MAX1359BCTL [MAXIM]

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220WJJD-2, TQFN-40;
MAX1359BCTL
型号: MAX1359BCTL
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220WJJD-2, TQFN-40

信息通信管理
文件: 总74页 (文件大小:1204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3710; Rev 1; 8/05  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
General Description  
Features  
+1.8V to +3.6V Single-Supply Operation  
The MAX1358/MAX1359/MAX1360 smart data-acquisition  
systems (DAS) are each based on a 16-bit, sigma-delta  
analog-to-digital converter (ADC) and system-support  
functionality for a microprocessor (µP)-based system.  
These devices integrate an ADC, DACs, operational  
amplifiers, internal 1.25V/2.048V/2.5V selectable refer-  
ence, temperature sensors, analog switches, a 32kHz  
oscillator, a real-time clock (RTC) with alarm, a high-fre-  
quency-locked loop (FLL) clock, four user-programma-  
ble I/Os, an interrupt generator, and 1.8V and 2.7V  
voltage monitors in a single chip.  
Multichannel 16-Bit Sigma-Delta ADC  
10sps to 512sps Programmable Conversion Rate  
Self and System Offset and Gain Calibration  
PGA with Gains of 1, 2, 4, or 8  
Unipolar and Bipolar Modes  
10-Input Differential Multiplexer  
10-Bit Force-Sense DACs  
Uncommitted Op Amps  
Dual SPDT Analog Switches  
1.25V, 2.048V, or 2.5V Selectable Voltage  
The MAX1358/MAX1359/MAX1360 have dual 10:1 dif-  
ferential input multiplexers (muxes) that accept signal  
levels from 0 to AV . An on-chip 1x to 8x programma-  
DD  
Reference  
Internal Charge Pump  
ble-gain amplifier (PGA) measures low-level signals  
and reduces external circuitry required.  
System Support  
Real Time Clock and Alarm Register  
Internal/External Temperature Sensor  
Internal Oscillator with Clock Output  
User-Programmable I/O and Interrupt Generator  
The MAX1358/MAX1359/MAX1360 operate from a sin-  
gle +1.8V to +3.6V supply and consume only 1.4mA in  
normal mode and only 6.1µA in sleep mode.  
V
Monitors  
DD  
The MAX1358 has two DACs with one uncommitted op  
amp; the MAX1359 has one DAC with two uncommit-  
ted op amps; and the MAX1360 has three uncommit-  
ted op amps.  
SPI/QSPI/MICROWIRE, 4-Wire Serial Interface  
Space-Saving (6mm x 6mm x 0.8mm) 40-Pin TQFN  
Package  
Ordering Information  
The serial interface is compatible with either SPI™/QSPI™  
or MICROWIRE™, and is used to power up, configure,  
and check the status of all functional blocks.  
PIN-  
PACKAGE  
PKG  
CODE  
PART  
TEMP RANGE  
The MAX1358/MAX1359/MAX1360 are available in a  
space-saving 40-pin TQFN package and are specified  
over the commercial (0°C to +70°C) and the extended  
(-40°C to +85°C) temperature ranges.  
MAX1358AETL* -40°C to +85°C 40 TQFN-EP** T4066-4  
MAX1358BETL  
MAX1358ACTL*  
MAX1358BCTL*  
-40°C to +85°C 40 TQFN-EP** T4066-4  
0°C to +70°C 40 TQFN-EP** T4066-4  
0°C to +70°C 40 TQFN-EP** T4066-4  
Applications  
MAX1359AETL* -40°C to +85°C 40 TQFN-EP** T4066-4  
Battery-Powered and Portable Devices  
Electrochemical and Optical Sensors  
Medical Instruments  
MAX1359BETL  
MAX1359ACTL*  
MAX1359BCTL  
-40°C to +85°C 40 TQFN-EP** T4066-4  
0°C to +70°C 40 TQFN-EP** T4066-4  
0°C to +70°C 40 TQFN-EP** T4066-4  
MAX1360AETL* -40°C to +85°C 40 TQFN-EP** T4066-4  
MAX1360BETL* -40°C to +85°C 40 TQFN-EP** T4066-4  
Industrial Control  
Data-Acquisition Systems  
MAX1360ACTL*  
MAX1360BCTL*  
0°C to +70°C 40 TQFN-EP** T4066-4  
0°C to +70°C 40 TQFN-EP** T4066-4  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
*Future product—contact factory for availability.  
**EP = Exposed pad.  
Pin Configurations appear at end of data sheet.  
Selector Guide  
SPDT/SPST  
SWITCHES  
EXTERNAL ADC  
PART  
DACs  
OP AMPs  
UPIOs  
INPUTS  
MAX1358  
MAX1359  
MAX1360  
2
1
0
1
2
3
2/2  
2/1  
2/0  
2
2
2
4
4
4
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ABSOLUTE MAXIMUM RATINGS  
AV  
to AGND .........................................................-0.3V to +4V  
Continuous Current Into Any Pin.........................................50mA  
DD  
DV to DGND.........................................................-0.3V to +4V  
Continuous Power Dissipation (T = +70°C)  
DD  
A
AV  
to DV  
............................................................-4V to +4V  
40-Pin TQFN (derate 25.6mW/°C above +70°C) ....2051.3mW  
DD  
DD  
AGND to DGND.....................................................-0.3V to +0.3V  
CLK32K to DGND....................................-0.3V to (DV + 0.3V)  
Operating Temperature Range  
MAX13_ _ CTL ....................................................0°C to +70°C  
MAX13_ _ ETL .................................................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
UPIO_ to DGND........................................................-0.3V to +4V  
Digital Inputs to DGND ............................................-0.3V to +4V  
Analog Inputs to AGND ...........................-0.3V to (AV  
Digital Output to DGND…........................-0.3V to (DV  
Analog Outputs to AGND.........................-0.3V to (AV  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ADC DC ACCURACY  
Data rate = 10sps, PGA gain = 2;  
data rate = 10sps to 60sps, PGA gain = 1;  
no missing codes, Table 1 (Note 2)  
Noise-Free Resolution  
16  
10  
Bits  
sps  
Conversion Rate  
Output Noise  
No missing codes, Table 1  
No missing codes  
512  
Table 1  
µV  
RMS  
Unipolar mode, AV  
= 3V, data  
DD  
A grade  
B grade  
0.003  
Integral Nonlinearity  
INL  
%FSR  
%FSR  
rate = 40sps, PGA gain = 1,  
= +25°C  
0.004  
1.0  
T
A
Uncalibrated  
Unipolar Offset Error or Bipolar  
Zero Error (Note 3)  
Data rate = 10sps, PGA gain = 1, calibrated  
0.003  
Unipolar Offset-Error or Bipolar  
Zero-Error Temperature Drift  
(Note 4)  
Bipolar  
2.0  
10  
µV/°C  
Unipolar  
Uncalibrated  
0.6  
Gain Error (Notes 3, 5)  
% FSR  
Data rate = 10sps, PGA = 1, calibrated  
0.003  
Gain-Error Temperature  
Coefficient  
(Notes 4, 6)  
1.0  
73  
ppm/ °C  
DC Positive Power-Supply  
Rejection Ratio  
PGA gain = 1, unipolar mode, measured by  
full-scale error with AV  
PSRR  
dB  
= 1.8V to 3.6V  
DD  
ADC ANALOG INPUTS (AIN1, AIN2)  
DC Input Common-Mode  
Rejection Ratio  
CMRR  
PGA gain = 1, unipolar mode  
85  
dB  
2
_______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Normal-Mode 60Hz Rejection  
Ratio  
Data rate = 10sps or 60sps, PGA gain = 1,  
unipolar mode (Note 2)  
100  
dB  
Normal-Mode 50Hz Rejection  
Ratio  
Data rate = 10sps or 50sps, PGA gain = 1,  
unipolar mode (Note 2)  
100  
dB  
V
Absolute Input Range  
AGND  
AV  
DD  
-0.05 /  
Gain  
V
Gain  
/
REF  
Unipolar mode  
Differential Input Range  
V
-V  
REF  
/
V
Gain  
/
REF  
Bipolar mode  
Gain  
ADC not in measurement mode, mux  
1
5
enabled, T +55°C, inputs = +0.1V to  
A
DC Input Current (Note 7)  
nA  
(AV  
- 0.1V)  
DD  
T
A
= +85°C  
Input Sampling Capacitance  
Input Sampling Rate  
C
5
pF  
IN  
f
21.84  
kHz  
SAMPLE  
External Source Impedance at  
Input  
See Table 3  
Table 3  
kΩ  
FORCE-SENSE DAC (MAX1358/MAX1359 only, R = 10kand C = 200pF, FBA = OUTA and FBB = OUTB, unless otherwise  
L
L
noted)  
Resolution  
Guaranteed monotonic  
Code 3D hex to 3FF hex  
10  
Bits  
Differential Nonlinearity  
DNL  
INL  
1
2
LSB  
A grade  
B grade  
Code 3D hex to 3FF  
hex  
Integral Nonlinearity  
LSB  
4
Offset Error  
Reference to code 52 hex  
20  
mV  
µV/°C  
LSB  
Offset-Error Tempco  
Gain Error  
4.4  
1
Excludes offset and voltage reference error  
Excludes offset and reference drift  
SWA/B switches open (Notes 7, 8)  
5
Gain-Error Tempco  
Input Leakage Current at SWA/B  
ppm/°C  
nA  
1
T
T
T
= -40°C to +85°C  
= 0°C to +70°C  
= 0°C to +50°C  
1
nA  
A
A
A
V
(AV  
(Note 7)  
= +0.3V to  
- 0.3V)  
FBA/B  
Input Leakage Current at FBA/B  
600  
400  
DD  
pA  
nA  
V
DAC Output Buffer Leakage  
Current  
DAC buffer disabled (Note 7)  
At FBA and FBB  
75  
AV  
-
DD  
0.35  
Input Common-Mode Voltage  
0
Line Regulation  
AV  
= +1.8V to +3.6V  
40  
175  
0.5  
µV/V  
µV/µA  
V
DD  
Load Regulation  
I
= 2mA, C = 1000pF (Note 2)  
OUT L  
Output Voltage Range  
AGND  
AV  
DD  
_______________________________________________________________________________________  
3
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
Output Slew Rate  
SYMBOL  
CONDITIONS  
52 hex to 3FF hex code swing rising or  
falling, R = 10k, C = 100pF  
MIN  
TYP  
40  
MAX  
UNITS  
V/ms  
µs  
L
L
Output-Voltage Settling Time  
10% to 90% rising or falling to 0.5 LSB  
65  
f = 0.1Hz to  
10Hz  
80  
Referred to FBA/B,  
excludes reference noise  
Input Voltage Noise  
µV  
P-P  
f = 10Hz to  
10kHz  
200  
OUTA/B shorted to AGND  
20  
15  
Output Short-Circuit Current  
mA  
OUTA/B shorted to AV  
DD  
Input-Output SWA/SWB Switch  
Resistance  
Between SWA and OUTA, or SWB and  
OUTB, HFCK enabled  
150  
SWA/SWB Switch Turn-On/Off  
Time  
HFCK enabled  
100  
18  
ns  
µs  
Power-On Time  
Excluding reference  
EXTERNAL REFERENCE (REF)  
Input Voltage Range  
Input Resistance  
AGND  
AV  
V
DD  
DAC on, internal REF and ADC off  
2.5  
MΩ  
nA  
DC Input Leakage Current  
Internal REF, DAC, and ADC off (Note 7)  
100  
INTERNAL VOLTAGE REFERENCE (C  
= 4.7µF)  
REF  
A grade  
B grade  
A grade  
B grade  
A grade  
B grade  
1.237  
1.213  
2.027  
1.987  
2.475  
2.425  
1.25  
1.25  
2.048  
2.048  
2.5  
1.263  
1.288  
2.068  
2.109  
2.525  
2.575  
50  
AV  
AV  
AV  
+1.8V, T = +25°C  
A
DD  
DD  
DD  
Reference Output Voltage  
V
+2.2V, T = +25°C  
V
REF  
A
+2.7V, T = +25°C  
A
2.5  
V
= 1.25V  
15  
REF  
A grade  
Output-Voltage Temperature  
Coefficient (Note 7)  
V
=
REF  
ppm/oC  
65  
TC  
2.048V, 2.5V  
B grade  
15  
18  
90  
REF shorted to AGND  
mA  
µA  
Output Short-Circuit Current  
Line Regulation  
I
RSC  
REF shorted to AV  
DD  
A grade  
B grade  
100  
1.2  
T
T
= +25°C  
µV/V  
A
A
25  
I
= 0  
SOURCE  
to 500µA  
= 0 to  
Load Regulation  
= +25°C, V  
= 1.25V  
µV/µA  
REF  
I
SINK  
1.7  
50µA  
4
_______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
Long-Term Stability  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ppm/  
1000hrs  
(Note 9)  
f = 0.1Hz to 10Hz, AV  
35  
= 3V  
= 3V  
50  
DD  
Output Noise Voltage  
µV  
P-P  
f = 10Hz to 10kHz, AV  
400  
100  
DD  
Turn-On Settling Time  
Buffer only, settle to 0.1% of final value  
µs  
TEMPERATURE SENSOR  
Temperature Measurement  
Resolution  
ADC resolution is 16-bit, 10sps  
0.11  
°C/LSB  
°C  
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
T
A
= 0°C to +70°C  
= -40oC to +85°C  
= 0°C to +70°C  
= -40°C to +85°C  
= +25°C  
0.5  
1
A grade  
B grade  
Internal Temperature-Sensor  
Measurement Error  
0.5  
1
0.50  
A grade  
B grade  
= 0°C to +70°C  
= -40°C to +85°C  
= +32°C to +43°C  
= +10°C to +50°C  
= 0°C to +70°C  
= -40°C to +85°C  
1
2
External Temperature-Sensor  
Measurement Error (Note 10)  
0.50  
0.5  
0.5  
1
°C  
Temperature Measurement Noise  
0.18  
°C  
RMS  
Temperature Measurement  
Power-Supply Rejection Ratio  
0.2  
°C/V  
OP AMP (R = 10kconnected to AV / 2)  
L
DD  
Input Offset Voltage  
Offset-Error Tempco  
V
V
= 0.5V  
CM  
15  
mV  
µV/oC  
nA  
OS  
3
0.006  
4
T
T
T
T
T
T
= -40°C to +85°C  
= 0°C to +70°C  
= 0°C to +50°C  
= -40°C to +85°C  
= 0°C to +70°C  
= 0°C to +50°C  
1
A
A
A
A
A
A
IN1+, IN2+, IN3+  
IN1-, IN2-, IN3-  
300  
200  
1
pA  
nA  
pA  
nA  
V
2
Input Bias Current (Note 7)  
Input Offset Current  
I
BIAS  
0.025  
20  
600  
400  
1
I
V
,
= +0.3V to (AV - 0.3V) (Note 7)  
OS  
IN1_ IN2_ DD  
Input Common-Mode Voltage  
Range  
AV  
-
DD  
0.35  
CMVR  
CMRR  
0
0 V  
75mV  
60  
75  
CM  
Common-Mode Rejection Ratio  
dB  
75mV < V  
AV  
- 0.35V  
60  
CM  
DD  
_______________________________________________________________________________________  
5
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= +1.8V to +3.6V  
MIN  
76.5  
90  
TYP  
100  
116  
MAX  
UNITS  
dB  
Power-Supply Rejection Ratio  
Large-Signal Voltage Gain  
PSRR  
AV  
DD  
A
100mV V  
AV - 100mV (Note 11)  
DD  
dB  
VOL  
OUT_  
I
I
I
I
I
I
I
I
I
I
= 10µA  
= 50µA  
= 100µA  
= 500µA  
= 2mA  
0.005  
0.025  
0.05  
0.25  
0.5  
SOURCE  
SOURCE  
SOURCE  
SOURCE  
SOURCE  
Sourcing  
Maximum Current Drive  
V  
V
OUT  
= 10µA  
0.005  
0.025  
0.05  
0.25  
0.5  
SINK  
SINK  
SINK  
SINK  
SINK  
= 50µA  
Sinking  
= 100µA  
= 500µA  
= 2mA  
Gain Bandwidth Product  
Phase Margin  
GBW  
SR  
Unity-gain configuration, C = 1nF  
80  
60  
kHz  
L
Unity-gain configuration, C = 1nF (Note 11)  
Degrees  
V/µs  
L
Output Slew Rate  
C = 200pF  
L
0.04  
80  
f = 0.1Hz to 10Hz  
f = 10Hz to 10kHz  
Unity-gain  
configuration  
Input Voltage Noise  
µV  
P-P  
200  
20  
V
V
shorted to AGND  
OUT_  
OUT_  
Output Short-Circuit Current  
Power-On Time  
mA  
shorted to AV  
15  
DD  
15  
µs  
SPDT SWITCHES (SNO_, SNC_, SCM_, HFCK enabled)  
V
V
V
= 0V  
T
T
= 0°C to +50°C  
= 0°C to +50°C  
45  
50  
SCM_  
SCM_  
SCM_  
A
On-Resistance  
R
= 0.5V  
ON  
A
= 0.5V to AV  
150  
1
DD  
T
A
= -40°C to +85°C  
nA  
pA  
SNO_, SNC_ = +0.5V,  
+1.5V; SCM_ = +1.5V, T = 0°C to +70°C  
+0.5V  
SNO_, SNC_ Off-Leakage  
Current (Note 7)  
I
I
SNO_(OFF)  
SNC_(OFF)  
600  
400  
2
A
T
= 0°C to +50°C  
A
A
T
= -40°C to +85°C  
SNO_, SNC_ = +0.5V,  
+1.5V; SCM_ = +1.5V, T = 0°C to +70°C  
+0.5V  
SCM_ Off-Leakage Current  
(Note 7)  
I
nA  
nA  
1.2  
0.8  
2
SCM_(OFF)  
A
T
A
T
A
T
A
T
A
= 0°C to +50°C  
= -40°C to +85°C  
= 0°C to +70°C  
= 0°C to +50°C  
SNO_, SNC_ = +0.5V,  
+1.5V, or floating;  
SCM_ = +1.5V, +0.5V  
SCM_ On-Leakage Current  
(Note 7)  
I
1.2  
0.8  
SCM_(ON)  
Input Voltage Range  
Turn-On/Off Time  
AGND  
AV  
V
DD  
t
/t  
Break-before-make  
100  
ns  
ON OFF  
6
_______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
SNO_, SNC_, or SCM_ = AV  
MIN  
TYP  
MAX  
UNITS  
or AGND;  
DD  
Input Capacitance  
5
pF  
switch connected to enabled mux input  
CHARGE PUMP (10µF at REG and 10µF external capacitor between CF+ and CF-)  
Maximum Output Current  
Output Voltage  
I
10  
3.2  
3.0  
mA  
V
OUT  
No load  
= 10mA  
3.3  
3.6  
50  
I
OUT  
10µF external capacitor between CPOUT  
and DGND, I = 10mA, excluding ESR of  
Output Voltage Ripple  
mV  
OUT  
external capacitor  
I
= 10mA, excluding ESR of external  
OUT  
Load Regulation  
15  
20  
mV/mA  
capacitor  
REG Input Voltage Range  
REG Input Current  
Internal linear regulator disabled  
Linear regulator off, charge pump off  
Charge pump disabled  
1.6  
1.8  
1.8  
V
3
2
nA  
V
CPOUT Input Voltage Range  
CPOUT Input Leakage Current  
SIGNAL-DETECT COMPARATOR  
3.6  
Charge pump disabled  
nA  
TSEL[2:0] = 0 hex  
TSEL[2:0] = 4 hex  
TSEL[2:0] = 5 hex  
TSEL[2:0] = 6 hex  
TSEL[2:0] = 7 hex  
0
50  
Differential Input-Detection  
Threshold Voltage  
100  
150  
200  
mV  
mV  
Differential Input-Detection  
Threshold Error  
10  
Common-Mode Input Voltage  
Range  
AGND  
1.0  
AV  
V
DD  
Turn-On Time  
50  
µs  
VOLTAGE MONITORS  
DV Monitor Supply Voltage  
DD  
Range  
For valid reset  
3.6  
V
V
A grade  
B grade  
1.80  
1.80  
1.85  
1.85  
1.90  
1.95  
Trip Threshold (DV  
Falling)  
DD  
DV  
Period  
Monitor Timeout Reset  
DD  
1.5  
s
HYSE bit set to logic 1  
HYSE bit set to logic 0  
200  
35  
DV  
Monitor Hysteresis  
mV  
DD  
_______________________________________________________________________________________  
7
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DV  
Monitor Turn-On Time  
5
ms  
DD  
CPOUT Monitor Supply Voltage  
Range  
1.0  
2.7  
3.6  
2.9  
V
CPOUT Monitor Trip Threshold  
CPOUT Monitor Hysteresis  
CPOUT Monitor Turn-On Time  
Internal Power-On Reset Voltage  
32kHz Oscillator (32KIN, 32KOUT)  
Clock Frequency  
2.8  
35  
5
V
mV  
ms  
V
1.7  
DV  
= 2.7V  
32.768  
25  
kHz  
ppm  
ms  
DD  
DD  
Stability  
DV  
= 1.8V to 3.6V, excluding crystal  
Oscillator Startup Time  
1500  
6
Crystal Load Capacitance  
pF  
LOW-FREQUENCY CLOCK INPUT/OUTPUT (CLK32K)  
Output Clock Frequency  
32.768  
kHz  
ns  
Absolute Input to Output Clock  
Jitter  
Cycle to cycle  
10% to 90%, 30pF load  
5
5
Input to Output Rise/Fall Time  
Input/Output Duty Cycle  
HIGH-FREQUENCY CLOCK OUTPUT (CLK)  
ns  
%
40  
60  
f
f
f
f
= f  
4.8660 4.9152 4.9644  
OUT  
OUT  
OUT  
OUT  
FLL  
FLL  
FLL  
FLL  
= f  
= f  
= f  
/ 2, power-up default  
2.4330 2.4576 2.4822  
MHz  
FLL Output Clock Frequency  
/ 4  
/ 8  
1.2165 1.2288 1.2411  
608.25 614.4 620.54  
kHz  
ns  
Cycle to cycle, FLL off  
Cycle to cycle, FLL on  
10% to 90%, 30pF load  
0.15  
1
Absolute Clock Jitter  
Rise and Fall Time  
Duty Cycle  
t /t  
R F  
10  
ns  
f
= 4.9152MHz  
40  
45  
60  
55  
OUT  
OUT  
%
f
= 2.4576MHz, 1.2288MHz, 614.4kHz  
Uncalibrated CLK Frequency  
Error  
FLL calibration not performed  
35  
%
DIGITAL INPUTS (SCLK, DIN, CS, UPIO_, CLK32K)  
0.7 x  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
DV  
DD  
0.3 x  
V
IL  
DV  
DD  
8
_______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
supply voltage  
MIN  
TYP  
MAX  
UNITS  
0.7 x  
DV  
DD  
DV  
DD  
UPIO_ Input High Voltage  
V
V
0.7 x  
CPOUT  
CPOUT supply voltage  
0.3 x  
DV  
supply voltage  
DD  
DV  
DD  
UPIO_ Input Low Voltage  
0.3 x  
CPOUT  
CPOUT supply voltage  
DV = 3.0V  
Input Hysteresis  
Input Current  
V
200  
0.01  
10  
mV  
nA  
pF  
HYS  
DD  
I
V
V
V
= DGND or DV  
= DGND or DV  
(Note 7)  
100  
IN  
IN  
IN  
IN  
DD  
DD  
Input Capacitance  
= DV  
or CPOUT, pullup enabled  
0.01  
1
1
DD  
UPIO_ Input Current  
UPIO_ Pullup Current  
µA  
µA  
V
= DV  
or CPOUT or 0V,  
IN  
DD  
pullup disabled  
V
= 0V, pullup enabled, floating UPIO  
IN  
inputs are pulled up to DV  
with pullup enabled  
or CPOUT  
0.5  
2
5
DD  
DIGITAL OUTPUTS (DOUT, RESET, UPIO_, CLK32K, INT, CLK)  
Output Low Voltage  
V
I
= 1mA  
0.4  
V
V
OL  
SINK  
= 500µA  
SOURCE  
0.8 x  
Output High Voltage  
V
I
OH  
DV  
DD  
DOUT Tri-State Leakage Current  
I
0.01  
15  
1
µA  
pF  
L
DOUT Tri-State Output  
Capacitance  
C
OUT  
RESET Output Low Voltage  
V
I
= 1mA  
0.4  
0.1  
0.4  
0.4  
V
OL  
SINK  
RESET Output Leakage Current  
Open-drain output, RESET deasserted  
µA  
I
I
I
= 1mA, UPIO_ referenced to DV  
DD  
SINK  
SINK  
UPIO_ Output Low Voltage  
UPIO_ Output High Voltage  
V
V
V
OL  
= 4mA, UPIO_ referenced to CPOUT  
= 500µA, UPIO_ referenced to  
0.8 x  
DV  
SOURCE  
DV  
DD  
DD  
V
OH  
I
= 4mA, UPIO_ referenced to  
V
SOURCE  
CPOUT  
- 0.4  
CPOUT  
POWER REQUIREMENT  
Analog Supply Voltage Range  
Digital Supply Voltage Range  
AV  
DV  
1.8  
1.8  
3.6  
3.6  
V
V
DD  
DD  
_______________________________________________________________________________________  
9
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Everything on,  
charge pump  
unloaded, max  
internal temp-sensor  
current, clock output  
buffers unloaded,  
ADC at 512sps  
AV  
AV  
= DV  
= DV  
= 3.6V  
= 3.3V  
1.36  
2.0  
DD  
DD  
DD  
I
MAX  
Total Supply Current  
mA  
1.15  
1.17  
1.7  
1.3  
DD  
All on except charge pump and temp  
sensor, ADC at 512sps, CLK output buffer  
enabled, clock output buffers unloaded  
I
NORMAL  
AV  
AV  
AV  
AV  
= DV  
= DV  
= DV  
= DV  
= 3.0V  
= 3.6V  
= 3.0V  
= 3.6V  
5.18  
6.15  
4.42  
5.56  
6.5  
9
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
T
= -45°C to +85°C  
= +25°C  
A
A
Sleep-Mode Supply Current  
Shutdown Supply Current  
I
µA  
µA  
SLEEP  
5.19  
8.3  
4
T
T
A
A
= -40°C to +85°C  
= +25°C  
I
All off  
SHDN  
T
1.6  
Note 1: Devices are production tested at T = +25°C and T = +85°C. Specifications to T = -40°C are guaranteed by design.  
A
A
A
Note 2: Guaranteed by design or characterization.  
Note 3: The offset and gain errors are corrected by self-calibration. The calibration process requires measurement to be made at  
the selected data rate. The calibration error is therefore in the order of peak-to-peak noise for the selected rate.  
Note 4: Eliminate drift errors by recalibration at the new temperature.  
Note 5: The gain error excludes reference error, offset error (unipolar), and zero error (bipolar).  
Note 6: Gain-error drift does not include unipolar offset drift or bipolar zero-error drift. It is effectively the drift of the part if zero-  
scale error is removed.  
Note 7: These specs are obtained from characterization during design or from initial product evaluation. Not production tested or  
guaranteed.  
Note 8: OUTA/B = +0.5V or +1.5V, SWA/B = +1.5V or +0.5V, T = 0°C to +50°C.  
A
Note 9: Long-term stability is characterized using five to six parts. The bandgaps are turned on for 1000hrs at room temperature  
with the parts running continuously. Daily measurements are taken and any obvious outlying data points are discarded.  
Note 10: All of the stated temperature accuracies assume that 1) the external diode characteristic is precisely known (i.e., ideal)  
and 2) the ADC reference voltage is exactly equal to 1.25V. Any variations to this known reference characteristic and volt-  
age caused by temperature, loading, or power supply results in errors in the temperature measurement. The actual tem-  
perature calculation is performed externally by the microcontroller (µC).  
Note 11: Values based on simulation results and are not production tested or guaranteed.  
10 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Table 1. Output Noise (Notes 12, 13, and 14)  
OUTPUT NOISE (µV  
)
RMS  
RATE (sps)  
GAIN = 1  
1.820  
GAIN = 2  
GAIN = 4  
1.345  
GAIN = 8  
0.660  
10  
40  
3.286  
3.257  
3.845  
1.928  
0.630  
50  
3.065  
2.317  
1.631  
0.625  
60  
2.873  
2.662  
1.519  
0.728  
200  
240  
400  
512  
4.525  
2.910  
1.397  
0.519  
6.502  
2.954  
1.596  
0.629  
5.300  
80.068  
282.959  
1.686  
0.436  
119.078  
281.056  
28.470  
Note 12: V  
= 1.25V, bipolar mode, V = 1.24912, PGA gain = 1, T = +85°C.  
IN A  
REF  
Note 13: C = 5pF, op-amp noise is considered to be the same as the switching noise. The increase of the op amp’s noise contri-  
IN  
bution is due to large input swing (0 to 3.6V).  
Note 14: Assume 3 sigma peak-to-peak variation; noise-free resolution means no code flicker at given bits’ LSB.  
Table 2. Peak-to-Peak Resolution  
PEAK-TO-PEAK RESOLUTION (Bits)  
RATE (sps)  
GAIN = 1  
16.7  
GAIN = 2  
14.8  
14.8  
15.3  
15.1  
15.0  
15.0  
10.2  
8.4  
GAIN = 4  
15.1  
14.6  
14.8  
14.9  
15.0  
14.9  
14.8  
7.4  
GAIN = 8  
15.1  
15.2  
15.2  
15.0  
15.5  
15.2  
15.7  
9.7  
10  
40  
15.6  
50  
15.9  
60  
16.0  
200  
240  
400  
512  
15.4  
14.8  
15.1  
10.6  
Table 3. Maximum External Source Impedance Without 16-Bit Gain Error  
EXTERNAL CAPACITANCE (pF)  
PARAMETER  
0 (Note 15)  
350  
50  
60  
100  
30  
500  
10  
1000  
4
5000  
Resistance (k)  
1
Note 15: 2pF parasitic capacitance is assumed, which represents pad and any other parasitic capacitance.  
______________________________________________________________________________________ 11  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
TIMING CHARACTERISTICS (Figures 1 and 21)  
(AV  
= DV  
= +1.8V to +3.6V, external V  
= +1.25V, CLK32K = 32.768kHz (external clock), C = 10µF, C  
= 10µF,  
DD  
DD  
REF  
REG  
CPOUT  
10µF between CF+ and CF-, T = T  
A
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
MIN  
PARAMETER  
SCLK Operating Frequency  
SCLK Cycle Time  
SYMBOL  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
MHz  
ns  
f
10  
SCLK  
t
100  
40  
40  
30  
0
CYC  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
DIN to SCLK Setup  
t
ns  
CH  
t
t
ns  
CL  
DS  
DH  
DO  
ns  
DIN to SCLK Hold  
t
ns  
SCLK Fall to DOUT Valid  
CS Fall to Output Enable  
CS Rise to DOUT Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
t
C = 50pF, Figure 2  
40  
48  
48  
ns  
L
t
C = 50pF, Figure 2  
ns  
DV  
L
t
C = 50pF, Figure 2  
L
ns  
TR  
t
20  
0
ns  
CSS  
CSH  
t
ns  
t
DV  
Monitor Timeout Period  
(Note 16)  
1.5  
1
s
DD  
DSLP  
Minimum pulse width required to detect a  
wake-up event  
t
Wake-Up (WU) Pulse Width  
Shutdown Delay  
µs  
µs  
ms  
µs  
WU  
The delay for SHDN to go high after a valid  
wake-up event  
t
1
DPU  
The turn-on time for the high-frequency  
clock and FLL (FLLE = 1) (Note 17)  
10  
10  
t
HFCK Turn-On Time  
DFON  
If FLLE = 0, the turn-on time for the high-  
frequency clock (Note 18)  
The delay for CRDY to go low after the  
HFCK clock output has been enabled  
(Note 19)  
t
CRDY to INT Delay  
7.82  
ms  
DFI  
The delay after a shutdown command has  
asserted and before HFCK is disabled  
(Note 20)  
t
HFCK Disable Delay  
1.95  
2.93  
ms  
ms  
DFOF  
t
SHDN Assertion Delay  
(Note 21)  
DPD  
Note 16: The delay for the sleep voltage monitor output, RESET, to go high after V  
rises above the reset threshold. This is largely  
DD  
driven by the startup of the 32kHz oscillator.  
Note 17: It is gated by an AND function with three inputs—the external RESET signal, the internal DV  
monitor output, and the  
DD  
external SHDN signal. The time delay is timed from the internal LOV  
going high or the external RESET going high,  
DD  
whichever happens later. HFCK always starts in the low state.  
Note 18: If FLLE = 0, the internal signal CRDY is not generated by the FLL block and INT or INT are deasserted.  
Note 19: CRDY is used as an interrupt signal to inform the µC that the high-frequency clock has started. Only valid if FLLE = 1.  
t
t
Note 20:  
Note 21:  
gives the µC time to clean up and go into sleep-override mode properly.  
is greater than the HFCK delay for the MAX1358/MAX1359/MAX1360 chip to clean up before losing power.  
DFOF  
DPD  
12 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
CS  
t
t
t
t
CSH  
CSH  
CYC  
CH  
t
CSS  
t
CL  
SCLK  
DIN  
t
t
DH  
DS  
t
t
t
TR  
DV  
DO  
DOUT  
Figure 1. Detailed Serial-Interface Timing  
DV  
DD  
6k  
DOUT  
DOUT  
6kΩ  
C
= 50pF  
C
= 50pF  
LOAD  
LOAD  
a) FOR ENABLE, HIGH IMPEDANCE  
TO V AND V TO V  
b) FOR ENABLE, HIGH IMPEDANCE  
TO V AND V TO V  
OH  
OL  
OH  
OL  
OH  
OL  
FOR DISABLE, V TO HIGH IMPEDANCE  
FOR DISABLE, V TO HIGH IMPEDANCE  
OH  
OL  
Figure 2. DOUT Enable and Disable Time Load Circuits  
Typical Operating Characteristics  
(DV  
= AV = 1.8V, REF = +1.25V C  
DD  
= 10µF, T = +25°C, unless otherwise noted.)  
A
CPOUT  
DD  
DV SUPPLY CURRENT  
DD  
DV SUPPLY CURRENT  
DD  
DV SUPPLY CURRENT  
DD  
vs. DV SUPPLY VOLTAGE  
vs. DV SUPPLY VOLTAGE  
vs. DV SUPPLY VOLTAGE  
DD  
DD  
DD  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
700  
SLEEP MODE,  
ALL FUNCTIONS DISABLED  
SLEEP MODE, CLK BUFFER DISABLED  
NORMAL MODE  
CLK BUFFER DISABLED  
32kHz OSC, RTC, DV MONITOR ENABLED  
DD  
600  
500  
400  
300  
200  
1.8  
2.1  
2.4  
2.7  
DV (V)  
3.0  
3.3  
3.6  
1.8  
2.1  
2.4  
2.7  
DV (V)  
3.0  
3.3  
3.6  
1.8  
2.1  
2.4  
2.7  
DV (V)  
3.0  
3.3  
3.6  
DD  
DD  
DD  
______________________________________________________________________________________ 13  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, REF = +1.25V C  
= 10µF, T = +25°C, unless otherwise noted.)  
A
CPOUT  
DD  
DD  
DV SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
DV SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
DV SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
700  
600  
500  
400  
300  
200  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
SLEEP MODE, CLK BUFFER DISABLED  
NORMAL MODE  
CLK BUFFER DISABLED  
SLEEP MODE, ALL  
FUNCTIONS DISABLED  
32kHz OSC, RTC, DV MONITOR ENABLED  
DD  
DV = 3.0V  
DD  
DV = 3.0V  
DD  
DV = 3.0V  
DD  
DV = 1.8V  
DD  
DV = 1.8V  
DD  
DV = 1.8V  
DD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
3.6  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
AV SUPPLY CURRENT  
DD  
AV SUPPLY CURRENT  
DD  
vs. AV SUPPLY VOLTAGE  
AV SUPPLY CURRENT  
DD  
vs. AV SUPPLY VOLTAGE  
vs. AV SUPPLY VOLTAGE  
DD  
DD  
DD  
450  
425  
400  
375  
350  
325  
300  
275  
250  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
NORMAL MODE  
SLEEP MODE,  
32kHz OSC, RTC, DV MONITOR ENABLED  
SLEEP MODE,  
ALL FUNCTIONS DISABLED  
DD  
1.8  
2.1  
2.4  
2.7  
AV (V)  
3.0  
3.3  
3.6  
1.8  
2.1  
2.4  
2.7  
AV (V)  
3.0  
3.3  
1.8  
2.1  
2.4  
2.7  
AV (V)  
3.0  
3.3  
3.6  
DD  
DD  
DD  
AV SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
AV SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
AV SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
400  
375  
350  
325  
300  
275  
250  
225  
200  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
SLEEP MODE, ALL  
FUNCTIONS DISABLED  
NORMAL MODE  
SLEEP MODE,  
32kHz OSC, RTC, DV MONITOR ENABLED  
DD  
AV = 3.0V  
DD  
AV = 3.0V  
DD  
AV = 3.0V  
DD  
AV = 1.8V  
DD  
AV = 1.8V  
DD  
AV = 1.8V  
DD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
14 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, REF = +1.25V C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
CPOUT  
INTERNAL OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
REFERENCE OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
INTERNAL OSCILLATOR FREQUENCY  
vs. SUPPLY VOLTAGE  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.60  
3.0  
2.5  
2.0  
1.5  
1.0  
A: V = 1.25V  
REF  
B: V = 2.048V  
2.55  
REF  
FLL DISABLED  
C: V = 2.5V  
REF  
C
2.50  
2.45  
C
FLL ENABLED  
2.40  
B
B
2.35  
2.30  
A
A
2.25  
CLK = 2.4576MHz  
CLK = 2.4576MHz  
2.20  
-40  
-15  
10  
TEMPERATURE (°C)  
A: FLL DISABLED; AV , DV = 1.8V  
35  
60  
85  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
1.8  
2.1  
2.4  
2.7  
AV (V)  
3.0  
3.3  
3.6  
AV , DV (V)  
DD  
DD  
DD  
DD  
DD  
B: FLL ENABLED  
C: FLL DISABLED; AV , DV = 3.0V  
DD  
DD  
REFERENCE OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
REFERENCE OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
REFERENCE OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
2.5050  
2.5048  
2.5046  
2.5044  
2.5042  
2.5040  
2.5038  
2.5036  
2.5034  
2.5032  
2.5030  
2.0486  
2.0484  
2.0482  
2.0480  
2.0478  
2.0476  
2.0474  
2.0472  
1.2510  
1.2505  
1.2500  
1.2495  
1.2490  
AV = 2.5V  
DD  
AV = 3.0V  
DD  
AV = 1.8V  
DD  
V
= 2.048V  
V
= 2.5V  
REF  
V
= 1.25V  
REF  
REF  
-50  
50  
150  
250  
350  
450  
-50  
50  
150  
250  
350  
450  
-50  
50  
150  
250  
350  
450  
OUTPUT CURRENT (µA)  
OUTPUT CURRENT (µA)  
OUTPUT CURRENT (µA)  
NORMALIZED REFERENCE OUTPUT  
VOLTAGE vs. TEMPERATURE  
NORMALIZED REFERENCE OUTPUT  
VOLTAGE vs. TEMPERATURE  
NORMALIZED REFERENCE OUTPUT  
VOLTAGE vs. TEMPERATURE  
1.0010  
1.0005  
1.0000  
0.9995  
0.9990  
0.9985  
0.9980  
0.9975  
0.9970  
1.0010  
1.0005  
1.0000  
0.9995  
0.9990  
0.9985  
0.9980  
0.9975  
0.9970  
1.0010  
1.0005  
1.0000  
0.9995  
0.9990  
0.9985  
0.9980  
0.9975  
0.9970  
V
= 1.25V  
-15  
V
= 2.048V  
-15  
V
REF  
= 2.5V  
-15  
REF  
REF  
-40  
10  
35  
60  
85  
-40  
10  
35  
60  
85  
-40  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 15  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, REF = +1.25V C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
CPOUT  
REFERENCE VOLTAGE OUTPUT NOISE  
REFERENCE VOLTAGE OUTPUT  
NOISE vs. FREQUENCY  
10,000  
REFERENCE VOLTAGE OUTPUT  
NOISE vs. FREQUENCY  
(0.1Hz TO 10Hz)  
MAX1358/59/60 toc22  
10,000  
1000  
100  
V
= 1.25V  
V
= 2.048V  
REF  
REF  
1000  
50µV/div  
V
= +1.25V  
REF  
AV = +1.8V  
DD  
100  
1
10  
100  
1k  
10k  
1
10  
100  
1k  
10k  
1s/div  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
REFERENCE VOLTAGE OUTPUT  
NOISE vs. FREQUENCY  
ADC MUX INPUT DC CURRENT  
vs. TEMPERATURE  
DAC INL vs. OUTPUT CODE  
10,000  
1000  
100  
2
0.25  
0.15  
V
= 2.5V  
REF  
AV = 1.8V  
AV = 1.8V  
DD  
DD  
V
= 1.25V  
V
= 0.5V  
REF  
AIN  
0
-2  
0.05  
-4  
-6  
-0.05  
-0.15  
-0.25  
-8  
-10  
-12  
1
10  
100  
1k  
10k  
-40  
-15  
10  
35  
60  
85  
0
200  
400  
600  
800  
1000  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
OUTPUT CODE  
DAC INL vs. OUTPUT CODE  
DAC INL vs. OUTPUT CODE  
DAC DNL vs. OUTPUT CODE  
0.20  
0.15  
0.10  
0.05  
0
0.25  
0.15  
0.25  
0.15  
AV = 2.5V  
AV = 3.0V  
DD  
DD  
V
= 2.048V  
V
= 2.5V  
REF  
REF  
0.05  
0.05  
-0.05  
-0.15  
-0.25  
-0.05  
-0.15  
-0.25  
-0.05  
-0.10  
-0.15  
-0.20  
AV = 1.8V  
DD  
V
= 1.25V  
REF  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
16 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, REF = +1.25V C  
DD  
= 10µF, T = +25°C, unless otherwise noted.)  
DD  
A
CPOUT  
DAC OUTPUT VOLTAGE  
vs. OUTPUT SOURCE CURRENT  
DAC DNL vs. OUTPUT CODE  
DAC DNL vs. OUTPUT CODE  
1.248  
1.246  
1.244  
1.242  
1.240  
0.20  
0.20  
0.15  
0.10  
0.05  
0
0.15  
0.10  
0.05  
0
-0.05  
-0.10  
-0.15  
-0.20  
-0.05  
-0.10  
AV = 2.5V  
DD  
AV = 3.0V  
CODE = 3FF hex  
AV = 1.8V, 3.0V  
DD  
DD  
-0.15  
V
= 2.048V  
V
= 2.5V  
REF  
REF  
-0.20  
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
SOURCE CURRENT (mA)  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
OUTPUT CODE  
OUTPUT CODE  
DAC OUTPUT VOLTAGE  
vs. OUTPUT SINK CURRENT  
DAC OUTPUT VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
DAC OUTPUT VOLTAGE  
vs. TEMPERATURE  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
650  
640  
630  
620  
610  
630  
628  
626  
624  
622  
620  
AV = 1.8V  
DD  
AV = 1.8V  
DD  
AV = 3.0V  
DD  
AV = 3.0V  
DD  
V
= 1.25V  
REF  
CODE = 200 hex  
3.0 3.3 3.6  
CODE = 020 hex  
CODE = 200 hex  
600  
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
SOURCE CURRENT (mA)  
1.8  
2.1  
2.4  
2.7  
-40  
-15  
10  
35  
60  
85  
AV (V)  
DD  
TEMPERATURE (°C)  
DAC OUTPUT NOISE  
(0.1Hz TO 10Hz)  
DAC OUTPUT  
NOISE vs. FREQUENCY  
DAC FBA/B INPUT BIAS CURRENT  
vs. TEMPERATURE  
MAX1358/59/60 toc38  
10,000  
1000  
100  
2
1
DAC CODE = 3FF hex  
= 2.5V  
AV = 1.8V  
DD  
V
REF  
V
= 0.5V  
AIN  
0
-1  
-2  
-3  
-4  
-5  
50µV/div  
AV = +1.8V  
DD  
V
= +1.25V  
REF  
DAC CODE = 3FF hex  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
1s/div  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
______________________________________________________________________________________ 17  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, REF = +1.25V C  
= 10µF, T = +25°C, unless otherwise noted.)  
A
CPOUT  
DD  
DD  
DAC LARGE-SIGNAL OUTPUT  
STEP RESPONSE  
OP-AMP INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
MAX1358/59/60 toc40  
7.5  
7.2  
6.9  
6.6  
6.3  
6.0  
V
= 0.5V  
CM  
CS  
2V/div  
AV = 3.0V  
DD  
AV = 1.8V  
DD  
OUT_  
1V/div  
V
= +1.25V  
DD  
REF  
AV = +3.0V  
40µs/div  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
OP-AMP INPUT BIAS CURRENT  
vs. TEMPERATURE  
OP-AMP INPUT BIAS CURRENT  
vs. TEMPERATURE  
14  
12  
10  
8
12  
10  
8
AV = 1.8V  
DD  
AV = 3.0V  
DD  
V
= 0.5V  
V
= 0.5V  
CM  
CM  
6
6
4
4
2
2
0
0
-2  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OP-AMP OUTPUT VOLTAGE  
vs. OUTPUT SINK CURRENT  
OP-AMP OUTPUT VOLTAGE  
vs. OUTPUT SOURCE CURRENT  
250  
200  
150  
100  
50  
3.00  
2.96  
2.92  
2.88  
2.84  
2.80  
AV = 3.0V  
DD  
AV = 1.8V  
DD  
AV = 3.0V  
DD  
UNITY GAIN, V + = AV  
UNITY GAIN, V + = 0V  
IN_  
IN_  
DD  
0
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
SINK CURRENT (mA)  
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
SOURCE CURRENT (mA)  
18 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, REF = +1.25V C  
= 10µF, T = +25°C, unless otherwise noted.)  
A
CPOUT  
DD  
DD  
OP-AMP OUTPUT VOLTAGE  
vs. TEMPERATURE  
OP-AMP OUTPUT VOLTAGE  
vs. OUTPUT SOURCE CURRENT  
501.0  
500.8  
500.6  
500.4  
500.2  
500.0  
1.80  
1.75  
1.70  
1.65  
1.60  
UNITY GAIN, V + = 0.5V  
IN_  
R = 10kΩ  
L
AV = 3.0V  
DD  
AV = 1.8V  
DD  
UNITY GAIN, V + = AV  
IN_  
DD  
AV = 1.8V  
DD  
-40  
-15  
10  
35  
60  
85  
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
SOURCE CURRENT (mA)  
TEMPERATURE (°C)  
OP-AMP OUTPUT NOISE  
vs. FREQUENCY  
OP-AMP OUTPUT VOLTAGE  
vs. AV SUPPLY VOLTAGE  
DD  
10,000  
1000  
100  
501.0  
500.8  
500.6  
500.4  
500.2  
500.0  
UNITY GAIN, V + = 0.5V  
IN_  
UNITY GAIN, V + = 0.5V  
IN_  
R = 10kΩ  
L
1
10  
100  
1k  
10k  
1.8  
2.1  
2.4  
2.7  
AV (V)  
3.0  
3.3  
3.6  
FREQUENCY (Hz)  
DD  
SPDT ON-RESISTANCE  
vs. V VOLTAGE  
SPST ON-RESISTANCE  
vs. V VOLTAGE  
COM  
COM  
75  
65  
55  
45  
35  
25  
150  
130  
110  
90  
AV = 3.0V  
DD  
AV = 3.0V  
DD  
AV = 1.8V  
DD  
70  
AV = 1.8V  
DD  
50  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
V
(V)  
COM  
COM  
______________________________________________________________________________________ 19  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, REF = +1.25V C  
= 10µF, T = +25°C, unless otherwise noted.)  
A
CPOUT  
DD  
DD  
SPDT ON-RESISTANCE  
vs. TEMPERATURE  
SPST ON-RESISTANCE  
vs. TEMPERATURE  
45  
42  
39  
36  
33  
30  
100  
97  
94  
91  
88  
85  
82  
AV = 1.8V, 3.0V  
I
= 1mA  
DD  
COM  
COM  
I
= 1mA  
AV = 3.0V  
DD  
AV = 1.8V  
DD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SPDT/SPST SWITCHING TIME  
SPDT/SPST ON/OFF-LEAKAGE  
CURRENT vs. TEMPERATURE  
vs. AV SUPPLY VOLTAGE  
DD  
45  
40  
35  
30  
25  
20  
15  
100  
AV = 1.8V  
DD  
V
= 0V  
CM  
ON-LEAKAGE  
10  
1
t
ON  
OFF-LEAKAGE  
t
OFF  
0.1  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
AV (V)  
DD  
TEMPERATURE (°C)  
SPDT/SPST SWITCHING TIME  
vs. TEMPERATURE  
SPDT/SPST SWITCHING TIME  
vs. TEMPERATURE  
50  
35  
31  
27  
23  
19  
15  
AV = 1.8V  
DD  
AV = 3.0V  
DD  
t
46  
42  
38  
34  
30  
ON  
t
ON  
t
OFF  
t
OFF  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
20 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, REF = +1.25V C  
= 10µF, T = +25°C, unless otherwise noted.)  
A
CPOUT  
DD  
DD  
CHARGE-PUMP OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
VOLTAGE SUPERVISOR THRESHOLD  
vs. TEMPERATURE  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
0.10  
0.05  
0
DV SUPERVISOR  
DD  
-0.05  
-0.10  
-0.15  
-0.20  
CPOUT SUPERVISOR  
DV = 1.8V  
DD  
0
2
4
6
8
10  
-40  
-40  
0
-15  
10  
35  
60  
85  
85  
10  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
CHARGE-PUMP OUTPUT RESISTANCE  
vs. CAPACITANCE  
CHARGE-PUMP OUTPUT VOLTAGE  
vs. TEMPERATURE  
100  
80  
60  
40  
20  
0
3.30  
3.26  
3.22  
3.18  
3.14  
3.10  
DV = 3.0V  
DD  
DV = 1.8V  
DD  
DV = 1.8V  
DD  
I
= 10mA  
I
= 10mA  
-15  
OUT  
OUT  
0
4
8
12  
16  
20  
10  
35  
60  
C (µF)  
TEMPERATURE (°C)  
F
CHARGE-PUMP OUTPUT  
VOLTAGE RIPPLE  
CHARGE-PUMP OUTPUT VOLTAGE  
RIPPLE vs. OUTPUT CURRENT  
MAX1358/59/60 toc63  
50  
40  
30  
20  
10  
0
DV = 1.8V  
DD  
CPOUT  
20mV/div  
AC-COUPLED  
DV = +1.8V  
DD  
I
= 10mA  
LOAD  
20µs/div  
2
4
6
8
OUTPUT CURRENT (mA)  
______________________________________________________________________________________ 21  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Pin Description  
PIN  
NAME  
CLK  
FUNCTION  
MAX1358 MAX1359 MAX1360  
1
1
1
Clock Output. Default is 2.457MHz output clock for µC.  
User-Programmable Input/Output 2. See the UPIO2_CTRL Register section for  
functionality.  
2
2
2
UPIO2  
User-Programmable Input/Output 3. See the UPIO3_CTRL Register section for  
functionality.  
3
4
3
4
3
4
UPIO3  
UPIO4  
User-Programmable Input/Output 4. See the UPIO4_CTRL Register section for  
functionality.  
Serial-Data Output. Data is clocked out on SCLK’s falling edge. High impedance  
when CS is high, when UPIO/SPI passthrough mode is enabled, DOUT mirrors the  
state of UPIO1.  
5
5
5
DOUT  
6
7
6
7
6
7
SCLK  
DIN  
Serial-Clock Input. Clocks data in and out of the serial interface.  
Serial-Data Input. Data is clocked in on SCLK’s rising edge.  
Active-Low Chip-Select Input. Data is not clocked into DIN unless CS is low. When  
CS is high, DOUT is high impedance. High impedance when CS is high, when  
UPIO/SPI passthrough mode is enabled, DOUT mirrors the state of UPIO1.  
8
9
8
9
8
9
CS  
Programmable Active-High/Low Interrupt Output. ADC, UPIO wake-up, alarm, and  
voltage-monitor events.  
INT  
32kHz Clock Input/Output. Outputs 32kHz clock for µC. Can be programmed as  
an input by enabling the IO32E bit to accept an external 32kHz input clock. The  
RTC, PWM, and watchdog timer always use the internal 32kHz clock derived from  
the 32kHz crystal.  
10  
11  
10  
11  
10  
11  
CLK32K  
Active-Low Open-Drain Reset Output. Remains low while DV  
is below the 1.8V  
DD  
voltage threshold and stays low for a timeout period (t  
) after DV  
rises above  
DSLP  
DD  
RESET  
the 1.8V threshold. RESET also pulses low when the watchdog timer times out and  
holds low during POR until the 32kHz oscillator stabilizes.  
32kHz Crystal Output. Connect external 32kHz watch crystal between 32KIN and  
32KOUT.  
12  
13  
12  
13  
12  
13  
32KOUT  
32KIN  
32kHz Crystal Input. Connect external 32kHz watch crystal between 32KIN and  
32KOUT.  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
14  
15  
16  
17  
18  
19  
20  
21  
22  
SNO1  
SCM1  
SNC1  
SNO2  
SCM2  
SNC2  
OUT1  
IN1-  
Analog Switch 1 Normally Open Terminal. Analog input to mux.  
Analog Switch 1 Common Terminal. Analog input to mux.  
Analog Switch 1 Normally Closed Terminal. Analog input to mux (open on POR).  
Analog Switch 2 Normally Open Terminal. Analog input to mux.  
Analog Switch 2 Common Terminal. Analog input to mux (open on POR).  
Analog Switch 2 Normally Closed Terminal. Analog input to mux.  
Amplifier 1 Output. Analog input to mux.  
Amplifier 1 Inverting Input. Analog input to mux.  
IN1+  
SWA  
Amplifier 1 Noninverting Input  
DACA SPST Shunt Switch Input. Connects to OUTA through a SPST switch.  
DACA Force-Sense Feedback Input. Analog input to mux.  
FBA  
22 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX1358 MAX1359 MAX1360  
25  
26  
25  
26  
OUTA  
AGND  
DACA Force-Sense Output. Analog input to mux.  
Analog Ground  
26  
Analog Supply Voltage. Also ADC reference voltage during AV  
measurement.  
DD  
Bypass to AGND with 10µF and 0.1µF capacitors in parallel as close to the pin as  
possible.  
27  
27  
27  
AV  
DD  
28  
29  
30  
SWB  
FBB  
DACB SPST Shunt Switch Input. Connects to OUTB through an SPST switch.  
DACB Force-Sense Feedback Input. Analog input to mux.  
Force-Sense DACB Ouput. Analog input to mux.  
OUTB  
Analog Input 2. Analog input to mux. Inputs have internal programmable current  
source for external temperature measurement.  
31  
32  
31  
32  
31  
32  
AIN2  
AIN1  
Analog Input 1. Analog input to mux. Inputs have internal programmable current  
source for external temperature measurement.  
Reference Input/Output. Output of the reference buffer amplifier or external  
reference input. Disabled at power-up to allow external reference. Reference  
voltage for ADC and DACs.  
33  
33  
33  
REF  
Linear Voltage-Regulator Output. Charge-pump-doubler input voltage. Bypass  
REG with a 10µF capacitor to DGND for charge-pump regulation.  
34  
34  
34  
REG  
35  
36  
35  
36  
35  
36  
CF-  
Charge-Pump Flying Capacitor Terminals. Connect an external 10µF (typ)  
capacitor between CF+ and CF-.  
CF+  
Charge-Pump Output. Connect an external 10µF (typ) reservoir capacitor between  
CPOUT and DGND. There is a low threshold diode between DV and CPOUT. When  
DD  
37  
37  
37  
CPOUT  
the charge pump is disabled, CPOUT is pulled up within 300mV (typ) of DV  
.
DD  
Digital Supply Voltage. Bypass to DGND with 10µF and 0.1µF capacitors in parallel  
as close to the pin as possible.  
38  
39  
38  
39  
38  
39  
DV  
DD  
Digital Ground. Also ground for cascaded linear voltage regulator and charge-  
pump doubler.  
DGND  
40  
40  
28  
29  
30  
40  
23  
24  
25  
28  
29  
30  
UPIO1  
IN3+  
IN3-  
User-Programmable Input/Output 1. See the UPIO1_CTRL Register for functionality.  
Amplifier 3 Noninverting Input  
Amplifier 3 Inverting Input. Analog input to mux.  
Amplifier 3 Output. Analog input to mux.  
OUT3  
IN2+  
IN2-  
Amplifier 2 Noninverting Input  
Amplifier 2 Inverting Input. Analog input to mux.  
Amplifier 2 Output. Analog input to mux.  
OUT2  
EP  
Exposed Pad. Leave unconnected or connect to AGND.  
______________________________________________________________________________________ 23  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
The DAS directly interfaces to various sensor outputs  
Detailed Description  
and, once configured, provides the stimulus, signal  
The MAX1358/MAX1359/MAX1360 DAS feature a multi-  
conditioning, and data conversion, as well as µP sup-  
plexed differential 16-bit ADC, 10-bit force-sense  
port. See the Applications section for sample  
DACs, an RTC with an alarm, a selectable bandgap  
MAX1358/MAX1359/MAX1360 applications.  
voltage reference, a signal-detect comparator, 1.8V  
The 16-bit ADC features programmable continuous con-  
version rates as shown in Table 4, and gains of 1, 2, 4,  
and 8 (Table 5) to suit applications with different power  
and 2.7V voltage monitors, and wake-up control  
circuitry, all controlled by a 4-wire serial interface. (See  
Figures 3, 4, and 5 for the functional diagrams).  
INT  
CLK32K  
32KOUT  
CLK  
AV  
DD  
32KIN  
DV  
DD  
4.9152MHz HF  
OSCILLATOR  
AND FLL  
CLK32K  
INPUT/OUTPUT  
CONTROL  
M32K  
CS  
SCLK  
DIN  
32.768kHz  
UPIO1  
INTERRUPT  
16  
OSCILLATOR  
UPIO2  
UPIO3  
UPIO4  
SERIAL  
INTERFACE  
UPIO  
HFCLK  
4
4
32K  
UPR<4:1>  
CRDY  
CONTROL  
LOGIC  
PWM  
UPF<4:1>  
DOUT  
STATUS  
RTC AND  
ALARM  
ALD  
SDC  
ADD  
ADOU  
WATCHDOG  
TIMER  
DV (1.8V)  
DD  
VOLTAGE  
MONITOR  
RESET  
LDVD  
LCPD  
WDTO  
AIN1  
AIN2  
TEMP  
PROG  
CURRENT  
SOURCE  
CPOUT (2.7V)  
VOLTAGE  
MONITOR  
CPOUT  
CF+  
CF-  
TEMP+  
TEMP-  
CHARGE-  
PUMP  
DOUBLER  
DV  
M32K  
DD  
SENSOR  
MAX1358  
LINEAR 1.65V  
VOLTAGE  
REGULATOR  
REG  
AIN1  
SNO1  
FBA  
SCM1  
FBB  
SNC1  
AIN1  
AIN2  
M32K  
PROG. Vos  
PGA  
1.25V BANDGAP  
REF  
10:1  
MUX  
POS  
CMP  
Av = 1, 1.6384, 2 V/V  
INM1  
TEMP+  
REF  
SNO1  
SNC1  
SCM1  
REF  
REF  
10-BIT DAC  
AGND  
IN+  
OUTA  
SWA  
FBA  
BUF  
HFCLK  
16-BIT ADC  
IN-  
PGA  
Av = 1, 2, 4, 8 V/V  
TEMP-  
SNO2  
OUTA  
SCM2  
OUTB  
SNC2  
OUT1  
AIN2  
SPDT1  
POLARITY  
FLIPPER  
REF  
SNO2  
SNC2  
SCM2  
10:1  
MUX  
NEG  
10-BIT DAC  
OUTB  
BUF  
OP1  
SWB  
FBB  
REF  
SPDT2  
AGND  
IN1+  
IN1-  
OUT1  
DGND  
AGND  
Figure 3. MAX1358 Functional Diagram  
24 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
and dynamic range constraints. The force-sense DACs  
provide 10-bit resolution for precise sensor applica-  
tions. The ADCs and DACs both utilize a low-drift 1.25V  
internal bandgap reference for conversions and full-  
scale range setting. The RTC has a 138-year range and  
provides an alarm function that can be used to wake up  
the system or cause an interrupt at a predefined time.  
RESET. The MAX1358/MAX1359/MAX1360 use a 4-wire  
serial interface to communicate directly between SPI,  
QSPI, or MICROWIRE devices for system configuration  
and readback functions.  
Analog-to-Digital Converter (ADC)  
The MAX1358/MAX1359/MAX1360 include a sigma-  
delta ADC with programmable conversion rate, a PGA,  
and a dual 10:1 input mux. When performing continu-  
The power-supply voltage monitor detects when DV  
DD  
falls below a trip threshold voltage of +1.8V, asserting  
INT  
CLK32K  
32KOUT  
CLK  
AV  
DD  
32KIN  
DV  
DD  
4.9152MHz HF  
OSCILLATOR  
AND FLL  
CLK32K  
INPUT/OUTPUT  
CONTROL  
M32K  
32.768kHz  
OSCILLATOR  
CS  
SCLK  
DIN  
UPIO1  
INTERRUPT  
16  
UPIO2  
UPIO3  
UPIO4  
SERIAL  
INTERFACE  
UPIO  
HFCLK  
4
4
UPR<4:1>  
32K  
CONTROL  
LOGIC  
CRDY  
PWM  
UPF<4:1>  
DOUT  
STATUS  
RTC AND  
ALARM  
ALD  
SDC  
ADD  
ADOU  
WATCHDOG  
TIMER  
DV (1.8V)  
DD  
VOLTAGE  
MONITOR  
RESET  
LDVD  
LCPD  
WDTO  
AIN1  
AIN2  
TEMP  
PROG  
CURRENT  
SOURCE  
CPOUT (2.7V)  
VOLTAGE  
MONITOR  
CPOUT  
CF+  
CF-  
TEMP+  
TEMP-  
CHARGE-  
PUMP  
DOUBLER  
DV  
M32K  
DD  
SENSOR  
MAX1359  
LINEAR 1.65V  
VOLTAGE  
REGULATOR  
REG  
AIN1  
SNO1  
FBA  
SCM1  
IN2-  
SNC1  
AIN1  
AIN2  
M32K  
PROG. Vos  
PGA  
1.25V BANDGAP  
REF  
10:1  
MUX  
POS  
CMP  
Av = 1, 1.6384, 2 V/V  
INM1  
TEMP+  
REF  
SNO1  
SNC1  
SCM1  
REF  
REF  
10-BIT DAC  
AGND  
IN+  
OUTA  
SWA  
FBA  
BUF  
HFCLK  
16-BIT ADC  
IN-  
PGA  
Av = 1, 2, 4, 8 V/V  
TEMP-  
SNO2  
OUTA  
SCM2  
OUT2  
SNC2  
OUT1  
AIN2  
SPDT1  
POLARITY  
FLIPPER  
SNO2  
SNC2  
SCM2  
10:1  
MUX  
NEG  
OUT2  
OP2  
OP1  
SPDT2  
REF  
AGND  
IN2+  
IN2-  
IN1+  
IN1-  
OUT1  
AGND  
DGND  
Figure 4. MAX1359 Functional Diagram  
______________________________________________________________________________________ 25  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ous conversions at 10sps or single conversions at the  
40sps setting (effectively 10sps due to four sample  
sigma-delta settling), the ADC has 16-bit noise-free res-  
olution. The noise-free resolution drops to 10 bits at the  
maximum sampling rate of 512sps. Differential inputs  
ADOU bit in the status register indicates if the ADC has  
over-ranged or under-ranged.  
Zero-scale and full-scale calibrations remove offset and  
gain errors. Direct access to gain and zero-scale cali-  
bration registers allows system-level offset and gain cal-  
ibration. The zero-scale adjustment register allows  
intentional positive offset skewing to preserve unipolar-  
mode resolution for signals that have a slight negative  
support unipolar (between 0 and V  
) and bipolar  
REF  
(between  
V
) modes of operation. Note: Avoid  
REF  
combinations of input signal and PGA gains that  
exceed the reference range at the ADC input. The  
INT  
CLK32K  
32KOUT  
CLK  
AV  
DD  
32KIN  
DV  
DD  
4.9152MHz HF  
OSCILLATOR  
AND FLL  
CLK32K  
INPUT/OUTPUT  
CONTROL  
M32K  
32.768kHz  
OSCILLATOR  
CS  
SCLK  
DIN  
UPIO1  
INTERRUPT  
16  
UPIO2  
UPIO3  
UPIO4  
SERIAL  
INTERFACE  
UPIO  
HFCLK  
4
4
UPR<4:1>  
CRDY  
32K  
CONTROL  
LOGIC  
PWM  
UPF<4:1>  
DOUT  
STATUS  
RTC AND  
ALARM  
ALD  
SDC  
ADD  
ADOU  
WATCHDOG  
TIMER  
DV (1.8V)  
DD  
VOLTAGE  
MONITOR  
RESET  
LDVD  
LCPD  
WDTO  
AIN1  
AIN2  
TEMP  
PROG  
CURRENT  
SOURCE  
CPOUT (2.7V)  
VOLTAGE  
MONITOR  
CPOUT  
CF+  
CF-  
TEMP+  
TEMP-  
CHARGE-  
PUMP  
DOUBLER  
DV  
M32K  
DD  
SENSOR  
MAX1360  
LINEAR 1.65V  
VOLTAGE  
REGULATOR  
REG  
AIN1  
SNO1  
IN3-  
SCM1  
IN2-  
SNC1  
AIN1  
AIN2  
M32K  
PROG. Vos  
PGA  
1.25V BANDGAP  
REF  
10:1  
MUX  
POS  
CMP  
Av = 1, 1.6384, 2 V/V  
INM1  
TEMP+  
REF  
SNO1  
SNC1  
SCM1  
IN3+  
REF  
AGND  
IN+  
HFCLK  
16-BIT ADC  
IN-  
PGA  
Av = 1, 2, 4, 8 V/V  
OUT3  
IN3-  
OP3  
TEMP-  
SNO2  
OUT3  
SCM2  
OUT2  
SNC2  
OUT1  
AIN2  
SPDT1  
POLARITY  
FLIPPER  
SNO2  
SNC2  
SCM2  
10:1  
MUX  
NEG  
OUT2  
OP2  
OP1  
SPDT2  
REF  
AGND  
IN2+  
IN2-  
IN1+  
IN1-  
OUT1  
AGND  
DGND  
Figure 5. MAX1360 Functional Diagram  
26 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
offset (i.e., unipolar clipping near zero can be removed).  
Perform ADC calibration whenever the ADC configura-  
Figures 3, 4, and 5 illustrate which signals are present at  
the inputs of each mux for the MAX1358/MAX1359/  
MAX1360. The MUXP[3:0] and MUXN[3:0] bits of the mux  
register select the input to the ADC and the signal-detect  
comparator (Tables 8 and 9). See the mux register  
description in the Register Definitions section for multi-  
plexer functionality. The POL bit of the ADC register  
swaps the polarity of mux output signals to the ADC.  
tion, temperature, or AV  
changes. The ADC-done sta-  
DD  
tus can be programmed to provide an interrupt on INT  
or on any UPIO_.  
PGA Gain  
An integrated PGA provides four selectable gains: +1V/V,  
+2V/V, +4V/V, and +8V/V to maximize the dynamic range  
of the ADC. Bits GAIN1 and GAIN0 set the gain (see the  
ADC Register for more information). The PGA gain is  
implemented in the digital filter of the ADC.  
Digital Filtering  
The MAX1358/MAX1359/MAX1360 contain an on-chip  
digital lowpass filter that processes the data stream  
from the modulator using a SINC4 (sinx/x)4 response.  
The SINC4 filter has a settling time of four output data  
periods (4 x 200ms).  
ADC Modulator  
The MAX1358/MAX1359/MAX1360 perform analog-to-  
digital conversions using a single-bit, 3rd-order,  
switched-capacitor sigma-delta modulator. The sigma-  
delta modulation converts the input signal into a digital  
pulse train whose average duty cycle represents the dig-  
itized signal information. The pulse train is then  
processed by a digital decimation filter. The modulator  
provides 2nd-order frequency shaping of the quantiza-  
tion noise resulting from the single-bit quantizer. The  
modulator is fully differential for maximum signal-to-noise  
ratio and minimum susceptibility to power-supply noise.  
The MAX1358/MAX1359/MAX1360 have 25% overrange  
capability built into the modulator and digital filter:  
4
f
SIN Nπ  
f
1
N
m
H(f) =  
f
SIN π  
f
m
Figure 6 shows the filter frequency response. The  
SINC4 characteristic -3dB cutoff frequency is 0.228  
times the first notch frequency.  
Signal-Detect Comparator  
INT asserts (and remains asserted) within 30µs when  
the differential voltage on the selected analog inputs  
exceeds the signal-detect comparator trip threshold.  
The signal-detect comparator’s differential input trip  
threshold (i.e., offset) is user selectable and can be pro-  
grammed to the following values: 0mV, 50mV, 100mV,  
150mV, or 200mV.  
The output data rate for the digital filter corresponds  
with the positioning of the first notch of the filter’s fre-  
quency response. The notches of the SINC4 filter are  
repeated at multiples of the first notch frequency. The  
SINC4 filter provides an attenuation of better than  
100dB at these notches. For example, 50Hz is equal to  
five times the first notch frequency and 60Hz is equal to  
six times the first notch frequency.  
Analog Inputs  
The ADC provides two external analog inputs: AIN1  
and AIN2. The rail-to-rail inputs accept differential or  
single-ended voltages, or external temperature-sensing  
diodes. The unused op amps, switches, or DAC inputs  
and output pins can also be used as rail-to-rail analog  
inputs if the associated function is disabled.  
0
-40  
Analog Input Protection  
-80  
Internal protection diodes clamp the analog inputs to  
AV  
and AGND, and allow the channel input to swing  
DD  
-120  
-160  
-200  
from (AGND - 0.3V) to (AV  
+ 0.3V). For accurate  
DD  
conversions near full scale, the inputs must not exceed  
AV by more than 50mV or be lower than AGND by  
50mV. If the inputs exceed (AGND - 0.3V) to (AV  
0.3V), limit the current to 50mA.  
DD  
+
DD  
0
20  
40  
60  
80  
100  
120  
Analog Mux  
The MAX1358/MAX1359/MAX1360 include a dual 10:1  
mux for the positive and negative inputs of the ADC.  
FREQUENCY (Hz)  
Figure 6. Filter Frequency Response  
______________________________________________________________________________________ 27  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
DV  
DD  
LDOE  
CPE  
CPOUT  
1.22V  
NONOVERLAP  
CLOCK GENERATOR  
OP  
M32K  
1.65V  
CF+  
CF-  
REG  
REG  
LDOE  
CHARGE-PUMP DOUBLER  
LINEAR 1.65V VOLTAGE REGULATOR  
Figure 8. Charge-Pump Block Diagram  
Figure 7. Linear-Regulator Block Diagram  
from DV . See Figures 7 and 8 for block diagrams of  
DD  
the charge pump and linear regulator. The charge  
pump is disabled at power-on reset.  
Force-Sense DAC (MAX1358/MAX1359)  
The MAX1358 incorporates two 10-bit force-sense  
DACs and the MAX1359 has one. The DACs’ reference  
voltage sets the full-scale range. Program the  
DACA_OP and DACB_OP registers using the serial  
interface to set the output voltages of the DACs at  
OUTA and OUTB. Shorting FBA/B and OUTA/B config-  
ures the DAC in a unity-gain setting. Connecting resis-  
tors in a voltage-divider configuration between  
OUTA/B, FBA/B, and GND sets a different closed-loop  
gain for the output amplifier (see the Applications  
Information section).  
An internal clock drives the charge-pump clock and  
ADC clock. The charge pump delivers a maximum  
10mA of current to external devices. The droop and the  
ripple depend on the clock frequency (f  
=
CLK  
= 5),  
32.768kHz / 2), switch resistances (R  
SWITCH  
and the external capacitors (10µF) along with their  
respective ESRs, as shown below.  
V
= I  
R
DROOP  
OUT OUT  
The DAC output amplifier typically settles to 0.5 LSB  
from a full-scale transition within 50µs (unity gain and  
loaded with 10kin parallel with 200pF). Loads of less  
than 1kmay degrade performance. See the Typical  
Operating Characteristics for the source-and-sink  
capability of the DAC output.  
1
R
=
+ 2R  
+ 4ESR  
+ ESR  
C
F CPOUT  
OUT  
SWITCH  
C
f
C
F
CLK  
I
OUT  
V
=
+ 2I  
ESR  
OUT C  
CPOUT  
RIPPLE  
f
C
CLK CPOUT  
The MAX1358/MAX1359 feature a software-program-  
mable shutdown mode for the DACs. Power down  
DACA or DACB independently or simultaneously by  
clearing the DAE and DBE bits (see the DACA_OP  
Registers and DACB_OP Registers sections). DAC out-  
puts OUTA and OUTB go high impedance when pow-  
ered down. The DACs are normally powered down at  
power-on reset.  
Voltage Supervisors  
The MAX1358/MAX1359/MAX1360 provide voltage  
supervisors to monitor DV  
supervisor monitors the DV  
and CPOUT. The first  
supply voltage. RESET  
DD  
DD  
asserts and sets the corresponding LDVD status bit  
when DV  
falls below the 1.8V threshold voltage. When  
supply voltage rises above the threshold dur-  
DD  
the DV  
DD  
ing power-up, RESET deasserts after a nominal 1.5s  
timeout period to give the crystal oscillator time to stabi-  
lize. Set the threshold hysteresis using the HYSE bit of  
the PS_VMONS register. See the PS_VMONS Register  
section for configuring hysteresis. There is no separate  
Charge Pump  
The charge pump provides >3V at CPOUT with a maxi-  
mum 10mA load. Enable the charge pump through the  
PS_VMONS register. The charge pump is powered  
voltage monitor for AV , but the analog supply is cov-  
DD  
28 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
WDTO  
DV  
DD  
HYSE  
POR  
RSTE  
RESET  
LSDE  
CMP  
1.8VTH  
2.0VTH  
ANALOG  
2:1 MUX  
CONTROL  
LOGIC  
1.25V  
LDVD  
LSDE  
DV (1.8V) VOLTAGE MONITOR  
DD  
Figure 9. DV  
Voltage-Supervisor Block Diagram  
DD  
to monitor AV  
See Figure 10 for a block diagram of  
DD.  
the CPOUT voltage supervisor.  
CPOUT  
Interrupt Generator (INT)  
CPDE  
The interrupt generator provides an interrupt to an  
external µC. The source of the interrupt is generated by  
the status register and can be masked and unmasked  
through the IMSK register. CRDY is unmasked by  
default and INT is active-high at power-on reset. INT is  
programmable as active-high and active-low. Possible  
sources include a rising or falling edge of UPIO_, an  
RTC alarm, an ADC conversion completion, or the volt-  
age-supervisor outputs. The interrupt causes INT to  
assert when configured as an interrupt output.  
2.7VTH  
LCPD  
CMP  
1.25V  
CPDE  
CPOUT (2.7V) VOLTAGE MONITOR  
Crystal Oscillator  
The on-chip oscillator requires an external crystal (or  
resonator) connected between 32KIN and 32KOUT  
with a 32.768kHz operating frequency. This oscillator is  
used for the RTC, alarm, PWM, watchdog, charge  
pump, and FLL. In any crystal-based oscillator circuit,  
the oscillator frequency is sensitive to the capacitive  
Figure 10. CPOUT Voltage-Supervisor Block Diagram  
ered by the DV  
monitor in many applications where  
are externally connected together.  
DD  
DV  
and AV  
DD  
DD  
Multiple supply applications where AV  
and DV  
are  
DD  
DD  
not connected together require a separate external volt-  
age monitor for AV . See Figure 9 for a block diagram  
DD  
load (C ). C is the capacitance that the crystal needs  
L
L
of the DV voltage supervisor.  
DD  
from the oscillator circuit and not the capacitance of the  
crystal. The input capacitance across the 32KIN and  
32KOUT is 6pF. Choose a crystal with a 32.768kHz  
oscillation frequency and a 6pF capacitive load such  
as the C-002RX32-E from Epson Crystal. Using a crys-  
The second voltage monitor tracks the charge-pump  
output voltage, CPOUT. If CPOUT falls below the 2.7V  
threshold, a corresponding register status bit (LCPD) is  
set to flag the condition. The CPOUT monitor output  
can also be mapped to the interrupt generator and out-  
put on INT. The CPOUT monitor can be used as a 3V  
tal with a C that is larger than the load capacitance of  
L
the oscillator circuit causes the oscillator to run faster  
than the specified nominal frequency of the crystal or to  
not start up. See Figures 11 and 12 for block diagrams  
of the crystal oscillator and the CLK32K I/O.  
AV  
monitor in applications where the charge pump is  
DD  
disabled and CPOUT is connected to AV . AV  
DD  
DD  
must be greater or equal to DV  
when CPOUT is used  
DD  
______________________________________________________________________________________ 29  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
OSCE  
32K  
OSCE  
CK32E  
IO32E  
IO32E  
0
32KOUT  
32KIN  
32kHz  
OSCILLATOR  
32K  
IO32E  
2:1  
MUX  
M32K  
CLK32K  
1
32.768kHz OSCILLATOR  
CLK32K I/O CONTROL  
Figure 11. 32kHz Crystal-Oscillator Block Diagram  
Figure 12. CLK32K I/O Block Diagram  
POR PULSES HIGH DURING POWER-UP.  
WDW PULSES HIGH DURING WATCHDOG REGISTER WRITE.  
WDTO  
D
Q
D
Q
4Hz  
CK  
32K  
DIVIDE-  
BY-8192  
Q
CK  
Q
WDE  
R
R
POR  
WDW  
WATCHDOG TIMER  
Figure 13. Watchdog Timer Block Diagram  
rent time with a 1s resolution. The alarm status bit, ALD,  
asserts when the 20 bits of the AL_DAY register match-  
es the 20 LSBs of the 32-bit second counter. The ADE  
bit automatically clears when the time-of-day alarm  
trips. The time-of-day alarm causes the device to exit  
sleep mode.  
Real-Time Clock (RTC)  
The integrated RTC provides the current time information  
from a 32-bit counter and subsecond counts from an 8-  
bit ripple counter. An internally generated reference  
clock of 256Hz (derived from the 32.768kHz crystal) dri-  
ves the 8-bit subsecond counter. An overflow of the 8-bit  
subsecond counter inputs a 1Hz clock to increment the  
32-bit second counter. The RTC 32-bit second counter is  
translatable to calendar format with firmware. All 40 bits  
(32-bit second counter and 8-bit subsecond counter)  
must be clocked in or out for valid data. The RTC and  
the 32.768kHz crystal oscillator consume less than 1µA  
when the rest of the IC is powered down.  
Watchdog  
Enable the watchdog timer by writing a 1 to the WDE bit  
in the CLK_CTRL register. After enabling the watchdog  
timer, the device asserts RESET for 250ms, if the  
watchdog address register is not written every 500ms.  
Due to the asynchronous nature of the watchdog timer,  
the watchdog timeout period varies between 500ms  
and 750ms. Write a 0 to the WDE bit to disable the  
watchdog timer. See Figure 13 for a block diagram of  
the watchdog timer.  
Time-of-Day Alarm  
Program the AL_DAY register with a 20-bit value, which  
corresponds to a time 1s to 12 days later than the cur-  
30 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
32.768kHz  
CKSEL2  
CKSEL<1:0>  
CLKE  
HFCE  
0
FLLE  
2:1  
MUX  
1, 2, 4, 8  
DIVIDER  
CLK  
FREQ  
ERROR  
M32K  
TUNE<8:0> DIGITALLY  
CONTROLLED  
FREQUENCY  
COMPARE  
FREQUENCY  
INTEGRATOR  
1
OSCILLATOR  
4.9152MHz  
HFCLK  
CRDY  
4.9152MHz HF OSCILLATOR AND FLL  
Figure 14. High-Frequency Clock and FLL Block Diagram  
High-Frequency Clock  
An internal oscillator and a frequency-locked loop (FLL)  
are used to generate a 4.9152MHz 1% high-frequen-  
cy clock. This clock and derivatives are used internally  
by the ADC, analog switches, and PWM. This clock sig-  
nal outputs to CLK. When the FLL is enabled, the high-  
frequency clock is locked to the 32.768kHz reference. If  
the FLL is disabled, the high-frequency clock is free-  
running. At power-up, the CLK pin defaults to a  
2.4576MHz clock output, which is compatible with most  
µCs. See Figure 14 for a block diagram of the high-fre-  
quency clock.  
PROGRAMMABLE CURRENT SOURCE  
CURRENT  
IVAL<1:0>  
SOURCE  
1:3  
DEMUX  
IMUX<1:0>  
AIN1  
AIN1  
AIN2  
AIN2  
User-Programmable I/Os  
The MAX1358/MAX1359/MAX1360 provide four digital  
programmable I/Os (UPIO1–UPIO4). Configure UPIOs  
as logic inputs or outputs using the UPIO control regis-  
ter. Configure the internal pullups using the UPIO setup  
register, if required. At power-up, the UPIO’s are inter-  
TEMP+  
TEMP-  
nally pulled up to DV . UPIO_ outputs can be refer-  
DD  
enced to DV  
or CPOUT. See the UPIO__CTRL  
Register and UPIO_SPI Register sections for more  
DD  
details on configuring the UPIO_ pins.  
Program each UPIO1–UPIO4 as one of the following:  
• General-purpose input  
• Power-mode control  
TEMP SENSOR  
• Analog switch (SPST) and SPDT control input  
• ADC data-ready output  
• General-purpose output  
• PWM output  
Figure 15. Temperature-Sensor Measurement Block Diagram  
• Alarm output  
• SPI passthrough  
______________________________________________________________________________________ 31  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
CS  
SCLK  
DIN  
X
1
0
A5  
A4  
A3  
A2  
A1  
A0  
D
D
D
D
D
D
D
0
X
N
N -1  
N-2  
N-3  
2
1
DOUT  
X = DON’T CARE.  
Figure 16. Serial-Interface Register Write with 8-Bit Control Word, Followed by a Variable Length Data Write  
CS  
SCLK  
DIN  
X
1
1
A5  
A4  
A3  
A2  
A1  
A0  
X
X
X
X
X
X
X
X
D
D
D
D
D
D
D
0
N
N-1  
N-2  
N-3  
2
1
DOUT  
X = DON’T CARE.  
Figure 17. Serial-Interface Register Read with 8-Bit Control Word Followed by a Variable Length Data Read  
CS  
SCLK  
DIN  
1
0
A4 A3 A2 A1 A0 X D7 D6 D5 D4 D3 D2 D1 D0  
1
1 A4 A3 A2 A1 A0 X  
ADC  
CONV  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
CHANGES  
DOUT  
DRDY  
X = DON’T CARE.  
Figure 18. Performing an ADC Conversion (DRDY Function can be Accessed at UPIO Pins)  
measure the temperature. For either method, two to  
Temperature Sensor  
The internal temperature sensor measures die tempera-  
ture and the external temperature sensor measures  
remote temperatures. Use the internal temperature sen-  
sor or external temperature sensor (remote transistor/  
diode) with the ADC and internal current sources to  
four currents are passed through a p-n junction and  
sense resistor, and its temperature is calculated by a  
µC using the diode equation and the forward-biased  
junction voltage drops measured by the ADC. The tem-  
perature offset between the internal p-n junction and  
32 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ambient is negligible. For the four and eight measure-  
ment methods, the ratio of currents used in the diode  
calculations is precisely known since the ADC mea-  
sures the resulting voltage across the same sense  
resistor. See Figure 15 for a block diagram of the tem-  
perature sensor.  
1) Current I is driven through the diode and the series  
1
resistor R, and the voltage is measured across the  
diode using the ADC as NVBE1.  
2) For the same current, the voltage across the diode and  
the series resistor is measured by the ADC as NV1.  
3) Repeat steps 1 and 2 with I , I , and I .  
2
3
4
Two-Current Method  
The measured temperature is defined as follows:  
For the two-current method, currents I and I are  
1
2
passed through a p-n junction. This requires two V  
q N  
(
N  
q N  
N  
)
(
)
×
BE  
V
REF  
VBE3  
VBE1  
VBE4 VBE2  
T
=
MEAS  
measurements. Temperature measurements can be  
performed using I and I .  
16  
M
2
1
nkIn  
1
2
M
2
q V  
V  
BE1  
(
)
BE2  
T
=
MEAS  
where V  
is the reference voltage used and:  
REF  
I
1
nk ln  
  
M
N
N
V1  
N  
N  
N
N
N  
N  
I
1
V3  
VBE3  
VBE1  
V2  
VBE2  
VBE4  
2
=
  
M
  
2
V4  
where k is Boltzman’s constant. A four-measurement  
procedure is adopted to improve accuracy by precisely  
External Temperature Sensor  
measuring the ratio of I and I :  
1
2
For an external temperature sensor, either the two-cur-  
rent or four-current method can be used. Connect an  
external diode (such as 2N3904 or 2N3906) between  
pins AIN1 and AGND (or AIN2 and AGND). Connect a  
sense resistor R between AIN1 and AIN2. Maximize R  
1) Current I is driven through the diode and the series  
1
resistor R, and the voltage across the diode is mea-  
sured as V  
.
BE1  
2) For the same current, the voltage across the diode  
and R is measured as V .  
so the IR drop plus V  
of the p-n junction [(R x  
BE  
1
60µA)+V ] is the smaller of the ADC reference voltage  
BE  
3) Repeat steps 1 and 2 with I . I is typically 4µA and  
2
1
or (AV  
- 400mV). The same procedure as the internal  
DD  
I is typically 60µA (see Table 22).  
2
temperature sensor can be used for the external tem-  
perature sensor, by routing the currents to AIN1 (or  
AIN2) (see Table 21).  
Since only four integer numbers are accessible from the  
ADC conversions at a certain voltage reference, the previ-  
ous equation can be represented in the following manner:  
For the two-current method, if the external diode’s  
series resistance (R ) is known, then the temperature  
S
q(N  
N  
)
V
REF  
VBE2  
VBE1  
T
=
×
measurement can be corrected as shown below:  
MEAS  
16  
N
N  
N  
2
V1  
VBE1  
VBE2  
nk ln  
N
V2  
9(N N  
V2 VBE2  
)9(N N  
)
V
R
S
R
V1 VBE1  
REF  
T
= T  
MEAS  
×
×
16  
ACTUAL  
N
N  
N  
2
V2  
VBE1  
where N , N , N  
, and N  
are the measure-  
VBE2  
V1  
V2  
VBE1  
nkIn  
N
V1  
VBE1  
ment results in integer format and V  
is the reference  
REF  
voltage used in the ADC measurements.  
Temperature-Sensor Calibration  
Four-Current Method  
The four-current method is used to account for the  
diode series resistance and trace resistance. The four  
currents are defined as follows; I , I , M I , and M I . If  
To account for various error sources during the temper-  
ature measurement, the internal temperature sensor is  
calibrated at the factory. The calibrated temperature  
equation is shown below:  
1
2
1 1  
2 2  
the currents are selected so (M - 1)I = (M - 1)I , the  
1
1
2
2
T = g x T  
A
+ b  
MEAS  
effect of the series resistance is eliminated from the  
temperature measurements. For the currents I = 4µA  
where g and b are the gain and offset calibration val-  
ues, respectively. These calibration values are avail-  
able for reading from the TEMP_CAL register.  
1
and I = 60µA, the factors are selected as M = 16 and  
2
1
M = 2. This results in the currents I = M I = 64µA  
2
3
1 1  
and I = M I = 120µA (typ). As in the case of the two-  
4
2 2  
Voltage Reference and Buffer  
An internal 1.25V bandgap reference has a buffer with  
a selectable 1.0V/V, 1.638V/V, or 2.0V/V gain, resulting  
current method, two measurements per current are  
used to improve accuracy by precisely measuring the  
values of the currents.  
______________________________________________________________________________________ 33  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
in a respective 1.25V, 2.048V, or 2.5V reference voltage  
at REF. The ADC and DACs use this reference voltage.  
The state of the internal voltage reference output buffer at  
POR is disabled so it can be driven, at REF, with an exter-  
cy-divided versions of each. Although most µCs have  
built-in PWM functions, the MAX1358/MAX1359/  
MAX1360 PWM is more flexible by allowing the UPIO  
outputs to be driven to DV  
or regulated CPOUT  
DD  
nal reference between AGND and AV . The A-grade  
DD  
logic-high voltage levels. For duty-cycled power-control  
schemes, use the 32kHz-derived input clock. The PWM  
output is available independent of µC power state. The  
FLL is typically disabled in sleep-override mode.  
reference has an initial tolerance of 1%. The B-grade  
reference has an initial tolerance of 3%. Program the  
reference buffer through the serial interface. Bypass REF  
with a 4.7µF capacitor to AGND.  
Serial Interface  
The MAX1358/MAX1359/MAX1360 feature a 4-wire serial  
interface consisting of a chip select (CS), serial clock  
(SCLK), data in (DIN), and data out (DOUT). CS must be  
low to allow data to be clocked into or out of the device.  
DOUT is high impedance while CS is high. The data is  
clocked in at DIN on the rising edge of SCLK. Data is  
clocked out at DOUT on the falling edge of SCLK. The  
serial interface is compatible with SPI modes CPOL = 0,  
CPHA = 0 and CPOL = 1, CPHA = 1. A write operation to  
the MAX1358/MAX1359/MAX1360 takes effect on the last  
rising edge of SCLK. If CS goes high before the complete  
transfer, the write is ignored. Every data transfer is initiat-  
ed by the command byte. The command byte consists of  
a start bit (MSB), R/W bit, and 6 address bits. The start bit  
must be 1 to perform data transfers to the device. Zeros  
clocked in are ignored. For SPI passthrough mode, see  
the UPIO_SPI register. An address byte identifies each  
register. Table 4 shows the complete register address  
map for this family of DAS. Figures 16, 17, and 18 provide  
timing diagrams for read and write commands.  
Operational Amplifiers (Op Amps)  
The MAX1358 includes one uncommitted op amp; the  
MAX1359 includes two op amps; and the MAX1360  
includes three op amps. These op amps feature rail-to-rail  
outputs, near rail-to-rail inputs, and have an 80kHz (1nF  
load) input bandwidth. The DACA_OP (DACB_OP) regis-  
ter controls the power state of the op amps. When pow-  
ered down, the outputs of the op amps are high  
impedance.  
Single-Pole/Double-Throw (SPDT) Switches  
The MAX1358/MAX1359/MAX1360 provide two uncom-  
mitted SPDT switches. Each switch has a typical on-resis-  
tance of 35. Control the switches through the SW_CTRL  
register, the PWM output, and/or a UPIO port configured  
to control the switches (UPIO1–UPIO4_CTRL register).  
Pulse-Width Modulator (PWM)  
A single 8-bit PWM is available for various system tasks  
such as LCD bias control, sensor bias voltage trim,  
buzzer drive, and duty-cycled sleep-mode power-con-  
trol schemes. PWM input clock sources include the  
4.9512MHz FLL output, the 32kHz clock, and frequen-  
34 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Register Definitions  
Table 4. Register Address Map  
REGISTER  
NAME  
CTL  
(R/W)  
ADR<5:0>  
(ADDRESS)  
D<39:0>, D<23:0>, D<15:0> OR D<7:0>  
(DATA)  
START  
ADCE STRT  
RATE<2:0>  
BIP  
POL CONT ADCREF GAIN<1:0>  
MODE<2:0>  
MUXN<3:0>  
ADC<15:0>  
OFFSET<23:0>  
GAIN<23:0>  
ADC  
1
R/W  
0
0
0
0
0
X
X
X
MUX  
DATA  
OFFSET CAL  
GAIN CAL  
RESERVED  
1
1
1
1
1
R/W  
R
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
S
X
X
X
X
MUXP<3:0>  
Reserved. Do not use.  
DAE/  
OP3E OP2E  
DBE/  
OP1E  
X
X
X
X
DACA<9:8>  
DACB<9:8>  
DACA_OP  
DACB_OP  
1
1
R/W  
R/W  
0
0
0
0
1
1
1
1
0
1
X
X
DACA<7:0>  
DAE/ DBE/  
OP1E  
X
X
OP3E OP2E  
REFV<1:0>  
DACB<7:0>  
REF_SDC  
AL_DAY  
1
1
1
1
R/W  
R/W  
R/W  
R/W  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
X
X
X
X
AOFF AON SDCE  
ASEC<19:4>  
TSEL<2:0>  
ASEC<3:0>  
X
X
X
X
RESERVED  
CLK_CTRL  
Reserved. Do not use.  
AWE  
ADE  
X
RWE RTCE  
IO32E CK32E  
SEC<31:0>  
SUB<7:0>  
SWAH  
OSCE  
CLKE  
FLLE HFCE  
INTP WDE  
CKSEL<2:0>  
RTC  
1
1
1
R/W  
R/W  
R/W  
0
0
0
1
1
1
1
1
1
0
0
1
0
1
0
X
X
X
PWME  
FSEL<2:0>  
SWAL SWBH SWBL  
PWM_CTRL  
PWM_THTP  
SPD1 SPD2  
X
X
X
X
X
X
PWMTH<7:0>  
PWMTP<7:0>  
WATCHDOG  
NORM_MD  
SLEEP  
1
1
1
1
1
1
1
1
1
1
1
1
W
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
W
W
SLEEP_CFG  
UPIO4_CTRL  
UPIO3_CTRL  
UPIO2_CTRL  
UPIO1_CTRL  
UPIO_SPI  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
SLP SOSCE SCK32E SPWME SHDN  
X
X
X
X
X
X
X
X
X
X
UP4MD<3:0>  
UP3MD<3:0>  
PUP4  
PUP3  
PUP2  
PUP1  
X
SV4  
SV3  
SV2  
SV1  
X
ALH4 LL4  
ALH3 LL3  
ALH2 LL2  
ALH1 LL1  
X
X
X
X
UP2MD<3:0>  
UP1MD<3:0>  
UP4S UP3S UP2S UP1S  
X
X
X
X
X
SW_CTRL  
SWA  
IMUX<1:0>  
TGAIN<7:0>  
SWB SPDT1<1:0>  
SPDT2<1:0>  
TEMP_CTRL  
TEMP_CAL  
IVAL<1:0>  
X
X
TOFFS<5:0>  
MLDVD MLCPD MADO MSDC MCRDY MADD MALD  
MUPR<4:1> MUPF<4:1>  
Reserved. Do not use.  
IMSK  
1
R/W  
1
1
0
1
1
X
RESERVED  
PS_VMONS  
RESERVED  
1
1
1
R/W  
R/W  
R/W  
1
1
1
1
1
1
1
1
1
0
0
1
0
1
0
X
X
X
LDOE  
CPE LSDE CPDE HYSE  
RSTE  
X
X
X
Reserved. Do not use.  
LDVD LCPD ADOU SDC CRDY  
UPR<4:1>  
ADD  
ALD  
STATUS  
1
R
1
1
1
1
1
X
UPF<4:1>  
X = Don’t care.  
______________________________________________________________________________________ 35  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Register Bit Descriptions  
ADC Register (Power-On State: 0000 0000 0000 00XX)  
MSB  
LSB  
ADCE  
STRT  
BIP  
POL  
CONT  
ADCREF  
GAIN<1:0>  
RATE<2:0>  
MODE<2:0>  
X
X
The ADC register configures the ADC and starts  
a conversion.  
CONT: Continuous conversion bit. CONT = 1 enables  
continuous conversions following completion of the first  
conversion or calibration(s) initiated by the STRT or S  
bit. Set CONT = 0 while asserting the STRT bit, or prior  
to asserting the S bit to perform a single conversion or to  
prevent conversions following a calibration. Set CONT =  
0 to abort continuous conversions already in progress.  
When the ADC is stopped in this way, the last complete  
conversion result remains in the DATA register and the  
internal ADC state information is lost. Asserting the  
CONT bit does not restart the ADC, but results in contin-  
uous conversions once the ADC is restarted with the  
STRT or S bit.  
ADCE: ADC power-enable bit. ADCE = 1 powers up  
the ADC, and ADCE = 0 powers down the ADC.  
STRT: ADC start bit. STRT = 1 resets the registers  
inside the ADC filter and initiates a conversion or cali-  
bration. The conversion begins immediately after the  
16th ADC control bit is clocked by the rising edge of  
SCLK. The initial conversion requires four conversion  
cycles for valid output data. If CONT = 0 when STRT is  
asserted, the ADC stops after a single conversion and  
holds the result in the DATA register. If CONT = 1 when  
STRT is asserted, the ADC performs continuous conver-  
sions at the rate specified by the RATE<2:0> bits until  
CONT is deasserted or ADCE is deasserted, powering  
down the ADC. The STRT bit is automatically deasserted  
after the initial conversion is complete (four conversion  
cycles, the ADC status bit ADD in the STATUS register  
asserts.) The current ADC configurations are not affect-  
ed if the ADC register is written with STRT = 0. This  
allows the ADC and mux configurations to be updated  
simultaneously with the S bit in the MUX register.  
ADCREF: ADC reference source bit. Set ADCREF = 0  
to select REF as the ADC reference. Set ADCREF = 1  
to select AV  
as the ADC reference. To measure the  
DD  
AV  
voltage without having to attenuate the supply  
DD  
voltage, select REF and AGND as the differential inputs  
to the ADC, with POL = 0 and while ADCREF = 1.  
GAIN<1:0>: ADC gain-setting bits. These two bits  
select the gain of the ADC as shown in Table 5.  
BIP: Unipolar/bipolar bit. Set BIP = 0 for unipolar mode  
and BIP = 1 for bipolar mode. Unipolar-mode data is  
unsigned binary format and bipolar is two’s complement.  
See the ADC Transfer Functions section for more details.  
Table 5. Setting the Gain of the ADC  
GAIN SETTING (V/V)  
GAIN1  
GAIN0  
POL: Polarity flipper bit. POL = 1 flips the polarity of the  
differential signal to the ADC and the input to the signal-  
detect comparator (SDC). POL = 0 sets the positive mux  
output to the positive ADC and SDC inputs, and the neg-  
ative mux output to the negative ADC and SDC inputs.  
POL = 1 sets the positive mux output to the negative  
ADC and SDC inputs, and the negative mux output to  
the positive ADC and SDC inputs.  
1
2
4
8
0
0
1
1
0
1
0
1
36 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
RATE<2:0>: ADC conversion-rate-setting bits. These  
Table 6. Setting the ADC Conversion Rate*  
three bits set the conversion rate of the ADC as shown  
CONTINUOUS  
SINGLE  
in Table 6. The initial conversion requires four conver-  
sion cycles for valid data and subsequent conversions  
require only one cycle (if CONT = 1). A full-scale input  
change can require up to five cycles for valid data if  
the digital filter is not reset with the STRT or S bit.  
CONVERSION CONVERSION  
RATE2 RATE1 RATE0  
RATE (sps)  
RATE (sps)  
10  
40  
2.5  
10  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
MODE<2:0>: Conversion-mode bits. These three bits  
determine the type of conversion for the ADC as shown  
in Table 7. When the ADC finishes an offset calibration  
and/or gain calibration, the MODE<2:0> bits clear to 0  
hex, the ADD bit in the STATUS register asserts, and  
an interrupt asserts on INT (or UPIO_ if programmed as  
DRDY) if MADD is unmasked. Perform a gain calibra-  
tion after achieving the desired offset (calibrated or  
not). If an offset and gain calibration are performed  
together (MODE<2:0> = 7 hex), the offset calibration is  
performed first followed by the gain calibration, and the  
µC is interrupted by INT (or UPIO_ if programmed as  
DRDY) if MADD is unmasked only upon completion of  
both offset and gain calibration. After power-on or cali-  
bration, the ADC does not begin conversions until initi-  
ated by the user (see the ADCE and STRT bit  
descriptions in this section and see the S bit descrip-  
tions in the MUX Register section). See the GAIN CAL  
Register and OFFSET CAL Register sections for details  
on system calibration.  
50  
12.5  
15  
60  
200  
240  
400  
512  
50  
60  
100  
128  
The actual rates are:  
NOMINAL  
CONTINUOUS  
CONVERSION  
RATE (sps)  
ACTUAL  
DECIMATION  
CONTINUOUS  
CONVERSION  
RATE (sps)  
RATIO  
10  
40  
1096  
274  
220  
183  
55  
10.01042142  
40.04168568  
49.87009943  
59.953125  
50  
60  
200  
240  
400  
512  
199.4803977  
238.5091712  
406.3489583  
477.0183424  
46  
27  
Table 7. Setting the ADC Conversion Mode  
23  
CONVERSION MODE  
Normal  
MODE2 MODE1 MODE0  
*Calculate the ADC sampling rate using the following  
equation:  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
System Offset Calibration  
System Gain Calibration  
Normal  
f
HFCLK  
f =  
S
448×decimation ratio  
= 4.9152MHz nominally.  
Normal  
where f  
HFCLK  
Self Offset Calibration  
Self Gain Calibration  
Self Offset and Gain  
Calibration  
1
1
1
______________________________________________________________________________________ 37  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MUX Register (Power-On State: 0000 0000)  
MSB  
LSB  
S (ADR0)  
MUXP3  
MUXP2  
MUXP1  
MUXP0  
MUXN3  
MUXN2  
MUXN1  
MUXN0  
The MUX register configures the positive and negative  
mux inputs and can start an ADC conversion.  
ified by the RATE<2:0> bits until CONT deasserts or  
ADCE deasserts, powering down the ADC. When a  
conversion initiates using the S bit, the STRT bit asserts  
and deasserts automatically after the initial conversion  
completes. Writing to the MUX register with S = 0 caus-  
es the MUX settings to change immediately and the  
ADC continues in its prior state with its settings unaf-  
fected. When the ADC is powered down, MUX inputs  
are open.  
S (ADR0): Conversion start bit. The S bit is the LSB of  
the MUX register address byte. S = 1 resets the regis-  
ters inside the ADC filter and initiates a conversion or  
calibration. The conversion begins immediately after  
the eighth MUX register data bit, when S = 1 and when  
writing to the MUX register. This allows the new MUX  
and ADC register settings to take effect simultaneously  
for a new conversion, if STRT = 0 during the last write  
to the ADC register. If the S bit is asserted and the  
command is a read from the MUX register, the conver-  
sion starts immediately after the S bit (ADR0) is clocked  
in by the rising edge of SCLK.  
MUXP<3:0>: MUX positive input bits. These four bits  
select one of ten inputs from the positive MUX to go to the  
positive output of the MUX as shown in Table 8. Any  
writes to the MUX register take effect immediately once  
the LSB (MUXN0) is clocked by the rising edge of SCLK.  
Read the MUX register with S = 1 for the fastest method  
of initiating a conversion because only 8 bits are  
required. The subsequent MUX register read is valid,  
but can be aborted by raising CS with no harmful side  
effects. The initial conversion requires four conversion  
cycles for valid output data. If CONT = 0 and S = 1, the  
ADC stops after a single conversion and holds the  
result in the DATA register. If CONT = 1 and S = 1, the  
ADC performs continuous conversions at the rate spec-  
MUXN<3:0> MUX negative input bits. These four bits  
select one of ten inputs from the negative MUX to go to  
the negative output of the MUX as shown in Table 9. Any  
writes to the MUX register take effect immediately once  
the LSB (MUXN0) is clocked by the rising edge of SCLK.  
The DATA register contains the data from the most  
recently completed conversion.  
Table 8. Selecting the Positive MUX Inputs  
POSITIVE MUX INPUT  
MUXP3  
MUXP2  
MUXP1  
MUXP0  
MAX1358  
AIN1  
MAX1359  
AIN1  
MAX1360  
AIN1  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
X
0
1
0
1
0
1
0
1
0
1
X
X
SNO1  
FBA  
SNO1  
FBA  
SNO1  
IN3-  
SCM1  
FBB  
SCM1  
IN2-  
SCM1  
IN2-  
SNC1  
IN1-  
SNC1  
IN1-  
SNC1  
IN1-  
TEMP+  
REF  
TEMP+  
REF  
TEMP+  
REF  
AGND  
AGND  
AGND  
Open  
Open  
Open  
X = Don’t care.  
38 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Table 9. Selecting the Negative MUX Inputs  
NEGATIVE MUX INPUT  
MUXN3  
MUXN2  
MUXN1  
MUXN0  
MAX1358  
TEMP-  
SNO2  
OUTA  
SCM2  
OUTB  
SNC2  
OUT1  
AIN2  
MAX1359  
TEMP-  
SNO2  
OUTA  
SCM2  
OUT2  
SNC2  
OUT1  
AIN2  
MAX1360  
TEMP-  
SNO2  
OUT3  
SCM2  
OUT2  
SNC2  
OUT1  
AIN2  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
X
0
1
0
1
0
1
0
1
0
1
X
X
REF  
REF  
REF  
AGND  
AGND  
AGND  
Open  
Open  
Open  
X = Don’t care.  
DATA Register (Power-On State: 0000 0000 0000 0000)  
MSB  
ADC15  
ADC14  
ADC13  
ADC12  
ADC11  
ADC10  
ADC9  
LSB  
ADC8  
ADC0  
ADC7  
ADC6  
ADC5  
ADC4  
ADC3  
ADC2  
ADC1  
ADC<15:0> Analog-to-digital conversion data bits.  
These 16 bits are the results from the most recently  
completed conversion. The data format is unsigned,  
binary for unipolar mode, and two’s complement for  
bipolar mode.  
______________________________________________________________________________________ 39  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
OFFSET CAL Register (Power-On State: 0000 0000 0000 0000 0000 0000)  
MSB  
OFFSET23  
OFFSET15  
OFFSET7  
OFFSET22  
OFFSET14  
OFFSET6  
OFFSET21  
OFFSET13  
OFFSET5  
OFFSET20  
OFFSET12  
OFFSET4  
OFFSET19  
OFFSET11  
OFFSET3  
OFFSET18  
OFFSET10  
OFFSET2  
OFFSET17  
OFFSET9  
OFFSET1  
OFFSET16  
OFFSET8  
LSB  
OFFSET0  
The OFFSET CAL register contains the 24-bit data of  
the most recently completed offset calibration.  
offset calibration or self offset calibration. Self-calibra-  
tion performs a calibration for the entire signal path.  
See the ADC Calibration section for more details.  
OFFSET<23:0>: Offset-calibration bits. The data format  
is two’s complement and is subtracted from the ADC  
output before being written to the DATA register. The  
offset calibration allows input offset errors between  
The ADC input voltage range specifications must  
always be obeyed and the OFFSET CAL register effec-  
tively offsets the ADC digital scale to a “zero” value  
determined by the calibration.  
V
50% to be corrected in unipolar or bipolar mode.  
REF  
The MAX1358/MAX1359/MAX1360 can perform system  
GAIN CAL Register (Power-On State: 1000 0000 0000 0000 0000 0000)  
MSB  
GAIN23  
GAIN15  
GAIN7  
GAIN22  
GAIN14  
GAIN6  
GAIN21  
GAIN13  
GAIN5  
GAIN20  
GAIN12  
GAIN4  
GAIN19  
GAIN11  
GAIN3  
GAIN18  
GAIN10  
GAIN2  
GAIN17  
GAIN9  
GAIN1  
GAIN16  
GAIN8  
LSB  
GAIN0  
GAIN<23:0>: Gain-calibration bits. The data format is  
unsigned binary with 23 bits to the right of the decimal  
point and scales the ADC output before being written to  
the DATA register. The gain calibration allows full-scale  
system calibration performs a calibration for the entire  
signal path. See the ADC Calibration section for more  
details.  
The ADC input voltage range specifications must always  
be obeyed and the GAIN CAL register effectively scales  
the ADC digital output to a full-scale value determined  
by the calibration. The usable gain-calibration range is  
limited to less than the full GAIN CAL register digital-  
scaling range by the internal noise of the ADC.  
errors between -V  
/ 2 and +V  
/ 2 to be corrected  
REF  
REF  
in unipolar mode, and full-scale errors between (+50%  
x V ) and (+200% x V ) in unipolar or bipolar  
REF  
REF  
mode. The MAX1358/MAX1359/MAX1360 can perform  
system gain calibration or self gain calibration. Self-cali-  
bration performs a calibration for offsets in the ADC and  
40 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
DACA_OP Registers  
where  
is the reference voltage for the DAC.  
Writing to the DACA_OP output register updates DACA  
on the rising SCLK edge of the LSB data bit. The output  
voltage can be calculated as follows:  
V
REF  
N is the integer value of DACA<9:0> output register.  
The output buffer is in unity gain.  
V
OUTA  
= V  
x N / 210  
REF  
The DACA data is 10 bits long and right justified.  
MAX1358 (Power-On State: 000X XX00 0000 0000)  
MSB  
DAE  
DBE  
OP1E  
X
X
X
DACA9  
DACA1  
DACA8  
LSB  
DACA7  
DACA6  
DACA5  
DACA4  
DACA3  
DACA2  
DACA0  
MAX1359 (Power-On State: 000X XX00 0000 0000)  
MSB  
DAE  
OP2E  
OP1E  
X
X
X
DACA9  
DACA1  
DACA8  
LSB  
DACA7  
DACA6  
DACA5  
DACA4  
DACA3  
DACA2  
DACA0  
MAX1360 (Power-On State: 000X XXXX XXXX XXXX)  
MSB  
OP3E  
X
OP2E  
X
OP1E  
X
X
X
X
X
X
X
X
X
X
LSB  
X
DAE: DACA enable bit. Set DAE = 1 to power up the  
DACA and the DACA output buffer in the MAX1358/  
MAX1359. This bit is mirrored in the DACB_OP register.  
OP2E: OP2 power-enable bit. Set OP2E = 1 to power  
up OP2 in the MAX1359/MAX1360. This bit is mirrored  
in the DACB_OP register.  
DBE: DACB enable bit. Set DBE = 1 to power up  
DACB and the DACB output buffer in the MAX1358.  
This bit is mirrored in the DACB_OP register.  
OP3E: OP3 power-enable bit. Set OP3E = 1 to power  
up OP3 in the MAX1360. This bit is mirrored in the  
DACB_OP register.  
OP1E: OP1 power-enable bit. Set OP1E = 1 to power  
up OP1 in the MAX1358/MAX1359/MAX1360. This bit is  
mirrored in the DACB_OP register.  
DACA<9:0>: DACA data bits.  
______________________________________________________________________________________ 41  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
DACB_OP Registers  
where  
V is the reference voltage for the DAC.  
REF  
Writing to the DACB_OP output register updates DACB  
on the rising SCLK edge of the LSB. The output voltage  
can be calculated as follows:  
N is the integer value of DACB<9:0> output register.  
The output buffer is in unity gain.  
V
OUTB  
= V  
x N / 210  
REF  
The DACB data is 10 bits long and right justified.  
MAX1358 (Power-On State: 000X XX00 0000 0000)  
MSB  
DAE  
DBE  
OP1E  
X
X
X
DACB9  
DACB1  
DACB8  
LSB  
DACB7  
DACB6  
DACB5  
DACB4  
DACB3  
DACB2  
DACBD  
MAX1359 (Power-On State: 000X XXXX XXXX XXXX)  
MSB  
DAE  
X
OP2E  
X
OP1E  
X
X
X
X
X
X
X
X
X
X
LSB  
X
MAX1360 (Power-On State: 000X XXXX XXXX XXXX)  
MSB  
OP3E  
X
OP2E  
X
OP1E  
X
X
X
X
X
X
X
X
X
X
LSB  
X
DAE: DACA enable bit. Set DAE = 1 to power up  
DACA and the DACA output buffer in the  
MAX1358/MAX1359. This bit is mirrored in the  
DACA_OP register.  
OP3E: OP3 power-enable bit. Set OP3E = 1 to power  
up OP3 in the MAX1360. This bit is mirrored in the  
DACA_OP register.  
DACB<9:0>: DACB data bits.  
DBE: DACB enable bit. Set DBE = 1 to power up  
DACB and the DACB output buffer in the MAX1358.  
This bit is mirrored in the DACA_OP register.  
OP1E: OP1 power-enable bit. Set OP1E = 1 to power  
up OP1 in the MAX1358/MAX1359/MAX1360. This bit is  
mirrored in the DACA_OP register.  
OP2E: OP2 power-enable bit. Set OP2E = 1 to power  
up OP2 in the MAX1359/MAX1360. This bit is mirrored  
in the DACA_OP register.  
42 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
REF_SDC Register (Power-On State: 0000 0000)  
MSB  
LSB  
REFV1  
REFV0  
AOFF  
AON  
SDCE  
TSEL2  
TSEL1  
TSEL0  
The REF_SDC register contains bits to control the refer-  
ence voltage and signal-detect comparator.  
AON: ADC and DAC/op-amp power-on bit. This bit  
provides a method of turning on several analog func-  
tions with a single write. Setting AON = 1 asserts the  
ADCE bit in the ADC register and DAE/OP3E,  
DBE/OP2E, and OP1E bits in the DACA_OP and  
DACB_OP registers, powering up these blocks. Setting  
AON = 0 has no effect. The AON bit has priority when  
both AON and AOFF bits are asserted.  
REFV<1:0>: Reference buffer voltage gain and enable  
bits. Enables the output buffer, sets the gain and the  
voltage at the REF pin as shown in Table 10. Power-on  
state is off to enable an external reference to drive the  
REF pin without contention.  
AOFF: ADC and DAC/op-amp power-off bit. This bit pro-  
vides a method for turning off several analog functions  
with a single write. Setting AOFF = 1 deasserts the  
ADCE in the ADC register and DAE/OP3E, DBE/OP2E,  
and OP1E bits in the DACA_OP and DACB_OP regis-  
ters, powering down these analog blocks. Setting AOFF  
= 0 has no effect. The AON bit has priority when both  
AON and AOFF bits are asserted.  
Most of the analog functions can be enabled with a sin-  
gle write to the REF_SDC register using AON,  
REFV<1:0>, and SDCE.  
SDCE: Signal-detect comparator power-enable bit. Set  
SDCE = 1 to power up the signal-detect comparator  
and set SDCE = 0 to power down the signal-detect  
comparator. The ADCE bit in the ADC register must be  
set to 1 to use the signal-detect comparator.  
Most of the analog functions can be disabled with a  
single write to the REF_SDC register by using AOFF,  
REFV<1:0>, and SDCE.  
TSEL<2:0>: Threshold-select bits. These bits select the  
threshold for the signal-detect comparator as shown in  
Table 11.  
Table 10. Setting the Reference Output  
Voltage  
Table 11. Setting the Signal-Detect  
Comparator Threshold  
NOMINAL  
REFERENCE  
REF OUTPUT  
VOLTAGE (V)  
REFV1 REFV0  
TSEL2  
TSEL1  
TSEL0  
BUFFER GAIN (V/V)  
THRESHOLD (mV)  
0
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Off (High  
Impedance at REF)  
Disabled  
0
0
50  
1.0  
1.638  
2.0  
1.25  
2.048  
2.5  
0
1
1
1
0
1
100  
150  
200  
X = Don’t care.  
______________________________________________________________________________________ 43  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
AL_DAY Register (Power-On State: 0000 0000 0000 0000 0000 XXXX)  
MSB  
ASEC19  
ASEC11  
ASEC3  
ASEC18  
ASEC10  
ASEC2  
ASEC17  
ASEC9  
ASEC1  
ASEC16  
ASEC8  
ASEC0  
ASEC15  
ASEC7  
X
ASEC14  
ASEC6  
X
ASEC13  
ASEC5  
X
ASEC12  
ASEC4  
LSB  
X
The AL_DAY register stores the second information of  
the time-of-day alarm.  
second counter match the contents of this register, the  
alarm triggers and asserts ALD in the STATUS register. It  
also asserts an interrupt on the INT pin unless masked by  
the MALD bit in the IMSK register. The part enters normal  
mode if an alarm triggers while in sleep mode. The time-  
of-day alarm is intended to trigger single events.  
Therefore, once it triggers, in the CLK_CTRL register, the  
ADE bit is automatically cleared, disabling the time-of-  
day alarm. Implement a recurring alarm with repeated  
software writes over the serial interface each time the  
time-of-day alarm triggers. The time-of-day alarm can  
also be programmed to output at the UPIO pins.  
ASEC<19:0>: Alarm-second bits. These 20 bits store  
the time-of-day alarm, which corresponds to the lower  
20 bits of the RTC second counter or SEC<19:0>.  
Program the time-of-day alarm trigger between 1s to  
just over 12 days beyond the current RTC second  
counter value in increments of 1s.  
Assert the AWE bit in the CLK_CTRL register (see the  
CLK_CTRL Register section) to enable writing to the  
AL_DAY register. Enabling the time-of-day alarm requires  
two writes to the CLK_CTRL register. Write the 20 alarm-  
second bits in 3 bytes, MSB first. If CS is raised before  
the LSB is written, the alarm write is aborted, and the  
existing value remains. When the lower 20 bits in the RTC  
When configured this way the MALD bit does not mask  
the UPIO alarm output.  
44 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
CLK_CTRL Register (Power-On State: 00X0 1111 0010 1110)  
MSB  
AWE  
ADE  
X
RWE  
RTCE  
OSCE  
CLKE  
FLLE  
INTP  
HFCE  
LSB  
CKSEL2  
CKSEL1  
CKSEL0  
IO32E  
CK32E  
WDE  
The CLK_CTR register contains the control bits for the  
RTC alarms and clocks.  
therefore, a second write to this register is required to  
change the value of the RTCE bit. The power-on default  
state is 0.  
AWE: Alarm write-enable bit. Set AWE = 1 to write data  
to the AL_DAY register as well as the ADE bit in this  
register. When AWE = 0, all writes are prevented to the  
AL_DAY register and the ADE bit in this register. A sec-  
ond write to this register is required to change the value  
of the ADE bit. The power-on default state is 0.  
RTCE: Real-time-clock enable bit. Set RTCE = 1 to  
enable the RTC, and set RTCE = 0 to disable the RTC.  
The RTC has a 32-bit second and an 8-bit subsecond  
counter. The power-on default state is 1.  
OSCE: 32kHz crystal-oscillator enable bit. Set OSCE =  
1 to power up the 32kHz oscillator and set OSCE = 0 to  
power down the oscillator. The power-on default state  
is 1.  
ADE: Alarm (time-of-day) enable bit. Set ADE = 1 to  
enable the time-of-day alarm and set ADE = 0 to dis-  
able the time-of-day alarm. When enabled, the ALD bit  
in the STATUS register asserts when the RTC second  
counter time matches AL_DAY register. The device  
wakes up from sleep to normal mode if not already  
awake. The ADE bit can only be written if the AWE = 1  
from a previous write. The power-on default state is 0.  
FLLE: Frequency-locked-loop enable bit. Set FLLE = 1  
to enable the FLL, and set FLLE = 0 to disable the FLL.  
If HFCE = 1 and FLLE = 0, the internal high-frequency  
oscillator is enabled but it is not frequency-locked to  
the 32kHz clock. When FLLE is asserted, it typically  
takes 3.5ms for the high-frequency clock to settle to  
within 1% of the 32kHz reference clock frequency.  
Switching the FLL on or off with this bit does not cause  
high-frequency clock glitching. The power-on default  
state is 1.  
RWE: RTC write-enable bit. Set RWE = 1 prior to writing  
to the RTC register and the RTCE bit in this register. If  
RWE = 0, all writes are prevented to the RTC register  
as well as the RTCE bit in this register. The RWE signal  
takes effect after the rising edge of the 16th clock;  
______________________________________________________________________________________ 45  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
HFCE: High-frequency-clock enable bit. Set HFCE = 1  
Table 12. Setting the CLK Frequency  
to enable the internal high-frequency clock source, and  
CLOCK FREQUENCY  
(kHz)  
set HFCE = 0 to disable the high-frequency clock  
source.  
CKSEL2  
CKSEL1  
CKSEL0  
4915.2  
2457.6  
1228.8  
614.4  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
If HFCE = 1 and CLKE = 1, the internal high-frequency  
oscillator is enabled and is present at CLK. The power-  
on default state is 1.  
CKSEL<2:0>: Clock selection bits. These bits select  
the FLL-based output clock frequency at the high-fre-  
quency CLK pin as shown in Table 12. The power-on  
default state is 001.  
32.768  
16.384  
8.192  
IO32E: Input/output 32kHz clock select bit. Set IO32E  
= 0 to configure the CLK32K pin as an output and set  
IO32E = 1 to configure the CLK32K pin as an input,  
regardless of the signal on the 32KIN pin as shown in  
Table 13.  
4.096  
internally but is not needed externally. If HFCE = 0, or if  
CLKE = 0, CLK remains low. The power-on default  
state is 1.  
External clock frequencies applied to CLK32K are  
clock sources to the FLL, charge pump, and the signal-  
detect comparator. The default power-on state is 0.  
INTP: Interrupt pin polarity bit. Set INTP = 1 to make  
INT an active-high output when asserted and set INTP  
= 0 to make INT an active-low output when asserted.  
The power-on default state is 1.  
CK32E: CLK32K output-buffer enable bit. Set CK32E =  
1 to enable the CLK32K output buffer as long as OSCE  
= 1 and IO32E = 0, otherwise the CK32E bit will not be  
asserted. Set CK32E = 0 to disable the CLK32K output  
buffer. The power-on default state is 1.  
WDE: Watchdog-enable bit. Set WDE = 1 to enable the  
watchdog timer, which asserts RESET low within 500ms  
if the WATCHDOG register is not written. Set WDE = 0  
to disable the watchdog timer. The power-on default  
state is 0.  
CLKE: CLK output-buffer enable bit. Set CLKE = 1 to  
enable the CLK output buffer. Set CLKE = 0 to disable  
the buffer. Disabling the buffer is useful for saving  
power in cases where the high-frequency clock is used  
Table 13. Configuring the CLK32K as an Input or Output  
RTC, PWM, WDT  
CLOCK SOURCE  
FLL, C/P, SDC INPUT  
CLK32K CLK32K  
IO32E  
32KIN, 32KOUT  
ADC CLOCK SOURCE  
SOURCE  
Output  
Input  
1
0
0
1
XTAL attached  
XTAL attached  
XTAL  
XTAL  
XTAL  
FLL/HFCLK  
FLL/HFCLK  
CLK32K  
46 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
RTC Register (Power-On State: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000)  
MSB  
SEC31  
SEC23  
SEC15  
SEC7  
SEC30  
SEC22  
SEC14  
SEC6  
SEC29  
SEC21  
SEC13  
SEC5  
SEC28  
SEC20  
SEC12  
SEC4  
SEC27  
SEC19  
SEC11  
SEC3  
SEC26  
SEC18  
SEC10  
SEC2  
SEC25  
SEC17  
SEC9  
SEC1  
SUB1  
SEC24  
SEC16  
SEC8  
SEC0  
LSB  
SUB7  
SUB6  
SUB5  
SUB4  
SUB3  
SUB2  
SUB0  
The RTC register stores the 40-bit second and subsec-  
ond count of the respective time-of-day and system  
clocks.  
of the RTC register in less than 1ms. The power-on  
default state is 0000 0000 hex.  
SUB<7:0>: The subsecond bits store the system clock.  
This 8-bit binary counter has 3.9ms resolution (1/256Hz)  
and a span of 1s. The subsecond counter increments in  
single counts from 00 hex to FF hex before rolling over  
again to 00 hex, at which time, the RTC second counter  
(SEC<31:0>) increments. The RTC runs continuously  
(as long as RTCE = 1) and does not stop for reads or  
writes. A 256Hz clock, derived from the 32kHz crystal,  
increments this counter. Set the RWE = 1 bit to enable  
writing to the RTC register. After writing to RWE, perform  
another write, setting RTCE = 1, to enable the RTC. A  
40-bit burst write operation, starting with SEC31 and fin-  
ishing with SUB0, is required to set the RTC second and  
subsecond bits. If CS is brought high before the 40th  
rising SCLK edge, the write is aborted and the RTC con-  
tents are unchanged. The RTC register is loaded on the  
rising SCLK edge of the 40th bit (SUB0). A 40-bit burst  
read operation, starting with SEC31 and finishing with  
SUB0, is required to retrieve the current RTC second  
and subsecond counts. The read command can be  
aborted prior to receiving the 40th bit (SUB0) by raising  
CS and any RTC data read to that point is valid. When  
the read command is received, a snapshot of a valid  
RTC second count is latched to avoid reading an erro-  
neous, transitioning RTC value. Due to the asynchro-  
nous nature of RTC reads, it is possible to have a  
maximum 1s error between the actual and reported  
times from the time-of-day clock. To prevent the data  
from changing during a read operation, complete reads  
of the RTC registers occur in less than 1ms. The power-  
on default state is 00 hex.  
SEC<31:0>: The second bits store the time-of-day  
clock settings. It is a 32-bit binary counter with 1s reso-  
lution that can keep time for a span of over 136 years.  
Firmware in the µC can translate this time count to units  
that are meaningful to the system (i.e., translate to cal-  
endar time or as an elapsed time from some predefined  
time = 0, such as January 1, 2000). The RTC runs con-  
tinuously as long as RTCE = 1 (see the CLK_CNTL  
Register section) and does not stop for reads or writes.  
The counter increments when the subsecond counter  
overflows. Set RWE = 1 to enable writing to the RTC  
register. After writing to RWE, perform another write  
and set RTCE = 1 to enable the RTC. A 40-bit burst  
write operation, starting with SEC31 and finishing with  
SUB0 is required to set the RTC second and subsec-  
ond bits. If CS is brought high before the 40th rising  
SCLK edge, the write is aborted and the RTC contents  
are unchanged. The RTC register is loaded on the ris-  
ing SCLK edge of the 40th bit (SUB0). A 40-bit burst  
read operation, starting with SEC31 and finishing with  
SUB0, is required to retrieve the current RTC second  
and subsecond counts. The read command can be  
aborted prior to receiving the 40th bit (SUB0) by raising  
CS and any RTC data read to that point is valid. When  
the read command is received, a snapshot of a valid  
RTC second count is latched to avoid reading an erro-  
neous, transitioning RTC value. Due to the asynchro-  
nous nature of RTC reads, it is possible to have a  
maximum 1s error between the actual and reported  
times from the time-of-day clock. To prevent the data  
from changing during a read operation, complete reads  
______________________________________________________________________________________ 47  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
PWM_CTRL Register (Power-On State: 0000 0000 00XX XXXX)  
MSB  
PWME  
FSEL2  
FSEL1  
FSEL0  
SWAH  
SWAL  
X
SWBH  
X
SWBL  
LSB  
X
SPD1  
SPD2  
X
X
X
The PWM_CTRL register contains control bits for the 8-  
bit PWM.  
PWM low output refers to the end of the period when  
the output is logic-low. See Table 17 for more details.  
The power-on default is 0.  
PWME: PWM-enable bit. Set PWME = 1 to enable the  
internal PWM and set PWME = 0 to disable the internal  
PWM. Enable the high frequency clock before enabling  
the PWM when using input clock frequencies above  
32.768kHz. The power-on default state is 0.  
SWBH: SWB-switch PWM-high control bit. Set SWBH =  
1 to enable the PWM output to directly control the SWB  
switch. When SWBH = SWBL, the PWM output is dis-  
abled from controlling the SWB switch. When SWBH =  
1, a PWM high output closes the SWB switch and a  
PWM low output opens the SWB switch. The PWM high  
output refers to the beginning of the period when the  
output is logic-high. See Table 18 for more details. The  
power-on default is 0.  
FSEL<2:0>: Frequency selection bits. Selects the PWM  
input clock frequency as shown in Table 14. The  
power-on default is 000.  
SWAH: SWA-switch PWM-high control bit. Set SWAH =  
1 to enable the PWM output to directly control the SWA  
switch. When SWAH = SWAL, the PWM output is dis-  
abled from controlling the SWA switch. When SWAH =  
1, a PWM high output closes the SWA switch and a  
PWM low output opens the SWA switch. The PWM high  
output refers to the beginning of the period when the  
output is logic-high. See Table 17 for more details. The  
power-on default is 0.  
SWBL: SWB-switch PWM-low control bit. Set SWBL = 1  
to enable the inverted PWM output to directly control  
the SWB switch. When SWBH = SWBL the PWM output  
is disabled from controlling the SWB switch. When  
SWBL = 1, a PWM low output closes the SWB switch  
and a PWM high output opens the SWB switch. The  
PWM low output refers to the end of the period when  
the output is logic-low. See Table 18 for more details.  
The power-on default is 0.  
SWAL: SWA-switch PWM-low control bit. Set SWAL = 1  
to enable the inverted PWM output to directly control  
the SWA switch. When SWAH = SWAL, the PWM output  
is disabled from controlling the SWA switch. When  
SWAL = 1, a PWM low output closes the SWA switch  
and a PWM high output opens the SWA switch. The  
SPD1: SPDT1-switch PWM drive control bit. Set SPD1  
= 1 to enable the PWM output to directly control the  
SPDT1 switch and set SPD1 = 0 to disable the PWM  
output controlling the SPDT1 switch. The SPDT1<1:0>  
bits, the UPIO pins (if programmed), and the PWM out-  
put (if enabled), determine the SPDT1-switch state. See  
Table 19 for more details. The power-on default is 0.  
Table 14. Setting the PWM Frequency  
PWM INPUT FREQUENCY*  
SPD2: SPDT2-switch PWM drive control bit. Set SPD2  
= 1 to enable the PWM output to directly control the  
SPDT2 switch and set SPD2 = 0 to disable the PWM  
output controlling the SPDT2 switch. The SPDT2<1:0>  
bits, the UPIO pins (if programmed), and the PWM out-  
put (if enabled), determine the SPDT2-switch state. See  
Table 20 for more details. The power-on default is 0.  
FSEL2  
FSEL1  
FSEL0  
(kHz)  
4915.2**  
2457.6**  
1228.8**  
32.768  
8.192  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1.024  
0.256  
0.032  
*The lower PWM frequencies are useful for power-supply duty  
cycling to conserve battery life and enable a single battery cell-  
powered system. The higher frequencies allow reasonably small,  
external components for RC filtering when used as a DAC for bias  
adjustments.  
**When the part is in sleep mode, the HFCK is shut down. In this  
case, PWM frequencies above 32kHz are not available (see  
SPWME in the SLEEP_CFG Register section).  
48 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
PWM_THTP Register (Power-On State: 0000 0000 0000 0000)  
MSB  
PWMTH7  
PWMTH6  
PWMTH5  
PWMTH4  
PWMTH3  
PWMTH2  
PWMTP2  
PWMTH1  
PWMTP1  
PWMTH0  
LSB  
PWMTP7  
PWMTP6  
PWMTP5  
PWMTP4  
PWMTP3  
PWMTP0  
The PWM_THTP register contains the bits that set the  
PWM on-time and period.  
WATCHDOG Register (Power-On State: N/A)  
Writing to the WATCHDOG register address sets the  
watchdog timer to 0ms. If the watchdog is enabled  
(WDE = 1) and the WATCHDOG register is not written  
to before the 750ms expiration, RESET asserts low for  
250ms and the watchdog timer restarts at 0ms when  
the watchdog timer is enabled. There are no data bits  
for this register and the watchdog timer is reset on the  
rising edge of SCLK during the ADR0 bit in the  
WATCHDOG register address control byte. Figure 19  
shows an example of watchdog timing.  
PWMTH<7:0>: PWM time high bits. These bits define  
the PWM on (or high) time and when combined with the  
PWMTP<7:0> bits, they determine the duty cycle and  
period. The on-time duty cycle is defined as:  
(PWMTH<7:0> + 1) / (PWMTP<7:0> + 1)  
To get 50% duty cycle, set PWMTH<7:0> to 127 deci-  
mal and PWMTP<7:0> to 255 decimal. A 100% duty  
cycle (i.e., always on) is possible with a value of  
PWMTH<7:0> PWMTP<7:0> > 0. A 0% duty cycle is  
possible by setting PWMTH<7:0> = 0 or PWME = 0 in  
the PWM_CTRL register. If the PWM is selected to drive  
the UPIO_ pin(s), the ALH_ bit(s) (UPIO_CTRL register)  
determine the on-time polarity at the beginning of the  
PWM cycle. If ALH_= 1, the on-time at the start of the  
NORM_MD Register (Power-On State: N/A)  
Exit sleep mode and enter normal mode by writing to  
the NORM_MD register. The specific normal-mode  
state of all circuit blocks is set by the user, who must  
configure the individual power-enable bits before enter-  
ing sleep mode (Table 15). There are no data bits for  
this register and normal mode begins on the rising  
edge of SCLK during the ADR0 bit in the NORM_MD  
register address control byte.  
PWM period causes a logic-high level (DV  
or  
DD  
CPOUT) at the UPIO_ pin and when ALH_= 0, it causes  
a logic-low level (DGND) during the on-time. When the  
PWM output drives the SWA/B switches, the SWA(B)H  
or SWA(B)L bits in the PWM_CTRL register, determine  
which PWM phase closes these switches. The SPDT1  
and SPDT2 switches do not have PWM polarity inver-  
sion bits (see the SPDT1<1:0> and SPDT2<1:0> bit  
descriptions in the SW_CTRL Register section) but their  
effective polarity is set by how the switches are con-  
nected externally. The power-on default is 00 hex.  
SLEEP Register (Power-On State: N/A)  
Enter sleep mode by writing to the SLEEP register. This  
low-power state overrides most of the normal power-  
control bits. Table 15 shows which functions are off,  
which functions are unaffected (ADE, RTCE, LSDE, and  
HYSE), and which functions are controlled by special  
sleep-mode bits (SOSCE, SCK32E, and SPWME) while  
in sleep mode. There are no data bits for this register  
and sleep mode begins on the rising edge of SCLK  
during the ADR0 bit in the SLEEP register address con-  
trol byte.  
PWMTP<7:0>: PWM time period bits. These bits con-  
trol the PWM output period defined. The PWM output  
period is defined as:  
(PWMTP<7:0> + 1) / (PWM input frequency)  
Set the PWM input frequency by selecting the  
FSEL<2:0> bits as described in Table 14. The power-  
on default is 00 hex.  
______________________________________________________________________________________ 49  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Table 15. Normal-Mode and Sleep-Register Summary  
REGISTER  
NAME  
CIRCUIT BLOCK  
DESCRIPTION  
POR DEFAULT  
NORMAL MODE  
SLEEP  
ADC  
ADC  
DACA/OP3  
DACB/OP2  
OP1  
ADCE = 0  
DAE/OP3E = 0  
DBE/OP2E = 0  
OP1E = 0  
ADCE  
DAE/OP3E  
DBE/OP2E  
OP1E  
OFF  
OFF  
OFF  
OFF  
DACA_OP,  
DACB_OP  
Reference Buffer Gain and  
Enable  
REFV<1:0> = 00  
REFV<1:0>  
OFF  
REF_SDC  
Signal-Detect Comparator  
Time-of-Day Alarm Enable  
SDCE = 0  
ADE = 0  
SDCE  
ADE  
OFF  
ADE  
RTC  
RTCE = 1  
OSCE = 1  
RTCE  
OSCE  
RTCE  
CK32 Xtal Oscillator  
SOSCE  
CLK_CTRL  
CK32 Output Buffer  
CK32E = 1  
CK32E  
SCK32E  
High-Frequency Clock  
HFCE = 1  
CLKE = 1  
HFCE  
CLKE  
OFF  
OFF  
High-Frequency Clock Output  
Buffer  
FLL Enable  
FLLE = 1  
WDE = 0  
FLLE  
WDE  
OFF  
OFF  
Watchdog Timer  
PWM_CTRL  
PS_VMONS  
PWM  
PWME = 0  
PWME  
SPWME  
Linear Regulator  
LDOE = 0  
CPE = 0  
LDOE  
CPE  
OFF  
OFF  
Charge-Pump Doubler  
CPOUT Voltage Monitor  
CPDE = 0  
CPDE  
OFF  
1.8V DV  
Monitor  
LSDE = 1  
LSDE  
LSDE  
HYSE  
OFF  
DD  
1.8V Monitor Hysteresis  
Temperature Sense Source  
UPIO_ Function  
HYSE = 0  
HYSE  
TEMP_CTRL  
UPIO_CTRL  
IMUX<1:0> = 00  
UP_MD<3:0> = 0 hex  
PUP_ = 1  
IMUX<1:0>  
UP_MD<3:0>  
PUP_  
UP_MD<3:0>  
PUP_  
UPIO_ Pullup  
UPIO_ Supply Voltage  
UPIO_ Assertion Level  
SV_ = 0  
SV_  
SV_  
ALH_ = 0  
ALH_  
ALH_  
50 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
SLEEP_CFG Register (Power-On State: 1100 XXXX)  
MSB  
LSB  
SLP (ADR0)  
SOSCE  
SCK32E  
SPWME  
SHDN  
X
X
X
X
The SLEEP_CFG register allows users to program spe-  
cific behavior for the 32kHz oscillator, buffer, and PWM  
in sleep mode. It also contains a sleep-control bit (SLP)  
to enable sleep mode.  
SPWME: Sleep mode PWM enable bit. SPWME = 1  
enables the internal PWM in sleep mode and SPWME =  
0 disables it in sleep mode, regardless of the state of the  
PWME bit.  
SLP (ADR0): Sleep bit. The SLP bit is the LSB in the  
SLEEP_CFG address control byte. Set SLP = 1 to  
assert the SHDN bit and enter sleep mode. Writing the  
register with SLP = 0 or reading with SLP = 0 or SLP =  
1 has no effect on the SHDN bit.  
Input frequencies are limited to 32.768kHz or lower  
since the high-frequency clock is disabled in sleep  
mode. SOSCE must be asserted to have 32kHz avail-  
able as an input to the PWM. The power-on default is 0.  
SHDN: Shutdown bit. This bit is read only. SHDN is  
asserted by writing to the SLEEP register address or by  
writing to the SLEEP_CFG register with SLP = 1. When  
SHDN is asserted, the device is in sleep mode even if  
the SLEEP or SLEEP function on the UPIO is deassert-  
ed. The SHDN bit is deasserted by writing to the  
NORM_MD register or by other defined events. Events  
that cause SHDN to be deasserted are a day alarm or  
an edge on the UPIO wake-up pin causing wake-up to  
be asserted. The power-on default is 0.  
SOSCE: Sleep mode 32kHz crystal oscillator enable  
bit. SOSCE = 1 enables the 32kHz oscillator in sleep  
mode and SOSCE = 0 disables it in sleep mode,  
regardless of the state of the OSCE bit. The power-on  
default is 1.  
SCK32E: Sleep-mode CK32K-pin output-buffer enable  
bit. SCK32E = 1 enables the 32kHz output buffer in  
sleep mode and SCK32E = 0 disables it in sleep mode,  
regardless of the state of the CK32E bit. The power-on  
default is 1.  
RESET  
Q
D
D
Q
4Hz  
CK  
32K  
Q
DIVIDE-  
BY-8192  
Q
CK  
WDE  
R
R
POR  
WDW  
WATCHDOG TIMER  
750ms  
1
4Hz CLOCK  
2-BIT COUNTER  
X
0
1
2
0
1
0
2
3
0
1
2
0
SPI WRITES  
RESET  
WATCHDOG  
ADDRESS  
WATCHDOG  
ADDRESS  
WDE = 1  
WATCHDOG  
ADDRESS  
250ms  
Figure 19. Watchdog Timer Architecture  
______________________________________________________________________________________ 51  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
UPIO4_CTRL Register (Power-On State: 0000 1000)  
MSB  
LSB  
UP4MD3  
UP4MD2  
UP4MD1  
UP4MD0  
PUP4  
SV4  
ALH4  
LL4  
UPIO4_CTRL register. This register configures the  
UPIO4 pin functionality.  
ALH4: Active logic-level assertion high UPIO4 bit. Set  
ALH4 = 0 to define the input or output assertion level  
for UPIO4 as low except when in GPI and GPO modes.  
Set ALH4 = 1 to define the input or output assertion  
level as high. For example, asserting ALH4 defines the  
UPIO4 output signal as ALARM, while deasserting  
ALH4 defines it as ALARM. Similarly, asserting ALH4  
defines the UPIO4 input signal as WU, while deassert-  
ing ALH4 defines it as WU. The power-on default is 0.  
UP4MD<3:0>: UPIO4-mode selection bits. These bits  
configure the mode for the UPIO4 pin. See Table 16 for  
a detailed description. The power-on default is 0 hex.  
PUP4: Pullup UPIO4 control bit. Set PUP4 = 1 to enable  
a weak pullup resistor on the UPIO4 pin and set PUP4 =  
0 to disable it. The pullup resistor is connected to either  
DV  
or CPOUT as programmed by the SV4 bit. The  
DD  
LL4: Logic-level UPIO4 bit. When UPIO4 is configured  
as GPO, LL4 = 0 sets the output to a logic-low and LL4  
= 1 sets the output to a logic-high. A read of LL4  
returns the voltage level at the UPIO4 pin at the time of  
the read regardless of how it is programmed. The  
power-on default is 0.  
pullup is enabled only when UPIO4 is configured as an  
input. Open-drain behavior can be simulated at UPIO4  
by setting the mode to GPO with LL4 = 0 and by chang-  
ing the mode to GPI with PUP4 = 0, allowing external  
high pullup. The power-on default is 1.  
SV4: Supply-voltage UPIO4 selection bit. Set SV4 = 0  
to select DV  
as the supply voltage for the UPIO4 pin  
DD  
and set SV4 = 1 to select CPOUT as the supply volt-  
age. The selected supply voltage applies to all modes  
for the UPIO4 pin. The power-on default is 0.  
UPIO3_CTRL Register (Power-On State: 0000 1000)  
MSB  
LSB  
UP3MD3  
UP3MD2  
UP3MD1  
UP3MD0  
PUP3  
SV3  
ALH3  
LL3  
UPIO3_CTRL register. This register configures the  
UPIO3 pin functionality.  
ALH3: Active logic-level assertion high UPIO3 bit. Set  
ALH3 = 0 to define the input or output assertion level  
for UPIO3 as low except when in GPI and GPO modes  
and set ALH3 = 1 to define the input or output assertion  
level as high. For example, asserting ALH3 defines the  
UPIO3 output signal as ALARM, while deasserting  
ALH3 defines it as ALARM. Similarly, asserting ALH3  
defines the UPIO3 input signal as WU, while deassert-  
ing ALH3 defines it as WU. The power-on default is 0.  
UP3MD<3:0>: UPIO3-mode selection bits. These bits  
configure the mode for the UPIO3 pin. See Table 16 for  
a detailed description. The power-on default is 0 hex.  
PUP3: Pullup UPIO3 control bit. Set PUP3 = 1 to enable  
a weak pullup resistor on the UPIO3 pin and set PUP3  
= 0 to disable it. The pullup resistor is connected to  
either DV  
or CPOUT as programmed by the SV3 bit.  
DD  
LL3: Logic-level UPIO3 bit. When UPIO3 is configured  
as GPO, LL3 = 0 sets the output to a logic-low and LL3  
= 1 sets the output to a logic-high. A read of LL3  
returns the voltage level at the UPIO3 pin at the time of  
the read regardless of how it is programmed. The  
power-on default is 0.  
The pullup is enabled only when UPIO3 is configured  
as an input. Open-drain behavior can be simulated at  
UPIO3 by setting the mode to GPO with LL3 = 0 and by  
changing the mode to GPI with PUP3 = 0, allowing  
external high pullup. The power-on default is 1.  
SV3: Supply-voltage UPIO3 selection bit. Set SV3 = 0  
to select DV  
as the supply voltage for the UPIO3 pin  
DD  
and set SV3 = 1 to select CPOUT as the supply volt-  
age. The selected supply voltage applies to all modes  
for the UPIO3 pin. The power-on default is 0.  
52 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
UPIO2_CTRL Register (Power-On State: 0000 1000)  
MSB  
LSB  
UP2MD3  
UP2MD2  
UP2MD1  
UP2MD0  
PUP2  
SV2  
ALH2  
LL2  
UPIO2_CTRL register. This register configures the  
UPIO2 pin functionality.  
ALH2: Active logic-level assertion high UPIO2 bit. Set  
ALH2 = 0 to define the input or output assertion level  
for UPIO2 as low except when in GPI and GPO modes  
and set ALH2 = 1 to define the input or output assertion  
level as high. For example, asserting ALH2 defines the  
UPIO2 output signal as ALARM, while deasserting  
ALH2 defines it as ALARM. Similarly, asserting ALH2  
defines the UPIO2 input signal as WU, while deassert-  
ing ALH2 defines it as WU. The power-on default is 0.  
UP2MD<3:0>: UPIO2-mode selection bits. These bits  
configure the mode for the UPIO2 pin. See Table 16 for  
a detailed description. The power-on default is 0 hex.  
PUP2: Pullup UPIO2 control bit. Set PUP2 = 1 to  
enable a weak pullup resistor on the UPIO2 pin and set  
PUP2 = 0 to disable it. The pullup resistor is connected  
to either DV  
or CPOUT as programmed by the SV2  
DD  
LL2: Logic-level UPIO2 bit. When UPIO2 is configured  
as GPO, LL2 = 0 sets the output to a logic-low and LL2  
= 1 sets the output to a logic-high. A read of LL2  
returns the voltage level at the UPIO2 pin at the time of  
the read regardless of how it is programmed. The  
power-on default is 0.  
bit. The pullup is enabled only when UPIO2 is config-  
ured as an input. Open-drain behavior can be simulated  
at UPIO2 by setting the mode to GPO with LL2 = 0 and  
by changing the mode to GPI with PUP2 = 0, allowing  
external high pullup. The power-on default is 1.  
SV2: Supply-voltage UPIO2 selection bit. Set SV2 = 0  
to select DV  
as the supply voltage for the UPIO2 pin  
DD  
and set SV2 = 1 to select CPOUT as the supply volt-  
age. The selected supply voltage applies to all modes  
for the UPIO2 pin. The power-on default is 0.  
UPIO1_CTRL Register (Power-On State: 0000 1000)  
MSB  
LSB  
UP1MD3  
UP1MD2  
UP1MD1  
UP1MD0  
PUP1  
SV1  
ALH1  
LL1  
UPIO1_CTRL register. This register configures the  
UPIO1 pin functionality.  
ALH1: Active logic-level assertion high UPIO1 bit. Set  
ALH1 = 0 to define the input or output assertion level  
for UPIO1 as low except when in GPI and GPO modes  
and set ALH1 = 1 to define the input or output assertion  
level as high. For example, asserting ALH1 defines the  
UPIO1 output signal as ALARM, while deasserting  
ALH1 defines it as ALARM. Similarly, asserting ALH1  
defines the UPIO1 input signal as WU, while deassert-  
ing ALH1 defines it as WU. The power-on default is 0.  
UP1MD<3:0>: UPIO1-mode selection bits. These bits  
configure the mode for the UPIO1 pin. See Table 16 for  
a detailed description. The power-on default is 0 hex.  
PUP1: Pullup UPIO1 control bit. Set PUP1 = 1 to  
enable a weak pullup resistor on the UPIO1 pin and set  
PUP1 = 0 to disable it. The pullup resistor is connected  
to either DV  
or CPOUT as programmed by the SV1  
DD  
LL1: Logic-level UPIO1 bit. When UPIO1 is configured  
as GPO, LL1 = 0 sets the output to a logic-low and LL1  
= 1 sets the output to a logic-high. A read of LL1  
returns the voltage level at the UPIO1 pin at the time of  
the read regardless of how it is programmed. The  
power-on default is 0.  
bit. The pullup is enabled only when UPIO1 is config-  
ured as an input. Open-drain behavior can be simulated  
at UPIO1 by setting the mode to GPO with LL1 = 0 and  
by changing the mode to GPI with PUP1 = 0, allowing  
external high pullup. The power-on default is 1.  
SV1: Supply-voltage UPIO1 selection bit. Set SV1 = 0  
to select DV  
as the supply voltage for the UPIO1 pin  
DD  
and set SV1 = 1 to select CPOUT as the supply volt-  
age. The selected supply voltage applies to all modes  
for the UPIO1 pin. The power-on default is 0.  
______________________________________________________________________________________ 53  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Table 16. UPIO Mode Configuration  
MODE  
UP4MD<3:0>, UP3MD<3:0>,  
UP2MD<3:0>, UP1MD<3:0>  
DESCRIPTION  
MAX1358  
MAX1359  
MAX1360  
General-purpose digital input. Active edges detected  
by UPR_ or UPF_ status register bits. ALH_ has no  
effect with this setting.  
0
0
0
0
GPI  
GPI  
GPI  
General-purpose digital output. Logic level set by LL_  
bit. ALH_ has no effect with this setting.  
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
GPO  
GPO  
GPO  
X
Digital input. DAC A buffer switch control. See the SWA  
bit description in the SW_CTRL Register section.  
SWA or SWA SWA or SWA  
Digital input. DAC B buffer switch control. See the SWB  
bit description in the SW_CTRL Register section.  
SWB or SWB  
X
X
SPDT1 or  
SPDT1  
SPDT1 or  
SPDT1  
SPDT1 or  
SPDT1  
Digital input. SPDT1 switch control. See the SPDT1<1:0>  
bit description in the SW_CTRL Register section.  
SPDT2 or  
SPDT2  
SPDT2 or  
SPDT2  
SPDT2 or  
SPDT2  
Digital input. SPDT2 switch control. See the SPDT2<1:0>  
bit description in the SW_CTRL Register section.  
Sleep-mode digital input. Overrides power-control  
register and puts the part into sleep mode when  
asserted. When deasserted, power mode is determined  
by the SHDN bit.  
SLEEP or  
SLEEP  
SLEEP or  
SLEEP  
SLEEP or  
SLEEP  
0
1
1
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
WU or WU  
WU or WU  
WU or WU Wake-up digital input. Asserted edge clears SHDN bit.  
Reserved  
Reserved  
Reserved Reserved. Do not use these settings.  
PWM digital output. Signal defined by the PWM_CTRL  
register. PWM on (or high or “1”); assertion level defined  
by the ALH_ bit. When PWM is disabled (PWME = 0),  
PWM or  
PWM  
PWM or  
PWM  
PWM or  
PWM  
1
1
0
1
1
0
1
0
the UPIO pin idles high (DV  
or CPOUT) if ALH = 1,  
DD  
and low (DGND) if ALH = 0.  
Power-supply shutdown digital output. Equivalent to  
SHDN bit. Power-on default of GPI with pullup ensures  
initial power-supply turn-on when UPIO is connected to  
a power supply with a SHDN input.  
SHDN or  
SHDN  
SHDN or  
SHDN  
SHDN or  
SHDN  
AL_DAY or  
AL_DAY  
AL_DAY or  
AL_DAY  
AL_DAY or RTC alarm digital output. Asserts for time-of-day alarm  
AL_DAY events; equivalent to ALD in STATUS register.  
Reserved Reserved. Do not use these settings.  
1
1
1
1
0
1
1
0
Reserved  
Reserved  
ADC data-ready digital output. Asserts when analog-to-  
digital conversion or calibration completes. Not masked  
by MADD bit.  
DRDY or  
DRDY  
DRDY or  
DRDY  
DRDY or  
DRDY  
1
1
1
1
Note: When multiple UPIO inputs are configured for the same input function, the inputs are OR’ed together.  
54 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
UPIO_SPI Register (Power-On State: 0000 XXXX)  
MSB  
LSB  
UP4S  
UP3S  
UP2S  
UP1S  
X
X
X
X
UPIO SPI pass-through control register. These bits map  
the serial interface signals to the UPIO pins, allowing  
the DAS (MAX1358/MAX1359/MAX1360) to drive other  
UP4S: UPIO4 SPI pass-through-mode enable bit. A  
logic 1 maps the inverted CS signal to the UPIO4 pin.  
Therefore, UPIO4 is low (near DGND) when SPI pass-  
devices at CPOUT or DV  
voltage levels, depending  
through mode is active, and is high (near DV  
or  
DD  
DD  
on the SV_ bit setting found in the UPIO_CTRL register.  
Individual bits are provided to set only the desired  
UPIO inputs to the SPI pass-through mode. This mode  
becomes active when CS is driven high to complete the  
write to this register, and remains active as long as CS  
stays high (i.e., multiple pass-through writes are possi-  
ble). The SPI pass-through mode is deactivated imme-  
diately when CS is pulled low for the next DAS  
(MAX1358/MAX1359/MAX1360) write.  
CPOUT) when the mode is inactive. A logic 0 disables  
the UPIO4 SPI pass-through mode. The power-on  
default is 0.  
UP3S: UPIO3 SPI pass-through-mode enable bit. A  
logic 1 maps the SCLK signal to UPIO3 (directly with no  
inversion), while a logic 0 disables the UPIO3 SPI pass-  
through mode. The power-on default is 0.  
UP2S: UPIO2 SPI pass-through-mode enable bit. A  
logic 1 maps the DIN signal to UPIO2 (directly with no  
inversion), while a logic 0 disables the UPIO2 SPI pass-  
through mode. The power-on default is 0.  
The UPIO_ state (both before and after the SPI pass-  
through mode) is set by the UP_MD<3:0> and LL_ bits.  
When a UPIO is configured for SPI pass-through mode  
and the CS is high, UPR_, UPF_, and LL_ continue to  
detect UPIO_ edges, which can still generate interrupts.  
See Figure 20 for an SPI pass-through timing diagram.  
UP1S: UPIO1 SPI pass-through-mode enable bit. A  
logic 1 maps the UPIO1 input signal to DOUT (directly  
with no inversion), while a logic 0 disables the UPIO1  
SPI pass-through mode. The power-on default is 0.  
WRITE TO DAS TO ENABLE SPI MODE  
NORMAL WRITE TO DAS  
WRITE THROUGH DAS TO UPIO DEVICE  
CS  
SCLK  
DIN  
D
D
D
D
D
D
D
D
E
E
E
E
X
X
X
E
X
D
D
D
D
D
D
D
D
0
N
N-1  
N-2  
N-3  
3
2
1
0
N
N-1  
N-2  
N-3  
7
6
5
4
3
2
1
E
E
E
0
DOUT  
3
2
1
SET BY UPIO4_CTRL REGISTER  
SET BY UPIO3_CTRL REGISTER  
SET BY UPIO2_CTRL REGISTER  
SET BY UPIO1_CTRL REGISTER  
UPIO4  
UPIO3  
UPIO2  
UPIO1  
SET BY UPIO4_CTRL REGISTER  
SET BY UPIO3_CTRL REGISTER  
SET BY UPIO2_CTRL REGISTER  
SET BY UPIO1_CTRL REGISTER  
E
E
E
E
N-3  
X
X
X
E
X
N
N-1  
N-2  
E
E
E
0
3
2
1
Figure 20. SPI Pass-Through Timing Diagram  
______________________________________________________________________________________ 55  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
SW_CTRL Register (Power-On State: 0000 00XX)  
MSB  
LSB  
SWA  
SWB  
SPDT11  
SPDT10  
SPDT21  
SPDT20  
X
X
The switch-control register controls the two SPDT  
switches (SPDT1 and SPDT2) and the two DACA and  
DACB output buffer SPST switches (SWA and SWB).  
Control these switches by the serial bits in this register,  
by any of the UPIO pins that are enabled for that func-  
tion, or by the PWM.  
Table 18. SWB States (MAX1358 Only)  
SWB BIT*  
UPIO_*  
PWM*  
SWB SWITCH STATE  
0
0
X
1
X
0
1
X
X
Switch open  
X
Switch closed  
X
Switch closed  
SWA: (MAX1358/MAX1359) DACA output buffer SPST-  
switch A control bit. The SWA bit, the UPIO inputs (if  
configured), and the PWM (if configured) control the  
state of the SWA switch as shown in Table 17. The  
UPIO_ states of 0 and 1 in the table below correspond  
to respective deasserted and asserted logic states as  
defined by the ALH_ bit of the UPIO_CTRL register. If a  
UPIO is not configured for this mode, its value applied  
to the table below is 0. The PWM states of 0 and 1 in the  
table below correspond to the respective PWM off (or  
low) and on (or high) states defined by the SWAH and  
SWAL bits (see the PWM_CTRL Register section). If the  
PWM is not configured for this mode, its value applied  
to the table below is 0. The power-on default is 0.  
1
Switch closed  
X = Don’t care.  
*Switch SWB control is effectively an OR of the SWB bit, UPIO  
pins, and PWM.  
SPDT1<1:0>: Single-pole double-throw switch 1 con-  
trol bits. The SPDT1<1:0> bits, the UPIO pins (if config-  
ured), and the PWM (if configured) control the state of  
the switch as shown in Table 19. The UPIO_ states of 0  
and 1 in the table below correspond to respective  
deasserted and asserted logic states as defined by the  
ALH_ bit of the UPIO_CTRL register. If a UPIO is not  
configured for this mode, its value applied to Table 19  
is 0. The PWM states of 0 and 1 in Table 19 below cor-  
respond to the respective PWM off (low) and on (high)  
states defined by the SPD1 bit in the PWM_CTRL regis-  
ter. If the PWM is not configured for this mode, its value  
applied to Table 19 is 0. The power-on default is 00.  
Table 17. SWA States  
SWA BIT*  
UPIO_*  
PWM*  
SWA SWITCH STATE  
Switch open  
0
X
X
1
0
X
1
X
0
1
X
X
Switch closed  
Table 19. SPDT Switch 1 States  
SPDT1<1:0> UPIO_* PWM* SPDT1 SWITCH STATE  
Switch closed  
Switch closed  
0
0
0
0
1
1
1
1
0
X
X
1
0
X
X
1
0
X
1
X
0
X
1
X
0
1
X
X
0
1
X
X
SNO1 open, SNC1 open  
SNO1 closed, SNC1 closed  
SNO1 closed, SNC1 closed  
SNO1 closed, SNC1 closed  
SNC1 closed, SNO1 open  
SNC1 open, SNO1 closed  
SNC1 open, SNO1 closed  
SNC1 open, SNO1 closed  
X = Don’t care.  
*Switch SWA control is effectively an OR of the SWA bit, UPIO  
pins, and PWM.  
SWB: (MAX1358 only) DACB output buffer SPST-switch  
B control bit. The SWB bit, the UPIO inputs (if config-  
ured), and the PWM (if configured) control the state of  
the SWB switch as shown in Table 18. The UPIO_ states  
of 0 and 1 in the table correspond to respective  
deasserted and asserted logic states as defined by the  
ALH_ bit (see the UPIO_CTRL Register section). If a  
UPIO is not configured for this mode, its value applied  
to the table is 0. The PWM states of 0 and 1 in the table  
correspond to the respective PWM off (or low) and on  
(or high) states defined by the SWBH and SWBL bits  
(see the PWM_CTRL Register section). If the PWM is  
not configured for this mode, its value applied to the  
table is 0. The power-on default is 0.  
X = Don’t care.  
*Switch SPDT1 control is effectively an OR of the SPDT10 bit, the  
UPIO pins, and the PWM output. The SPDT11 bit determines if  
the switches open and close together or if they toggle.  
56 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
SPDT2<1:0>: Single-pole double-throw switch 2 control  
Table 20. SPDT Switch 2 States  
SPDT2<1:0> UPIO_* PWM* SPDT2 SWITCH STATE  
bits. The SPDT2<1:0> bits, the UPIO pins (if config-  
ured), and the PWM (if configured) control the state of  
0
0
0
0
1
1
1
1
0
X
X
1
0
X
X
1
0
X
1
X
0
X
1
X
0
1
X
X
0
1
X
X
SNO2 open, SNC2 open  
SNO2 closed, SNC2 closed  
SNO2 closed, SNC2 closed  
SNO2 closed, SNC2 closed  
SNC2 closed, SNO2 open  
SNC2 open, SNO2 closed  
SNC2 open, SNO2 closed  
SNC2 open, SNO2 closed  
the switch as shown in Table 20. The UPIO_ states of 0  
and 1 in the table correspond to respective deasserted  
and asserted logic states as defined by the ALH_ bit in  
the UPIO_CTRL register. If a UPIO is not configured for  
this mode, its value applied to Table 20 is 0. The PWM  
states of 0 and 1 in Table 20 correspond to the respec-  
tive PWM off (low) and on (high) states defined by the  
SPD2 bit in the PWM_CTRL register. If the PWM is not  
configured for this mode, its value applied to Table 20 is  
0. The power-on default is 00.  
X = Don’t care.  
*Switch SPDT2 control is effectively an OR of the SPDT20 bit, the  
UPIO pins, and the PWM output. The SPDT21 bit determines if  
the switches open and close together or if they toggle.  
TEMP_CTRL Register (Power-On State: 0000 XXXX)  
MSB  
LSB  
IMUX1  
IMUX0  
IVAL1  
IVAL0  
X
X
X
X
The temperature-sensor control register controls the  
internal and external temperature measurement.  
IVAL<1:0>: Internal current-source value bits. Selects  
the value of internal current source as shown in Table  
22. The power-on default is 00.  
IMUX<1:0>: Internal current-source MUX bits. Selects  
the pin to be driven by the internal current sources as  
shown in Table 21. The power-on default is 00.  
Table 21. Selecting Internal Current Source  
Table 22. Setting the Current Level  
CURRENT SOURCE  
IMUX1  
IMUX0  
CURRENT  
TYPICAL CURRENT (µA)  
IVAL1  
IVAL0  
Disabled  
Internal temperature sensor  
0
0
1
1
0
1
0
1
I
1
I
2
I
3
I
4
4
0
0
1
1
0
1
0
1
60  
AIN1  
AIN2  
64  
120  
TEMP_CAL Register (Power-On State: Varies By Factory Calibration)  
MSB  
TGAIN7  
TGAIN6  
TGAIN5  
TGAIN4  
TGAIN3  
TGAIN2  
TOFFS0  
TGAIN1  
X
TGAIN0  
LSB  
TOFFS5  
TOFFS4  
TOFFS3  
TOFFS2  
TOFFS1  
X
This register is the internal temperature sensor calibra-  
tion register.  
TOFFS<5:0>: Factory-preset temperature offset cor-  
rection coefficient bits. This is the linear offset factor  
used to derive absolute temperature values from tem-  
perature values measured with the internal temperature  
TGAIN<7:0>: Factory-preset temperature gain correc-  
tion coefficient bits. This is the linear scaling factor used  
to derive absolute temperature values from temperature  
values measured with the internal temperature sensor  
sensor (T  
= T  
x T  
+ T  
). This  
OFFS  
ACTUAL  
MEAS  
GAIN  
method does not correct for delta V absolute voltage  
BE  
measurement errors, and assumes the measurement  
was taken with a reference voltage that is either exactly  
1.250V, or an exact value known by the user. The errors  
being corrected by this factor are variables in the inter-  
nal temperature-sensing diode. This factor is based on  
characterization data. The power-on default varies.  
(T  
= T  
x T  
+ T  
). This method does  
ACTUAL  
MEAS  
GAIN  
OFFS  
not correct for delta V absolute voltage measurement  
BE  
errors, and assumes the measurement is taken with a  
reference voltage that is either exactly 1.250V, or an  
exact value known by the user. The errors being correct-  
ed by this factor are variables in the internal tempera-  
ture-sensing diode. This factor is programmed to typical  
values. The power-on default varies.  
______________________________________________________________________________________ 57  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
IMSK Register (Power-On State: 1111 011X 1111 1111)  
MSB  
MLDVD  
MLCPD  
MADO  
MSDC  
MCRDY  
MUPF4  
MADD  
MALD  
X
LSB  
MUPR4  
MUPR3  
MUPR2  
MUPR1  
MUPF3  
MUPF2  
MUPF1  
The IMSK register determines which bits of the STATUS  
register generate an interrupt on INT. The bits in this  
register do not mask output signals routed to UPIO  
since the output signals are masked by disabling that  
UPIO function.  
MCRDY = 1 to mask the CRDY status bit interrupt. The  
power-on default value is 0.  
MADD: ADD status bit mask. Set MADD = 0 to enable  
the ADD status bit interrupt to INT and set MADD = 1 to  
mask the ADD status bit interrupt. The power-on default  
value is 1.  
MLDVD: LDVD status bit mask. Set MLDVD = 0 to  
enable the LDVD status bit interrupt to INT and set  
MLDVD = 1 to mask the LDVD status bit interrupt. The  
power-on default value is 1.  
MALD: ALD status bit mask. Set MALD = 0 to enable  
the ALD status bit interrupt to INT and set MALD = 1 to  
mask the ALD status bit interrupt. The power-on default  
value is 1.  
MLCPD: LCP status bit mask. Set MLCP = 0 to enable  
the LCP status bit interrupt to INT and set MLCP = 1 to  
mask the LCP status bit interrupt. The power-on default  
value is 1.  
MUPR<4:1>: UPR<4:1> status bits mask. Set MUPR_ =  
0 to enable the UPR_ status bit interrupt to INT and set  
MUPR_ = 1 to mask the UPR_ status bit interrupt. (_ =  
1, 2, 3, or 4 and corresponds to the UPIO1, UPIO2,  
UPIO3, or UPIO4 pins, respectively.) The power-on  
default value is F hex.  
MADO: ADO status bit mask. Set MADO = 0 to enable  
the ADO status bit interrupt to INT and set MADO = 1 to  
mask the ADO status bit interrupt. The power-on default  
value is 1.  
MUPF<4:1>: UPF<4:1> status bits mask. Set MUPF_ =  
0 to enable the UPF_ status bit interrupt to INT and set  
MUPF_ = 1 to mask the UPF_ status bit interrupt. (_ = 1,  
2, 3, or 4 and corresponds to the UPIO1, UPIO2,  
UPIO3, or UPIO4 pins, respectively.) The power-on  
default value is F hex.  
MSDC: SDC status bit mask. Set MSDC = 0 to enable  
the SDC status bit interrupt to INT and set MSDC = 1 to  
mask the SDC status bit interrupt. The power-on default  
value is 1.  
MCRDY: CRD status bit mask. Set MCRDY = 0 to  
enable the CRDY status bit interrupt to INT and set  
PS_VMONS Register (Power-On State: 0010 01XX)  
MSB  
LSB  
LDOE  
CPE  
LSDE  
CPDE  
HYSE  
RSTE  
X
X
This register is the power-supply and voltage monitors  
control register.  
able the DV  
low-supply-voltage detector. The power-  
DD  
on default value is 1.  
LDOE: Low-dropout linear-regulator enable bit. Set  
LDOE = 1 to enable the low-dropout linear regulator to  
provide the internal source voltage for the charge  
pump. Set LDOE = 0 to disable the LDO, allowing an  
external drive to the charge pump input through REG.  
The power-on default value is 0.  
CPDE: CPOUT low-supply voltage-detector power-  
enable bit. Set CPDE = 1 to enable the +2.7V CPOUT  
low-supply voltage-detector comparator and set CPDE =  
0 to disable the CPOUT low-supply voltage-detector  
comparator. The power-on default value is 0.  
HYSE: DV  
low-supply voltage-detector hysteresis-  
DD  
CPE: Charge-pump enable bit. Set CPE = 1 to enable  
the charge-pump doubler and set CPE = 0 to disable the  
charge-pump doubler. The power-on default value is 0.  
enable bit. Set HYSE = 1 to set the hysteresis for the  
+1.8V (DV ) low-supply-voltage detector to +200mV and  
DD  
set HYSE = 0 to set the hysteresis to +20mV. On initial  
power-up, the hysteresis is +20mV and can be pro-  
grammed to 200mV once RESET goes high. Once pro-  
LSDE: DV  
low-supply voltage-detector power-  
DD  
enable bit. Set LSDE = 1 to enable the +1.8V (DV  
)
DD  
grammed to +200mV, the DV  
falling threshold is +1.8V  
DD  
low-supply-voltage detector and set LSDE = 0 to dis-  
58 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
nominally and the rising threshold is +2.0V nominally. The  
hysteresis helps eliminate chatter when running directly off  
RSTE: RESET output enable bit. Set RSTE = 1 to  
enable RESET to be controlled by the +1.8V DV low-  
supply-voltage detector and set RSTE = 0 to disable  
this control. The power-on default is 1.  
DD  
unregulated batteries. If DV  
falls below +1.3V (typ), the  
DD  
power-on reset circuitry is enabled and the HYSE bit is  
deasserted setting the hysteresis back to +20mV. The  
power-on default is 0.  
STATUS Register (Power-On State: 0000 000X 0000 0000)  
MSB  
LDVD  
LCPD  
ADOU  
SDC  
CRDY  
UPF4  
ADD  
ALD  
X
LSB  
UPF1  
UPR4  
UPR3  
UPR2  
UPR1  
UPF3  
UPF2  
The STATUS register contains the status bits of events in  
various system blocks. Any status bits not masked in the  
IMSK register cause an interrupt on INT. Some of the  
status bit setting events (GPI, WAKEUP, ALARM, DRDY)  
can be directed to UPIO_ to provide multiple µC inter-  
rupt inputs. There are no specific mask bits for the UPIO  
interrupt signals since the bits are effectively masked by  
selecting a different function for UPIO. The STATUS bits  
always record the triggering event(s), even for masked  
bits, which do not generate an interrupt on INT. It is pos-  
sible to set multiple STATUS bits during a single INT  
interrupt event. Clear all status bits except for ADD and  
ADOU by reading the STATUS register. During a STA-  
TUS register read, INT deasserts when the first STATUS  
data bit (LDVD) reads out (9th rising SCLK) and remains  
deasserted until shortly after the last STATUS data bit  
(~15ns). At this point, INT reasserts if any status bit is set  
during the STATUS register read. If the STATUS register  
is partially read (i.e., the read is aborted midway), none  
of the status bits are cleared. New events occurring dur-  
ing a STATUS register read, or events that persist after  
reading the STATUS bits result in another interrupt  
immediately after the STATUS register read finishes. This  
is a read-only register.  
ADOU: ADC overflow/underflow status bit. ADOU = 1  
indicates an ADC underflow or overflow condition in the  
current ADC result. New conversions that are valid  
clear the ADOU bit. ADOU = 0 when the ADC data is  
valid or the ADC is disabled (ADCE = 0). An underflow  
condition occurs when the ADC data is theoretically  
less than 0000 hex in unipolar mode and less than  
8000 hex in bipolar mode. An overflow condition occurs  
when the ADC data is theoretically greater than FFFF  
hex in unipolar mode and greater than 7FFF hex in  
bipolar mode. Use this bit to determine the validity of  
an ADC result at the maximum or minimum code values  
(i.e., 0000 hex or FFFF hex for unipolar mode and 8000  
hex and 7FFF hex for bipolar mode). The power-on  
default is 0. Reading the STATUS register does not  
clear the ADOU bit.  
SDC: Signal-detect comparator status bit. When SDC =  
1, the positive input to the signal-detect comparator  
exceeds the negative input plus the programmed thresh-  
old voltage. The SDC bit clears during the STATUS regis-  
ter read unless the condition remains true. The SDC bit  
also deasserts when the signal-detect comparator pow-  
ers down (SDCE = 0). The power-on default is 0.  
CRDY: High-frequency-clock ready status bit. CRDY =  
1 indicates a locked high-frequency clock to the 32kHz  
reference frequency by the FLL. The CRDY bit clears  
during the STATUS register read. This bit only asserts  
after power-up or after enabling the FLL using the FLLE  
bit. The power-on default is 0.  
LDVD: Low DV  
voltage-detector status bit. LDVD = 1  
DD  
indicates DV  
is below the +1.8V threshold, otherwise  
DD  
LDVD = 0. LDVD clears during the STATUS register  
read as long as the condition does not persist.  
Otherwise, the LDVD bit reasserts immediately. If the  
DV  
low voltage detector is disabled, LDVD = 0. The  
DD  
ADD: ADC-done status bit. ADD = 1 indicates a com-  
pleted ADC conversion or calibration. Clear the ADD bit  
by reading the appropriate ADC data, offset, or gain-cali-  
bration registers. The ADC status bit also clears when a  
new ADC result updates to the data or calibration regis-  
ters (i.e., it follows the assertion level of the UPIO =  
DRDY signal). Reading the STATUS register does not  
clear this bit. This bit is equivalent to the DRDY signal  
available through UPIO_. The power-on default is 0.  
power-on default is 0.  
LCPD: Low CPOUT voltage-detector status bit. LCPD =  
1 indicates CPOUT is below the +2.7V threshold, other-  
wise LCPD = 0. LCPD clears during the STATUS regis-  
ter read as long as the condition does not persist.  
Otherwise the LCPD bit reasserts immediately. LCPD =  
0 when the CPOUT low voltage detector is disabled.  
The power-on default is 0.  
______________________________________________________________________________________ 59  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ALD: Alarm (day) status bit. ALD = 1 when the value  
programmed in ASEC<19:0> in the AL_DAY register  
matches SEC<19:0> in the RTC register. Clear the ALD  
bit by reading the STATUS register or by disabling the  
day alarm (ADE = 0). The power-on default is 0.  
When placing passive components in front of the  
MAX1358/MAX1359/MAX1360, ensure a low enough  
source impedance to prevent introducing gain errors to  
the system. This configuration significantly limits the  
amount of passive anti-aliasing filtering that can be  
applied in front of the MAX1358/MAX1359/MAX1360.  
See Table 3 for acceptable source impedances.  
UPR<4:1>: User-programmable I/O rising-edge status  
bits. UPR_ = 1 indicates a rising edge on the respec-  
tive UPIO_ pin has occurred. Clear UPR_ by reading  
the STATUS register. Rising edges are detected inde-  
pendent of UPIO_ configuration, providing the ability to  
capture and record rising input (e.g., WU) or output  
(e.g., PWM) edge events on the UPIO_. Set the appro-  
priate mask to determine if the edge will generate an  
interrupt on INT. If the UPIO_ is configured as an out-  
put, INT provides confirmation that an intended rising  
edge output occurred and has reached the desired  
Power-On Reset or Power-Up  
After a power-on reset, the DV  
voltage supervisor is  
DD  
enabled and all UPIOs are configured as inputs with  
pullups enabled. The internal oscillators are enabled  
and are output at CLK and CLK32K once the DV  
DD  
voltage supervisor is cleared and the subsequent time-  
out period has expired. All interrupts are masked  
except CRDY. Figure 21 illustrates the timing of various  
signals during initial power-up, sleep mode, and wake-  
up events. The ADC, charge pump, internal reference,  
op amp(s), DAC(s), and switches are disabled after  
power-up.  
DV  
or CPOUT level (i.e., was not loaded down exter-  
DD  
nally). The power-on default is 0.  
UPF<4:1>: User-programmable I/O falling-edge status  
bit. UPF_= 1 indicates a falling edge on the respective  
UPIO_ has occurred. Clear UPF_ by reading the  
STATUS register. Falling edges are detected indepen-  
dent of UPIO_ configuration, providing the ability to cap-  
ture and record falling input (e.g., WU) or output (e.g.,  
PWM) edge events on the UPIO_. Set the appropriate  
mask to determine if that edge should generate an inter-  
rupt on the INT pin. If the UPIO is configured as an out-  
put, the INT provides confirmation that an intended  
falling edge output occurred at the pin and it reached  
the desired DGND level. The power-on default is 0.  
Power Modes  
Two power modes are available for the MAX1358/  
MAX1359/MAX1360; sleep and normal mode. In sleep  
mode, all functional blocks are powered down except  
the serial interface, data registers, internal bandgap,  
wake-up circuitry (if enabled), DV  
voltage supervisor  
DD  
(if enabled), and the 32kHz oscillator (if enabled),  
which remain active. See Table 15 for details of the  
sleep-mode and normal-mode power states of the vari-  
ous internal blocks.  
Each analog block can be shut down individually  
through its respective control register with the excep-  
tion of the bandgap reference.  
Applications Information  
Analog Filtering  
The internal digital filter does not provide rejection  
close to the harmonics of the modulator sample fre-  
quency. However, due to high oversampling ratios in  
the MAX1358/MAX1359/MAX1360, these bands typical-  
ly occupy a small fraction of the spectrum and most  
broadband noise is filtered. Therefore, the analog filter-  
ing requirements in front of the MAX1358/MAX1359/  
MAX1360 are considerably reduced compared to a  
conventional converter with no on-chip filtering. In addi-  
tion, because the device’s common-mode rejection  
(60dB) extends out to several kHz, the common-mode  
noise susceptibility in this frequency range is substan-  
tially reduced.  
Sleep Mode  
Sleep mode is entered one of three ways:  
• Writing to the SLEEP register address. The result is  
the SHDN bit is set to 1.  
• Asserting the SLEEP or SLEEP function on a UPIO  
(SLEEP takes precedence over software writes or  
wake-up events). The SHDN bit is unaffected.  
• Asserting the SHDN bit by writing SLP = 1 in the  
SLEEP_CFG register.  
Entering sleep mode is an OR function of the UPIO or  
SHDN bit. Before entering sleep mode, configure the  
normal mode conditions.  
Depending on the application, provide filtering prior to the  
MAX1358/MAX1359/MAX1360 to eliminate unwanted fre-  
quencies the digital filter does not reject. Providing addi-  
tional filtering in some applications ensures that  
differential noise signals outside the frequency band of  
interest do not saturate the analog modulator.  
Exit sleep mode and enter normal mode by one of the  
following methods:  
60 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
INITIAL POWER, WAKE-UP, AND SLEEP  
2
1
XTAL B/W 32KIN AND 32KOUT PIN  
1.8V  
AV  
DV  
DD  
DD  
0v  
2
1.8V  
1
0v  
HI  
POR  
LO  
OSCE = 1  
SOSCE = 1  
OSCE = 1  
CK32E = 1  
HI  
XIN, XOUT  
(32kHz)  
LO  
CK32E = 1  
SCK32E = 0  
BUFFER DISABLED  
HI  
CK32K  
(32kHz)  
LO  
HI  
LO  
HI  
RESET  
(OPEN-DRAIN)  
INTERNAL  
EXTERNAL  
OUTPUT DISABLED,  
BUT  
PULLED LOW  
INTERNAL  
LOW DV DETECTOR  
OUTPUT ENABLED  
DD  
LO  
HI  
UPIO(WU)  
(INT. PULLUP)  
t
WU  
LO  
t
DPU  
HI  
UPIO(SHDN)  
INTERNAL  
LO  
t
DPD  
HI  
CLK  
INTERNAL  
LO  
t
t
t
DFON  
DFON  
DFOF  
INTERNAL  
CRDY  
HFCE = 1, FLLE = 1  
HI  
IF FLLE = 0, CRDY WILL  
STAY LOW, DFON = 0 )  
LO  
t
t
DFI  
DFI  
HI  
INT  
LO  
PWME = 0  
PWME = 0  
POWER SUPPLY OFF  
SPWME = 1  
UPIO(PWM)  
TIED TO POWER  
SUPPLY SHDN PIN  
HI  
LO  
HI  
POWER SUPPLY OFF  
INTERNAL  
DRDY  
LO  
HI  
DOUT  
TRI-STATED  
LO  
HI  
SLEEP  
WRITE  
CS  
LO  
HI  
SCLK,  
DIN  
LO  
Figure 21. Initial Power-Up, Sleep Mode, and Wake-Up Timing Diagram with AV  
> 1.8V  
DD  
______________________________________________________________________________________ 61  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
V /GAIN  
REF  
V
REF  
/GAIN  
V
REF  
/GAIN  
1111 1111 1111 1111  
1111 1111 1111 1110  
1111 1111 1111 1101  
1111 1111 1111 1100  
0111 1111 1111 1111  
0111 1111 1111 1110  
0111 1111 1111 1101  
FULL-SCALE TRANSITION  
V
REF  
V
REF  
1 LSB =  
1 LSB =  
x 2  
(GAIN x 65,536)  
(GAIN x 65,536)  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0011  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1000 0000 0000 0010  
1000 0000 0000 0001  
1000 0000 0000 0000  
0
65,533 65,535  
1
2
3
-32,768  
-1  
0
+1  
+32,765 +32,767  
-32,766  
INPUT VOLTAGE (LSB)  
INPUT VOLTAGE (LSB)  
Figure 22. ADC Unipolar Transfer Function  
Figure 23. ADC Bipolar Transfer Function  
• With the SHDN bit = 0, deassert the SLEEP or  
SLEEP function on UPIO, only if SLEEP or SLEEP  
function is used for entering sleep mode.  
Driving UPIO Outputs to AV  
Levels  
DD  
UPIO outputs can be driven to AV  
levels in systems  
DD  
with separate AV  
and DV  
supplies. Disable the  
DD  
DD  
charge-pump doubler by setting CPE = 0 in the  
PS_VMONS register, and connect the system’s analog  
• With the SLEEP or SLEEP function deasserted on  
UPIO, clear the SHDN bit by writing to the normal-  
mode register address control byte.  
supply to AV  
and CPOUT. Setting UPIO outputs to  
DD  
drive to CPOUT results in AV -referenced logic levels.  
DD  
• With the SLEEP or SLEEP function deasserted,  
assert WU or WU (wake-up) function on UPIO.  
Supply Voltage Measurement  
supply voltage can be measured with the  
The AV  
DD  
• With the SLEEP or SLEEP function deasserted, the  
ADC by reversing the normal input and reference sig-  
nals. The REF voltage is applied to one multiplexer  
input and AGND is selected in the other. The AV  
day alarm triggers.  
Wake-Up  
A wake-up event, such as an assertion of a UPIO con-  
figured as WU or a time-of-day alarm causes the  
MAX1358/MAX1359/MAX1360 to exit sleep mode, if in  
sleep mode. A wake-up event in normal mode results  
only in a wake-up event being recorded in the  
STATUS register.  
sig-  
DD  
FBA  
FBB  
MAX1358  
MAX1359  
RESET  
OUTA  
OUTB  
DAC A  
The RESET output pulls low for any one of the following  
cases: power-on reset, DV  
monitor trips and RSTE =  
DD  
REF  
0, watchdog timer expires, crystal oscillator is attached,  
and 32kHz clock not ready.  
DAC B  
The RESET output can be turned off through the RSTE  
bit in the PS_VMONS register, causing DV  
low sup-  
DD  
ply voltage events to issue an interrupt or poll through  
the LDVD status bit. This allows brownout detection  
µCs that operate with DV  
< 1.8V.  
DD  
THE MAX1359 HAS ONE DAC.  
Figure 24. DAC Unipolar Output Circuit  
62 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
V
REF  
R
R
2
1
10k  
FBA  
MAX1358  
MAX1359  
+3.3V  
FB_  
10kΩ  
V
OUT  
OUTA  
OUTB  
DAC_  
DAC A  
DAC B  
OUT_  
-3.3V  
10kΩ  
REF  
FBB  
R = R  
2
1
MAX1358  
MAX1359  
V
= 1.25V  
REF  
10kΩ  
Figure 26. DAC Bipolar Output Circuit  
ceramic capacitor. For improved performance, place the  
bypass capacitors as close to the device as possible.  
THE MAX1359 HAS ONE DAC.  
= 1.25V  
ADC Transfer Functions  
Figures 22 and 23 provide the ADC transfer functions  
for unipolar and bipolar mode. The digital output code  
format is binary for unipolar mode and two’s comple-  
ment for bipolar mode. Calculate 1 LSB using the fol-  
lowing equations:  
V
REF  
Figure 25. DAC Unipolar Rail-to-Rail Output Circuit  
nal is then switched in as the ADC reference voltage  
and a conversion is performed. The AV  
then be calculated directly as:  
value can  
DD  
1 LSB (Unipolar Mode) = V  
/ (Gain x 65,536)  
/ (Gain x 65,536)  
REF  
V
= (V  
x Gain x 65536) / N  
REF  
1 LSB (Bipolar Mode) = 2V  
AVDD  
REF  
where V  
is the reference voltage for the ADC, Gain  
where V  
equals the reference voltage at REF and  
REF  
REF  
is the PGA gain before the ADC, and N is the ADC  
result. Note the AV voltage must be greater than the  
Gain equals the PGA gain.  
DD  
In unipolar mode, the output code ranges from 0 to  
65,535 for inputs from zero to full-scale. In bipolar  
mode, the output code ranges from -32,768 to +32,767  
for inputs from negative full-scale to positive full-scale.  
gained-up REF voltage (AV  
measurement must be done in unipolar mode.  
> V  
x GAIN). This  
REF  
DD  
Power Supplies  
AV  
and DV  
provide power to the MAX1358/  
DD  
DD  
DAC Unipolar Output  
For a unipolar output, the output voltages and the refer-  
ence have the same polarity. Figure 24 shows the  
MAX1358/MAX1359’s unipolar output circuit, which is  
also the typical operating circuit for the DACs. Table 23  
lists some unipolar input codes and their correspond-  
ing output voltages.  
MAX1359/MAX1360. The AV  
powers up the analog  
DD  
section, while the DV  
powers up the digital section.  
DD  
The power supply for both AV  
and DV  
ranges from  
DD  
and DV  
DD  
+1.8V to +3.6V. Both AV  
must be greater  
and DV  
DD  
DD  
DD  
than +1.8V for device operation. AV  
can  
DD  
DD  
connect to the same power supply. Bypass AV  
to  
AGND with a 10µF electrolytic capacitor in parallel with a  
For larger output swing, see Figure 25. This circuit  
shows the output amplifiers configured with a closed-  
0.1µF ceramic capacitor and bypass DV  
to DGND  
DD  
with a 10µF electrolytic capacitor in parallel with a 0.1µF  
Table 23. Unipolar Code Table  
Table 24. Bipolar Code Table  
DAC CONTENTS  
ANALOG OUTPUT  
DAC CONTENTS  
ANALOG OUTPUT  
MSB  
LSB  
MSB  
LSB  
1111 1111 11  
1000 0000 01  
1000 0000 00  
0111 1111 11  
0000 0000 01  
0000 0000 00  
+V  
+V  
(1023/1024)  
(513/1024)  
1111 1111 11  
1000 0000 01  
1000 0000 00  
0111 1111 11  
0000 0000 01  
0000 0000 00  
+V  
+V  
(511/512)  
REF  
REF  
(1/512)  
REF  
REF  
+V  
(512/1024) = +V  
/ 2  
0
REF  
REF  
(511/1024)  
+V  
+V  
-V  
-V  
(1/512)  
REF  
REF  
(1/1024)  
0
(511/512)  
REF  
REF  
-V  
(512/512) = -V  
REF  
REF  
______________________________________________________________________________________ 63  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
loop gain of +2V/V to provide 0 to 2.5V full-scale range  
with the 1.25V reference.  
can differentially measure directly across the external  
transimpedance resistor, RF, eliminating any errors due  
to voltages drifting over time, temperature, or supply  
voltage. Figure 29 shows a traditional electrochemical  
meter application.  
DAC Bipolar Output  
The MAX1358/MAX1359 DAC outputs can be config-  
ured for bipolar operation using the application circuit  
in Figure 26:  
Temperature Measurement with  
Two Remote Sensors  
2N  
1024  
Use two diode-connected 2N3904 transistors for exter-  
nal temperature sensing in Figure 30. Select AIN1 and  
AIN2 through the positive and negative mux, respec-  
tively. For internal temperature sensor measurements,  
set MUXP<3:0> to 0111, and set MUXN<3:0> to 0000.  
The analog input signals feed through a PGA to the  
ADC for conversion.  
V
= V  
1  
OUT  
REF  
where N is the decimal value of the DAC’s binary input  
code.  
Table 24 shows digital codes (offset binary) and corre-  
sponding output voltages for Figure 26 assuming  
R1 = R2.  
Strain-Gauge Measurement with  
Remote Temperature Sensor  
Optical Reflectometry Application with  
Dual LED and Single Photodiode  
Figure 31 shows the MAX1360 in a strain-gauge mea-  
surement application with a remote diode-connected  
2N3904 transistor temperature sensor. Rs is the sense  
resistor used for making temperature measurements.  
See the Temperature with two Remote Sensors section  
for more details.  
Figure 27 illustrates the MAX1359 in a complete optical  
reflectometry application with two transmitting LEDs  
and one receiving photodiode. The LEDs transmit light  
at a specific wavelength onto the sample strip and the  
photodiode receives the reflections from the strip. Set  
the DAC to provide appropriate bias currents for the  
LEDs. Always keep the photodiodes reverse-biased or  
zero-biased. SPDT1 and SPDT2 switch between the  
two LEDs.  
Programmable-Gain Instrumentation  
Amplifier  
Use two op amps and two SPDT switches to implement  
a programmable-gain instrumentation amplifier as  
shown in Figure 32.  
Electrochemical Sensor Operation  
The MAX1358/MAX1359/MAX1360 family interface with  
electrochemical sensors. The 10-bit DACs with the  
force-sense buffers have the flexibility to connect to  
many different types of sensors. Figure 28 shows how  
to interface the MAX1360 in a self-biased electrochemi-  
cal meter application. An external precision resistor  
completes the transimpedance amplifier configuration  
to convert the current generated by the sensor to a  
voltage measurement using the ADC. The induced  
error from this source is negligible due to FBA’s  
extremely low input bias current. Internally, the ADC  
PWM Applications  
The MAX1358/MAX1359/MAX1360 integrated PWM is  
available for LCD bias control, sensor-bias voltage trim-  
ming, buzzer drive, and duty-cycled sleep-mode  
power-control schemes. Figure 33 shows the  
MAX1358/MAX1359/MAX1360 performing LCD bias  
control. A sensor-bias voltage trimming application is  
shown in Figure 34. Figures 36 and 37 show the PWM  
circuitry being used in a single-ended and differential  
piezoelectric buzzer-driving application.  
64 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
V
CP  
TXD  
RXD  
SERIAL-PORT INTERFACE  
V
SS  
V
SS  
µC  
V
BAT  
EEPROM  
V
SS  
MOSI  
V
CC  
SI  
SO  
MISO  
SCK  
CS1  
SCK  
CS  
GND  
V
SS  
V
CP  
MAX1359  
LCD MODULE  
BDIN  
BDOUT  
BSCLK  
BCS2  
UPIO1  
UPIO2  
UPIO3  
UPIO4  
DIN  
DOUT  
SCLK  
CS  
V
SS  
CS2  
CS2  
IN2-  
MEM  
UP  
RESET  
INT  
RESET  
INPUT  
X2IN  
INPUT  
INPUT  
INPUT  
IN2+  
OUT2  
HIGH-FREQUENCY MICRO CLOCK  
32kHz MICRO CLOCK  
DOWN  
CLK  
IN1-  
32KIN  
CLK32K  
V
SS  
AV  
DD  
IN1+  
V
BAT  
OUT1  
DV  
DD  
V
SS  
V
SS  
V
DD  
2 AAA OR  
1 LITHIUM  
COIN CELL  
1nF  
SNO2  
SCM2  
ADC  
TEST  
STRIP  
V
AGND  
DGND  
SS  
V
SS  
SNC2  
V
SS  
PWM  
DACA  
AIN1  
AIN2  
AMBIENT LIGHT  
LED SOURCES  
V
CP  
OUTA  
32KIN  
LED  
SWA  
FBA  
V
CP  
32.768kHz  
SNO1  
LED  
SCM1  
SNC1  
32KOUT  
DV  
DD  
LINEAR  
REG  
REG  
CF+  
REF  
CHARGE-  
V
SS  
PUMP  
DOUBLER  
BG  
CF-  
CPOUT  
V
CP  
V
SS  
V
SS  
V
SS  
Figure 27. Optical Reflectometry Application with Dual LED and Single Photodiode  
______________________________________________________________________________________ 65  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
µC  
V
CP  
LCD GLA SS  
COM<3:0>  
SEG<23:0>  
LCDBIAS  
V
CP  
SS  
TXD  
RXD  
SERIAL-PORT INTERFACE  
LCD  
DRIVERS  
V
SS  
V
V
BAT  
EEPROM  
V
SS  
MOSI  
V
CC  
SI  
SO  
MISO  
SCK  
CS1  
SCK  
CS  
V
SS  
GND  
V
SS  
MAX1360  
CPOUT  
UPIO2  
DIN  
PWM  
LCDBIAS  
PWRON  
DOUT  
SCLK  
UPIO1  
UPIO3  
CPOUT  
V
V
SS  
SS  
V
SS  
FREQOUT  
CS2  
PIEZO  
ALARM  
CS2  
STRIP INSERTED  
CS  
UPIO4  
MEM  
UP  
RESET  
INT  
SNO1  
SCM1  
SNC1  
SNO2  
SCM2  
SNC2  
OUT1  
RESET  
INPUT  
X2IN  
INPUT  
INPUT  
INPUT  
HIGH-FREQUENCY MICRO CLOCK  
32kHz MICRO CLOCK  
DOWN  
CLK  
32KIN  
CLK32K  
V
SS  
AV  
DD  
V
BAT  
TEST  
STRIP  
DV  
DD  
V
DD  
2 AAA OR  
1 LITHIUM  
COIN CELL  
IN1-  
IN1+  
OUT2  
IN2-  
V
SS  
V
AGND  
DGND  
SS  
V
SS  
ADC  
32KIN  
IN2+  
OUT3  
IN3-  
32.768kHz  
32KOUT  
IN3+  
REF  
DV  
DD  
LINEAR  
BG  
REG  
REG  
V
CF+  
SS  
CHARGE-  
PUMP  
DOUBLER  
AIN1  
AIN2  
V
SS  
REMOTE TEMPERATURE-  
MEASUREMENT DIODE  
CF-  
CPOUT  
V
CP  
V
SS  
V
SS  
Figure 28. MAX1360 Self-Biased Electrochemical Meter Application Circuit  
66 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
µC  
V
CP  
LCD GLA SS  
COM<3:0>  
SEG<23:0>  
LCDBIAS  
RX_WAKEUP  
SERIAL-PORT INTERFACE  
RXD  
V
SS  
LCD  
DRIVERS  
V
SS  
BUZ_HI  
BUZ_LO  
PIEZO  
ALARM  
V
BAT  
EEPROM  
MOSI  
V
CC  
SI  
V
SS  
SO  
MISO  
SCK  
CS1  
SCK  
CS  
GND  
V
SS  
MAX1358  
CPOUT  
UPIO2  
DIN  
TXD  
CS2  
DOUT  
UPIO1  
UPIO3  
RX_WAKEUP  
CPOUT  
PWM  
LCDBIAS  
SCLK  
CS  
CS2  
STRIP INSERTED  
UPIO4  
V
SS  
MEM  
UP  
RESET  
INT  
OUTA  
SWA  
FBA  
RESET  
INPUT  
X2IN  
INPUT  
TEST  
STRIP  
INPUT  
INPUT  
HIGH-FREQUENCY MICRO CLOCK  
32kHz MICRO CLOCK  
DOWN  
CLK  
32KIN  
CLK32K  
V
SS  
AV  
DD  
V
BAT  
V
SS  
DV  
DACA  
DD  
V
DD  
OUTB  
SWB  
FBB  
2 AAA OR  
1 LITHIUM  
COIN CELL  
ADC  
V
AGND  
DGND  
SS  
V
SS  
DACB  
SNO1  
SCM1  
SNC1  
32KIN  
OUT1  
IN1-  
IN1+  
REF  
32.768kHz  
32KOUT  
DV  
DD  
LINEAR  
REG  
BG  
REG  
CF+  
SNO2  
SCM2  
SNC2  
CHARGE-  
PUMP  
DOUBLER  
V
SS  
CF-  
CPOUT  
V
CP  
V
AIN1  
AIN2  
SS  
V
SS  
REMOTE TEMPERATURE-  
MEASUREMENT DIODE  
V
SS  
Figure 29. MAX1358 Electrochemical Meter Application Circuit (Traditional and Counter Configuration)  
______________________________________________________________________________________ 67  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ADC Calibration  
Internal to the MAX1358/MAX1359/MAX1360, the ADC  
is 24 bits and is always in bipolar mode. The OFFSET  
CAL and GAIN CAL data are also 24 bits. The conver-  
sion to unipolar and the gain are performed digitally.  
The default values for the OFFSET CAL and GAIN CAL  
registers in the MAX1358/MAX1359/MAX1360 are  
00 0000h and 80 0000h, respectively.  
Grounding and Layout  
For best performance, use PC boards with separate  
analog and digital ground planes.  
Design the PC board so that the analog and digital sec-  
tions are separated and confined to different areas of  
the board. Join the digital and analog ground planes at  
one point. If the DAS (MAX1358/MAX1359/MAX1360) is  
the only device requiring an AGND-to-DGND connec-  
tion, connect planes to the AGND pin of the DAS. In  
systems where multiple devices require AGND-to-  
DGND connections, the connection should still be  
made at only one point. Make the star ground as close  
to the MAX1358/MAX1359/MAX1360 as possible.  
The calibration works as follows:  
ADC = (RAW - OFFSET) x Gain x PGA  
where ADC is the conversion result in the DATA regis-  
ter, RAW is the output of the decimation filter internal to  
the MAX1358/MAX1359/MAX1360, OFFSET is the value  
stored in the OFFSET CAL register, Gain is the value  
stored in the GAIN CAL register, and PGA is the select-  
ed PGA gain found in the ADC register as GAIN<1:0>.  
In unipolar mode, all negative values return a zero  
result and an additional gain of 2 is added.  
Avoid running digital lines under the device because  
these may couple noise onto the device. Run the ana-  
log ground plane under the MAX1358/MAX1359/  
MAX1360 to minimize coupling of digital noise. Make  
the power-supply lines to the MAX1358/MAX1359/  
MAX1360 as wide as possible to provide low-imped-  
ance paths and reduce the effects of glitches on the  
power-supply line.  
For self-calibration, the offset value is the RAW result  
when the inputs are shorted internally and the gain value  
is 1 / (RAW - OFFSET) with the reference connected to  
the input. This is done automatically when these modes  
are selected. The self offset and gain calibration corrects  
for errors internal to the ADC and the results are stored  
and used automatically in the OFFSET CAL and GAIN  
CAL registers. For best results, use the ADC in the same  
configuration as the calibration. This pertains to conver-  
sion rate only because the PGA gain and unipolar/bipo-  
lar modes are performed digitally.  
Shield fast-switching signals such as clocks with digital  
ground to avoid radiating noise to other sections of the  
board. Avoid running clock signals near the analog  
inputs. Avoid crossover of digital and analog signals.  
Good decoupling is important when using high-resolu-  
tion ADCs. Decouple all analog supplies with 10µF  
capacitors in parallel with 0.1µF HF ceramic capacitors  
to AGND. Place these components as close to the  
device as possible to achieve the best decoupling.  
For system calibration, the offset and gain values cor-  
rect for errors in the whole signal path including the  
internal ADC and any external circuits in the signal  
path. For the system calibration, a user-provided zero-  
input condition is required for the offset calibration and  
a user-provided full-scale input is required for the gain  
calibration. These values are automatically written to  
the OFFSET CAL and GAIN CAL registers. The order of  
the calibrations should be offset followed by gain.  
Crystal Layout  
Follow basic layout guidelines when placing a crystal  
on a PC board with a DAS to avoid coupled noise.  
1) Place the crystal as close as possible to 32KIN and  
32KOUT. Keeping the trace lengths between the  
crystal and inputs as short as possible reduces the  
probability of noise coupling by reducing the length  
of the “antennae”. Keep the 32KIN and 32KOUT  
lines close to each other to minimize the loop area  
of the clock lines. Keeping the trace lengths short  
also decreases the amount of stray capacitance.  
The offset correction value is in two’s complement. The  
default value is 000000h, 00...00b, or 0 decimal.  
The gain correction value is an unsigned binary num-  
ber with 23 bits to the right of the decimal point. The  
largest number is therefore 1.1111...1b = 2 - 2-23 and  
the smallest is 0.000...0b = 0, although it does not  
make sense to use a number smaller than 0.1000...0b  
= 0.5. The default value is 800000h, 1.000...0b or 1  
decimal.  
2) Keep the crystal solder pads and trace width to  
32KIN and 32KOUT as small as possible. The larg-  
er these bond pads and traces are, the more likely  
it is that noise will couple from adjacent signals.  
3) Place a guard ring (connect to ground) around the  
crystal to isolate the crystal from noise coupled  
from adjacent signals.  
Changing the offset or gain calibration values does not  
affect the value in the DATA register until a new conver-  
sion has completed. This applies to all the mode bits  
for PGA gain, unipolar/bipolar, etc.  
4) Ensure that no signals on other PC board layers run  
directly below the crystal or below the traces to  
68 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
AIN1  
PGA  
16-BIT ADC  
MUX  
REF  
AGND  
AIN2  
A
= 1, 2, 4, 8  
V
2N3904  
2N3904  
MAX1358  
MAX1359  
MAX1360  
MUX  
AGND  
A
= 1, 1.638, 2  
V
C
REF  
REF  
TEMP  
SENSOR  
1.25V  
REF  
Figure 30. Temperature Measurement with Two Remote Sensors  
AIN1  
IN1+  
IN1-  
MAX1360  
V
IN+  
OUT1  
SNO1  
SNC1  
OUT2  
V
OUT  
AIN2  
A
= 1, 1.638, 2  
V
R
R
3
2
C
R
REF  
REF  
1.25V  
REF  
AGND  
IN1+  
2N3904  
SCM1  
OUT1  
R
IN1-  
IN3+  
R
R
1
1
IN2+  
IN2-  
V
IN-  
OUT3  
IN3-  
SNO2  
SNC2  
AV  
DD  
R
R
SCM2  
R
R
R
R
A
B
2
3
IN2+  
OUT2  
IN2-  
R
R
C
D
MAX1359  
MAX1360  
Figure 32. Programmable-Gain Instrumentation Amplifier  
Figure 31. Strain-Gauge Measurement with Remote  
Temperature Sensor  
32KIN and 32KOUT. The more the crystal is isolat-  
ed from other signals on the board, the less likely it  
is that noise will be coupled into the crystal.  
Maintain a minimum distance of 5mm between any  
digital signal and any trace connected to 32KIN or  
32KOUT.  
5) Place a local ground plane on the PC board layer  
immediately below the crystal guard ring. This  
helps to isolate the crystal from noise coupling from  
signals on other PC board layers.  
Note: The ground plane must be in the vicinity of the  
crystal only and not on the entire board.  
______________________________________________________________________________________ 69  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
DV CPOUT  
DD  
CPOUT  
UPIO_  
MAX1358  
MAX1359  
MAX1360  
MUX  
SV_  
100kΩ  
200kΩ  
(1.8V  
TO  
µC  
PWM  
0.01µF  
100kΩ  
2.6V)  
EN_  
SEG  
n
ALH_  
LCD  
DRIVERS  
100kΩ  
100kΩ  
LCD  
COM  
m
Figure 33. LCD Contrast-Adjustment Application  
Parameter Definitions  
~1.25V  
INL  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line is either a best-straight-line fit or a line  
drawn between the endpoints of the transfer function,  
once offset and gain errors have been nulled. INL for  
the MAX1358/MAX1359/MAX1360 is measured using  
the endpoint method.  
REF  
~19kHz  
MAX1360  
VOLTAGE  
RIPPLE <1mV  
240kΩ  
SNO1  
350kΩ  
SCM1  
SNC1  
PWM  
~0.3V  
60kΩ  
SPDT1  
0.1µF  
AGND  
DNL  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A DNL  
error specification of greater than -1 LSB guarantees no  
missing codes and a monotonic transfer function.  
IN1+  
IN1-  
OUT1  
I
T
TRANSDUCER  
Gain Error  
Gain error is the amount of deviation between the mea-  
sured full-scale transition point and the ideal full-scale  
transition point.  
0.300V ( 1mV)  
Figure 34. Sensor-Bias Voltage Trim Application  
70 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
V
DD  
AV  
DV  
DD  
DD  
MAX1358  
MAX1359  
MAX1360  
DV  
<10µA  
CPOUT  
DD  
V
VOUT  
DD  
V
IN  
MUX  
SV_  
V
µC  
BATT  
100µF  
POWER SUPPLY  
10MΩ  
UPIO_  
EN_  
SHDN  
PWM  
PSCTL  
ON-TIME <100ms TYP  
10s PERIOD TYP  
PSCTL  
+3.3V  
V
ALH_  
DD  
+2.3V  
Figure 35. Power-Supply Sleep-Mode Duty-Cycle Control  
Common-Mode Rejection  
Common-mode rejection (CMR) is the ability of a  
device to reject a signal that is common to both input  
terminals. The common-mode signal can be either an  
AC or a DC signal or a combination of the two. CMR is  
often expressed in decibels.  
DV  
CPOUT  
DD  
MAX1358  
MAX1359  
MAX1360  
MUX  
SV_  
CPOUT(+3.2V)  
0V  
1 TO 8kHz TYP  
~10,000pF  
1kΩ  
Power-Supply Rejection Ratio (PSRR)  
Power-supply rejection ratio (PSRR) is the ratio of the  
input supply change (in volts) to the change in the  
converter output (in volts). It is typically measured in  
decibels.  
UPIO_  
PWM  
Chip Information  
ALH_  
PROCESS: BiCMOS  
Figure 36. Single-Ended Piezoelectric Buzzer Drive  
______________________________________________________________________________________ 71  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
DV CPOUT  
DD  
MAX1358  
MAX1359  
MAX1360  
CPOUT(+3.2V)  
0V  
MUX  
SV_  
1 TO 8kHz TYP  
1kΩ  
UPIO_  
PWM  
CPOUT  
+
6.4V DIFF  
-
~10,000pF  
ALH_  
-CPOUT  
DV CPOUT  
DD  
MUX  
SV_  
1kΩ  
UPIO_  
CPOUT(~+3.2V)  
0V  
1 TO 8kHz TYP  
ALH_  
Figure 37. Differential Piezoelectric Buzzer Drive  
72 ______________________________________________________________________________________  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Pin Configurations  
30 29 28 27 26 25 24 23 22 21  
30 29 28 27 26 25 24 23 22 21  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
20 OUT1  
19 SNC2  
18 SCM2  
17 SNO2  
16 SNC1  
15 SCM1  
AIN2  
AIN1  
REF  
31  
32  
33  
34  
35  
36  
37  
38  
39  
20 OUT1  
19 SNC2  
18 SCM2  
17 SNO2  
16 SNC1  
15 SCM1  
14 SNO1  
13 32KIN  
12 32KOUT  
AIN2  
AIN1  
REF  
REG  
REG  
CF-  
CF-  
MAX1359  
CF+  
MAX1358  
CF+  
14  
13  
12  
11  
SNO1  
CPOUT  
CPOUT  
DV  
DD  
32KIN  
32KOUT  
RESET  
DV  
DD  
DGND  
UPIO1  
DGND  
11  
RESET  
UPIO1 40  
1
2
3
4
5
6
7
8
9
10  
1
2
3
4
5
6
7
8
9
10  
TQFN  
TQFN  
30 29 28 27 26 25 24 23 22 21  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
20  
OUT1  
SNC2  
SCM2  
SNO2  
SNC1  
SCM1  
SNO1  
32KIN  
AIN2  
19  
18  
17  
16  
15  
14  
13  
12  
11  
AIN1  
REF  
REG  
CF-  
MAX1360  
CF+  
CPOUT  
DV  
DD  
32KOUT  
RESET  
DGND  
UPIO1  
1
2
3
4
5
6
7
8
9
10  
TQFN  
______________________________________________________________________________________ 73  
16-Bit Data-Acquisition Systems with ADC, DACs,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
D2  
D
C
L
b
D/2  
D2/2  
k
E/2  
E2/2  
(NE-1) X  
e
C
L
E
E2  
k
L
e
(ND-1) X  
e
e
L
C
C
L
L
L1  
L
L
e
e
A
A1  
A2  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
1
E
21-0141  
2
NOTES:  
1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994.  
2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES.  
3. N IS THE TOTAL NUMBER OF TERMINALS.  
4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1  
SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE  
ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.  
5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm  
FROM TERMINAL TIP.  
6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.  
7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION.  
8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.  
9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR 0.4mm LEAD PITCH PACKAGE T4866-1.  
10. WARPAGE SHALL NOT EXCEED 0.10 mm.  
PACKAGE OUTLINE  
36, 40, 48L THIN QFN, 6x6x0.8mm  
2
E
21-0141  
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
74 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1359BCTL+

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, TQFN-40
MAXIM

MAX1359BCTL+T

Analog Circuit, 1 Func, BIMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO220, TQFN-40
MAXIM

MAX1359BETL

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220WJJD-2, TQFN-40
MAXIM

MAX1359BETL+

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, ROHS COMPLIANT, TQFN-40
MAXIM

MAX1359BETL+T

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WJJD-2, TQFN-40
MAXIM

MAX1359BETL-T

Analog Circuit, 1 Func, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220WJJD-2, TQFN-40
MAXIM

MAX135C/D

15-Bit ADC with Parallel Interface
MAXIM

MAX135CPI

15-Bit ADC with Parallel Interface
MAXIM

MAX135CPI+

ADC, Multi-Slope, 15-Bit, 1 Func, Parallel, 8 Bits Access, CMOS, PDIP28, PLASTIC, DIP-28
MAXIM

MAX135CWI

15-Bit ADC with Parallel Interface
MAXIM

MAX135CWI+

ADC, Multi-Slope, 15-Bit, 1 Func, Parallel, 8 Bits Access, CMOS, PDSO28, 0.300 INCH, SOIC-28
MAXIM

MAX135CWI+T

ADC, Multi-Slope, 15-Bit, 1 Func, Parallel, 8 Bits Access, CMOS, PDSO28, 0.300 INCH, SOIC-28
MAXIM