MAX13448EESD [MAXIM]

80V Fault-Protected Full-Duplex RS-485 Transceiver; 80V故障保护的全双工RS - 485收发器
MAX13448EESD
型号: MAX13448EESD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

80V Fault-Protected Full-Duplex RS-485 Transceiver
80V故障保护的全双工RS - 485收发器

文件: 总14页 (文件大小:188K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4ꢀ98; Rev ꢀ; 5/ꢀ8  
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
MAX1348E  
General Description  
Features  
The MAX13448E full-duplex RS-485 transceiver fea-  
tures inputs and outputs fault protected up to 8ꢀ0  
(with respect to ground). The device operates from a  
+3.ꢀ0 to +5.50 supply and features true fail-safe cir-  
cuitry, guaranteeing a logic-high receiver output when  
the receiver inputs are open or shorted. This enables all  
receiver outputs on a terminated bus to output logic-  
high when all transmitters are disabled.  
o ±±80V FaulVꢀPrltelꢁroVroVlꢂtVꢃRS-±ꢄVꢅI/VꢀrPlꢆ  
o TPatV FꢁuSRFftVꢃtetꢁvtP  
o HrlSRwFpVꢅopalVRlPaelaPtVroVDE  
o ERDVꢀPrltelꢁroVroVlꢂtVꢃRS-±ꢄVꢅI/VꢀrPlꢆ  
±±ꢇ0VHaꢈFoVꢉrꢊdVꢋrꢊtuV  
o RutwSꢃFltVLꢁꢈꢁlꢁogV FeꢁuꢁlFltꢆVEPPrPS PttVDFlF  
The MAX13448E features a slew-rate limited driver that  
minimizes EMI and reduces reflections caused by  
improperly terminated cables, allowing error-free data  
transmission at data rates up to 5ꢀꢀkbps with a +50  
supply, and 25ꢀkbps with a +3.30 supply.  
TPFoꢆꢈꢁꢆꢆꢁro  
o 1I±SUoꢁlVLrFꢊVAuurwꢆVUpVlrV2ꢄ6VTPFoꢆetꢁvtPꢆVro  
lꢂtVꢉaꢆ  
o S70VlrV+120VCrꢈꢈroSꢋrꢊtVꢅopalV0rulFgtVꢃFogt  
o +3.80VlrV+ꢄ.ꢄ0V/ptPFlꢁogVRappudV0rulFgt  
o AvFꢁuFbutVꢁoV1-SꢀꢁoVR/VꢀFeꢇFgt  
The MAX13448E includes a hot-swap capability to elimi-  
nate false transitions on the bus during power-up or hot  
insertion. The driver and receiver feature active-high and  
active-low enables, respectively, that can be connected  
together externally to serve as a direction control.  
The MAX13448E features an 1/8-unit load receiver input  
impedance, allowing up to 256 transceivers on the bus.  
All driver outputs are protected to 8k0 ESꢁ using the  
Human Body Model. The MAX13448E is available in a  
14-pin SO package and operates over the extended  
-4ꢀ°C to +85°C temperature range.  
Ordering Information  
ꢀAꢃT  
TEꢋꢀVꢃANGE  
ꢀꢅNSꢀACKAGE  
MAX13448EESꢁ+  
-4ꢀ°C to +85°C  
14 SO  
+ꢁenotes a lead-free package.  
Applications  
Industrial Control Systems  
H0AC Control systems  
ꢀꢁoVCrofꢁgaPFlꢁroVFpptFPꢆVFlVtoꢊVrfVꢊFlFVꢆꢂttl.  
Utility Meters  
Motor ꢁriver Control Systems  
Functional Diagram  
V
CC  
MAX13448E  
DE  
RE  
V
CC  
+
N.C.  
RO  
1
2
3
4
5
6
7
14  
V
CC  
1μF  
4
14  
13 N.C.  
R
9
Y
Z
5
RO  
DI  
R
R
t
D
R
DI  
10  
RE  
12  
11  
10  
9
A
DE  
B
12  
11  
A
B
DI  
Z
2
RO  
R
D
t
D
1, 8,  
13  
GND  
GND  
Y
N.C.  
8
N.C.  
3
6, 7  
GND  
GND  
DE  
RE  
R/  
________________________________________________________________ ꢋFxꢁꢈVꢅoltgPFltꢊVꢀPrꢊaelꢆ  
1
 rPVpPꢁeꢁog,VꢊtuꢁvtPd,VFoꢊVrPꢊtPꢁogVꢁofrPꢈFlꢁro, putFꢆtVerolFelVꢋFxꢁꢈVDꢁPtel FlV1S±±±S629S-6-2,  
rPVvꢁꢆꢁlVꢋFxꢁꢈ’ꢆVwtbꢆꢁltVFlVwww.ꢈFxꢁꢈSꢁe.erꢈ.  
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
AꢉR/LUTEVꢋAXꢅꢋUꢋVꢃATꢅNGR  
(All voltages reference to GNꢁ.)  
Continuous Power ꢁissipation (T = +7ꢀ°C)  
A
Supply 0oltage (0 ).............................................................+60  
14-Pin SO (derate 8.3mW/°C above +7ꢀ°C)................667mW  
CC  
Control Input 0oltage (RE, ꢁE)...................-ꢀ.30 to (0  
ꢁriver Input 0oltage (ꢁI).............................-ꢀ.30 to (0  
+ ꢀ.30)  
+ ꢀ.30)  
Operating Temperature Range ...........................-4ꢀ°C to +85°C  
Junction Temperature......................................................+15ꢀ°C  
Storage Temperature Range.............................-65°C to +15ꢀ°C  
Lead Temperature (soldering, 1ꢀs) .................................+3ꢀꢀ°C  
CC  
CC  
Receiver Input 0oltage (A, B (Note 1)) ................................ 8ꢀ0  
ꢁriver Output 0oltage (Y, Z (Note 1)) .................................. 8ꢀ0  
Receiver Output 0oltage (RO)....................-ꢀ.30 to (0  
+ ꢀ.30)  
CC  
Short-Circuit ꢁuration (RO, A, B) ...............................Continuous  
NrltV1: If the RS-485 transmission lines are unterminated and a short to a voltage 0  
occurs at a remote point on the line, an active  
SHT  
local driver (with ꢁI switching) may see higher voltage than 0  
due to inductive kickback at the driver. Terminating the line  
MAX1348E  
SHT  
with a resistor equal to its characteristic impedance minimizes this kickback effect.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTꢃꢅCALVCHAꢃACTEꢃꢅRTꢅCR  
(0  
= +3.ꢀ to +5.50, T = T  
A
to T  
, unless otherwise noted. Typical values are at 0  
= +3.30 and T = +25°C.) (Notes 2, 3)  
CC A  
CC  
MIN  
MAX  
ꢀAꢃAꢋETEꢃ  
RYꢋꢉ/L  
C/NDꢅTꢅ/N  
ꢋꢅN  
TYꢀ  
ꢋAX  
5.5  
15  
UNꢅTR  
0
Supply 0oltage Range  
0
3.ꢀ  
0
CC  
CC  
No load, ꢁE, ꢁI, RE = ꢀ0 or 0 , 0 = 3.30  
CC CC  
Supply Current  
I
mA  
µA  
Q
No load, ꢁE, ꢁI, RE = ꢀ0 or 0 , 0  
= 50  
15  
CC CC  
ꢁE = GNꢁ, RE = 0 , 0  
= 3.30  
1ꢀꢀ  
1ꢀꢀ  
15  
CC CC  
Supply Current in Shutdown  
Mode  
I
SHꢁN  
ꢁE = GNꢁ, RE = 0 , 0  
= 50  
CC CC  
ꢁE = GNꢁ, RE = GNꢁ, short to +6ꢀ0  
ꢁE = GNꢁ, RE = GNꢁ, short to -6ꢀ0  
Supply Current with Output  
Shorted to 6ꢀ0  
I
mA  
SHRT  
15  
Dꢃꢅ0Eꢃ  
R = 1ꢀꢀΩ, Figure 1  
2
0
0
L
CC  
CC  
ꢁifferential ꢁriver Output  
0
0
0
Oꢁ  
R = 54Ω, Figure 1  
L
1.5  
Change in Magnitude of  
ꢁifferential Output 0oltage  
Δ0  
R = 1ꢀꢀΩ or 54Ω, Figure 1 (Note 4)  
L
-ꢀ.2  
ꢀ.2  
3
Oꢁ  
ꢁriver Common-Mode Output  
0oltage  
0
RL = 1ꢀꢀΩ or 54Ω, Figure 1  
0
/2  
CC  
0
OC  
Change in Magnitude of  
Common-Mode 0oltage  
Δ0  
RL = 1ꢀꢀΩ or 54Ω, Figure 1 (Note 4)  
-ꢀ.2  
+ꢀ.2  
0
OC  
ꢁI = low, ꢀ0 0 or 0 +120  
+25ꢀ  
Y
Z
ꢁriver Short-Circuit Output  
Current  
I
mA  
mA  
mA  
OSꢁ  
ꢁI = high, -70 0 or 0 0 (Note 5)  
CC  
-25ꢀ  
+1ꢀ  
Y
Z
ꢁI = low, (0  
- 10) 0 or 0 +120  
Y Z  
CC  
ꢁriver Short-Circuit Foldback  
Output Current  
I
I
OSꢁF  
OSꢁL  
ꢁI = high, -70 0 or 0 +10  
-1ꢀ  
+6  
Y
Z
0 or 0 + 220, R = 1ꢀꢀΩ  
Y
Z
L
ꢁriver-Limit Short-Circuit  
Foldback Output Current  
0 or 0 -130, R = 1ꢀꢀΩ  
-6  
2
Y
Z
L
ꢁriver Input High 0oltage  
ꢁriver Input Low 0oltage  
ꢁriver Input Current  
0
0
0
ꢁIH  
0
ꢀ.8  
+1  
ꢁIL  
I
-1  
µA  
ꢁIN  
2
_______________________________________________________________________________________  
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
MAX1348E  
ELECTꢃꢅCALVCHAꢃACTEꢃꢅRTꢅCRV(erolꢁoatꢊ)  
(0  
= +3.ꢀ to +5.50, T = T  
A
to T  
, unless otherwise noted. Typical values are at 0  
= +3.30 and T = +25°C.) (Notes 2, 3)  
CC A  
CC  
MIN  
MAX  
ꢀAꢃAꢋETEꢃ  
RYꢋꢉ/L  
C/NDꢅTꢅ/N  
ꢋꢅN  
TYꢀ  
ꢋAX  
UNꢅTR  
ꢃECEꢅ0Eꢃ  
0
0
= GNꢁ or  
= +3.ꢀ0 to +5.50  
CC  
CC  
0 , 0 = +120  
+125  
µA  
A
B
Input Current  
I ,  
A B  
0 , 0 = -70  
-1ꢀꢀ  
-6  
µA  
A
B
0 , 0  
A
=
8ꢀ0  
+6  
mA  
B
Receiver ꢁifferential Threshold  
0oltage  
0
-70 0  
+120  
-2ꢀꢀ  
-5ꢀ  
m0  
m0  
0
TH  
CM  
Receiver Input Hysteresis  
Output High 0oltage  
Output Low 0oltage  
Δ0  
25  
TH  
0
-
CC  
0
I
I
= -1.6mA  
= 1mA  
OH  
OH  
ꢀ.6  
0
ꢀ.4  
+1  
0
OL  
OL  
Three-State Output Current at  
Receiver  
I
0 , 0 0  
-1  
µA  
OZR  
A
B
CC  
Receiver Output Short-Circuit  
Current  
I
0  
0  
-95  
+95  
mA  
OSR  
RO  
CC  
ERDVꢀꢃ/TECTꢅ/N  
All Pins  
Human Body Model  
Human Body Model  
2
8
k0  
k0  
ESꢁ Protection Level  
(A and B, Y and Z)  
C/NTꢃ/L  
Control Input High 0oltage  
Control Input Low 0oltage  
0
ꢁE, RE  
ꢁE, RE  
2
0
0
CIH  
0
ꢀ.8  
CIL  
Input Current Latch ꢁuring First  
Rising Edge  
I
IN  
ꢁE, RE  
8ꢀ  
µA  
ꢀꢃ/TECTꢅ/NVRꢀECꢅ ꢅCATꢅ/NR  
Overvoltage Protection  
A, B, Y, Z  
-8ꢀ  
ꢋꢅN  
+8ꢀ  
0
RWꢅTCHꢅNGVCHAꢃACTEꢃꢅRTꢅCRV(0  
=V+3.30V±18ꢌ)  
CC  
(T = T  
A
to T  
, unless otherwise noted. Typical values are at 0  
MAX  
= +3.30 and T = +25°C.)  
MIN  
CC A  
ꢀAꢃAꢋETEꢃ  
RYꢋꢉ/L  
C/NDꢅTꢅ/N  
TYꢀ  
ꢋAX  
UNꢅTR  
Dꢃꢅ0Eꢃ  
ꢁriver ꢁifferential Propagation  
ꢁelay  
t
t
,
ꢁPLH  
R = 54Ω, C = 5ꢀpF, Figures 2 and 3  
7ꢀꢀ  
15ꢀꢀ  
12ꢀꢀ  
2ꢀꢀ  
ns  
ns  
ns  
L
L
ꢁPHL  
ꢁriver ꢁifferential Output  
Transition Time  
t
t
, t  
R = 54Ω, C = 5ꢀpF, Figures 2 and 3  
25ꢀ  
25ꢀ  
LH HL  
L
L
R = 54Ω, C = 5ꢀpF, t  
= [t  
-
ꢁPLH  
L
L
ꢁSKEW  
ꢁifferential ꢁriver Output Skew  
15ꢀ  
ꢁSKEW  
t ], Figures 2 and 3  
ꢁPHL  
Maximum ꢁata Rate  
f
kbps  
ns  
MAX  
ꢁriver Enable Time to Output High  
t
R = 5ꢀꢀΩ, C = 5ꢀpF, Figure 4  
2ꢀꢀꢀ  
ꢁZH  
L
L
_______________________________________________________________________________________  
3
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
RWꢅTCHꢅNGVCHAꢃACTEꢃꢅRTꢅCRV(0  
=V+3.30V±18ꢌ)V(erolꢁoatꢊ)  
CC  
(T = T  
to T  
, unless otherwise noted. Typical values are at 0  
= +3.30 and T = +25°C.)  
A
MIN  
MAX  
CC A  
ꢀAꢃAꢋETEꢃ  
RYꢋꢉ/L  
C/NDꢅTꢅ/N  
R = 5ꢀꢀΩ, C = 5ꢀpF, Figure 4  
ꢋꢅN  
TYꢀ  
ꢋAX  
UNꢅTR  
ꢁriver ꢁisable Time from  
Output High  
t
1ꢀꢀꢀ  
ns  
ꢁHZ  
L
L
ꢁriver Enable Time from  
Shutdown to Output High  
t
R = 5ꢀꢀΩ, C = 5ꢀpF, Figure 4  
8
µs  
ns  
ns  
ꢁZH(SHꢁN)  
L
L
ꢁriver Enable Time to Output Low  
t
t
R = 5ꢀꢀΩ, C = 5ꢀpF, Figure 5  
15ꢀꢀ  
2ꢀꢀꢀ  
ꢁZL  
L
L
ꢁriver ꢁisable Time from  
Output Low  
MAX1348E  
R = 5ꢀꢀΩ, C = 5ꢀpF, Figure 5  
ꢁLZ  
L
L
ꢁriver Enable Time from  
Shutdown to Output Low  
t
R = 5ꢀꢀΩ, C = 5ꢀpF, Figure 5  
8
µs  
µs  
ꢁZL(SHꢁN)  
L
L
ꢁriver Time to Shutdown  
t
R = 5ꢀꢀΩ, C = 5ꢀpF  
12  
SHꢁN  
L
L
ꢃECEꢅ0Eꢃ  
t
t
,
C = 2ꢀpF, 0 = 20, 0  
Figure 6  
= ꢀ0,  
CM  
RPLH  
L
Iꢁ  
Receiver Propagation ꢁelay  
Receiver Output Skew  
2ꢀꢀꢀ  
2ꢀꢀ  
1ꢀꢀꢀ  
15ꢀ  
5
ns  
ns  
ns  
ns  
µs  
ns  
RPHL  
C = 2ꢀpF, t  
L
= [t  
- t  
],  
RSKEW  
RPLH RPHL  
t
RSKEW  
Figure 6  
Receiver Enable Time to  
Output High  
t
t
R = 1kΩ, C = 2ꢀpF, Figure 7  
L L  
RZH  
Receiver ꢁisable Time from  
Output High  
R = 1kΩ, C = 2ꢀpF, Figure 7  
RHZ  
L
L
Receiver Wake Time from  
Shutdown  
t
R = 1kΩ, C = 2ꢀpF, Figure 7  
L L  
RWAKE  
Receiver Enable Time to  
Output Low  
t
t
R = 1kΩ, C = 2ꢀpF, Figure 7  
1ꢀꢀꢀ  
RZL  
L
L
Receiver ꢁisable Time from  
Output Low  
R = 1kΩ, C = 2ꢀpF, Figure 7  
15ꢀ  
2ꢀꢀ  
ns  
ns  
RLZ  
L
L
Receiver Time to Shutdown  
t
R = 5ꢀꢀΩ, C = 5ꢀpF  
SHꢁN  
L
L
RWꢅTCHꢅNGVCHAꢃACTEꢃꢅRTꢅCRV(0  
=V+ꢄ0V±18ꢌ)  
CC  
(T = T  
to T  
, unless otherwise noted. Typical values are at 0  
= +50 and T = +25°C.)  
A
MIN  
MAX  
CC A  
ꢀAꢃAꢋETEꢃ  
RYꢋꢉ/L  
C/NDꢅTꢅ/N  
ꢋꢅN  
TYꢀ  
ꢋAX  
UNꢅTR  
Dꢃꢅ0Eꢃ  
ꢁriver ꢁifferential Propagation  
ꢁelay  
t
t
,
ꢁPLH  
R = 54Ω, C = 5ꢀpF, Figure 3  
8ꢀꢀ  
12ꢀꢀ  
2ꢀꢀ  
ns  
ns  
L
L
ꢁPHL  
ꢁriver ꢁifferential Output  
Transition Time  
t
t
, t  
R = 54Ω, C = 5ꢀpF, Figure 3  
1ꢀꢀ  
5ꢀꢀ  
LH HL  
L
L
R = 54Ω, C = 5ꢀpF, t  
= [t  
-
ꢁPLH  
L
L
ꢁSKEW  
ꢁifferential ꢁriver Output Skew  
Maximum ꢁata Rate  
ns  
ꢁSKEW  
t ], Figure 3  
ꢁPHL  
f
kbps  
MAX  
-
_______________________________________________________________________________________  
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
MAX1348E  
RWꢅTCHꢅNGVCHAꢃACTEꢃꢅRTꢅCRV(0  
=V+ꢄ0V±18ꢌ)V(erolꢁoatꢊ)  
CC  
(T = T  
to T  
, unless otherwise noted. Typical values are at 0  
= +50 and T = +25°C.)  
A
MIN  
MAX  
CC A  
ꢀAꢃAꢋETEꢃ  
RYꢋꢉ/L  
C/NDꢅTꢅ/N  
R = 5ꢀꢀΩ, C = 5ꢀpF, Figure 4  
ꢋꢅN  
TYꢀ  
ꢋAX  
UNꢅTR  
ꢁriver Enable Time to Output High  
t
15ꢀꢀ  
ns  
ꢁZH  
L
L
ꢁriver ꢁisable Time from  
Output High  
t
R = 5ꢀꢀΩ, C = 5ꢀpF, Figure 4  
1ꢀꢀꢀ  
ns  
ꢁHZ  
L
L
ꢁriver Enable Time from  
Shutdown to Output High  
t
R = 5ꢀꢀΩ, C = 5ꢀpF, Figure 4  
8
1ꢀꢀꢀ  
2
µs  
ns  
µs  
ꢁZH(SHꢁN)  
L
L
ꢁriver Enable Time to Output Low  
t
t
R = 5ꢀꢀΩ, C = 5ꢀpF, Figure 5  
L L  
ꢁZL  
ꢁriver ꢁisable Time from  
Output Low  
R = 5ꢀꢀΩ, C = 5ꢀpF, Figure 5  
ꢁLZ  
L
L
ꢁriver Enable Time from  
Shutdown to Output Low  
t
R = 5ꢀꢀΩ, C = 5ꢀpF, Figure 5  
8
µs  
µs  
ꢁZL(SHꢁN)  
L
L
ꢁriver Time to Shutdown  
t
R = 5ꢀꢀΩ, C = 5ꢀpF  
12  
SHꢁN  
L
L
ꢃECEꢅ0Eꢃ  
t
t
,
C = 2ꢀpF, 0 = 20, 0  
Figure 6  
= ꢀ0,  
CM  
RPLH  
L
Iꢁ  
Receiver Propagation ꢁelay  
Receiver Output Skew  
2ꢀꢀꢀ  
2ꢀꢀ  
1ꢀꢀꢀ  
15ꢀ  
8
ns  
ns  
ns  
ns  
µs  
ns  
RPHL  
C = 2ꢀpF, t  
L
= [t  
- t  
],  
RSKEW  
RPLH RPHL  
t
RSKEW  
Figure 6  
Receiver Enable Time to  
Output High  
t
t
R = 1kΩ, C = 2ꢀpF, Figure 7  
L L  
RZH  
RHZ  
Receiver ꢁisable Time from  
Output High  
R = 1kΩ, C = 2ꢀpF, Figure 7  
L
L
Receiver Wake Time from  
Shutdown  
t
R = 1kΩ, C = 2ꢀpF, Figure 7  
L L  
RWAKE  
Receiver Enable Time to  
Output Low  
t
t
R = 1kΩ, C = 2ꢀpF, Figure 7  
1ꢀꢀꢀ  
RZL  
RLZ  
L
L
Receiver ꢁisable Time from  
Output Low  
R = 1kΩ, C = 2ꢀpF, Figure 7  
15ꢀ  
15ꢀ  
ns  
ns  
L
L
Receiver Time to Shutdown  
t
R = 5ꢀꢀΩ, C = 5ꢀpF  
L L  
SHꢁN  
NrltV2: Parameters are 1ꢀꢀ% production tested at T = +25°C, unless otherwise noted. Limits over temperature are guaranteed by  
A
design.  
NrltV3: All currents into the device are positive. All currents out of the device are negative. All voltages are referenced to device  
ground, unless otherwise noted.  
NrltV-: Δ0  
and Δ0  
are the changes in 0 and 0 , respectively, when the ꢁI input changes state.  
Oꢁ OC  
Oꢁ  
OC  
NrltVꢄ: The short-circuit output current applies to peak current just prior to foldback current limiting. The short-circuit foldback output  
current applies during current limiting to allow a recover from bus contention.  
_______________________________________________________________________________________  
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
Typical Operating Characteristics  
(0 = +3.30, T = +25°C, unless otherwise noted.)  
CC  
A
RECEIVER OUTPUT SINK CURRENT  
vs. OUTPUT LOW VOLTAGE  
RECEIVER OUTPUT SOURCE CURRENT  
vs. OUTPUT HIGH VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4.20  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
DE = RE = LOW  
B - A = HIGH  
DE = RE = LOW  
A - B = HIGH  
DI = FLOATING  
-40°C  
4.15  
4.10  
4.05  
+85°C  
MAX1348E  
+25°C  
-40°C  
+25°C  
+85°C  
DE = RE = LOW  
A - B = HIGH  
0
2
4
6
8
10  
-40  
-15  
10  
35  
60  
85  
0
2
4
6
8
10  
OUTPUT SINK CURRENT (mA)  
TEMPERATURE (°C)  
OUTPUT SOURCE CURRENT (mA)  
RECEIVER OUTPUT LOW VOLTAGE  
vs. TEMPERATURE  
RECEIVER OUTPUT HIGH VOLTAGE  
vs. TEMPERATURE  
0.075  
3.25  
3.24  
3.23  
3.22  
3.21  
3.20  
DE = RE = LOW  
B - A = HIGH  
0.070  
0.065  
0.060  
0.055  
0.050  
0.045  
0.040  
I
= 1mA  
SINK  
DE = RE = LOW  
A - B = HIGH  
I
= 1mA  
SOURCE  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DRIVER DIFFERENTIAL OUTPUT VOLTAGE  
vs. DIFFERENTIAL OUTPUT CURRENT  
DRIVER DIFFERENTIAL OUTPUT  
VOLTAGE vs. TEMPERATURE  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
1.94  
1.92  
1.90  
1.88  
1.86  
DE = RE = HIGH  
DI = HIGH  
DE = RE = HIGH  
DI = HIGH  
R
= 54Ω  
LOAD  
0
20  
40  
60  
80  
100  
-40  
-15  
10  
35  
60  
85  
DIFFERENTIAL OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
MAX1348E  
Typical Operating Characteristics (continued)  
(0 = +3.30, T = +25°C, unless otherwise noted.)  
CC  
A
SINGLE-ENDED DRIVER SINK CURRENT  
SINGLE-ENDED DRIVER OUTPUT  
HIGH VOLTAGE vs. SOURCE CURRENT  
vs. OUTPUT LOW VOLTAGE  
SHUTDOWN CURRENT vs. TEMPERATURE  
30  
25  
20  
15  
10  
5
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
DE = RE = HIGH  
DI = HIGH  
DE = RE = HIGH  
DI = HIGH  
0
-40  
-15  
10  
35  
60  
85  
0
2
4
6
8
10  
0
2
4
6
8
10  
TEMPERATURE (°C)  
OUTPUT SINK CURRENT (mA)  
OUTPUT SOURCE CURRENT (mA)  
RECEIVER PROPAGATION DELAY (500kbsp)  
DRIVER PROPAGATION DELAY (500kbsp)  
MAX13448E toc12  
MAX13448E toc11  
2V/div  
1V/div  
1V/div  
2V/div  
400ns  
400ns  
DRIVER PROPAGATION DELAY  
vs. TEMPERATURE  
RECEIVER PROPAGATION DELAY  
vs. TEMPERATURE  
500  
450  
400  
350  
300  
400  
375  
350  
325  
300  
DE = RE = LOW  
C
= 20pF  
LOAD  
t
DPLH  
t
RPLH  
t
DPHL  
t
RPHL  
DE = RE = HIGH  
R
C
= 54Ω  
= 50pF  
LOAD  
LOAD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
-in Description  
ꢀꢅN  
1, 8, 13  
2
NAꢋE  
N.C.  
RO  
 UNCTꢅ/N  
No Connection. Not internally connected. Connect N.C. to GNꢁ or leave it unconnected.  
Receiver Output. If receiver is enabled and (A - B) -5ꢀm0, RO = high; if (A - B) -2ꢀꢀm0, RO = low.  
Receiver Output Enable. ꢁrive RE low to enable RO; RO is high impedance when RE is high. ꢁrive  
RE high and ꢁE low to enter low-power shutdown mode.  
3
4
5
RE  
ꢁE  
ꢁI  
ꢁriver Output Enable. ꢁrive ꢁE high to enable the driver outputs. ꢁrive ꢁE low to put the outputs in  
high impedance. ꢁrive RE high and ꢁE low to enter low-power shutdown mode.  
ꢁriver Input. ꢁrive ꢁI low to force the noninverting output low and the inverting output high. ꢁrive ꢁI  
high to force the noninverting output high and the inverting output low.  
MAX1348E  
6, 7  
9
GNꢁ  
Ground  
Y
Z
B
A
Noninverting ꢁriver Output  
Inverting ꢁriver Output  
Inverting Receiver Input  
Noninverting Receiver Input  
1ꢀ  
11  
12  
Positive Supply. 0  
= +3.ꢀ0 to +5.50. Bypass 0  
to GNꢁ with a 1µF ceramic capacitor as close  
CC  
CC  
14  
0
CC  
to 0  
as possible. Typical 0  
values are at 0  
= +3.30 and 0  
= +5.ꢀ0.  
CC  
CC  
CC  
CC  
Y
V
CC  
DI  
V
V
/2  
CC  
R /2  
L
0
t
t
DPHL  
1/2 V  
DPLH  
O
V
OD  
Z
O
V
OC  
R /2  
L
Y
1/2 V  
Z
O
V
OD  
= V (Y) - V (Z)  
V
O
90%  
SKEW  
90%  
V
OD  
0
-V  
10%  
10%  
Figure 1. ꢁriver ꢁC Test Load  
O
t
HL  
t
LH  
V
CC  
t
= |t  
- t  
|
DPLH DPHL  
DE  
Figure 3. ꢁriver Propagation ꢁelays  
C
C
L
Y
DI  
R
L
V
O
Z
L
Figure 2. ꢁriver Timing Test Circuit  
±
_______________________________________________________________________________________  
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
MAX1348E  
Y
S1  
D1  
0 OR V  
D
OUT  
CC  
R = 500Ω  
L
Z
C
L
50pF  
GENERATOR  
50Ω  
V
0
V
CC  
DE  
V
CC  
/2  
t
, t  
DZH DZH(SHDN)  
0.25V  
OH  
OUT  
V
OM  
= (0 + V )/2  
OH  
0
t
DHZ  
Figure 4. ꢁriver Enable and ꢁisable Times (t  
, t  
, t  
)
ꢁHZ ꢁZH ꢁZH(SHꢁN)  
V
CC  
R = 500Ω  
L
Y
Z
S1  
D1  
0 OR V  
D
OUT  
CC  
C
L
50pF  
GENERATOR  
50Ω  
V
0
CC  
DE  
V
CC  
/2  
t
, t  
DZL DZL(SHDN)  
t
DLZ  
V
CC  
V
OM  
= (V + V )/2  
OL CC  
OUT  
0.25V  
V
OL  
Figure 5. ꢁriver Enable and ꢁisable Times (t  
, t  
, t  
)
ꢁLZ ꢁZL ꢁZL(SHꢁN)  
_______________________________________________________________________________________  
9
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
B
A
B
A
RO  
V
R
ID  
0
C
20pF  
L
t
t
RPHL  
RPLH  
V
OH  
V
OH  
+ V  
OL  
2
RO  
V
t
= |t  
- t  
|
OL  
SKEW  
RPLH RPHL  
Figure 6. Receiver Propagation ꢁelays  
MAX1348E  
S1  
S2  
+1.5V  
-1.5V  
S3  
A
B
V
CC  
1kΩ  
RO  
V
R
ID  
RE  
C
L
20pF  
GENERATOR  
50Ω  
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
S1 CLOSED  
S2 OPEN  
S3 = -1.5V  
V
0
V
0
CC  
CC  
V
/2  
CC  
RE  
RE  
t
, t  
*
RZH RWAKE  
t
, t  
*
RZL SHDN  
V
0
V
OH  
CC  
OL  
RO  
V
/2  
OH  
(V + V )/2  
OL  
CC  
RO  
V
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
S1 CLOSED  
S2 OPEN  
S3 = -1.5V  
V
0
CC  
V
0
CC  
V
/2  
CC  
V
/2  
CC  
RE  
RE  
t
, t  
*
RHZ SHDN  
t
, t  
*
RLZ SHDN  
V
V
CC  
OL  
V
0
OH  
*DE =  
LOW  
0.25V  
RO  
RO  
0.25V  
Figure 7. Receiver Enable and ꢁisable Times  
18 ______________________________________________________________________________________  
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
MAX1348E  
TFbutV1.V aoelꢁroVTFbut  
Detailed Description  
The MAX13448E 8ꢀ0 fault-protected RS-485/RS-422  
transceiver contains one driver and one receiver. This  
device features fail-safe circuitry, guaranteeing a logic-  
high receiver output when the receiver inputs are open  
or shorted, or when they are connected to a terminated  
transmission line with all drivers disabled. The device  
has a hot-swap input structure that prevents distur-  
bances on the differential signal lines when a circuit  
board is plugged into a hot backplane. All receiver  
inputs and driver outputs are protected to 8k0 ESꢁ  
using the Human Body Model. The MAX13448E  
features a reduced slew-rate driver that minimizes  
EMI and reduces reflections caused by improperly  
terminated cables, allowing error-free data transmis-  
sion up to 5ꢀꢀkbps.  
TꢃANRꢋꢅTTꢅNG  
ꢅNꢀUT  
/UTꢀUT  
RE  
X
ꢁE  
1
ꢁI  
Z
1
Y
1
X
1
1
High  
Impedance  
High  
1
X
Impedance  
X
High Impedance (Shutdown)  
ꢃECEꢅ0ꢅNG  
ꢅNꢀUT  
/UTꢀUT  
RE  
ꢁE  
X
A - B  
RO  
-5ꢀm0  
1
X
-2ꢀꢀm0  
Driver  
The driver accepts a single-ended, logic-level input  
(ꢁI) and converts it to a differential, RS-485/RS-422  
level output (A and B). ꢁeasserting the driver enable  
places the driver outputs (A and B) into a high-imped-  
ance state.  
1
1
X
X
ꢁisabled  
1
High Impedance (Shutdown)  
X = ꢁon’t care; shutdown mode, driver, and receiver outputs are  
high impedance.  
Receiver  
The receiver accepts a differential, RS-485/RS-422  
level input (A and B), and translates it to a single-  
ended, logic-level output (RO). ꢁeasserting the receiv-  
er enable places the receiver outputs (RO) into a  
high-impedance state (see Table 1).  
To reduce system complexity and the need for external  
protection, the driver outputs and receiver inputs of the  
MAX13448E withstand voltage faults of up to 8ꢀ0 with  
respect to ground without damage (see the Absolute  
Maximum Ratings section, Note 1). Protection is guar-  
anteed regardless of whether the device is active, in  
shutdown, or without power. Certain parasitic effects  
present while driving an unterminated cable may cause  
the voltage seen at driver outputs to exceed the  
absolute maximum limit, while the ꢁI input is switched  
during a 8ꢀ0 fault on the A or B input. Therefore, a  
termination resistor is recommend in order to maximize  
the overvoltage fault protection while the ꢁI input is  
being switched. If the ꢁI input does not change state  
while the fault voltage is present, the MAX13448E will  
withstand up the 8ꢀ0 on the RS-485 inputs, regard-  
less of the presence of a termination resistor. While the  
MAX13448E is not damaged by up to 8ꢀ0 common-  
mode voltages, the RO, Y, and Z outputs will be in an  
indeterminate state if the common-mode voltage  
exceeds -70 to +120.  
Lowꢁ-ower Shutdown  
Low-power shutdown is initiated by bringing ꢁE low  
and RE high. In shutdown, the device draws a maxi-  
mum of 1ꢀꢀµA of supply current.  
The device is guaranteed to not enter shutdown if ꢁE is  
low and RE is high for 1µs. If the inputs are in this state  
for at least 1ms, the device is guaranteed to enter shut-  
down. In the shutdown state, the driver outputs (A and  
B) as well as the receiver output (RO) are in a high-  
impedance state.  
8ꢀ0 Fault -rotection  
In certain applications, such as industrial control, driver  
outputs and receiver inputs of an RS-485 device some-  
times experience common-mode voltages in excess of  
the -70 to +120 range specified in the EIA/TIA-485  
standard. In these applications, ordinary RS-485  
devices (typical absolute maximum ratings of -80 to  
+12.50) may experience damage without the addition  
of external protection devices.  
True FailꢁSafe  
The MAX13448E guarantees a logic-high receiver out-  
put when the receiver inputs are shorted or open, or  
when they are connected to a terminated transmission  
line with all drivers disabled. This is done by setting the  
______________________________________________________________________________________ 11  
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
R
R
C
D
1MΩ  
1500Ω  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
100%  
90%  
I
P
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
AMPS  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
36.8%  
C
100pF  
STORAGE  
CAPACITOR  
s
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
MAX1348E  
CURRENT WAVEFORM  
Figure 8a. Human Body ESꢁ Test Model  
Figure 8b. Human Body Current Waveform  
receiver threshold between -5ꢀm0 and -2ꢀꢀm0. If the  
differential receiver input voltage (A - B) is greater than  
or equal to -5ꢀm0, RO is logic-high. If A - B is less than  
or equal to -2ꢀꢀm0, RO is logic-low. In the case of a  
terminated bus with all transmitters disabled, the  
receiver’s differential input voltage is pulled to ꢀ0 by  
the termination. With the receiver thresholds of the  
MAX13448E, this results in a logic-high with a 5ꢀm0  
minimum noise margin. The -5ꢀm0 to -2ꢀꢀm0 threshold  
complies with the 2ꢀꢀm0 EIA/TIA-485 standard.  
1ꢀꢀpF capacitor charged to the ESꢁ voltage of interest,  
which is then discharged into the test device through a  
1.5kΩ resistor.  
Driver Output -rotection  
Two mechanisms prevent excessive output current and  
power dissipation caused by faults or by bus con-  
tention. The first, a foldback current limit on the output  
stage, provides immediate protection against short  
circuits over the whole common-mode voltage range  
(see the Typical Operating Characteristics). The sec-  
ond, a thermal-shutdown circuit, forces the driver out-  
puts into a high-impedance state if the die temperature  
exceeds +16ꢀ°C (typ).  
8ꢂ0 ESD -rotection  
As with all Maxim devices, ESꢁ-protection structures  
are incorporated on all pins to protect against electro-  
static discharges encountered during handling and  
assembly. The driver outputs and receiver inputs of the  
MAX13448E have extra protection against static elec-  
tricity. Maxim’s engineers have developed state-of-the-  
art structures to protect these pins against ESꢁ of 8k0  
without damage. The ESꢁ structures withstand high  
ESꢁ in all states: normal operation, shutdown, and  
powered down. After an ESꢁ event, the MAX13448E  
keeps working without latchup or damage. ESꢁ protec-  
tion can be tested in various ways. The transmitter out-  
puts and receiver inputs of the MAX13448E are  
characterized for protection to the following limits:  
HotꢁSwap Capability  
HrlSRwFpVꢅopalꢆ  
When circuit boards are inserted into a powered back-  
plane, disturbances to the data bus can lead to data  
errors. Upon initial circuit-board insertion, the data  
communication processor undergoes its own power-up  
sequence. ꢁuring this period, the processor’s logic-  
output drivers are high impedance and are unable to  
drive the ꢁE input of the device to a defined logic level.  
Leakage currents up to 1ꢀµA from the high-imped-  
ance state of the processor’s logic drivers could cause  
standard CMOS enable inputs of a transceiver to drift to  
an incorrect logic level. Additionally, parasitic circuit-  
8k0 using the Human Body Model  
ERDVTtꢆlVCroꢊꢁlꢁroꢆ  
board capacitance could cause coupling of 0  
or  
CC  
ESꢁ performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents  
test setup, test methodology, and test results.  
GNꢁ to the enable inputs. Without the hot-swap capa-  
bility, these factors could improperly enable the trans-  
ceiver’s driver or receiver.  
When 0  
rises, an internal pulldown circuit holds ꢁE  
CC  
HaꢈFoVꢉrꢊdVꢋrꢊtu  
Figure 8a shows the Human Body Model, and Figure  
8b shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of a  
low. After the initial power-up sequence, the pulldown  
circuit becomes transparent, resetting the hot-swap  
tolerable input.  
12 ______________________________________________________________________________________  
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
MAX1348E  
MAX13448E is specified as 1/8 unit loads. This means  
a compliant transmitter can drive up to 256 MAX13448E  
devices. Reducing the common mode and/or changing  
the characteristic impedance of the cable changes the  
maximum number of receivers that can be used. Refer  
to the TIA/EIA-485 specification for further details.  
V
CC  
10μs  
TIMER  
SR LATCH  
-roper Termination and Cabling/Wiring  
Configurations  
TIMER  
When the data rates for RS-485 are high relative to its  
cable lengths, the system is subject to proper transmis-  
sion line design. In most cases, a single, controlled-  
impedance cable or trace should be used and should be  
properly terminated on both ends with the characteristic  
impedance of the cable/trace. RS-485 transceivers  
should be connected to the cable/traces with minimum  
length wires to prevent stubs. Star configurations and  
improperly terminated cables can cause data loss. Refer  
to the Applications section of the Maxim website or to  
TIA/EIA publication TSB89 for further information.  
5kΩ  
DE  
DE  
(HOT SWAP)  
100μA  
500μA  
M1  
M2  
Reduced EMI and Reflections  
The MAX13448E features reduced slew-rate drivers  
that minimize EMI and reduce reflections caused by  
improperly terminated cables, allowing error-free data  
transmission up to 5ꢀꢀkbps.  
Figure 9. Simplified Structure of the ꢁriver Enable Pin (ꢁE)  
Line Length  
The Telecommunications Industry Association (TIA)  
publishes the document TSB-89: Application  
Guidelines for TIA/EIA-485-A that is a good reference  
for determining maximum data rate vs. line length.  
HrlSRwFpVꢅopalVCꢁPeaꢁlPd  
The enable inputs feature hot-swap capability. At the  
input there are two NMOS devices, M1 and M2 (Figure  
9). When 0  
ramps from zero, an internal 7µs timer  
CC  
turns on M2 and sets the SR latch that also turns on M1.  
Transistor M2, a 1.5mA current sink, and M1, a 1ꢀꢀµA  
current sink, pull ꢁE to GNꢁ through a 5kΩ resistor. M2  
is designed to pull ꢁE to the disabled state against an  
external parasitic capacitance up to 1ꢀꢀpF that can  
drive ꢁE high. After 7µs, the timer deactivates M2 while  
M1 remains on, holding ꢁE low against three-state leak-  
ages that can drive ꢁE high. M1 remains on until an  
external source overcomes the required input current.  
At this time, the SR latch resets and M1 turns off. When  
M1 turns off, ꢁE reverts to a standard, high-impedance  
CMOS input.  
Typical Applications  
The MAX13448E transceivers are designed for bidirec-  
tional data communications on multipoint bus transmis-  
sion lines. Figure 1ꢀ shows a typical network application  
circuit. To minimize reflections, terminate the line at both  
ends in its characteristic impedance, and keep stub  
lengths off the main line as short as possible.  
Applications Information  
256 Transceivers on the Bus  
The RS-485 standard specifies the load each receiver  
places on the bus in terms of unit loads. An RS-485  
compliant transmitter can drive 32 one-unit loads when  
used with a 12ꢀΩ cable that is terminated on both ends  
over a common-mode range of -70 to +120. The  
______________________________________________________________________________________ 13  
8ꢀ0 Faultꢁ-rotected FullꢁDuplex  
RSꢁ485 Transceiver  
A
Y
120Ω  
120Ω  
120Ω  
R
RO  
RE  
DE  
D
DI  
B
Z
DE  
RE  
Z
B
120Ω  
D
DI  
R
RO  
Y
A
Y
Z
B
A
Y
Z
B
A
MAX1348E  
R
R
MAX13448E  
D
D
DI  
DI  
DE  
DE  
RE RO  
RE RO  
Figure 1ꢀ. Typical Full-ꢁuplex RS-485 Network  
-in Configuration  
Chip Information  
PROCESS: BiCMOS  
TOP VIEW  
+
N.C.  
RO  
1
2
3
4
5
6
7
14 V  
CC  
13 N.C.  
12 A  
RE  
MAX13448E  
DE  
11 B  
DI  
10 Z  
-acꢂage Information  
GND  
GND  
9
8
Y
For the latest package outline information and land patterns, go  
to www.ꢈFxꢁꢈSꢁe.erꢈIpFeꢇFgtꢆ.  
N.C.  
ꢀACKAGEVTYꢀE ꢀACKAGEVC/DE D/CUꢋENTVN/.  
R/  
14 SO  
S14-5  
21S88-1  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
1- ____________________Maxim Integrated -roducts, 12ꢀ San Gabriel Drive, Sunnyvale, CA 94ꢀ86 4ꢀ8ꢁ737ꢁ76ꢀꢀ  
© 2ꢀꢀ8 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX13448EESD+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO14, 0.150 INCH, LEAD FREE, MS-012AB, SOP-14
MAXIM

MAX13448EESD+T

Line Driver/Receiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO14, LEAD FREE, SOP-14
MAXIM

MAX13450E

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX13450EAUD+

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX13450E_1011

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX13451E

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX13451EAUD+

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX1346

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1346BETX

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1346BETX+

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, TQFN-36
MAXIM

MAX1346BETX+T

暂无描述
MAXIM

MAX1347BETX+

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220-WJJD, TQFN-36
MAXIM