MAX13485EELA+ [MAXIM]

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, 2 X 2 MM, 0.80 MM HEIGHT, LEAD FREE, MICRO DFN-8;
MAX13485EELA+
型号: MAX13485EELA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, 2 X 2 MM, 0.80 MM HEIGHT, LEAD FREE, MICRO DFN-8

驱动 信息通信管理 接口集成电路 驱动器
文件: 总16页 (文件大小:254K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0742; Rev 0; 1/07  
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
5/MAX13486E  
General Description  
Features  
The MAX13485E/MAX13486E +5V, half-duplex, 15ꢀV  
ESD-protected RS-485 transceivers feature one driver  
and one receiver. These devices include fail-safe circuitry,  
guaranteeing a logic-high receiver output when receiver  
inputs are open or shorted. The receiver outputs a logic-  
high if all transmitters on a terminated bus are disabled  
(high impedance). The MAX13485E/MAX13486E include  
a hot-swap capability to eliminate false transitions on the  
bus during power-up or live-insertion.  
+5V Operation  
True Fail-Safe Receiver While Maintaining  
EIA/TIA-485 Compatibility  
Hot-Swappable for Telecom Applications  
Enhanced Slew-Rate Limiting Facilitates Error-  
Free Data Transmission (MAX13485E)  
High-Speed Version (MAX13486E) Allows for  
Transmission Speeds Up to 16Mbps  
The MAX13485E features reduced slew-rate drivers  
that minimize EMI and reduce reflections caused by  
improperly terminated cables, allowing error-free trans-  
mission up to 500ꢀbps. The MAX13486E driver slew  
rate is not limited, allowing transmit speeds up to  
16Mbps.  
Extended ESD Protection for RS-485/RS-422 I/O  
Pins 15kV Using Human Body Model  
1/4 Unit Load, Allowing Up to 128 Transceivers on  
the Bus  
Available in Space-Saving 8-Pin μDFN or Industry  
Standard 8-Pin SO Packages  
The MAX13485E/MAX13486E feature a 1/4-unit load  
receiver input impedance, allowing up to 128 transceivers  
on the bus. These devices are intended for half-duplex  
communications. All driver outputs are protected to 15ꢀV  
ESD using the Human Body Model. The MAX13485E/  
MAX13486E are available in 8-pin SO and space-saving  
8-pin µDFN pacꢀages. The devices operate over the  
extended -40°C to +85°C temperature range.  
Ordering Information/  
Selector Guide  
PIN-  
PACKAGE  
SLEW-RATE  
LIMITED  
PKG  
CODE  
PART  
MAX13485EELA+T 8 µDFN  
MAX13485EESA+ 8 SO  
MAX13486EELA+T 8 µDFN  
MAX13486EESA+ 8 SO  
+Denotes a lead-free pacꢀage.  
Yes  
Yes  
No  
L822-1  
S8-2  
Applications  
L822-1  
S8-2  
Utility Meters  
No  
Industrial Controls  
Industrial Motor Drives  
Automated HVAC Systems  
Note: All devices are specified over the -40°C to +85°C operating  
temperature range.  
Pin Configurations  
TOP VIEW  
V
B
7
A
6
GND  
5
CC  
8
MAX13485E  
MAX13486E  
DE  
+
0.1μF  
+
1
2
3
4
8
1
2
V
RO  
RE  
DE  
DI  
CC  
D
R
DI  
7
B
A
B
A
RO  
RE  
DE  
DI  
Rt  
Rt  
DFN  
3
4
6
5
+
D
RO  
R
RO  
RE  
DE  
DI  
1
2
3
4
R
8
7
6
5
V
B
A
CC  
GND  
SO  
MAX13485E  
MAX13486E  
RE  
D
GND  
SO  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
ABSOLUTE MAXIMUM RATINGS  
(All voltages referenced to GND.)  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
V
CC  
........................................................................................+6V  
DE, RE, DI.................................................................-0.3V to +6V  
A, B ..............................................................................-8V to 13V  
Short-Circuit Duration (RO, A, B) to GND ..................Continuous  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin SO (derate 5.9mW/°C above +70°C)..................471mW  
8-Pin µDFN (derate 4.8mW/°C above +70°C) ..........380.6mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
CC  
= +5V 5ꢁ, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.) (Notes 1, 2)  
CC A  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER  
R
R
= 100Ω, Figure 1  
2.0  
1.5  
V
V
DIFF  
DIFF  
CC  
CC  
Differential Driver Output  
V
= 54Ω, Figure 1  
V
OD  
No load  
Change in Magnitude of  
Differential Output Voltage  
5/MAX13486E  
ΔV  
R
R
R
= 100Ω or 54Ω, Figure 1 (Note 3)  
= 100Ω or 54Ω, Figure 1  
0.2  
3
V
V
V
OD  
DIFF  
DIFF  
DIFF  
Driver Common-Mode Output  
Voltage  
V
CC  
/ 2  
V
OC  
Change in Magnitude of  
Common-Mode Voltage  
ΔV  
= 100Ω or 54Ω, Figure 1 (Note 3)  
0.2  
OC  
Input-High Voltage  
Input-Low Voltage  
Input Current  
V
DI, DE, RE  
DI, DE, RE  
DI, DE, RE  
2.0  
V
V
IH  
V
0.8  
1
IL  
I
IN  
µA  
0V < V  
< +12V  
< 0V  
+50  
-250  
20  
+250  
-50  
OUT  
Driver Short-Circuit Output  
Current (Note 4)  
I
mA  
mA  
OSD  
-7V < V  
OUT  
(V  
CC  
- 1V) < V  
< +12V  
OUT  
Driver Short-Circuit Foldbacꢀ  
Output Current Note 3)  
I
OSDF  
-7V < V  
< 0V  
-20  
OUT  
RECEIVER  
V
V
= +12V  
= -7V  
250  
IN  
IN  
DE = GND, V  
or +5V  
= GND  
CC  
Input Current (A and B)  
I
µA  
A, B  
-200  
-200  
Receiver-Differential-Threshold  
Voltage  
V
-7V < V  
< +12V  
CM  
-50  
mV  
mV  
V
TH  
Receiver Input Hysteresis  
ΔV  
V
+ V = 0V  
25  
TH  
A
B
V
-
CC  
Output-High Voltage  
V
I = -1.6mA, V - V > V  
O A B TH  
OH  
1.5  
2
_______________________________________________________________________________________  
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
ELECTRICAL CHARACTERISTICS (continued)  
5/MAX13486E  
(V  
CC  
= +5V 5ꢁ, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.) (Notes 1, 2)  
CC A  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
= 1mA, V - V < -V  
MIN  
TYP  
MAX  
UNITS  
Output-Low Voltage  
V
I
0.4  
V
OL  
O
A
B
TH  
Tri-State Output Current at  
Receiver  
I
0V < V < V  
CC  
1
µA  
Ω  
mA  
OZR  
O
Receiver Input Resistance  
R
-7V < V  
< +12V  
48  
7
IN  
CM  
RO  
Receiver-Output Short-Circuit  
Current  
I
0V < V  
< V  
95  
OSR  
CC  
POWER SUPPLY  
Supply Voltage  
V
4.75  
5.25  
4.5  
10  
V
CC  
Supply Current  
I
DE = 1, RE = 0, no load  
DE = 0, RE = 1  
mA  
µA  
CC  
Shutdown Supply Current  
ESD PROTECTION  
I
SHDN  
Air Gap Discharge IEC61000-4-2  
(MAX13485E)  
15  
ESD Protection (A, B)  
ꢀV  
ꢀV  
Human Body Model  
Human Body Model  
15  
2
ESD Protection (All Other Pins)  
SWITCHING CHARACTERISTICS—MAX13485E  
(V  
CC  
= +5V 5ꢁ, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.) (Note 1)  
CC A  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER  
t
t
200  
200  
250  
250  
1000  
1000  
900  
DPLH  
DPHL  
Driver Propagation Delay  
R
R
R
= 54Ω, C = 50pF, Figures 2 and 3  
ns  
ns  
ns  
DIFF  
DIFF  
DIFF  
L
t
t
HL  
Driver-Differential Output Rise or  
Fall Time  
= 54Ω, C = 50pF, Figures 2 and 3  
L
900  
LH  
Driver-Differential Output Sꢀew  
t
= 54Ω, C = 50pF, Figures 2 and 3  
140  
DSKEW  
L
|t  
- t  
|
DPLH DPHL  
Maximum Data Rate  
500  
ꢀbps  
ns  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from High  
Driver Disable Time from Low  
t
Figures 4 and 5  
Figures 4 and 5  
Figures 4 and 5  
Figures 4 and 5  
2500  
2500  
100  
DZH  
t
ns  
DZL  
t
ns  
DHZ  
t
100  
ns  
DLZ  
Driver Enable from Shutdown to  
Output High  
t
Figures 4 and 5  
Figures 4 and 5  
5500  
ns  
DZH(SHDN)  
Driver Enable from Shutdown to  
Output Low  
t
5500  
700  
ns  
ns  
DZL(SHDN)  
Time to Shutdown  
t
50  
340  
SHDN  
RECEIVER  
t
80  
80  
13  
RPLH  
RPHL  
Receiver Propagation Delay  
C = 15pF, Figures 6 and 7  
ns  
L
t
Receiver Output Sꢀew  
Maximum Data Rate  
t
C = 15pF, Figure 7  
L
ns  
RSKEW  
500  
ꢀbps  
_______________________________________________________________________________________  
3
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
SWITCHING CHARACTERISTICS—MAX13485E (continued)  
(V  
CC  
= +5V 5ꢁ, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.) (Note 1)  
CC A  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
50  
UNITS  
ns  
Receiver Enable to Output High  
Receiver Enable to Output Low  
t
Figure 8  
Figure 8  
Figure 8  
Figure 8  
RZH  
t
50  
ns  
RZL  
Receiver Disable Time from High  
Receiver Disable Time from Low  
t
50  
ns  
RHZ  
t
50  
ns  
RLZ  
Receiver Enable from Shutdown  
to Output High  
t
Figure 8  
Figure 8  
2200  
ns  
RZH(SHDN)  
Receiver Enable from Shutdown  
to Output Low  
t
2200  
700  
ns  
ns  
RZL(SHDN)  
Time to Shutdown  
t
50  
340  
SHDN  
SWITCHING CHARACTERISTICS—MAX13486E  
(V  
CC  
= +5V 5ꢁ, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.) (Note 1)  
CC A  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
5/MAX13486E  
DRIVER  
t
t
50  
50  
15  
15  
DPLH  
DPHL  
Driver Propagation Delay  
R
R
R
= 54Ω, C = 50pF, Figures 2 and 3  
ns  
ns  
ns  
DIFF  
DIFF  
DIFF  
L
t
t
HL  
Driver Differential Output Rise or  
Fall Time  
= 54Ω, C = 50pF, Figures 2 and 3  
L
LH  
Differential Driver Output Sꢀew  
t
= 54Ω, C = 50pF, Figures 2 and 3  
8
DSKEW  
L
|t  
- t  
|
DPLH DPHL  
Maximum Data Rate  
16  
Mbps  
ns  
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from High  
Driver Disable Time from Low  
t
Figures 4 and 5  
Figures 4 and 5  
Figures 4 and 5  
Figures 4 and 5  
50  
50  
50  
50  
DZH  
t
ns  
DZL  
t
ns  
DHZ  
t
ns  
DLZ  
Driver Enable from Shutdown to  
Output High  
t
Figures 4 and 5  
Figures 4 and 5  
2200  
ns  
DZH(SHDN)  
Driver Enable from Shutdown to  
Output Low  
t
2200  
700  
ns  
ns  
DZL(SHDN)  
Time to Shutdown  
t
50  
16  
340  
SHDN  
RECEIVER  
t
80  
80  
13  
RPLH  
RPHL  
Receiver Propagation Delay  
C = 15pF, Figures 6 and 7  
L
ns  
t
Receiver Output Sꢀew  
Maximum Data Rate  
t
C = 15pF, Figure 7  
L
ns  
RSKEW  
Mbps  
4
_______________________________________________________________________________________  
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
5/MAX13486E  
SWITCHING CHARACTERISTICS—MAX13486E (continued)  
(V  
CC  
= +5V 5ꢁ, T = T  
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.) (Note 1)  
CC A  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
50  
UNITS  
ns  
Receiver Enable to Output High  
Receiver Enable to Output Low  
t
Figure 8  
Figure 8  
Figure 8  
Figure 8  
RZH  
t
50  
ns  
RZL  
Receiver Disable Time from High  
Receiver Disable Time from Low  
t
50  
ns  
RHZ  
t
50  
ns  
RLZ  
Receiver Enable from Shutdown  
to Output High  
t
Figure 8  
Figure 8  
2200  
ns  
RZH(SHDN)  
Receiver Enable from Shutdown  
to Output Low  
t
2200  
700  
ns  
ns  
RZL(SHDN)  
Time to Shutdown  
t
50  
340  
SHDN  
Note 1: µDFN devices production tested at +25°C. Overtemperature limits are generated by design.  
Note 2: All currents into the device are positive. All currents out of the device are negative. All voltages referred to device ground,  
unless otherwise noted.  
Note 3: ΔV  
and ΔV  
are the changes in V  
and V  
when the DI input changes states.  
OC  
OD  
OC  
OD  
Note 4: The short-circuit output current applied to peaꢀ current just prior to foldbacꢀ current limiting. The short-circuit foldbacꢀ  
output current applies during current limiting to allow a recovery from bus contention.  
Typical Operating Characteristics  
(V  
CC  
= +5V, T = +25°C, unless otherwise noted.)  
A
OUTPUT CURRENT vs. RECEIVER  
OUTPUT HIGH VOLTAGE  
OUTPUT CURRENT vs. RECEIVER  
OUTPUT LOW VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
60  
50  
40  
30  
20  
10  
0
35  
28  
21  
14  
7
4.0  
NO LOAD  
3.8  
3.6  
3.4  
3.2  
3.0  
0
0
1
2
3
4
5
0
1
2
3
4
5
-40  
-15  
10  
35  
60  
85  
OUTPUT LOW VOLTAGE (V)  
OUTPUT HIGH VOLTAGE (V)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
Typical Operating Characteristics (continued)  
(V  
CC  
= +5V, T = +25°C, unless otherwise noted.)  
A
RECEIVER OUTPUT HIGH  
VOLTAGE vs. TEMPERATURE  
0.5  
RECEIVER OUTPUT LOW  
VOLTAGE vs. TEMPERATURE  
DIFFERENTIAL OUPUT CURRENT  
vs. DIFFERENTIAL OUTPUT VOLTAGE  
80  
60  
40  
20  
0
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
I
= 1mA  
I
= 1mA  
O
O
0.4  
0.3  
0.2  
0.1  
0
-40  
-15  
10  
35  
60  
85  
0
1
2
3
4
5
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
TEMPERATURE (°C)  
OUTPUT CURRENT vs. TRANSMITTER  
OUTPUT HIGH VOLTAGE  
DRIVER-DIFFERENTIAL OUTPUT  
VOLTAGE vs. TEMPERATURE  
OUTPUT CURRENT vs. TRANSMITTER  
OUTPUT LOW VOLTAGE  
120  
100  
80  
60  
40  
20  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
120  
100  
80  
60  
40  
20  
0
R
DIFF  
= 54Ω  
5/MAX13486E  
-40  
-15  
10  
35  
60  
85  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
0
2
4
6
8
10  
12  
TEMPERATURE (°C)  
OUTPUT HIGH VOLTAGE (V)  
OUTPUT LOW VOLTAGE (V)  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
DRIVER PROPAGATION  
vs. TEMPERATURE (MAX13485E)  
DRIVER PROPAGATION DELAY  
vs. TEMPERATURE (MAX13486E)  
10  
9
8
7
6
5
4
3
2
1
0
600  
550  
500  
450  
400  
350  
300  
30  
25  
20  
15  
10  
5
t
DPLH  
t
DPHL  
t
DPLH  
t
DPHL  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
5/MAX13486E  
Typical Operating Characteristics (continued)  
(V  
CC  
= +5V, T = +25°C, unless otherwise noted.)  
A
RECEIVER PROPAGATION  
vs. TEMPERATURE (MAX13485E)  
RECEIVER PROPAGATION  
vs. TEMPERATURE (MAX13486E)  
DRIVER PROPAGATION (500kbps)  
(MAX13485E)  
MAX13485/86E toc15  
80  
40  
DI  
2V/div  
60  
40  
20  
0
30  
20  
10  
0
t
RPHL  
t
RPLH  
t
RPHL  
A-B  
5V/div  
t
RPLH  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
400ns/div  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DRIVER PROPAGATION (16Mbps)  
(MAX13486E)  
RECEIVER PROPAGATION (16Mbps)  
(MAX13486E)  
MAX13485/86E toc16  
MAX13485/86E toc17  
B
DI  
2V/div  
2V/div  
A
2V/div  
A-B  
RO  
5V/div  
2V/div  
10ns/div  
10ns/div  
_______________________________________________________________________________________  
7
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
Test Circuits and Waveforms  
A
5V  
DE  
R
DIFF  
DIFF  
2
A
B
DI  
V
ID  
R
DIFF  
C
L
V
OD  
C
L
R
V
OC  
2
B
Figure 2. Driver Timing Test Circuit  
Figure 1. Driver DC Test Load  
f = 1MHz, t 3ns, t 3ns  
LH  
HL  
V
CC  
1.5V  
DI  
1.5V  
5/MAX13486E  
0
1/2 V  
O
t
DPHL  
t
DPLH  
B
A
1/2 V  
O
V
O
V
= V(A) - V(B)  
DIFF  
V
O
90%  
90%  
V
DIFF  
0
10%  
10%  
-V  
O
t
t
LH  
HL  
t
= |t  
- t  
|
DSKEW  
DPLH DPHL  
Figure 3. Driver Propagation Delays  
8
_______________________________________________________________________________________  
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
5/MAX13486E  
Test Circuits and Waveforms (continued)  
V
CC  
DE  
1.5V  
1.5V  
0
t
t
,t  
DLZ  
DZL(SHDN) DZL  
A, B  
V
+ 0.5V  
+ 0.5V  
OL  
2.3V  
2.3V  
OUTPUT NORMALLY LOW  
OUTPUT NORMALLY HIGH  
V
OL  
A, B  
0
V
OH  
t
,t  
t
DZH(SHDN) DZH  
DHZ  
Figure 4. Driver Enable and Disable Times  
V
CC  
S1  
S2  
B
A
500Ω  
OUTPUT  
UNDER TEST  
RECEIVER  
OUTPUT  
R
V
ID  
ATE  
C
L
Figure 5. Driver-Enable and -Disable-Timing Test Load  
Figure 6. Receiver Propagation Delay Test Circuit  
f = 1MHz, t 3ns, t 3ns  
LH  
HL  
A
B
1V  
-1V  
t
t
RPHL  
RPLH  
V
V
OH  
RO  
1.5V  
1.5V  
t
= |t  
- t  
|
OL  
RSKEW  
RPHL RPLH  
Figure 7. Receiver Propagation Delays  
_______________________________________________________________________________________  
9
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
Pin Description  
PIN  
NAME  
FUNCTION  
1
RO  
Receiver Output  
Receiver Output Enable. Drive RE low to enable RO. RO is high impedance when RE is high. Drive  
RE high and DE low to enter low-power shutdown mode. RE is a hot-swap input (see the Hot-Swap  
Capability section for more details).  
2
RE  
Driver Output Enable. Drive DE high to enable the driver outputs. These outputs are high-impedance  
when DE is low. Drive RE high and DE low to enter low-power shutdown mode. DE is a hot-swap input  
(see the Hot-Swap Capability section for more details).  
3
4
DE  
DI  
Driver Input. Drive DI low to force noninverting output low and inverting output high. Drive DI high to  
force noninverting output high and inverting output low (see the Function Tables).  
5
6
7
8
GND  
A
Ground  
Noninverting Receiver Input and Noninverting Driver Output  
Inverting Receiver Input and Inverting Driver Output  
B
V
Positive Supply, V  
= +5V 5ꢁ. Bypass V  
to GND with a 0.1µF capacitor.  
CC  
CC  
CC  
Function Tables  
5/MAX13486E  
TRANSMITTING  
OUTPUT  
INPUT  
RE  
X
DE  
1
DI  
1
B
0
1
A
1
0
X
1
0
0
0
X
X
HIGH IMPEDANCE HIGH IMPEDANCE  
SHUTDOWN  
1
0
RECEIVING  
INPUT  
OUTPUT  
RE  
DE  
A-B  
> -50mV  
< -200mV  
OPEN/SHORT  
X
RO  
0
0
0
1
1
X
X
X
1
0
1
0
1
HIGH IMPEDANCE  
SHUTDOWN  
X
X = Don’t care, shutdown mode, driver, and receiver outputs  
are in high impedance.  
10 ______________________________________________________________________  
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
5/MAX13486E  
Test Circuits and Waveforms (continued)  
S1  
+1V  
S3  
V
CC  
1kΩ  
-1V  
V
ID  
CL  
15pF  
S2  
GENERATOR  
50Ω  
S1 CLOSED  
S2 OPEN  
S3 = -1V  
S1 OPEN  
S2 CLOSED  
S3 = +1V  
V
CC  
V
CC  
V
/2  
V
/2  
CC  
CC  
RE  
RE  
0
0
t
, t  
RZH RZH(SHDN)  
t
, t  
RZL RZL(SHDN)  
V
OH  
V
CC  
RO  
V
/2  
OH  
(V + V )/2  
OL  
CC  
RO  
0
V
OL  
S1 CLOSED  
S1 OPEN  
S2 OPEN  
S3 = -1V  
S2 CLOSED  
S3 = +1V  
V
0
V
CC  
CC  
V
CC  
/2  
V
CC  
/2  
RE  
0
RE  
t
RLZ  
t
RHZ  
V
CC  
V
OH  
RO  
0.25V  
RO  
V
OL  
0.25V  
0
Figure 8. Receiver Enable and Disable Times  
__________________________________________________________________________  
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
Detailed Description  
The MAX13485E/MAX13486E half-duplex, high-speed  
V
CC  
transceivers for RS-485/RS-422 communication contain  
one driver and one receiver. These devices feature fail-  
safe circuitry that guarantees a logic-high receiver out-  
put when receiver inputs are open or shorted, or when  
they are connected to a terminated transmission line  
with all drivers disabled (see the Fail-Safe section). The  
MAX13485E/MAX13486E also feature a hot-swap capa-  
bility allowing line insertion without erroneous data  
transfer (see the Hot-Swap Capability section). The  
MAX13485E features reduced slew-rate drivers that  
minimize EMI and reduce reflections caused by  
improperly terminated cables, allowing error-free trans-  
mission up to 500ꢀbps. The MAX13486E driver slew  
rate is not limited, maꢀing transmit speeds up to  
16Mbps possible.  
10μs  
TIMER  
SR LATCH  
TIMER  
5kΩ  
DE  
DE  
(HOT SWAP)  
Fail-Safe  
The MAX13485E/MAX13486E guarantee a logic-high  
receiver output when the receiver inputs are shorted or  
open, or when they are connected to a terminated  
transmission line with all drivers disabled. This is done by  
setting the receiver input threshold between -50mV and  
-200mV. If the differential receiver input voltage (A - B) is  
greater than or equal to -50mV, RO is logic-high. If (A - B)  
is less than or equal to -200mV, RO is logic-low. In the  
case of a terminated bus with all transmitters disabled,  
the receiver’s differential input voltage is pulled to 0V by  
the termination. With the receiver thresholds of the  
MAX13485E/MAX13486E, this results is a logic-high with  
a 50mV minimum noise margin. Unliꢀe previous fail-safe  
devices, the -50mV to -200mV threshold complies with  
the 200mV EIA/TIA-485 standard.  
100μA  
500μA  
M1  
M2  
5/MAX13486E  
Figure 9. Simplified Structure of the Driver Enable Pin (DE)  
When V  
rises, an internal pulldown circuit holds DE  
CC  
low and RE high. After the initial power-up sequence,  
the pulldown circuit becomes transparent, resetting the  
hot-swap tolerable input.  
Hot-Swap Input Circuitry  
The enable inputs feature hot-swap capability. At the  
input there are two nMOS devices, M1 and M2 (Figure  
Hot-Swap Capability  
9). When V  
ramps from zero, an internal 7µs timer  
CC  
Hot-Swap Inputs  
When circuit boards are inserted into a hot or powered  
bacꢀplane, differential disturbances to the data bus  
can lead to data errors. Upon initial circuit-board inser-  
tion, the data communication processor undergoes its  
own power-up sequence. During this period, the  
processor’s logic-output drivers are high impedance  
and are unable to drive the DE and RE inputs of these  
devices to a defined logic level. Leaꢀage currents up to  
10µA from the high impedance state of the proces-  
sor’s logic drivers could cause standard CMOS enable  
inputs of a transceiver to drift to an incorrect logic level.  
Additionally, parasitic circuit-board capacitance could  
turns on M2 and sets the SR latch, which also turns on  
M1. Transistors M2, a 1.5mA current sinꢀ, and M1, a  
500µA current sinꢀ, pull DE to GND through a 5ꢀΩ  
resistor. M2 is designed to pull DE to the disabled state  
against an external parasitic capacitance up to 100pF  
that can drive DE high. After 7µs, the timer deactivates  
M2 while M1 remains on, holding DE low against tri-  
state leaꢀages that can drive DE high. M1 remains on  
until an external source overcomes the required input  
current. At this time, the SR latch resets and M1 turns  
off. When M1 turns off, DE reverts to a standard high-  
impedance CMOS input. Whenever V  
1V, the hot-swap input is reset.  
drops below  
CC  
cause coupling of V  
or GND to the enable inputs.  
CC  
For RE there is a complementary circuit employing two  
pMOS devices pulling RE to V  
Without the hot-swap capability, these factors could  
improperly enable the transceiver’s driver or receiver.  
.
CC  
12 ______________________________________________________________________________________  
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
5/MAX13486E  
R
R
C
R
D
R
D
C
1MΩ  
50MΩ TO 100MΩ  
1500Ω  
330Ω  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
s
150pF  
STORAGE  
CAPACITOR  
C
s
100pF  
STORAGE  
CAPACITOR  
SOURCE  
SOURCE  
Figure 10c. IEC 61000-4-2 ESD Test Model  
Figure 10a. Human Body ESD Test Model  
I
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
100%  
90%  
I
P
r
AMPS  
36.8%  
10%  
0
10%  
TIME  
0
t = 0.7ns TO 1ns  
t
r
RL  
t
30ns  
t
DL  
60ns  
CURRENT WAVEFORM  
Figure 10d. IEC 61000-4-2 ESD Generator Current Waveform  
Figure 10b. Human Body Current Waveform  
ESD Test Conditions  
ESD performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents  
test setup, test methodology, and test results.  
+15V ESD Protection  
As with all Maxim devices, ESD-protection structures  
are incorporated on all pins to protect against electro-  
static discharges encountered during handling and  
assembly. The driver outputs and receiver inputs of the  
MAX13485E/MAX13486E have extra protection against  
static electricity. Maxim’s engineers have developed  
state-of-the-art structures to protect these pins against  
ESD of 15ꢀV without damage. The ESD structures  
withstand high ESD in all states: normal operation, shut-  
down, and powered down. After an ESD event, the  
MAX13485E/MAX13486E ꢀeep worꢀing without latchup  
or damage.  
Human Body Model  
Figure 10a shows the Human Body Model, and Figure  
10b shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of  
a 100pF capacitor charged to the ESD voltage of inter-  
est, which is then discharged into the test device  
through a 1.5ꢀΩ resistor.  
IEC 61000-4-2  
The IEC 61000-4-2 standard covers ESD testing and  
performance of finished equipment. However, it does  
not specifically refer to integrated circuits. The  
MAX13485E/MAX13486E help equipment designs to  
meet IEC 61000-4-2, without the need for additional  
ESD-protection components.  
ESD protection can be tested in various ways. The trans-  
mitter outputs and receiver inputs of the MAX13485E/  
MAX13486E are characterized for protection to the follow-  
ing limits:  
15ꢀV using the Human Body Model  
15ꢀV using the Air Gap Discharge Method specified  
in IEC 61000-4-2 (MAX13485E only)  
The major difference between tests done using the  
Human Body Model and IEC 61000-4-2 is higher peaꢀ  
current in IEC 61000-4-2 because series resistance is  
lower in the IEC 61000-4-2 model. Hence, the ESD  
______________________________________________________________________________________ 13  
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
DI  
D
DI  
DE  
D
R
R
t
t
DE  
RO  
RE  
RO  
RE  
R
R
R
R
MAX13485E  
MAX13486E  
D
D
DI  
DE  
RO RE  
DI  
DE  
RO RE  
Figure 11. Typical Half-Duplex RS-485 Networꢀ  
withstand voltage measured to IEC 61000-4-2 is gener-  
ally lower than that measured using the Human Body  
Model. Figure 10c shows the IEC 61000-4-2 model,  
and Figure 10d shows the current waveform for the IEC  
61000-4-2 ESD Contact Discharge test.  
Low-Power Shutdown Mode  
Low-power shutdown mode is initiated by bringing both  
RE high and DE low. In shutdown, the devices draw a  
maximum of 10µA of supply current.  
5/MAX13486E  
RE and DE can be driven simultaneously. The devices  
are guaranteed not to enter shutdown if RE is high and  
DE is low for less than 50ns. If the inputs are in this  
state for at least 700ns, the devices are guaranteed to  
enter shutdown.  
Machine Model  
The machine model for ESD tests all pins using a 200pF  
storage capacitor and zero discharge resistance.  
The objective is to emulate the stress caused when I/O  
pins are contacted by handling equipment during test  
and assembly. Of course, all pins require this protec-  
tion, not just RS-485 inputs and outputs.  
Enable times t  
and t (see the Switching Character-  
ZL  
ZH  
istics) assume the devices were not in a low-power shut-  
down state. Enable times t and t  
ZH(SHDN)  
ZL(SHDN)  
assume the devices were in shutdown state. It taꢀes dri-  
vers and receivers longer to become enabled from low-  
The air-gap test involves approaching the device with a  
charged probe. The contact-discharge method connects  
the probe to the device before the probe is energized.  
power shutdown mode (t  
, t  
ZH ZL  
) than from  
ZH(SHDN) ZL(SHDN)  
driver-/receiver-disable mode (t , t ).  
Applications Information  
Line Length  
The RS-485/RS-422 standard covers line lengths up to  
4000ft.  
128 Transceivers on the Bus  
The standard RS-485 receiver input impedance is 12ꢀΩ  
(1-unit load), and the standard driver can drive up to  
32-unit loads. The MAX13485E/MAX13486E have a 1/4-  
unit load receiver input impedance (48ꢀΩ), allowing up  
to 128 transceivers to be connected in parallel on one  
communication line. Any combination of these devices,  
as well as other RS-485 transceivers with a total of 32-  
unit loads or fewer, can be connected to the line.  
Typical Applications  
The MAX13485E/MAX13486E transceivers are  
designed for half-duplex, bidirectional data communi-  
cations on multipoint bus transmission lines. Figure 11  
shows typical networꢀ applications circuits. To mini-  
mize reflections, terminate the line at both ends in its  
characteristic impedance, and ꢀeep stub lengths off  
the main line as short as possible. The slew-rate-limited  
MAX13485E is more tolerant of imperfect termination.  
Reduced EMI and Reflections  
The MAX13485E features reduced slew-rate drivers  
that minimize EMI and reduce reflections caused by  
improperly terminated cables, allowing error-free data  
transmission up to 500ꢀbps.  
Chip Information  
PROCESS: BiCMOS  
14 ______________________________________________________________________________________  
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
5/MAX13486E  
Package Information  
(The pacꢀage drawing(s) in this data sheet may not reflect the most current specifications. For the latest pacꢀage outline information,  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
DIM  
A
MIN  
MAX  
0.069  
0.010  
0.019  
0.010  
MIN  
1.35  
0.10  
0.35  
0.19  
MAX  
1.75  
0.25  
0.49  
0.25  
0.053  
0.004  
0.014  
0.007  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
DIM  
D
MIN  
MAX  
0.197  
0.344  
0.394  
MIN  
4.80  
8.55  
9.80  
MAX  
5.00  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0-8∞  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
______________________________________________________________________________________ 15  
Half-Duplex RS-485/RS-422 Transceivers in µDFN  
Package Information (continued)  
(The pacꢀage drawing(s) in this data sheet may not reflect the most current specifications. For the latest pacꢀage outline information,  
go to www.maxim-ic.com/packages.)  
A
b
D
e
N
XXXX  
XXXX  
XXXX  
SOLDER  
MASK  
COVERAGE  
E
PIN 1  
0.10x45  
L
L1  
1
SAMPLE  
MARKING  
PIN 1  
INDEX AREA  
A
A
7
(N/2 -1) x e)  
C
L
C
L
b
L
L
A
e
e
A2  
EVEN TERMINAL  
ODD TERMINAL  
A1  
5/MAX13486E  
PACKAGE OUTLINE,  
6, 8, 10L uDFN, 2x2x0.80 mm  
1
-DRAWING NOT TO SCALE-  
21-0164  
A
2
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
0.15  
0.020  
1.95  
1.95  
0.30  
NOM.  
MAX.  
A
0.75  
0.20  
0.025  
2.00  
2.00  
0.40  
0.80  
0.25  
0.035  
2.05  
2.05  
0.50  
A1  
A2  
D
-
E
L
L1  
0.10 REF.  
PACKAGE VARIATIONS  
PKG. CODE  
L622-1  
N
6
e
b
(N/2 -1) x e  
0.65 BSC  
0.50 BSC  
0.40 BSC  
0.30±0.05 1.30 REF.  
0.25±0.05 1.50 REF.  
0.20±0.03 1.60 REF.  
L822-1  
8
L1022-1  
10  
PACKAGE OUTLINE,  
6, 8, 10L uDFN, 2x2x0.80 mm  
2
21-0164  
A
-DRAWING NOT TO SCALE-  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
16 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademarꢀ of Maxim Integrated Products, Inc.  
Boblet  

相关型号:

MAX13485EELA+T

Half-Duplex RS-485/RS-422 Transceivers in uDFN
MAXIM

MAX13485EESA+

Half-Duplex RS-485/RS-422 Transceivers in uDFN
MAXIM

MAX13485EEVKIT

Fully Assembled and Tested
MAXIM

MAX13485EEVKIT+

Evaluation Kit
MAXIM

MAX13485E_08

Evaluation Kit
MAXIM

MAX13486E

Half-Duplex RS-485/RS-422 Transceivers in uDFN
MAXIM

MAX13486EELA+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, 2 X 2 MM, 0.80 MM HEIGHT, LEAD FREE, MICRO DFN-8
MAXIM

MAX13486EELA+T

Half-Duplex RS-485/RS-422 Transceivers in uDFN
MAXIM

MAX13486EESA+

Half-Duplex RS-485/RS-422 Transceivers in uDFN
MAXIM

MAX13487E

Half-Duplex RS-485-/RS-422-Compatible Transceiver with AutoDirection Control
MAXIM

MAX13487EESA

Line Transceiver
MAXIM

MAX13487EESA+

Half-Duplex RS-485-/RS-422-Compatible Transceiver with AutoDirection Control
MAXIM