MAX1403EVKIT [MAXIM]

Easy to Configure;
MAX1403EVKIT
型号: MAX1403EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Easy to Configure

文件: 总20页 (文件大小:1550K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1490; Rev 0; 5/99  
MAX1 4 0 3 EV S ys t e m  
Evluates:/MAX1403  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
Easy to Configure  
The MAX1403 evaluation system (EV system) is a com-  
plete, multichannel data-acquisition system consisting of  
a MAX1403 evaluation kit (EV kit) and a Maxim 68HC11  
microcontroller (µC) module. The MAX1403 is a low-  
power, multichannel, serial-output analog-to-digital con-  
verter (ADC). Windows 95/98™-compatible software pro-  
vides a handy user interface to exercise the MAX1403s  
features. Source code in C++ and 68HC11 assembly lan-  
guage is provided for the low-level portion of the software.  
Collects Up to 8192 Samples at Full Speed  
Complete Evaluation System  
Proven PC Board Layout  
Fully Assembled and Tested  
Ord e rin g In fo rm a t io n  
Order the EV system for comprehensive evaluation of  
the MAX1403 using a personal computer. Order only  
the EV kit if the 68HC11 µC module has already been  
purchased with a previous Maxim EV system or for cus-  
tom use in other µC-based systems.  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
INTERFACE TYPE  
User-Supplied  
MAX1403EVKIT  
MAX1403EVL11  
Windows Software  
Note: The MAX1403 software can be used only with the com-  
plete evaluation system (MAX1403EVL11), which includes the  
68L11DMODULE together with the MAX1403EVKIT.  
The MAX1403 EV kit and EV system can also be used  
to evaluate the MAX1401. Simply order a free sample of  
the MAX1401CAI along with the MAX1403EVKIT.  
MAX1 4 0 3 EV Kit  
Co m p o n e n t Lis t  
MAX1 4 0 3 S t a n d -Alo n e EV Kit  
The MAX1403 EV kit provides a proven PC board layout  
to facilitate evaluation of the MAX1403 with user-provid-  
ed software and hardware. It must be interfaced to  
appropriate timing signals for proper operation. Refer to  
the MAX1403 data sheet for timing requirements. See  
Table 2 for jumper functions.  
DESIGNATION QTY  
DESCRIPTION  
100pF ceramic capacitors (1206)  
0.1µF ceramic capacitors (1206)  
Not installed  
C3–C8  
C9, C10, C11  
C12, C13  
6
3
0
2.2µF aluminum electrolytic radial-  
leaded capacitor  
MAX1 4 0 3 EV S ys t e m  
The MAX1403 EV system operates from a user-sup-  
plied +5V to +12V DC power supply.  
C15  
1
J1  
J2  
1
1
0
6
2
0
0
1
2 x 20 right-angle socket  
Female SMA connector  
Not installed  
JU1–JU8  
R1–R6  
R7, R8  
R9  
MAX1 4 0 3 EV S ys t e m  
Co m p o n e n t Lis t  
100, 5% resistors (1206)  
10, 5% resistors (1206)  
Not installed  
PART  
QTY  
DESCRIPTION  
MAX1403 Evaluation Kit  
68HC11 µC Module  
MAX1403EVKIT  
68L11DMODULE  
1
1
R10  
Not installed  
U1  
Maxim MAX1403CAI  
Maxim MAX6520EUR  
(SOT23 voltage reference, 1.2V,  
20ppm/°C max)  
U2  
1
2.4576MHz ceramic resonator  
Murata CST2.45MGW040  
Y1  
1
1
1
3" x 4" PC board  
MAX1403 evaluation kit  
None  
None  
3 1/2" software disk  
MAX1403 evaluation kit  
Maxim 68HC11 module monitor, ROM  
Version 1.1 (Version 1.0 ROM will not  
work with this EV kit.)  
None  
1
Windows 95/98 is a trademark of Microsoft Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
MAX1 4 0 3 EV S ys t e m  
MAX1 4 0 3 EV Kit File s  
_________________________Qu ic k S t a rt  
Win d o w s Ap p lic a t io n P ro g ra m File s  
Re c o m m e n d e d Eq u ip m e n t  
Obtain the following equipment before you begin:  
FILE  
DESCRIPTION  
• A DC power supply that generates +5VDC to +12VDC  
at 30mA to 50mA  
Application program that runs under  
Windows 95/98  
MAX1403.EXE  
MAX1403.HLP  
KIT1403.L11  
MAX1403.INI  
• An IBM PC-compatible computer running Windows  
95/98  
Help file  
Software loaded into 68HC11 microcon-  
troller  
• A spare serial communications port, preferably a 9-  
pin plug  
Program settings file  
• A serial cable to connect the computers serial port  
to the Maxim 68HC11 Module  
Ex a m p le S o u rc e Co d e File s  
1) Before you begin, make sure your 68HC11 module  
has the Rev. 1.1 ROM. The software will not function  
with the Rev. 1.0 ROM.  
FILE  
DESCRIPTION  
Source code module for driving the  
2) Carefully connect the boards by aligning the 40-pin  
header of the MAX1403 EV kit with the 40-pin con-  
nector of the 68HC11 module. Gently press them  
together. The two boards should be flush against  
one another.  
MAX1403, provided for reference. Includes  
definitions of the register names and low-  
level access routines. Compiled with  
Borland C++ 4.52. Maxim holds the copy-  
right but allows customers to adapt the pro-  
gram for their own use without charge.  
MAX1403.CPP  
3) Connect the DC power source to the µC module at  
termina l b loc k J 2, loc a te d ne xt to the ON/OFF  
s witc h, a long the top e d g e of the µC mod ule .  
Observe the polarity marked on the board.  
Header file for MAX1403.CPP, provided for  
reference.  
MAX1403.H  
4) Connect a cable from the computers serial port to  
the µC module. If using a 9-pin serial port, use a  
straight-through, 9-pin female-to-male cable. If the  
only available serial port uses a 25-pin connector, a  
standard 25-pin to 9-pin adapter will be required.  
The EV kit software checks the modem status lines  
(CTS, DSR, DCD) to confirm that the correct port  
has been selected.  
6 8 HC1 6 S o u rc e Co d e File s  
FILE  
DESCRIPTION  
Evluates:/MAX1403  
Main source code for the KIT1403.L11 pro-  
gram, provided for reference. Maxim holds  
the copyright but allows customers to  
adapt the program for their own use without  
charge.  
KIT1403.ASM  
5) Install the software on your computer by running the  
INSTALL.EXE program from the floppy disk. The  
program files are copied and icons are created for  
them in the Windows 95/98 Start Menu. The EV kit  
s oftwa re e va lua te s b oth the MAX1403 a nd the  
MAX1401.  
Source code defining the program inter-  
face with the Maxim 68HC11 Module ROM  
(Rev. 1.1).  
EVKIT.ASM  
In s t a ll/Un in s t a ll P ro g ra m File s  
6) Start the MAX1403 program by opening its icon in  
the Start Menu.  
FILE  
DESCRIPTION  
INSTALL.EXE  
UNINST.INI  
Installs the EV kit files on your computer.  
Database for uninstall program.  
7) The program will prompt you to connect the µC  
module and turn its power on. Slide SW1 to the “ON”  
position. Select the correct serial port, and click OK.  
The program will automatically download the file  
KIT1403.L11 to the module.  
Removes the EV kit files from your comput-  
UNMAXIM.EXE er. This file is automatically copied to  
C:\WINDOWS during installation.  
2
_______________________________________________________________________________________  
MAX1 4 0 3 EV S ys t e m  
Evluates:/MAX1403  
8) When the software successfully establishes commu-  
nication with the EV kit board, you will see a configu-  
ration tool and some other windows. Verify that the  
CLKIN and Reference Voltage settings are correct.  
Close or minimize this dialog box.  
The EV kit s oftwa re a s s ume s tha t CALOFF+ a nd  
CALOFF- are grounded so that CALOFF measures 0V.  
Similarly, the software assumes that CALGAIN+ is con-  
ne c te d to REFIN+ a nd CALGAIN- is c onne c te d to  
REFIN- so that CALGAIN measures the reference volt-  
age. These two points calibrate the code-to-voltage  
translation function performed in the software.  
9) Apply input signals to the inputs labeled AIN1–AIN5,  
at the bottom edge of the MAX1403 EV kit board.  
AIN6 is analog common. Observe the readout on  
the screen.  
The MAX1403 automatically triggers its measurements,  
unless the FSYNC control bit is set. The EV kit software  
communicates with the MAX1403 at intervals deter-  
mined by the Update Every combo box. To halt this  
automatic update, uncheck the Update Every checkbox  
or change the Update Every to a value between 100ms  
and 60,000ms.  
Up g ra d in g t h e 6 8 HC1 1 Mo d u le  
The MAX1403 EV kit requires Rev. 1.1 of the Maxim  
68HC11 Module ROM. Check the label on device U10  
on the module; if it says “Rev. 1.0,” the device must be  
replaced.  
Normally, the microcontroller collects new data as soon  
as it becomes available by using the INT pin to trigger  
an interrupt service routine. If the INT pin is not used as  
an interrupt, then the MAX1403 must not be operated in  
free-running mode. Check or uncheck the Use INT  
Interrupt checkbox to configure the evaluation kit soft-  
ware.  
The Rev. 1.1 ROM is a 28-pin DIP that comes with the  
EV kit. If it wa s omitte d , c onta c t the fa c tory for a  
replacement.  
To install the new ROM, use the following procedure.  
Use antistatic handling precautions. To reduce the risk  
of ESD damage, gather all required materials and per-  
form the installation at one sitting.  
Co n fig u ra t io n To o l  
The Configuration Tool controls parameters that apply  
to the e ntire EV kit. Like the othe r wind ows , the  
Configuration Tool can be activated from the Show  
menu of the main menu bar. The CLK control should  
match the external ceramic resonator or crystal that  
sets the master clock frequency. The VREF Reference  
Voltage control tells the software what the reference  
voltage is. This is used to convert the raw A/D output  
codes into the corresponding input voltage to speed  
user evaluation. The Data-Rate control determines how  
often the MAX1403 performs a measurement. Some  
data rates provide 16-bit, noise-free resolution when  
used with the SINC3 filter (discussed below). The Filter  
Sync control can be used to inhibit the MAX1403 from  
performing its self-timed measurements. The Buffer  
Inputs checkbox enables the internal input buffers. The  
Burnout Test Currents checkbox enables two small  
(0.1µA) current sources to provide an input stimulus.  
When used with a transducer, these current sources  
can be used to verify that the transducer has not failed  
open or short circuit.  
1) Slide the ON/OFF switch to the OFF position.  
2) Using a flat-blade screwdriver, gently pry U10, the  
REV 1.0 ROM, out of its socket.  
3) Remove the REV 1.1 ROM from its antistatic pack-  
aging.  
4) Align the REV 1.1 ROM in the U10 socket pins.  
Observe correct polarity (the notch at the top of the  
ROM). Verify that the pins are lined up with the  
socket, and gently press the ROM into place.  
Proceed to the regular Quick Start instructions.  
De t a ile d De s c rip t io n  
_________________________o f S o ft w a re  
The MAX1403 digitizes up to seven inputs. The various  
program functions are grouped into windows that are  
accessible from the Show menu on the main menu bar.  
Ma in Dis p la y  
The main display shows the calculated input voltage  
a nd ra w A/D outp ut c od e for e a c h a c tive c ha nne l.  
Although there are nine input channels, only certain  
configurations are allowed.  
At the bottom of the window are input voltage-range  
selection buttons. These buttons configure all input  
channels for the same input voltage range. Although  
the MAX1403 can be operated with three different input  
ranges at the same time, the EV kit software supports  
only a single range for all channels.  
Se le c t a ny s ing le c ha nne l or one of the s c a nning  
sequences from the Inputs menu. AIN 1-6 designates  
an analog input between the AIN1 pin and the AIN6 pin.  
CALOFF designates the signal between the CALOFF+  
and CALOFF- pins. CALGAIN designates the signal  
between the CALGAIN+ and CALGAIN- pins.  
_______________________________________________________________________________________  
3
MAX1 4 0 3 EV S ys t e m  
The digital filter on the MAX1403 can be configured for  
SINC3 or SINC1 operation, which affects the filter cutoff  
frequency. (SINC1 means SIN(X) ÷ X, and SINC3 means  
(SIN(X) ÷ X)3.) The SINC3 filter is required for 16-bit accu-  
racy. The SINC1 filter provides faster settling time with less  
accuracy. Alternatively, the raw modulator output can be  
driven out the DOUT pin; however, the EV kit software  
cannot read data from the MAX1403 in this mode.  
the Begin Sampling button. Sampling rate is controlled  
by the Configuration tool. Sample size is restricted to a  
power of two. Sample Size controls the number of sam-  
ples collected on each selected channel. After the  
samples have been collected, the data is automatically  
uploaded to the host and is graphed. Once displayed,  
the data may be saved to a file.  
While the Sampling tool is open, the other windows are  
locked out. Close the Sampling tool by clicking the  
Close icon in the upper corner.  
Ca lib ra t io n To o l  
The MAX1403 EV kit software can average the mea-  
surements from the calibration channels and use the  
measured values to correct the voltage displays. The  
calibration algorithm assumes that the CALOFF inputs  
are externally connected together and that the CAL-  
GAIN inputs are externally connected to the reference  
voltage (VREF). View the calibration tool by selecting it  
from the Show menu.  
Re g is t e r Dis p la y To o l  
This tool displays all of the internal registers of the  
MAX1403. Mod ify a ny b it va lue b y c he c king or  
unchecking its box. (The START bit and the zero bits in  
the Special Function register (SFR) cannot be modi-  
fied). The Read All Registers button causes the soft-  
ware to read all of the MAX1403s registers. (Not func-  
tional when the MDOUT or FULLPD bit is set.) Refer to  
Table 1 for a guide to register bit functions.  
The software automatically disables calibration if either  
of the c a lib ra tion c ha nne ls re p orts a c od e of 0 or  
262143. This is to prevent erroneous calibration when  
using a transfer function that does not include both 0V  
and VREF.  
Communications Register (COMMS)  
Setting the FSYNC control bit inhibits the MAX1403  
from p e rforming its s e lf-time d me a s ure me nts . If  
FSYNC = 1 when it is time to perform a measurement,  
the MAX1403 simply skips that measurement. Thus,  
power-line frequency rejection is not affected by the  
FSYNC bit.  
When Use CALOFF and CALGAIN for Calibration is  
checked, the software averages the raw A/D codes for  
the CALOFF and CALGAIN channels. The average is  
calculated as a weighted sum of the new data and the  
old average value. The Slower/Faster slide bar controls  
the weight of the new data vs. the weight of the old  
average.  
Setting the STDBY bit places the part in low-power  
standby mode. The serial interface and the CLK oscilla-  
tor continue to operate. The part can be restored to  
normal operation by clearing the STDBY bit.  
Evluates:/MAX1403  
The EV kit software assumes that all three transfer func-  
tion registers are set to the same value.  
Special Function Register (SFR)  
Setting the MDOUT bit makes the raw modulator output  
available on the DOUT pin; however, the EV kit software  
cannot read data from the MAX1403 in this mode.  
This calibration affects only the displayed voltage, not  
the ra w c od e numb e rs . The a ve ra g e CALOFF a nd  
CALGAIN code values are used as the endpoints of a  
linear interpolation, with CALOFF measuring 0V and  
CALGAIN measuring VREF.  
Setting the FULLPD bit in the SFR register places the  
part in full power-down mode. The master oscillator  
does not run. To restore normal operation, click on the  
Reset menu item in the main display. This causes the  
68HC11 software to pulse the MAX1403 RESET pin.  
The linear interpolation formula is as follows:  
VREF(Code CALOFFcode)  
Voltage =  
(CALGAINcode CALOFFcode)PGAgain  
Transfer Function Registers (TF1, TF2, TF3)  
The three transfer function registers (TF1, TF2, TF3) con-  
trol how input voltage is mapped to code values. The  
transfer function registers control a programmable-gain  
amplifier (PGA) and an offset-correction DAC.  
Note: Whe n us ing the c a lib ra tion tool with the  
MAX1403 in buffered mode, CALOFF+ and CALOFF-  
should be disconnected from GND and connected  
instead to REFIN+ so that they remain within the speci-  
fied input range.  
If U/B = 1, the transfer function maps unipolar voltages  
between 0V and VREF. If U/B = 0, then the transfer  
function maps bipolar voltages between -VREF and  
+VREF. Next, the PGA increases the code-per-volt pro-  
S a m p lin g To o l  
To sample data at full speed, select Sample from the  
main display menu, make your selections, and click on  
4
_______________________________________________________________________________________  
MAX1 4 0 3 EV S ys t e m  
Evluates:/MAX1403  
cessing gain, reducing the full-scale voltage range by a  
factor of 1, 2, 4, 8, 16, 32, 64, or 128. Finally, the offset-  
correction DAC offsets the voltage range by up to ±7/6  
of the full-scale voltage range.  
C = 100pF). When scanning between channels, the RC  
filters settling time may increase the acquisition time  
required for full accuracy.  
Eva lu a t in g t h e MAX1 4 0 1  
The MAX1401 can be evaluated by shorting across  
jumpers JU6 and JU7. The MAX1401 is exactly like the  
MAX1403, except that the function of pins 5, 6, 7, and 8  
is changed. Instead of the OUT1/OUT2 outputs and  
DS0/DS1 inputs, these pins are used to provide access  
to the analog signal between the multiplexer and the  
A/D converter. Tables 2 and 3 list the jumper functions  
and default settings. Refer to the MAX1401 data sheet  
for detailed information.  
Input pins AIN1 and AIN2 are controlled by TF1. Input  
pins AIN3 and AIN4 are controlled by TF2. Input pin  
AIN5 is controlled by TF3. Input pin AIN6 is the analog  
common.  
When SCAN = 1, the CALOFF and CALGAIN channels  
are controlled by TF3. When SCAN = 0, the CALOFF  
and CALGAIN channels are controlled by one of the  
transfer function registers, as selected by the A1 and  
A0 bits.  
For simplicity, the EV kit software assumes that all three  
transfer functions are configured alike.  
Me a s u rin g S u p p ly Cu rre n t  
Supply current can be estimated by measuring the volt-  
age across a series resistor. On the EV kit board, the  
MAX1403 draws all of its analog and digital power  
through R8, which is 10. In addition, all analog supply  
current flows through R7, which is also 10.  
De t a ile d De s c rip t io n  
________________________o f Ha rd w a re  
U1, the MAX1403, is a multichannel, high-resolution  
A/D converter (refer to the MAX1403 data sheet). U2,  
the MAX6520, is a 1.2V re fe re nc e (re fe r to the  
MAX6520 data sheet). Y1 contains a ceramic resonator  
and its load capacitors. R1–R6, together with C3–C8,  
form anti-aliasing input filters. R8 and C11 filter the digi-  
tal power supply. The analog supply comes through fil-  
ter R7/C10.  
Tro u b le s h o o t in g  
Problem: unacceptable amounts of noise in the signal.  
Collect a sample of 1024 measurements at a 60Hz data  
rate. Observe whether the problem is caused by 60Hz  
noise.  
Any AC-powered equipment connected to the analog  
signal ground can inject noise. Try replacing AC-pow-  
ered DVMs with battery-powered DVMs.  
In p u t Filt e rin g  
The EV kit has an RC filter on each input with a time  
constant of approximately 0.01µs = 10ns (R = 100,  
_______________________________________________________________________________________  
5
MAX1 4 0 3 EV S ys t e m  
Table 1. Guide to Register Bit Functions  
REGISTER  
BIT NAME  
0/DRDY  
RS2–RS0  
R/W  
DESCRIPTION  
Start bit is zero; DIN pin must be 1 when idle.  
COMMS  
Register select for subsequent operation  
Selects subsequent read or write operation  
Causes software reset when set to 1  
Activates standby power-down mode when set to 1  
Inhibits the A/D converter when set to 1  
Selects the active channel  
RESET  
STDBY  
FSYNC  
A1  
GS1  
A0  
Selects the active channel  
MF1  
Selects the data output rate  
MF0  
Selects the data output rate  
CLK  
Selects the CLKIN frequency  
FS1  
Selects the data output rate  
FS0  
Selects the data output rate  
1
3
FAST  
SCAN  
M1  
Selects SINC filter instead of SINC  
GS2  
Enables the scanning sequences  
Enables the CalGain channel  
Enables the CalOff channel  
Enables the input buffers  
M0  
BUFF  
DIFF  
Selects differential input pairs  
BOUT  
IOUT  
X2CLK  
MDOUT  
FULLPD  
Enables the transducer burn-out test currents  
Enables the OUT1 and OUT2 current sources (MAX1403 only)  
Selects the CLKIN frequency  
Evluates:/MAX1403  
SFR  
TF1, 2, 3  
DATA  
Changes the DOUT and INT pins to provide raw modulator output  
Activates full power-down mode. Use hardware reset to restore normal operation.  
All other bits in SFR must be zero  
G2–G0  
U/B  
Selects the PGA Gain  
Selects unipolar or bipolar coding  
D3–D0  
D17–D0  
DS1  
Selects the offset correction DAC code; D3 = sign, D2–D0 = magnitude  
Raw code value  
Value of the DS1 input pin (MAX1403 only)  
Value of the DS0 input pin (MAX1403 only)  
Channel identification tag  
DS0  
CID2–CID0  
6
______________________________________________________________________________________  
MAX1 4 0 3 EV S ys t e m  
Evluates:/MAX1403  
Table 2. Jumper Functions  
JUMPER  
STATE  
Closed*  
Open  
FUNCTION  
Use CalGain inputs for gain calibration (CALGAIN+ = REFIN+)  
JU1  
Use CalGain inputs as general purpose signal inputs  
Use CalGain inputs for gain calibration (CALGAIN- = REFIN-)  
Use CalGain inputs as general purpose signal inputs  
Use CalOff inputs for offset calibration (CALOFF+ = GND)  
Use CalOff inputs as general purpose signal inputs  
Use CalOff inputs for offset calibration (CALOFF- = GND)  
Use CalOff inputs as general purpose signal inputs  
Use on-board reference U2 (REFIN- = GND)  
Closed*  
Open  
JU2  
JU3  
JU4  
JU5  
Closed*  
Open  
Closed*  
Open  
Closed*  
Open  
REFIN+ and REFIN- must be driven by an external reference  
Connects pin 5 to pin 7  
Closed  
Open  
MAX1403: pin 5 = digital input DS1, pin 7 = current source  
MAX1401: normal operation  
JU6  
Disconnects pin 5 from pin 7  
MAX1403: pin 5 = digital input DS1, pin 7 = current source  
MAX1401: insert filter between mux and A/D  
Connects pin 6 to pin 8  
Closed  
Open  
MAX1403: pin 6 = digital input DS0, pin 8 = current source  
MAX1401: normal operation  
JU7  
JU8  
Disconnects pin 6 from pin 8  
MAX1403: pin 6 = digital input DS0, pin 8 = current source  
MAX1401: insert filter between mux and A/D  
Closed*  
Open  
Use on-board reference U2 (REFIN+ = 1.2V)  
REFIN+ and REFIN- must be driven by an external reference  
* Default trace on top layer of PC board  
Table 3. Default Jumper Settings  
JUMPER  
JU1  
STATE  
Closed*  
Closed*  
Closed*  
Closed*  
Closed*  
FUNCTION  
Use CalGain inputs for gain calibration (CALGAIN+ = REFIN+)  
Use CalGain inputs for gain calibration (CALGAIN- = REFIN-)  
Use CalOff inputs for offset calibration (CALOFF+ = GND)  
Use CalOff inputs for offset calibration (CALOFF- = GND)  
Use on-board reference U2 (REFIN- = GND)  
JU2  
JU3  
JU4  
JU5  
Disconnects pin 5 from pin 7  
JU6  
Open  
MAX1403: pin 5 = digital input DS1, pin 7 = current source  
MAX1401: insert filter between mux and A/D  
Disconnects pin 6 from pin 8  
JU7  
JU8  
Open  
MAX1403: pin 6 = digital input DS0, pin 8 = current source  
MAX1401: insert filter between mux and A/D  
Closed*  
Use on-board reference U2 (REFIN+ = 1.2V)  
* Default trace on top layer of PC board  
_______________________________________________________________________________________  
7
MAX1 4 0 3 EV S ys t e m  
2U  
AMX6502  
Evluates:/MAX1403  
1
AMX1430  
M(AX410)  
Figure 1. MAX1403 EV Kit Schematic  
8
_______________________________________________________________________________________  
MAX1 4 0 3 EV S ys t e m  
Evluates:/MAX1403  
1.0"  
Figure 2. MAX1403 EV Kit Component Placement GuideComponent Side  
_______________________________________________________________________________________  
9
MAX1 4 0 3 EV S ys t e m  
1.0"  
Evluates:/MAX1403  
Figure 3. MAX1403 EV Kit PC Board Layout—Component Side  
10 ______________________________________________________________________________________  
MAX1 4 0 3 EV S ys t e m  
Evluates:/MAX1403  
1.0"  
Figure 4. MAX1403 EV Kit PC Board Layout—Solder Side  
______________________________________________________________________________________ 11  
MAX1 4 0 3 EV S ys t e m  
NOTES  
Evluates:/MAX1403  
12 ______________________________________________________________________________________  
6 8 L1 1 D Mo d u le  
68L1DModule  
_______________Ge n e ra l De s c rip t io n  
____________________Co m p o n e n t Lis t  
The 68L11D module is an assembled and tested PC  
board intended for use with Maxims low-voltage data-  
acquisition evaluation kits (EV kits). The module uses  
Motorolas MC68L11D0FN2 microcontroller (µC) to col-  
lect data samples using the SPI interface. It requires an  
IBM PC computer and an external DC power supply of  
+5V to +16V, or as specified in the appropriate EV kit  
manual.  
DESIGNATION QTY  
DESCRIPTION  
C1, C2  
C3  
2
1
22pF ceramic capacitors  
0.01µF ceramic capacitor  
0.1µF ceramic capacitors  
C4–C9,  
C12–C18  
13  
C10, C11  
D1  
2
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
22µF, 20V tantalum capacitors  
1N4001 diode  
Maxims 68L11D module allows customers to evaluate  
selected Maxim products. It is not intended to be a  
mic rop roc e s s or d e ve lop me nt p la tform, a nd Ma xim  
does not support such use.  
J1  
40-pin, right-angle header  
2-circuit terminal block  
DB9 right-angle socket  
Open  
J2  
____________________Ge t t in g S t a rt e d  
All system components are guaranteed by their various  
manufacturers over the +3V to +3.6V power-supply  
range. Not all system components are guaranteed over  
J3  
JU1, JU2  
LED1  
R1  
Light-emitting diode  
10M, 5% resistor  
the entire 2.5V to 5V V  
power-supply adjustment  
DD  
ra ng e . Ve rify c orre c t op e ra tion us ing the following  
procedures:  
R2  
100kpotentiometer  
274k, 1% resistor  
133k, 1% resistor  
200, 5% resistor  
1) Connect a +5V DC power source (16V max) to the  
µC module at the terminal block located next to the  
on/off switch, in the upper-right corner of the µC  
module. Turn the power switch on.  
R3  
R4  
2) Connect a cable from the computers serial port to  
the µC module. If using a 9-pin serial port, use a  
straight-through, 9-pin, female-to-male cable. If the  
only available serial port uses a 25-pin connector, a  
standard 25-pin to 9-pin adapter is required.  
R5  
R6  
10kSIP resistor pack, pin 1 common  
Slide switch  
SW1  
SW2  
U1  
Momentary push-button switch  
Motorola MC68L11D0FN2  
Maxim MAX3232CSE  
74HC00  
3) Sta rt the e va lua tion kit s oftwa re on the IBM PC.  
When the program asks which port the µC module is  
connected to, press the space bar until the correct  
port is highlighted, and then press ENTER. The soft-  
ware will be in terminal-emulation mode. (If using a  
g e ne ric te rmina l-e mula tion p rog ra m ins te a d of  
Maxim EV kit software, select 1200 baud, eight-bit  
character, no parity, one stop bit. Send a space  
character to start the monitor program.)  
U2  
U3  
U4  
Maxim MAX667CSA  
32k x 8 static RAM 28-pin socket  
Motorola MCM6306DJ15  
U5  
1
4) Adjust trim potentiometer R2 for the desired V  
DD  
U10  
U6  
1
1
1
1
1
1
1
28-pin socket  
74HCT245  
supply voltage. Measure V  
between test point  
DD  
TP1 and ground. The mounting hole next to R2 is  
grounded.  
U7  
Maxim MAX708RCSA  
74HC573  
5) To verify correct system operation, press the ESC  
key, type a capital T”, and then select the count-  
down memory test. If the memory test fails or any  
U8  
U9  
74HC139  
other malfunction is reported, the V voltage is too  
DD  
U10  
Y1  
3V, 8k x 8 ROM  
8MHz crystal  
low; increase V and repeat from step 4.  
DD  
6) Turn the power switch off and connect the µC board  
to an appropriate Maxim EV kit board.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
6 8 L1 1 D Mo d u le  
The 20 x 2-pin header (J1) connects the 68L11D mod-  
ule to a Maxim EV kit. Table 2 lists the function of each  
pin. Use the 68L11D module only with EV kits that are  
designed to support it, and download only code that is  
targeted for the Maxim 68L11D module. Downloading  
incorrect object code into the 68L11D module will pro-  
duce unpredictable results.  
_______________De t a ile d De s c rip t io n  
P o w e r Re q u ire m e n t s  
The 68L11D module draws its power from a user-supplied  
power source connected to terminal block J2. Note the  
positive and negative markings on the board. Nominal  
input voltages should be between +5V and +16V. The  
input current requirement for the 68L11D module is typ-  
ically 20mA plus the current drawn by the evaluation kit  
(EV kit).  
The 8k x 8 boot ROM (U10) checks the system and  
waits for commands from the host. Refer to the EV kit  
manual for specific startup procedures.  
The V  
supply is set by U4, a MAX667 low-dropout  
DD  
S o ft w a re  
All s oftwa re is s up p lie d on a d is k with the EV kit.  
Software operating instructions are included in the EV  
kit manual.  
CMOS regulator. Trim potentiometer R2 sets the supply  
voltage, with an adjustment range of approximately 2.5V  
to 5V. Although the board is designed primarily for 3V  
applications, all of the circuitry is rated to withstand 5V  
levels.  
68L1DModule  
S e ria l Co m m u n ic a t io n s  
J3 is an RS-232 serial port, designed to be compatible  
with the IBM PC 9-pin serial port. Use a straight-through  
DB9 male-to-female cable to connect J3 to the IBM PC  
serial port. If the only available serial port has a 25-pin  
connector, use a standard 25-pin to 9-pin adapter.  
Table 1 shows J3s pinout. The hardware-handshake  
lines are used by the evaluation software to confirm that  
the EV kit is connected to the correct serial port.  
6 8 L1 1 D Mic ro c o n t ro lle r (µC)  
Mo d u le Ha rd w a re  
U1 is Motorola’s 68L11D µC. Contact Motorola for µC  
information, development, and support.  
A MAX708R supervisory circuit on the module monitors  
the V  
logic supply, generates the power-on reset,  
DD  
and produces a reset pulse whenever the manual reset  
button (SW2) is pressed. Note that the MAX708R resets  
the CPU if the supply voltage falls below 2.66V.  
Table 1. Serial Communications Port J3  
The module provides 32kbytes of external CMOS static  
RAM (U5).  
PIN  
NAME  
FUNCTION  
1
DCD  
Handshake; hard-wired to DTR and DSR  
The 74HCT245 octal buffer (U6) provides access to an  
eight-bit port on the 40-pin interface connector. This  
memory-mapped port consists of Intel-compatible read  
a nd write s trob e s , four c hip s e le c ts , four a d d re s s  
LSB's, and eight data bits. Table 3 lists the address  
ranges for each of the memory-mapped elements on  
the 68L11D module.  
RS-232-compatible data output from  
68L11D module  
2
3
RXD  
TXD  
RS-232-compatible data input to  
68L11D module  
4
5
6
7
8
9
DTR  
GND  
DSR  
RTS  
Handshake; hard-wired to DCD and DSR  
Signal ground connection  
The MAX3232 is a 3V-powered, RS-232 interface volt-  
age-level shifter. Its built-in charge pump uses external  
capacitors to generate the output voltages necessary  
to drive RS-232 lines.  
Handshake; hard-wired to DCD and DTR  
Handshake; hard-wired to CTS  
Handshake; hard-wired to RTS  
Unused  
CTS  
None  
2
_______________________________________________________________________________________  
6 8 L1 1 D Mo d u le  
68L1DModule  
Table 2. 40-Pin Data-Connector Signals  
Table 3. 68L11D Module Memory Map  
PIN  
1–4  
5, 6  
NAME  
GND  
V++  
FUNCTION  
ADDRESS RANGE  
FUNCTION  
(HEX)  
Ground  
Unregulated input voltage  
from on-board MAX667  
0000-7FFF  
8000-8FFF  
9000-9FFF  
A000-AFFF  
B000-BFFF  
C000-C03F  
C040-C0FF  
C100-CFFF  
D000-D03F  
D040-DFFF  
E000-FFFF  
User RAM area (U5)  
External chip-select 0 (J1 pin 11)  
External chip-select 1 (J1 pin 12)  
External chip-select 2 (J1 pin 13)  
External chip-select 3 (J1 pin 14)  
Unused  
V
DD  
7, 8  
V
DD  
regulator  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20–26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Read strobe  
RD  
WR  
Write strobe  
Chip select for 8000-8FFF  
Chip select for 9000-9FFF  
Chip select for A000-AFFF  
Chip select for B000-BFFF  
Address bit 0 (LSB)  
Address bit 1  
CS0  
CS1  
CS2  
Internal RAM (U1)  
Unused  
CS3  
ADDR0  
Internal register area (U1)  
Unused  
ADDR1  
ADDR2  
ADDR3  
DB0  
Boot ROM (U10)  
Address bit 2  
Address bit 3  
Data bus bit 0 (LSB)  
Data bus bits 1–7  
General I/O port bit 0 (LSB)  
General I/O port  
DB1–DB7  
PA0/IC3  
PA1/IC2  
PA2/IC1  
PA3/IC4/OC5  
PA4/OC4  
PA5/OC3  
PA6/OC2  
PA7/OC1/PAI  
MISO  
General I/O port  
General I/O port  
General I/O port  
General I/O port  
General I/O port  
General I/O port MSB  
SPI master-in, slave-out  
SPI master-out, slave-in  
SPI serial clock  
MOSI  
SCK  
RESERVED  
E
Reserved for factory use  
System E-clock output  
SPI slave-select input  
SS  
_______________________________________________________________________________________  
3
6 8 L1 1 D Mo d u le  
J2  
VPREREG  
D1  
1N4001  
VDD  
U4  
SW1  
C10  
22µF  
20V  
C11  
22µF  
20V  
8
7
6
5
1
DD MAX667 VIN  
R3  
274k  
1%  
2
3
4
VOUT  
LBI  
LBO  
VSET  
SHDN  
VDD  
VDD  
1.255V  
R2  
100k  
C16  
GND  
C13  
C12  
16  
R4  
133k  
1%  
0.1µF  
V
C14  
CC  
VDD  
1
3
4
5
0.1µF  
0.1µF  
2
6
J3-8  
CTS  
C1+  
C1-  
C2+  
C2-  
V+  
U2  
C15  
68L1DModule  
0.1µF  
MAX3232  
V-  
J3-7  
RTS  
C3  
0.01µF  
C4  
0.1µF  
0.1µF  
11  
10  
12  
14  
7
J3-2  
RXD  
T1  
TXD  
VDD  
V
CC  
J3-3  
TXD  
T2  
R1  
U7  
J3-4  
DTR  
MAX708R  
13  
1
4
5
6
8
7
RXD  
MR  
PFI  
PFO  
J3-6  
DSR  
SW2  
RESET  
NC  
RESET  
RESET  
9
8
J3-1  
DCD  
R2  
GND  
RESET  
15  
J3-5  
GND  
GND  
3
J3-9  
RI  
30  
29  
28  
27  
26  
25  
24  
23  
3
4
5
6
7
8
9
10  
13  
PA0/IN3  
PA1/IN2  
PA2/IN1  
PA0  
PC0  
PC1  
PC2  
PC3  
PC4  
PC5  
PC6  
PC7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
AS  
U1  
PA1  
PA2  
PA3  
PA4  
PA5  
PA6  
PA7  
MC68L11D0FN2  
PA3/IN4/OUT5  
PA4/OUT4  
PA5/OUT3  
PA6/OUT2  
POWER CONNECTIONS  
GND VDD  
VDD  
C17  
0.1µF  
PA7/OUT1/PULSE ACCIN  
U1 1, 2  
22  
PD6/AS  
16  
17  
18  
19  
20  
21  
RXD  
TXD  
MISO  
MOSI  
SCK  
SS  
PD0/RXD  
PD1/TXD  
PD2/MISO  
PD3/MOSI  
PD4/SCK  
PD5/SS  
12  
39  
38  
37  
36  
35  
34  
33  
32  
PD7/R/W  
PB0  
R/W  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
C2  
22pF  
14  
11  
15  
RESET  
XIRQ  
IRQ  
RESET  
XIRQ/VPP  
IRQ/CE  
Y1  
8.00MHz  
R1  
10M  
44  
43  
42  
XTAL  
EXTAL  
E
41  
40  
MODA/LIR  
MODB/VSTBY  
MODA  
MODB  
E
C1  
22pF  
Figure 1. 68L11D Module Schematic Diagram  
_______________________________________________________________________________________  
4
6 8 L1 1 D Mo d u le  
68L1DModule  
U9A  
74HC139  
2
3
4
5
6
7
11  
10  
9
A0  
A1  
Y0  
I/0  
I/1  
I/2  
I/3  
I/4  
I/5  
I/6  
I/7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A14  
A15  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
U5  
12  
13  
15  
16  
17  
18  
19  
8
Y1  
Y2  
Y3  
32 x 8 STATIC RAM  
7
6
IOBUFFER  
CS-11XXX  
5
1
4
3
E
GND  
VDD  
VDD  
25  
24  
21  
23  
2
A9  
U9B  
74HC139  
A10  
A11  
A12  
A13  
A14  
C5  
0.1µF  
C7  
0.1µF  
12  
11  
10  
9
14  
13  
26  
1
A0  
A1  
Y0  
A12  
A13  
CS8XXX  
CS9XXX  
CSAXXX  
CSBXXX  
Y1  
Y2  
Y3  
20  
22  
27  
A15  
RD  
WR  
CS  
OE  
WE  
15  
E
IOBUFFER  
1
2
11  
12  
13  
15  
16  
17  
18  
19  
10  
9
8
7
6
5
4
3
25  
24  
3
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
U10  
U3A  
R/W  
R/W  
27LV64 8k x 8 ROM  
74HC00  
4
5
R/W  
E
6
8
VDD  
VDD  
RD  
U3B  
74HC00  
A9  
21  
23  
2
9
C6  
0.1µF  
C8  
0.1µF  
A10  
A11  
A12  
A13  
R/W  
E
WR  
U3C  
10  
26  
74HC00  
27  
VDD  
VDD  
PGM  
VPP  
OE  
1
22  
20  
12  
13  
E
11  
DATA-XX1X  
U3D  
A13  
CS-11XXX  
CE  
74HC00  
POWER CONNECTIONS  
VDD GND  
1
11  
OE  
C
GND  
AS  
U8  
74HC573  
U3  
U5  
U8  
U9  
14  
28  
20  
16  
7
VDD  
19  
2
3
4
5
6
7
8
9
Q0  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
D0  
14  
10  
8
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
18  
17  
16  
15  
14  
13  
12  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
C18  
0.1µF  
U10 28  
14  
Figure 1. 68L11D Module Schematic Diagram (continued)  
_______________________________________________________________________________________  
5
6 8 L1 1 D Mo d u le  
VDD  
GND  
GND  
J1-1  
J1-2  
J1-4  
GND  
R5  
200Ω  
J1-3  
GND  
GND  
VPREREG  
VDD  
J1-5  
J1-6  
VPREREG  
VDD  
LED1  
J1-7  
J1-8  
19  
RD  
J1-9  
J1-10  
J1-12  
J1-14  
J1-16  
J1-18  
J1-20  
J1-22  
J1-24  
J1-26  
J1-28  
J1-30  
J1-32  
J1-34  
J1-36  
J1-38  
J1-40  
WR  
IOBUFFER  
RD  
OE  
DIR  
74HCT245  
1
U6  
CS8XXX  
CSAXXX  
A0  
J1-11  
J1-13  
J1-15  
J1-17  
J1-19  
J1-21  
J1-23  
J1-25  
J1-27  
J1-29  
J1-31  
J1-33  
J1-35  
J1-37  
J1-39  
CS9XXX  
CSBXXX  
A1  
18  
17  
16  
15  
14  
13  
12  
11  
2
3
4
5
6
7
8
9
B1  
EXTD0  
EXTD1  
EXTD2  
EXTD3  
EXTD4  
EXTD5  
EXTD6  
EXTD7  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
A2  
A3  
68L1DModule  
EXTD0  
EXTD2  
EXTD4  
EXTD6  
PA0/IN3  
PA2/IN1  
PA4/OUT4  
PA6/OUT2  
MISO  
EXTD1  
EXTD3  
EXTD5  
VDD  
C9  
0.1µF  
EXTD7  
VDD GND  
20 10  
U6  
PA1/IN2  
PA3/IN4/OUT5  
PA5/OUT3  
PA7/OUT1/PULSE ACCIN  
VDD  
VDD  
MOSI  
RESERVED  
R6G  
10k  
8
R6A  
10k  
SCK  
R6F  
10k  
SS  
7
2
E
XIRQ  
IRQ  
VDD  
VDD  
SS  
R6E  
10k  
R6B  
10k  
6
3
R6H  
10k  
R6C  
10k  
JU1  
JU2  
9
4
5
MODA  
MODA  
MODB  
R6I  
10k  
R6D  
10k  
10  
MODB  
Figure 1. 68L11D Module Schematic Diagram (continued)  
6
_______________________________________________________________________________________  
6 8 L1 1 D Mo d u le  
68L1DModule  
Figure 2. 68L11D Module Component Placement Guide  
Figure 3. 68L11D Module PC Board Layout—Component Side  
_______________________________________________________________________________________  
7
6 8 L1 1 D Mo d u le  
68L1DModule  
Figure 4. 68L11D Module PC Board Layout—Solder Side  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8 _____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1999 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1403EVL11

Easy to Configure
MAXIM

MAX1403EVSYSTEM

Easy to Configure
MAXIM

MAX1403_02

+3V, 18-Bit, Low-Power, Multichannel, Oversampling (Sigma-Delta) ADC
MAXIM

MAX1406

【15kV ESD-Protected, EMC-Compliant, 230kbps, 3-Tx/3-Rx RS-232 IC
MAXIM

MAX1406C/

【15kV ESD-Protected, EMC-Compliant, 230kbps, 3-Tx/3-Rx RS-232 IC
MAXIM

MAX1406C/D

Line Transceiver, 1 Func, 3 Driver, 3 Rcvr, BICMOS, DIE-16
MAXIM

MAX1406CAE

【15kV ESD-Protected, EMC-Compliant, 230kbps, 3-Tx/3-Rx RS-232 IC
MAXIM

MAX1406CAE+

Line Transceiver, 1 Func, 3 Driver, 3 Rcvr, BICMOS, PDSO16, SSOP-16
MAXIM

MAX1406CAE+T

暂无描述
MAXIM

MAX1406CAE-T

Line Transceiver, 1 Func, 3 Driver, 3 Rcvr, BICMOS, PDSO16, SSOP-16
MAXIM

MAX1406CPE

【15kV ESD-Protected, EMC-Compliant, 230kbps, 3-Tx/3-Rx RS-232 IC
MAXIM

MAX1406CPE+

Line Transceiver, 1 Func, 3 Driver, 3 Rcvr, BICMOS, PDIP16, 0.300 INCH, PLASTIC, DIP-16
MAXIM