  
DE  
RE  
DI  
V
RO  
DE  
DI  
GND N.C.  
L
TDFN  
TDFN  
* EXPOSED PAD CONNECT TO GND.  
* EXPOSED PAD CONNECT TO GND.  
+
V
1
2
3
4
5
6
7
14  
V
L
CC  
+
V
1
2
3
4
5
10  
9
V
B
A
L
CC  
0–MAX143E  
RO  
DE  
13 N.C.  
RO  
DE  
RE  
DI  
12  
11  
10  
9
A
MAX13432E  
MAX13433E  
MAX13430E  
MAX13431E  
8
RE  
B
7
N.C.  
GND  
DI  
Z
6
GND  
N.C.  
Y
8
GND  
µMAX  
SO  
Chip Information  
PROCESS: BiCMOS  
18 ______________________________________________________________________________________  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
0–MAX143E  
Pacꢀage Information  
For the latest package outline information and land patterns, go to www.maxim-ic.com/pacꢀages.  
PACKAꢁE TYPE  
10 µMAX  
PACKAꢁE CODE  
U10-2  
DOCUMENT NO.  
21-0061  
14 TDFN-EP  
10 TDFN-EP  
14 SO  
T1433-2  
21-0137  
T1033-1  
21-0137  
S14-1  
21-0041  
______________________________________________________________________________________ 19  
RS-485 Transceivers with Low-Voltage  
Logic Interface  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAꢁES  
CHANꢁED  
DESCRIPTION  
0
1
10/08  
5/09  
Initial release  
1
Updated Ordering Information.  
0–MAX143E  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX13432E

RS-485 Transceivers with Low-Voltage Logic Interface
MAXIM

MAX13432EESD+

RS-485 Transceivers with Low-Voltage Logic Interface
MAXIM

MAX13432EESD+T

暂无描述
MAXIM

MAX13432EETD+

RS-485 Transceivers with Low-Voltage Logic Interface
MAXIM

MAX13433E

RS-485 Transceivers with Low-Voltage Logic Interface
MAXIM

MAX13433EESD+

RS-485 Transceivers with Low-Voltage Logic Interface
MAXIM

MAX13433EESD+T

暂无描述
MAXIM

MAX13433EESD/V+

RS-485 Transceivers with Low-Voltage Logic Interface
MAXIM

MAX13433EETD+

RS-485 Transceivers with Low-Voltage Logic Interface
MAXIM

MAX1343BETX

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1343BETX+

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220, TQFN-36
MAXIM

MAX1343BETX-T

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220, TQFN-36
MAXIM