MAX1409CAP+T [MAXIM]

Analog Circuit, 1 Func, PDSO20, 5.30 MM, 0.65 MM PITCH, SSOP-20;
MAX1409CAP+T
型号: MAX1409CAP+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog Circuit, 1 Func, PDSO20, 5.30 MM, 0.65 MM PITCH, SSOP-20

文件: 总48页 (文件大小:1108K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2229; Rev 0; 10/01  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
General Description  
Features  
The MAX1407/MAX1408/MAX1409/MAX1414 are low-  
power, general-purpose, multichannel data-acquisition  
systems (DAS). These devices are optimized for low-  
power applications. All the devices operate from a sin-  
gle +2.7V to +3.6V power supply and consume a  
maximum of 1.15mA in Run mode and only 2.5µA in  
Sleep mode.  
+2.7V to +3.6V Supply Voltage Range in Standby,  
Idle, and Run Mode (Down to 1.8V in Sleep Mode)  
1.15mA Run Mode Supply Current  
2.5µA Sleep Mode Supply Current (Wake-Up, RTC,  
and Voltage Monitor Active)  
Multichannel 16-Bit Sigma-Delta ADC  
1.5 ꢀSB (typ) Integral ꢁonlinearity  
30Hz or 60Hz Continuous Conversion Rate  
Buffered or Unbuffered Mode  
Gain of +1/3, +1, or +2V/V  
The MAX1407/MAX1408/MAX1414 feature a differential  
8:1 input multiplexer to the ADC, a programmable  
three-state digital output, an output to shutdown an  
external power supply, and a data ready output from  
the ADC. The MAX1408 has eight auxiliary analog  
inputs, while the MAX1407/MAX1414 include four auxil-  
iary analog inputs and two 10-bit force/sense DACs.  
The MAX1414 features a 50mV trip threshold for the  
signal-detect comparator while the others have a 0mV  
trip threshold. The MAX1409 is a 20-pin version of the  
DAS family with a differential 4:1 input multiplexer to the  
ADC, one auxiliary analog input, and one 10-bit  
force/sense DAC.  
Unipolar or Bipolar Mode  
On-Chip Offset Calibration  
10-Bit Force/Sense DACs  
Buffered 1.25V, 18ppm/°C (typ) Bandgap  
Reference Output  
SPI™/QSPI™ or MICROWIRE™-Compatible Serial  
Interface  
The MAX1407/MAX1408/MAX1414 are available in  
space-saving 28-pin SSOP packages, while the  
MAX1409 is available in a 20-pin SSOP package.  
System Support Functions  
RTC (Valid til 9999) and Alarm  
High-Frequency Pꢀꢀ Clock Output (2.4576MHz)  
+1.8V and +2.7V RESET and Power-Supply  
Voltage Monitors  
Applications  
Medical Instruments  
Industrial Control Systems  
Portable Equipment  
Data-Acquisition System  
Automatic Testing  
Signal Detect Comparator  
Interrupt Generator (INT and DRDY)  
Three-State Digital Output  
Wake-Up Circuitry  
28-Pin SSOP (MAX1407/MAX1408/MAX1414),  
20-Pin SSOP (MAX1409)  
Robotics  
Pin Configurations  
Ordering Information  
PART  
TEMP. RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
PIN-PACKAGE  
28 SSOP  
TOP VIEW  
FB2  
DO  
1
2
28 OUT2  
27 IN3  
MAX1407CAI  
MAX1408CAI  
MAX1409CAP  
MAX1414CAI  
28 SSOP  
FB1  
3
26 DV  
DD  
20 SSOP  
OUT1  
IN0  
4
25 DGND  
24  
5
CS  
28 SSOP  
REF  
6
23 SCLK  
22 DIN  
AGND  
7
MAX1407  
MAX1414  
Pin Configurations continued at end of data sheet.  
Typical Operating Circuit appears at end of data sheet.  
AV  
8
21 DOUT  
20 INT  
DD  
CPLL  
WU1  
9
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
10  
19 CLKIN  
18 CLKOUT  
17 FOUT  
16 DRDY  
15 SHDN  
WU2 11  
RESET 12  
IN1 13  
IN2 14  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
ABSOLUTE MAXIMUM RATINGS  
AV  
AV  
to AGND .........................................................-0.3V to +6V  
Analog Outputs to AGND ......................-0.3V to +(AV  
Digital Outputs to DGND .......................-0.3V to +(AV  
REF to AGND.........................................-0.3V to +(AV  
Operating Temperature Range:  
MAX14__CA_......................................................0°C to +70°C  
MAX14__EA_ ...................................................-40°C to +85°C  
Lead Temperature (soldering, 10s) ................................+300 °C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
DD  
DD  
DD  
to DV ...................................................... -0.3V to +0.3V  
DD  
Analog Inputs to AGND.........................-0.3V to +(AV  
Digital Inputs to DGND.............................................-0.3V to +6V  
Maximum Current Input Into Any Pin ..................................50mA  
+ 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin SSOP (derate 8.0mW/°C above +70°C) ...........640mW  
28-Pin SSOP (derate 9.52mW/°C above +70°C) .........762mW  
DV  
to DGND.........................................................-0.3V to +6V  
DD  
AGND to DGND.....................................................-0.3V to +0.3V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(DV  
= AV  
= +2.7V to 3.6V, 4.7µF at REF, internal V  
, 18nF between CPLL and AV , 32.768kHz crystal across CLKIN and  
REF DD  
DD  
DD  
CLKOUT, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
ADC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution (No Missing Codes)  
Integral Nonlinearity  
RES  
16  
Bits  
Unbuffered mode, Unipolar mode, gain = 1,  
1.5  
3.5  
V
= 0.2V, fully differential input (Note 7)  
NEG  
Unbuffered mode, Unipolar mode, gain = 2,  
= 0.625V, pseudo-differential input  
1.75  
1.70  
2.50  
V
NEG  
INL  
LSB  
Unbuffered mode, Bipolar mode, gain = 1,  
= 0.625V, fully differential input  
V
NEG  
Buffered mode, Bipolar mode, gain = 2,  
V
= 0.625V, fully differential input  
NEG  
Gain = 2  
±5  
±10  
Unipolar  
Gain = 1  
Gain = 1/3  
Gain = 2  
Gain = 1  
Gain = 1/3  
±30  
Output RMS Noise (Note 1)  
µV  
RMS  
±8  
Bipolar Mode  
±16.5  
±±8.5  
Offset Error  
Offset Drift  
Gain Error  
Gain Drift  
On-chip calibration removes this error  
±1  
±1  
% of FSR  
µV/°C  
±0.5  
±1  
Excludes offset and reference errors  
Excludes offset and reference errors  
% of FSR  
ppm/°C  
2
_______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
ELECTRICAL CHARACTERISTICS (continued)  
(DV  
= AV  
= +2.7V to 3.6V, 4.7µF at REF, internal V  
, 18nF between CPLL and AV , 32.768kHz crystal across CLKIN and  
DD  
DD  
REF DD  
CLKOUT, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1/3  
1
MAX  
UNITS  
PGA Gain  
See PGA Gain section  
V/V  
2
Power-Supply Rejection Ratio  
Output Update Rate  
Gain = 1, unipolar and buffered mode  
70  
30  
60  
50  
dB  
Hz  
µs  
RATE bit = 0  
RATE bit = 1  
Continuous  
conversion  
Turn-On Time  
Excluding reference  
SIGNAL DETECT COMPARATOR  
MAX1407/MAX1408/MAX1409  
MAX1414  
-10  
44  
0
0
10  
56  
Differential Input-Detection  
Threshold Voltage  
mV  
50  
Common-Mode Input Voltage  
Turn-On Time  
0.8  
V
10  
µs  
ANALOG INPUTS  
ADC gain = 1  
0
0
0
V
REF  
Unipolar mode  
Bipolar mode  
ADC gain = 2  
ADC gain = 1/3  
ADC gain = 1  
ADC gain = 2  
ADC gain = 1/3  
V
REF/2  
AV  
DD  
REF  
Differential Input Voltage Range  
Absolute Input Voltage Range  
V
V
-V  
V
REF  
-V  
V
REF/2  
REF/2  
-AV  
AV  
DD  
DD  
DD  
Unbuffered  
Buffered  
-0.05  
0.05  
AV  
1.40  
AV  
Unbuffered  
Buffered  
AGND  
0.05  
DD  
Common-Mode Input Voltage  
Range  
V
1.40  
Common-Mode Rejection Ratio  
Gain = 1, unipolar and buffered mode  
90  
15.360  
30.720  
0.5  
dB  
kHz  
30Hz data rate  
FOUT = 2.4576MHz  
Input Sampling Rate  
60Hz data rate  
Input Current  
Buffered mode  
nA  
pF  
Input Capacitance  
15  
FORCE-SENSE DAC (all measurements made with FB1(2) shorted to OUT1(2), unless otherwise noted).  
(MAX1407/MAX1409/MAX1414 only)  
Resolution  
10  
Bits  
LSB  
Differential Nonlinearity  
Integral Nonlinearity  
Offset Error  
Guaranteed monotonic (Note 2)  
1.0  
1.0  
20  
(Note 2)  
(Note 3)  
LSB  
mV  
Offset Drift  
5
µV/°C  
mV  
Gain Error  
Excludes offset and reference drift  
Excludes offset and reference drift  
3.6  
Gain Drift  
10  
190  
0.5  
ppm/°C  
µV/V  
nA  
Line Regulation  
Current into FB1(2)  
_______________________________________________________________________________________  
3
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
ELECTRICAL CHARACTERISTICS (continued)  
(DV  
= AV  
= +2.7V to 3.6V, 4.7µF at REF, internal V  
, 18nF between CPLL and AV , 32.768kHz crystal across CLKIN and  
DD  
DD  
REF DD  
CLKOUT, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
Output Slew Rate  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
010hex to 3FFhex and 3FFhex to 010hex  
18.0  
V/ms  
code swing, R = 12k, C = 200pF  
L
L
To 1/2 LSB (at 10-bit accuracy) of full-  
scale with code transition from 010hex  
Output Settling Time  
65  
µs  
to 3FFhex, R = 12k, C = 200pF  
L
L
Turn-On Time  
100  
µs  
V
AV  
- 0.2  
DD  
OUT1, OUT2 Output Range  
No Load (Note 4)  
0.05  
EXTERNAL REFERENCE (internal reference powered down)  
Input Voltage Range  
Input Resistance  
Input Current  
1.25 0.10  
540  
V
kΩ  
µA  
2.3  
INTERNAL REFERENCE (AV  
= 3V, unless otherwise noted)  
DD  
Output Voltage  
T
A
= +25°C  
1.225  
1.25  
18  
1.275  
V
Output Voltage Temperature  
Coefficient  
ppm/°C  
Output Short-Circuit Current  
3.4  
80  
mA  
Line Regulation  
V /V  
REF  
2.7<AV <3.6V  
µV/V  
DD  
DD  
I
I
= 0µA to 500µA, T = +25°C  
1
2
SOURCE  
A
Load Regulation  
µV/µA  
µVp-p  
= 0µA to 50µA, T = +25°C  
SINK  
A
0.1Hz to 10Hz  
40  
400  
70  
3
Noise Voltage  
e
OUT  
10Hz to 10kHz  
100mV, f = 120Hz  
Power-Supply Rejection Ratio  
Turn-On Time  
dB  
ms  
µP RESET  
Supply Voltage Range  
For valid RESET  
1
3.6  
1.930  
2.80  
V
V
Bit VM = 1  
Bit VM = 0  
1.800  
2.70  
1.865  
2.75  
RESET Trip Threshold Low  
V
AV  
falling  
DD  
TH  
For Normal, Idle, and Standby modes,  
Low AV  
Trip Threshold  
2.70  
2.75  
2.80  
0.4  
V
V
DD  
AV  
falling  
DD  
RESET Output Low Voltage  
(Open-Drain Output)  
I
= 1mA, AV  
= 1.8V  
DD  
SINK  
4
_______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
ELECTRICAL CHARACTERISTICS (continued)  
(DV  
= AV  
= +2.7V to 3.6V, 4.7µF at REF, internal V  
, 18nF between CPLL and AV , 32.768kHz crystal across CLKIN and  
DD  
DD  
REF DD  
CLKOUT, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
RESET Output Leakage  
Turn-On Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.002  
2
MAX  
UNITS  
µA  
AV  
AV  
> V , RESET deasserted  
0.1  
DD  
DD  
TH  
ms  
CRYSTAL OSCILLATOR  
Crystal Frequency  
Crystal Load Capacitance  
Oscillator Stability  
Oscillator Startup Time  
PLL  
= +3V  
32.768  
kHz  
pF  
6
0
AV = +1.8V to +3.6V, excluding crystal  
ppm/V  
s
DD  
1.5  
FOUT Frequency  
AV  
= +3V  
2.4576  
10  
MHz  
ns  
DD  
Absolute Clock Jitter  
Cycle-to-cycle  
Overtemperature excluding crystal,  
0
ppm/°C  
T
= T to T  
MIN MAX  
Frequency Tolerance/Stability  
A
Oversupply voltage, +2.7V< AV < +3.6V  
0
ppm/mV  
DD  
FOUT Rise/Fall Time  
Duty Cycle  
20% to 80% waveform, C = 30pF  
15  
50  
30  
60  
ns  
%
L
40  
DIGITAL INPUTS (DIN, SCLK, CS, WU1, WU2)  
0.7 x  
Input High Voltage  
DV  
= +1.8V to +3.6V  
V
V
DD  
DV  
DD  
0.3 x  
Input Low Voltage  
DV  
DV  
= +1.8V to +3.6V  
= +3V  
DD  
DD  
DV  
DD  
Input Hysteresis  
200  
0.01  
0.01  
10  
mV  
µA  
µA  
µA  
pF  
DIN, SCLK, CS, Input Current  
WU1, WU2 Input Current  
WU1, WU2 Pullup Current  
Input Capacitance  
V
V
V
= 0 or V = DV  
10  
10  
IN  
IN  
IN  
IN  
DD  
= AV  
= 0  
DD  
10  
DIGITAL OUTPUTS (DOUT, FOUT, INT, DRDY, SHDN, D0)  
DOUT, FOUT, DRDY, INT  
V
I
= 1mA, DV = +1.8V to +3.6V  
DD  
0.4  
10  
V
V
OL  
SINK  
Output Low Voltage  
DOUT, FOUT, DRDY, INT,  
SHDN Output High Voltage  
V
I
= 0.2mA, DV  
= +1.8V to +3.6V 0.8 x DV  
DD DD  
OH  
SOURCE  
DOUT Three-State Leakage  
0.01  
15  
µA  
pF  
DOUT Three-State Capacitance  
I
I
= 1mA, DV  
= +1.8V to +3.6V  
= +1.8V to +3.6V  
0.4  
SINK  
SINK  
DD  
SHDN Output Low Voltage  
(MAX1407/MAX1408/MAX1414  
only)  
V
0.04 x  
= 50µA, DV  
DD  
DV  
DD  
_______________________________________________________________________________________  
5
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
ELECTRICAL CHARACTERISTICS (continued)  
(DV  
= AV  
= +2.7V to 3.6V, 4.7µF at REF, internal V  
, 18nF between CPLL and AV , 32.768kHz crystal across CLKIN and  
DD  
DD  
REF DD  
CLKOUT, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
D0 Output Low Voltage  
(MAX1407/MAX1408/MAX1414  
only)  
I
I
= 200µA, DV  
= +2.7V to +3.6V  
DD  
0.7  
mV  
SINK  
D0 Output High Voltage  
(MAX1407/MAX1408/MAX1414  
only)  
DV  
- 0.1  
DD  
= 2mA, DV = +2.7V to +3.6V  
V
SOURCE  
DD  
POWER REQUIREMENTS  
Run, Idle, and Standby mode  
Sleep mode  
2.7  
1.8  
3.6  
3.6  
Supply Voltage Range  
V
V
DD  
MAX1407/MAX1414  
1.15  
1.03  
1.09  
650  
530  
590  
Run mode  
Idle mode  
mA  
MAX1408  
MAX1409  
MAX1407/MAX1414  
MAX1408  
Supply Current (Note 5)  
I
DD  
MAX1409  
µA  
MAX1407/MAX1408/  
MAX1409/MAX1414  
Standby mode  
Sleep mode  
330  
2.5  
MAX1407/MAX1408/  
MAX1409/MAX1414  
1.7  
V
= 2.7V  
DD  
TIMING CHARACTERISTICS  
(MAX1407/MAX1408/MAX1409/MAX1414: AV = DV = 2.7V to 3.6V, T = T  
to T  
unless otherwise noted.)  
MAX,  
DD  
DD  
A
MIN  
PARAMETER  
TIMING PARAMETERS  
SCLK Operating Frequency  
SCLK Cycle Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
2.1  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SCLK  
t
476  
190  
190  
100  
0
CYC  
SCLK Pulse Width High  
SCLK Pulse Width Low  
DIN to SCLK Setup  
t
CH  
t
t
CL  
DS  
DH  
DO  
DIN to SCLK Hold  
t
SCLK Fall to Output Data Valid  
CS Fall to Output Enable  
CS Rise to Output Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
t
C = 50pF (see load circuit)  
200  
240  
240  
L
t
C = 50pF (see load circuit)  
L
DV  
t
C = 50pF (see load circuit)  
L
TR  
t
100  
0
CSS  
CSH  
t
6
_______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
TIMING CHARACTERISTICS (continued)  
(MAX1407/MAX1408/MAX1409/MAX1414: AV = DV = 2.7V to 3.6V, T = T  
to T  
unless otherwise noted.)  
MAX,  
DD  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TYPICAL TIMING PARAMETERS  
Input impedance > 1MΩ  
(MAX1407/MAX1409/MAX1414 only)  
OUT1/OUT2 Turn-Off Time  
100  
µs  
The delay for the sleep voltage monitor  
output, RESET, to go high after AV rises  
DD  
Sleep Voltage Monitor Timeout  
Period  
above the reset threshold (+1.8V when bit  
VM = 1 and +2.7V, when bit VM = 0); this is  
largely driven by the startup of the 32kHz  
oscillator  
t
1.54  
s
DSLP  
Minimum pulse width required to detect a  
wake-up event  
WU1 or WU2 Pulse Width  
t
1
1
µs  
µs  
WU  
The delay for SHDN to go high after a valid  
wake-up event  
Shutdown Deassert Delay  
t
DPU  
The turn-on time for the high-frequency  
clock; it is gated by an AND function with  
three signalsthe RESET signal, the internal  
low voltage V  
monitor signal, and the  
DD  
FOUT Turn-On Time  
t
31.25  
7.82  
ms  
ms  
DFON  
assertion of the PLL; the time delay is timed  
from when the low-voltage monitor trips or  
the RESET going high, whichever happens  
later; FOUT always starts in the low state  
The delay for INT to go low after the FOUT  
clock output has been enabled; INT is used  
as an interrupt signal to inform the µP the  
high-frequency clock has started  
INT Delay  
t
DFI  
The delay after a shutdown command has  
asserted and before FOUT is disabled; this  
gives the microcontroller time to clean up  
and go into Sleep mode properly  
FOUT Disable Delay  
t
1.95  
2.93  
ms  
ms  
DFOF  
The delay after a shutdown command has  
asserted and before SHDN is pulled low  
(turning off the DC-DC converter) (Note 6)  
SHDN Assertion Delay  
t
DPD  
Note 1: Single conversion.  
Note 2: DNL and INL are measured between code 010hex and 3FFhex.  
Note 3: Offset error is referenced to code 010hex.  
Note 4: Output swing is a function of external gain-setting feedback resistors and REF voltage.  
Note 5: Measured with no load on FOUT, DOUT, and the DAC amplifiers. SCLK is idle, and all digital inputs are at DGND or DV  
.
DD  
Note 6: SHDN stays high if the PLL is on.  
Note 7: Actual worst-case performance is 2.5LSꢀ. Guaranteed limit of 3.5LSꢀ is due to production test limitation.  
Note 8: Guaranteed by design. Not production tested.  
_______________________________________________________________________________________  
7
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Load Circuits  
DV  
DV  
DD  
DD  
6kΩ  
6kΩ  
DOUT  
DOUT  
DOUT  
DOUT  
C
C
LOAD  
50pF  
LOAD  
50pF  
C
C
LOAD  
50pF  
LOAD  
50pF  
6kΩ  
6kΩ  
DGND  
DGND  
DGND  
a) V TO HIGH-Z  
DGND  
a) HIGH-Z TO V AND V TO V  
OH  
b) V TO HIGH-Z  
b) HIGH-Z TO V AND V TO V  
OL OH OL  
OH  
OH  
OL  
OL  
LOAD CIRCUITS FOR DISABLE TIME  
LOAD CIRCUITS FOR ENABLE TIME  
Typical Operating Characteristics  
(A  
= D  
= 3V, MAX1407 used, T = +25°C, unless otherwise noted.)  
VDD  
VDD  
A
SUPPLY CURRENT vs.  
SUPPLY VOLTAGE  
SUPPLY CURRENT vs.  
TEMPERATURE  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
RUN MODE  
IDLE MODE  
RUN MODE  
IDLE MODE  
STANDBY  
STANDBY  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
SUPPLY VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
SLEEP MODE SUPPLY CURRENT  
vs. TEMPERATURE  
SLEEP CURRENT vs. FALLING V  
DD  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.80  
2.30  
2.80  
3.30  
-40  
-15  
10  
35  
60  
85  
SUPLLY VOLTAGE (V)  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Typical Operating Characteristics (continued)  
= 3V, MAX1407 used, T = +25°C, unless otherwise noted.)  
VDD A  
(A  
= D  
VDD  
MAXIMUM INL vs. V  
(UNIPOLAR MODE, T = +25°C,  
PSEUDO-DIFFERENTIAL INPUT)  
DD  
MAXIMUM INL vs. V  
(BIPOLAR MODE, T = +25°C,  
FULLY DIFFERENTIAL INPUT)  
DD  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5
4
3
2
1
0
A
B
A
B
2.7  
2.9  
3.1  
3.3  
3.5  
2.7  
2.9  
3.1  
3.3  
3.5  
V
(V)  
DD  
V
(V)  
DD  
A: GAIN = 1, UNBUFFERED MODE, 60sps  
B: GAIN = 1, UNBUFFERED MODE, 30sps  
A: GAIN = 2, BUFFERED MODE, 60sps  
B: GAIN = 2, BUFFERED MODE, 30sps  
MAXIMUM INL vs. TEMPERATURE  
MAXIMUM INL vs. TEMPERATURE  
(UNIPOLAR MODE, V = 3V,  
(BIPOLAR MODE, V = 3V,  
DD  
DD  
PSEUDO-DIFFERENTIAL INPUT)  
FULLY DIFFERENTIAL INPUT)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
B
A
A
B
0
20  
40  
60  
80  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
A: GAIN = 1, UNBUFFERED MODE, 60sps  
B: GAIN = 1, UNBUFFERED MODE, 30sps  
A: GAIN = 2, BUFFERED MODE, 60sps  
B: GAIN = 2, BUFFERED MODE, 30sps  
_______________________________________________________________________________________  
9
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Typical Operating Characteristics (continued)  
(A  
= D  
= 3V, MAX1407 used, T = +25°C, unless otherwise noted.)  
VDD  
VDD  
A
MAXIMUM INL vs. COMMON-MODE  
INPUT VOLTAGE (BIPOLAR MODE,  
INL vs. FULLY DIFFERENTIAL  
INPUT VOLTAGE (BIPOLAR MODE,  
GAIN = 1, UNBUFFERED MODE,  
BUFFERED MODE, V = 2.7V, 30sps,  
DD  
FULLY DIFFERENTIAL INPUT, T = +25°C)  
V
= 0.625V, V = 3V, T = +25°C)  
CM  
DD  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
B
A
-0.5  
-1.0  
-1.5  
-2.0  
0.3  
0.5  
COMMON-MODE INPUT VOLTAGE (V)  
A: GAIN = 1  
B: GAIN = 2  
0.7  
0.9  
1.1  
-1.25  
-0.75  
-0.25  
0.25  
0.75  
1.25  
DIFFERENTIAL INPUT VOLTAGE (V)  
INL vs. PSEUDO-DIFFERENTIAL INPUT  
VOLTAGE RANGE (UNIPOLAR MODE,  
GAIN = 1, UNBUFFERED MODE,  
UNCORRECTED OFFSET ERROR  
vs. TEMPERATURE  
V
= 0, V = 3V, T = +25°C)  
(UNBUFFERED MODE, V = 3V)  
NEG  
DD  
DD  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
A
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
B
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
20  
40  
60  
80  
DIFFERENTIAL VOLTAGE (V)  
TEMPERATURE (°C)  
A: GAIN = 1, UNIPOLAR MODE  
B: GAIN = 2, BIPOLAR MODE  
10 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Typical Operating Characteristics (continued)  
= 3V, MAX1407 used, T = +25°C, unless otherwise noted.)  
VDD A  
(A  
= D  
VDD  
REFERENCE VOLTAGE vs.  
REFERENCE VOLTAGE vs.  
OUTPUT SOURCE CURRENT  
TEMPERATURE  
GAIN ERROR vs. TEMPERATURE  
0.02  
0
0.12  
0.11  
0.10  
0.09  
0.08  
0.07  
0.06  
1.24410  
1.24405  
1.24400  
1.24395  
1.24390  
1.24385  
1.24380  
V
= 3V  
V
REF  
= 1.24406V  
DD  
REF  
= 0  
I
B
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-0.12  
D
A
C
0
20  
40  
60  
80  
-40  
-15  
10  
35  
60  
85  
0
200  
400  
600  
800 1000 1200  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SOURCE CURRENT (µA)  
A: GAIN = 1, UNIPOLAR MODE, UNBUFFERED MODE  
B: GAIN = 1, BIPOLAR MODE, UNBUFFERED MODE  
C: GAIN = 2, UNIPOLAR MODE, BUFFERED MODE  
D: GAIN = 2, BIPOLAR MODE, BUFFERED MODE  
REFERENCE VOLTAGE vs.  
SUPPLY VOLTAGE  
DAC OFFSET ERROR vs.  
TEMPERATURE  
DAC OFFSET ERROR vs.  
SUPPLY VOLTAGE  
1.24412  
1.24410  
1.24408  
1.24406  
1.24404  
1.24402  
1.24400  
1.24398  
-3.4  
-3.6  
-3.8  
-4.0  
-4.2  
-4.4  
-4.6  
-4.8  
-5.0  
-5.2  
-4.400  
-4.425  
-4.450  
-4.475  
-4.500  
-4.525  
-4.550  
-4.575  
-4.600  
NO LOAD  
IDLE MODE  
IDLE MODE  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
SUPPLY VOLTAGE (V)  
-40  
-15  
10  
35  
60  
85  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 11  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Typical Operating Characteristics (continued)  
= 3V, MAX1407 used, T = +25°C, unless otherwise noted.)  
VDD A  
(A  
= D  
VDD  
DAC GAIN ERROR vs.  
TEMPERATURE  
DAC INTEGRAL NONLINEARITY  
DAC GAIN ERROR vs.  
SUPPLY VOLTAGE  
vs. DIGITAL CODE (AV = 2.7V)  
DD  
0.15  
0.10  
0.05  
0
0.15  
0
0.10  
0.05  
0
IDLE MODE  
IDLE MODE  
-0.15  
-0.30  
-0.45  
-0.60  
-0.05  
-0.10  
-0.15  
-0.20  
-0.75  
-0.90  
-1.05  
-1.20  
-1.35  
-0.05  
-0.10  
-0.15  
INTERNAL REF USED  
INTERNAL REF USED  
-1.50  
-40  
-15  
10  
35  
60  
85  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
SUPPLY VOLTAGE (V)  
0
100 200 300 400 500 600 700 800 90010001100  
CODE  
TEMPERATURE (°C)  
DAC INTEGRAL NONLINEARITY  
DAC DIFFERENTIAL NONLINEARITY  
DAC DIFFERENTIAL NONLINEARITY  
vs. DIGITAL CODE (AV = 3.6V)  
vs. DIGITAL CODE (AV = 2.7V)  
vs. DIGITAL CODE (AV = 3.6V)  
DD  
DD  
DD  
0.15  
0.10  
0.05  
0
0.100  
0.075  
0.050  
0.025  
0
0.100  
0.075  
0.050  
0.025  
0
-0.025  
-0.050  
-0.075  
-0.100  
-0.025  
-0.050  
-0.075  
-0.100  
-0.05  
-0.10  
-0.15  
0
100 200 300 400 500 600 700 800 90010001100  
CODE  
0
100 200 300 400 500 600 700 800 90010001100  
CODE  
0
100 200 300 400 500 600 700 800 90010001100  
CODE  
DAC LARGE-SIGNAL OUTPUT  
STEP RESPONSE  
MAX1407 toc25  
CS  
2V/DIV  
OUT_  
500mV/DIV  
V
= 1.25V, AV = 3.0V, R = 0  
DD L  
REF  
12 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Typical Operating Characteristics (continued)  
= 3V, MAX1407 used, T = +25°C, unless otherwise noted.)  
VDD A  
(A  
= D  
VDD  
DAC OUTPUT VOLTAGE  
vs. SINK CURRENT  
DAC OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
DAC OUTPUT VOLTAGE  
vs. SOURCE CURRENT  
1.80  
1.75  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.2450  
1.2445  
1.2440  
1.2435  
1.2430  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
OUTPUT AT FULL SCALE  
NO LOAD  
DAC BUFFER IN UNITY GAIN  
OUTPUT AT FULL SCALE  
DAC BUFFER IN UNITY GAIN  
0
5
10 15 20 25 30 35 40  
SINK CURRENT (µA)  
2.7  
3.0  
3.3  
3.6  
0
1
2
3
4
5
6
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
VOLTAGE MONITOR THRESHOLD  
vs. TEMPERATURE  
DAC OUTPUT VOLTAGE vs.  
TEMPERATURE  
0.15  
0.12  
0.09  
0.06  
0.03  
0
0.10  
0.05  
0
V
REF  
= 1.24406V  
REF  
= 0  
I
V
= 1.865V  
1.8V_THRESHOLD  
-0.05  
-0.10  
-0.15  
-0.20  
-0.25  
-0.03  
-0.06  
-0.09  
-0.12  
V
= 2.75V  
35  
2.7V_THRESHOLD  
-0.15  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 13  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Pin Description  
MAX1407  
MAX1414  
MAX1408  
MAX1409  
PIN  
FUNCTION  
Force/Sense DAC2 Feedback Input  
1
2
1
1
Fꢀ2  
IN7  
Analog Input. Analog input to the negative mux only.  
Force/Sense DAC1 Feedback Input  
2
Fꢀ1  
D0  
2
Digital Output. Three-state general-purpose digital output.  
Force/Sense DAC1 Feedback Input  
3
3
Fꢀ1  
IN6  
4
Analog Input. Analog input to the negative mux only.  
Force/Sense DAC1 Output  
4
OUT1  
IN4  
5
3
Analog Input. Analog input to the positive mux only.  
Analog Input. Analog input to both the positive and negative mux.  
5
IN0  
1.25V Reference ꢀuffer Output/External Reference Input. Reference voltage  
for the ADC and the DAC. Connect a 4.7µF capacitor to REF between REF  
and AGND.  
6
6
4
REF  
Analog Ground. Reference point for the analog circuitry. AGND connects to  
the IC substrate.  
7
8
9
7
8
9
5
6
7
AGND  
AV  
Analog Supply Voltage  
DD  
PLL Capacitor Connection Pin. Connect an 18nF ceramic capacitor between  
CPLL  
WU1  
WU2  
CPLL and AV  
.
DD  
Active-Low Wake-Up Input. Internally pulled up. The device will wake-up from  
Sleep mode to Standby mode when WU1 is asserted.  
10  
11  
10  
11  
8
9
Active-Low Wake-Up Input. Internally pulled up. The device will wake-up from  
Sleep mode to Standby mode when WU2 is asserted.  
Active-Low RESET Output. It remains low while AV  
is below the threshold  
DD  
and stays low for a timeout period after AV  
rises above the threshold.  
12  
12  
10  
RESET  
DD  
RESET is an open-drain output.  
13  
14  
15  
13  
14  
15  
IN1  
IN2  
Analog Input. Analog input to both the positive and negative mux.  
Analog Input. Analog input to both the positive and negative mux.  
Programmable Shutdown Output. Goes low in Sleep mode.  
SHDN  
Active-Low Data Ready Output. A logic low indicates that a new conversion  
result is available in the Data register. DRDY returns high upon completion of  
a full output word read operation. DRDY also signals the end of an ADC  
offset-calibration.  
16  
16  
DRDY  
17  
17  
11  
FOUT  
2.4576MHz Clock Output. FOUT can be used to drive the input clock of a µP.  
32kHz Crystal Output. Connect a 32kHz crystal between CLKIN and  
CLKOUT.  
18  
19  
18  
19  
12  
13  
CLKOUT  
CLKIN  
32kHz Crystal Input. Connect a 32kHz crystal between CLKIN and CLKOUT.  
14 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Pin Description (continued)  
MAX1407  
MAX1414  
MAX1408  
MAX1409  
PIN  
INT  
FUNCTION  
Active-Low Interrupt Output. INT goes low when the PLL output is ready,  
when the signal-detect comparator is tripped, or when the alarm is triggered.  
20  
21  
22  
20  
21  
22  
14  
15  
16  
Serial Data Output. DOUT outputs serial data from the internal shift register  
on SCLKs falling edge. When CS is high, DOUT is three-stated.  
DOUT  
DIN  
Serial Data Input. Data on DIN is written to the input shift register and is  
clocked in at SCLKs rising edge when CS is low.  
Serial Clock Input. Apply an external serial clock to transfer data to and from  
the device. This serial clock can be continuous, with data transmitted in a  
train of pulses, or intermittent while CS is low.  
23  
24  
23  
24  
17  
18  
SCLK  
Active-Low Chip-Select Input. CS is used to select the active device in  
systems with more than one device on the serial bus. Data will not be  
clocked into DIN unless CS is low. When CS is high, DOUT is three-stated.  
CS  
25  
26  
27  
28  
25  
26  
27  
28  
19  
20  
DGND  
Digital Ground. Reference point for digital circuitry.  
Digital Supply Voltage  
DV  
DD  
IN3  
Analog Input. Analog input to both the positive and negative mux.  
Force/Sense DAC2 Output  
OUT2  
IN5  
Analog Input. Analog input to the positive mux only.  
MAX1409/MAX1414 feature sets and Figures 1, 2, 3 for  
Detailed Information  
the Functional Diagrams). These DAS directly interface  
to various sensor outputs and once configured provide  
the stimulus, conditioning, and data conversion, as well  
as microprocessor support. Figure 4 is a Typical  
Application Circuit for the MAX1407/MAX1414.  
The MAX1407/MAX1408/MAX1409/MAX1414 are low-  
power, general-purpose, multichannel DAS featuring a  
multiplexed fully differential 16-bit ∑∆ analog-to-digital  
converter (ADC), 10-bit force/sense digital-to-analog  
converters (DAC), a real-time clock (RTC) with an  
alarm, a bandgap voltage reference, a signal detect  
comparator, two power-supply voltage monitors, wake-  
up control circuitry, and a high-frequency phase-locked  
loop (PLL) clock output all controlled by a 3-wire serial  
interface. (See Table 1 for the MAX1407/MAX1408/  
The 16-bit ∑∆ ADC is capable of programmable contin-  
uous conversion rates of 30Hz or 60Hz and gains of  
1/3, 1, and 2V/V to suit applications with different power  
and dynamic range constraints. The force/sense DACs  
provide 10-bit linearity for precise sensor applications.  
Table 1. MAX1407/MAX1408/MAX1409/MAX1414 Feature Sets  
EXTERNAL  
POWER-  
SUPPLY  
SHUTDOWN  
CONTROL  
ADC  
THREE-  
STATE  
DIGITAL  
FORCE/  
SENSE  
DAC  
COMPARATOR  
THRESHOLD  
(mV)  
ADC DATA  
READY  
(DRDY)  
ADC  
DIFFERENTIAL  
INPUT MUX  
AUXILIARY  
ANALOG  
INPUTS  
RTC  
PART  
OUTPUT  
MAX1407  
MAX1414  
MAX1408  
MAX1409  
4
4
8
1
2
2
0
1
Yes  
Yes  
Yes  
No  
0
50  
0
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
No  
8
8
8
4
0
______________________________________________________________________________________ 15  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
AV  
DD  
CPLL  
FOUT  
CLKIN CLKOUT  
DV  
DD  
CS  
SCLK  
DIN  
32.768kHz  
OSCILLATOR  
RTC AND  
ALARM  
WU2  
2.4576MHz  
PLL  
SERIAL  
INTERFACE  
WAKE-UP  
LOGIC  
WU1  
SHDN  
DOUT  
MAX1407/MAX1414  
COMPARATOR  
INT  
INTERRUPT  
GENERATOR  
OUT2  
OUT1  
DRDY  
IN3  
IN2  
IN1  
IN0  
8:1  
INPUT  
MUX  
BUF  
BUF  
DIGITAL  
OUTPUT  
D0  
REF  
16-BIT ADC  
PGA  
AV  
DD  
FB2  
FB1  
IN3  
1.8V/2.7V  
µP  
1.25V  
BANDGAP  
REFERENCE  
10-BIT DAC  
OUT1  
FB1  
8:1  
INPUT  
MUX  
SUPERVISORS  
IN2  
IN1  
IN0  
REF  
AGND  
BUF  
RESET  
GENERATOR  
10-BIT DAC  
OUT2  
FB2  
RESET  
AGND  
REF  
DGND  
*MAX1414 HAS A +50mV SIGNAL-DETECT COMPARATOR THRESHOLD.  
Figure 1. MAX1407/MAX1414 Functional Diagram  
With the use of two external resistors, the DAC output  
can go from 0.05V to AV - 0.2V. The ADCs and  
Analog Mux  
The MAX1407/MAX1408/MAX1414 include a dual 8 to 1  
multiplexer for the positive and negative inputs of the  
ADC. The MAX1409 has a dual 4 to 1 multiplexer at the  
inputs of the ADC. Figures 1, 2, and 3 illustrate which  
signals are present at the inputs of each multiplexer for  
the MAX1407/MAX1408/MAX1409/MAX1414. The  
MUXP and MUXN bits of the MUX register choose  
which inputs will be seen at the input to the ADC  
(Tables 4 and 5) and the signal-detect comparator. See  
the MUX Register description under the On-Chip  
Registers section for multiplexer functionality.  
DD  
DACs both utilize a precise low-drift 1.25V internal  
bandgap reference for conversions and setting of the  
full-scale range. For applications that require increased  
accuracy, power-down the internal reference and con-  
nect an external reference at REF. The RTC is leap year  
compensated until 9999 and provides an alarm function  
that can be used to wake-up the system or cause an  
interrupt at a predefined time. The power-supply volt-  
age monitors detect when AV  
falls below a trip  
DD  
threshold voltage at either +1.8V or +2.7V causing the  
reset to be asserted. The 4-wire serial interface is used  
to communicate directly between SPI, QSPI, and  
MICROWIRE devices for system configuration and  
readback functions.  
Input Buffers  
The MAX1407/MAX1408/MAX1409/MAX1414 provide  
input buffers to isolate the analog inputs from the capaci-  
tive load presented by the ADC modulator (Figure 5 and  
6). The buffers are chopper stabilized to reduce the effect  
of their DC offsets and low-frequency noise. Since the  
buffers can represent more than 25% of the total analog  
power dissipation (typically 220µA), they may be shut  
down in applications where minimum power dissipation is  
required and the capacitive input load is not a concern  
(see ADC and Power1 Registers). Disable the buffers in  
applications where the inputs must operate close to  
AGND or above +1.4V. The buffers are individually  
enabled or disabled.  
Analog Input Protection  
Internal protection diodes clamp the analog input to  
AV  
and AGND, which allow the channel input pins to  
DD  
swing from AGND - 0.3V to AV  
+ 0.3V without dam-  
DD  
age. However, for accurate conversions near full scale,  
the inputs must not exceed AV by more than 50mV  
DD  
or be lower than AGND by 50mV.  
16 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
AV  
CPLL  
FOUT  
CLKIN CLKOUT  
DV  
DD  
DD  
CS  
SCLK  
DIN  
32.768kHz  
OSCILLATOR  
RTC AND  
ALARM  
WU2  
2.4576MHz  
PLL  
SERIAL  
INTERFACE  
WAKE-UP  
LOGIC  
WU1  
SHDN  
DOUT  
INT  
INTERRUPT  
GENERATOR  
IN5  
COMPARATOR  
IN4  
DRDY  
IN3  
8:1  
INPUT  
MUX  
IN2  
IN1  
IN0  
BUF  
BUF  
DIGITAL  
OUTPUT  
D0  
REF  
16-BIT ADC  
PGA  
AV  
DD  
IN7  
IN6  
1.8V/2.7V  
1.25V  
µP  
BANDGAP  
IN3  
IN2  
8:1  
INPUT  
MUX  
SUPERVISORS  
REFERENCE  
IN1  
MAX1408  
IN0  
BUF  
RESET  
GENERATOR  
REF  
AGND  
RESET  
AGND  
REF  
DGND  
Figure 2. MAX1408 Functional Diagram  
AV  
CPLL  
FOUT  
CLKIN CLKOUT  
DV  
DD  
DD  
CS  
SCLK  
32.768kHz  
OSCILLATOR  
RTC AND  
ALARM  
WU2  
2.4576MHz  
PLL  
SERIAL  
INTERFACE  
WAKE-UP  
LOGIC  
WU1  
DIN  
DOUT  
INTERRUPT  
GENERATOR  
INT  
COMPARATOR  
OUT1  
REF  
4:1  
INPUT  
MUX  
IN0  
BUF  
BUF  
AV  
DD  
16-BIT ADC  
PGA  
1.8V/2.7V  
µP  
SUPERVISORS  
1.25V  
BANDGAP  
REFERENCE  
FB1  
IN0  
10-BIT DAC  
OUT1  
FB1  
4:1  
INPUT  
MUX  
REF  
BUF  
RESET  
GENERATOR  
AGND  
MAX1409  
RESET  
AGND  
REF  
DGND  
Figure 3. MAX1409 Functional Diagram  
______________________________________________________________________________________ 17  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
V
= 3.3V OR V  
BAT  
DD  
LX  
OUT  
RST  
10µF  
LX  
18nF  
0.1µF  
0.1µF  
MAX1833  
0.1µF  
SHDN  
BATT  
CPLL  
SHDN  
AV  
DV  
V
DD  
DD  
DD  
GND  
RESET  
CLKIN  
RESET  
CLKIN  
µP/µC  
IN0  
REF  
32.768kHz  
10µF  
V
BAT  
4.7µF  
R
L
CLKOUT  
FOUT  
IN1  
CS  
SCLK  
DIN  
OUTPUT  
SCK  
R
T
MAX1407  
MAX1414  
MOSI  
MISO  
DOUT  
OUT1  
INPUT  
INPUT  
INT  
R
F
DRDY  
FB1  
FB2  
WU1  
WU2  
I/O  
I/O  
WE  
RE  
CE  
SENSOR  
OUT2  
V
SS  
AGND  
DGND  
Figure 4. MAX1407/MAX1414 Typical Application Circuit  
R
R
EXT  
R
IN  
MUX  
C
C
C
C
ST  
AMP  
EXT  
PIN  
C
C
C
SAMPLE  
Figure 5. Analog InputBuffered Mode  
Buffered Mode  
small dynamic load is present from the chopper. The  
multiplexer exhibits an input leakage current of 0.5nA  
(typ). With high-source resistances, this leakage cur-  
rent may result in a large DC offset error.  
When used in buffered mode, the buffers isolate the  
inputs from the sampling capacitors. The sampling-  
related gain error is dramatically reduced since only a  
18 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
ADC Offset Calibration  
The MAX1407/MAX1408/MAX1409/MAX1414 are capa-  
ble of performing digital offset correction to eliminate  
R
R
MUX  
R
EXT  
SW  
changes due to power-supply voltage or system tem-  
perature. At the end of a calibration cycle, a 16-bit cali-  
bration value is stored in the Offset register in twos  
compliment format. After completing a conversion, the  
MAX1407/MAX1408/MAX1409/MAX1414 subtract the  
calibration value from the ADC conversion result and  
write the offset compensated data to the Data register  
(see Offset Register section). Either a positive or nega-  
tive offset can be calibrated. During offset calibration,  
DRDY will go high. DRDY goes low after calibration is  
complete. The offset register can be programmed to  
C
C
C
C
C
C
EXT  
ST  
SAMPLE  
PIN  
Figure 6. Analog InputUnbuffered Mode  
Unbuffered Mode  
When used in unbuffered mode, the switched capacitor  
sampling front end of the modulator presents a dynam-  
ic load to the driving circuitry. The size of the internal  
sampling capacitor and the input sampling frequency  
(Figure 6) determines the dynamic load (see Dynamic  
Input Impedance section). As the gain increases, the  
input sampling capacitance also increases. Since the  
MAX1407/MAX1408/MAX1409/MAX1414 sample at a  
constant rate for all gain settings, the dynamic load pre-  
sented by the inputs varies with the gain setting.  
15  
skew the ADC offset with a maximum range from -2 to  
15  
(+2 - 1)LSꢀs, e.g., if the programmed 2s complement  
value is +2LSꢀ (-2LSꢀ), this translates to a -2LSꢀ  
(+2LSꢀ) shift in bipolar mode or a -4LSꢀ (+4LSꢀ) shift in  
unipolar mode.To maintain optimum performance, recal-  
ibrate the ADC if the temperature changes by more than  
20°C. Offset calibration should also be performed after  
any changes in PGA gain, bipolar/unipolar input range,  
buffered/unbuffered mode, or conversion speed. During  
calibration, the two mulitplexers will be disabled and the  
inputs to the ADC will internally be shorted to a com-  
mon-mode voltage.  
PGA Gain  
An integrated programmable-gain amplifier (PGA) pro-  
vides three user-selectable gains: +1/3V/V, +1V/V, and  
+2V/V to maximize the dynamic range of the ADC. ꢀits  
GAIN1 and GAIN0 set the desired gain (see ADC  
Register). The gain of +1/3V/V allows the direct mea-  
surement of the supply voltage through an internal mul-  
tiplexer input or through an auxillary input.  
ADC Digital Filter  
The on-chip digital filter processes the 1-bit data  
stream from the modulator using a SINC3 filter function.  
The SINC3 filters settle in three data word periods. The  
settling time is 3/60Hz or 50ms (for RATE bit in ADC  
register set to 1) and 3/30Hz or 100ms (for RATE bit set  
to 0).  
ADC Modulator  
The MAX1407/MAX1408/MAX1409/MAX1414 perform  
analog-to-digital conversions using a single-bit, sec-  
ond-order, switched-capacitor delta-sigma modulator.  
The delta-sigma modulation converts the input signal  
into a digital pulse train whose average duty cycle rep-  
resents the digitized signal information. The pulse train  
is then processed by a digital decimation filter.  
ADC Digital Filter Characteristics  
The transfer function for a SINC3 filter function is that of  
three cascaded SINC1 filters. This can be described in  
the Z-domain by:  
N 3  
1z  
(
)
1
N
The modulator provides 2nd-order frequency shaping  
of the quantization noise resulting from the single bit  
quantizer. The modulator is fully differential for maxi-  
mum signal-to-noise ratio and minimum susceptibility to  
power-supply noise. The modulator operates at one of  
two different sampling rates resulting in an output data  
rate of either 30Hz or 60Hz (see ADC Register).  
H z =  
( )  
1z1  
(
)
and in the frequency domain by:  
3  
ƒ
sin Nπ  
ƒ
M   
1
N
H ƒ =  
( )  
ƒ
sin π  
ƒ
M   
where N, the decimation factor, is the ratio of the modu-  
lator frequency f to the output frequency f .  
M
N
______________________________________________________________________________________ 19  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Shorting Fꢀ1(2) and OUT1(2) configures the DAC in a  
0
-20  
-40  
-60  
-80  
unity-gain setting. Connecting resistors in a voltage-  
divider configuration between OUT1(2), Fꢀ1(2), and  
GND sets a different closed-loop gain for the output  
amplifier (see the Applications Information section).  
1
/
The DAC output amplifier typically settles to  
2LSꢀ  
from a full-scale transition within 65µs, when it is con-  
nected in unity gain and loaded with 12kin parallel  
with 200pF. Loads less than 2kmay degrade perfor-  
mance. See the Typical Operating Characteristics sec-  
tion for the source-and-sink capabilty of the DAC  
output.  
-100  
-120  
-140  
-160  
The MAX1407/MAX1409/MAX1414 feature a software-  
programmable shutdown mode for the DACs that  
reduce the total power consumption when they are not  
used. The two DACs can be powered-down indepen-  
dently or simultaneously by clearing the DA1E and  
DA2E bits (see Power1 Register). DAC outputs OUT1  
and OUT2 go high impedance when powered down.  
The DACs are automatically powered up and ready for  
a conversion when Idle or Run mode is entered.  
0
20 40 60 80 100 120 140 160 180 200  
FREQUENCY (Hz)  
Figure 7. Frequency Response of the SINC3 Filter (Notch at  
60Hz)  
Figure 7 shows the filter frequency response. The  
SINC3 characteristic cutoff frequency is 0.262 times the  
first notch frequency. This results in a cutoff frequency  
of 15.72Hz for a first filter notch frequency of 60Hz (out-  
put data rate of 60Hz). The response shown in Figure 7  
is repeated at either side of the digital filters sample  
Voltage Monitors  
The MAX1407/MAX1408/MAX1409/MAX1414 include  
two on-board voltage monitors. When AV  
is below  
DD  
the RESET trip threshold, RESET goes low and the RST  
bit of the Status register is set to 1. When AV is  
frequency (f ) (f = 15.36kHz for 30Hz and f =  
M
M
M
DD  
30.72kHz for 60Hz) and at either side of the related har-  
monics (2f , 3f ,....).  
below the Low V  
trip threshold, the LVD bit of the  
DD  
M
M
Status register is set to 1.  
The output data rate for the digital filter corresponds  
with the positioning of the first notch of the filters fre-  
quency response. Therefore, for the plot of Figure 7  
where the first notch of the filter is at 60Hz, the output  
data rate is 60Hz. The notches of this (sinx/x)3 filter are  
repeated at multiples of the first notch frequency. The  
SINC3 filter provides an attenuation of better than  
100dꢀ at these notches.  
RESET Voltage Monitor  
The RESET voltage monitor is powered up at all times  
(provided that VM = 0 and LVDE = 1 or VM = 1 and  
LSDE = 1). A threshold voltage of either +1.8V or +2.7V  
may be selected for the RESET voltage monitor (see  
Power2 Register). At initial power-up, the RESET trip  
threshold is set to 2.7V. If the RESET voltage monitor is  
tripped, the RST bit of the status register is set to 1”  
and RESET goes low. RESET is held low for 1.54  
For step changes at the input, enough settling time  
must be allowed before valid data can be read. The  
settling time depends upon the output data rate chosen  
for the filter. The settling time of the SINC3 filter to a full-  
scale step input can be up to four times the output data  
period, or three times if the step change is synchrozied  
with FSYNC.  
seconds (typ) after AV  
rises above the RESET voltage  
DD  
DD  
monitor threshold. If AV  
is no longer below the RESET  
threshold, reading the Status register will clear RST.  
Low V Voltage Monitor  
DD  
When the device is operating in Run, Idle, or Standby  
mode (see Power Modes) and AV goes below +2.7V,  
DD  
Force/Sense DAC  
(MAX1407/MAX1409/MAX1414)  
the low V  
monitor trips, indicating that the supply volt-  
DD  
age is below the safe minimum for proper operation.  
When tripped, the Low V Voltage Monitor sets the LVD  
The MAX1407/MAX1414 incorporate two 10-bit force/  
sense DACs while the MAX1409 has one. The DACs  
use a precise 1.25V internal bandgap reference for set-  
ting the full-scale range. Program the DAC1 and DAC2  
registers through the serial interface to set the output  
voltages of the DACs seen at OUT1 and OUT2.  
DD  
bit of the Status register to 1. If AV  
is no longer below  
DD  
+2.7V, reading the Status register will clear LVD. The low  
V
DD  
monitor is powered down in Sleep mode. When it is  
powered down, the LVD bit stays unchanged. The LVD is  
cleared if it is read in Sleep mode.  
20 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
modes except the sleep mode (see Power Modes). To  
Internal/External Reference  
The MAX1407/MAX1408/MAX1409/MAX1414 have an  
internal low-drift +1.25V reference used for both ADC  
and DAC conversion. The buffered reference output  
can be used as a reference source for other devices in  
the system. The internal reference requires a 4.7µF low-  
ESR ceramic capacitor or tantalum capacitor connect-  
ed between REF and AGND. For applications that  
require increased accuracy, power-down the internal  
reference by writing a 0 to the REFE bit of the Power1  
register and connect an external reference source to  
REF. The valid external reference voltage range is  
1.25V 100mV.  
reactivate the PLL, the following conditions must be  
met: AV  
is greater than the low V  
voltage monitor  
DD  
DD  
threshold, RESET is deasserted, and the PLLE bit is  
equal to 1. FOUT is enabled 31.25ms (t ) after  
DFON  
the PLL is activated. At initial power-up, the PLL is  
enabled. If RESET is asserted while the PLL is running,  
the PLL does not shut down.  
Real-Time Clock (RTC)  
The integrated RTC provides the current second,  
minute, hour, date, month, day, year, century, and mil-  
lenium information. An internally generated reference  
clock of 1.024kHz (derived from the 32.768kHz crystal)  
drives the RTC. The RTC operates in either 24-hour or  
12-hour format with an AM/PM indicator (see RTC_Hour  
Register). An internal calendar compensates for months  
with less than 31 days and includes leap year correc-  
tion through the year 9999. The RTC operates from a  
supply voltage of +1.8V to +3.6V and consumes less  
than 1µA current.  
Crystal Oscillator  
The on-chip oscillator requires an external crystal (or  
resonator) connected between CLKIN and CLKOUT  
with an operating frequency of 32.768kHz. This oscilla-  
tor is used for the RTC, alarm, signal-detect compara-  
tor, and PLL. The oscillator is operational down to 1.8V.  
In any crystal-based oscillator circuit, the oscillator fre-  
quency is based on the characteristics of the crystal. It  
is important to select a crystal that meets the design  
Time of Day Alarm  
The MAX1407/MAX1408/MAX1409/MAX1414 offer a time  
of day alarm which generates an interrupt when the RTC  
reaches a preset combination of seconds, minutes,  
hours, and day (see Alarm Registers). In addition to set-  
ting a single-shotalarm, the Time of Day Alarm can  
also be programmed to generate an alarm every sec-  
ond, minute, hour, day, or week. Dont carestates can  
be inserted into one or more fields if it is desired for them  
to be ignored for the alarm condition. The Time of Day  
Alarm wakes up the device into Standby mode if it is in  
Sleep mode. The Time of Day Alarm operates from a  
supply voltage of +1.8V to +3.6V.  
requirements, especially the capacitive load (C ) that  
L
must be placed across the crystal pins in order for the  
crystal to oscillate at its specified frequency. C is the  
L
capacitance that the crystal needs to seefrom the  
oscillator circuit; it is not the capacitance of the crystal  
itself. The MAX1407/MAX1408/MAX1409/MAX1414  
have 6pF of capacitance across the CLKIN and CLK-  
OUT pins. Choose a crystal with a 32.768kHz oscillation  
frequency and a 6pF capacitive load such as the C-  
002RX32-E from Epson Crystal. Using a crystal with a  
C that is larger than the load capacitance of the oscil-  
L
lator circuit will cause the oscillator to run faster than  
the specified nominal frequency of the crystal.  
Interrupt (INT)  
INT indicates one of three conditions. After receiving a  
valid interrupt (INT goes low), read the Status register  
and the Al_Status register (if the alarm is enabled) to  
identify the source of the interrupt. The three sources of  
interrupts are from the CLK, SDC, and ALIRQ bits.  
Conversely, using a crystal with a C that is smaller  
L
than the load capacitance of the oscillator circuit will  
cause the oscillator to run slower than the specified  
nominal frequency of the crystal.  
Phase-Locked Loop (PLL) and FOUT  
An on-board phase-locked loop generates a  
2.4576MHz clock at FOUT from the 32.768kHz crystal  
oscillator. FOUT can be used to clock a µP or other dig-  
ital circuitry. Connect an 18nF ceramic capacitor from  
PLL Ready  
On power-up, INT is high. 7.82ms (t ) after the PLL  
DFI  
output appears on FOUT, INT goes low (see Figure 15).  
The CLK bit of the Status register is set to 1after  
FOUT is enabled. Reading the Status register clears the  
CLK bit. INT remains low until the device detects a start  
bit through the serial interface from the µP. The purpose  
of this interrupt is to inform the µP that the FOUT clock  
signal is present.  
CPLL to AV  
to create the 2.4576MHz clock signal at  
DD  
FOUT. To power down the PLL, clear PLLE in the  
Power2 register (see Power2 Register) or write to the  
Sleep register. FOUT will be active for 1.95ms (t  
)
DFOF  
after receiving either power-down command and then  
go low. This provides extra clock signals to the µP to  
complete a shutdown sequence. The PLL is active in all  
______________________________________________________________________________________ 21  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
CS  
SCLK  
DIN  
1
0
A4 A3 A2 A1 A0  
x
D7 D6 D5 D4 D3 D2 D1 D0  
1
1 A4 A3 A2 A1 A0 x  
ADC  
CONV  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
DRDY  
Figure 8. ADC Conversion Timing Diagram  
Signal Detect  
SHDN is not available on the MAX1409. Note: Entering  
Sleep mode automatically sets PLLE and SHDE to 0.  
Any wake-up event will cause SHDN to go high. (See  
Wake-Up section.)  
The INT pin will also go low and stay low when the dif-  
ferential voltage on the selected analog inputs exceeds  
the signal-detect comparator trip threshold (0mV for the  
MAX1407/MAX1408/MAX1409 and 50mV for the  
MAX1414). This will latch the SDC bit of the Status reg-  
ister to one. Additional signal detect interrupts cannot  
be generated unless the SDC bit is cleared. To clear  
the SDC bit, the Status register must be read and the  
input must be below the signal-detect threshold.  
Powering down the signal detect-comparator without  
reading the Status register will also clear the SDC bit.  
Similar to the power-up case, INT goes high when the  
device detects a start bit through the serial interface  
from the µP.  
Data Ready (DRDY)  
This pin will go low and stay low upon completion of an  
ADC conversion or end of an ADC calibration. This sig-  
nals the µP that a valid conversion or calibration result  
has been written to the DATA or the OFFSET register.  
The DRDY pin goes high either when the µP has fin-  
ished reading the conversion/calibration result on the  
last rising edge of SCLK (see Figure 8), or when the  
next conversion result is about to be written to the  
DATA register. When no read operation is performed,  
DRDY pulses at 60Hz with a pulse high time of  
162.76µs (or 30Hz with a pulse high time of 325.52µs)  
DRDY is not available on the MAX1409. To see when  
the ADC has completed a normal conversion or a cali-  
bration conversion for the MAX1409, check the status  
of the ADD bit in the Status register.  
Time of Day Alarm  
If the device is in Sleep mode, the alarm will wake up  
the device and set the ALIRQ bit. INT is asserted when  
the PLL is turned on. If an alarm occurs while the  
device is awake (ꢀIASE = 1), the ALIRQ bit will be set  
and INT will go low. INT remains low until the device  
detects a start bit through the serial interface from the  
µP. ALIRQ is reset to 0 when any alarm register is read  
or written to.  
Serial Digital Interface  
The SPI/QSPI/MICROWIRE-serial interface consists of  
chip select (CS), serial clock (SCLK), data in (DIN), and  
data out (DOUT) (See Figure 9). The serial interface  
provides access to 29 on-chip registers, allowing con-  
trol to all the power modes and functional blocks,  
including the ADCs, DACs, and RTC. Table 2 lists the  
address and read/write accessibility of all the registers.  
Shutdown (SHDN)  
SHDN is an active-low output that can be used to con-  
trol an external power supply. Powering up the PLL  
(PLLE = 1) or writing a 1to the SHDE bit of the  
Power2 register causes SHDN to go high. SHDN goes  
low when the SHDE bit is set to 0 only if the PLL is pow-  
ered down (PLLE = 0). The SHDN output stays high for  
) after receiving a power-down command,  
allowing the external power supply to stay alive so that  
the µP can properly complete a shutdown sequence.  
A logic high on CS three-states DOUT and causes the  
MAX1407/MAX1408/MAX1409/MAX1414 to ignore any  
signals on SCLK and DIN. To clock data into or out of  
the internal shift register, drive CS low. SCLK synchro-  
nizes the data transfer. The rising edge of SCLK clocks  
DIN into the shift register, and the falling edge of SCLK  
2.93ms (t  
DPD  
22 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
clocks DOUT out of the shift register. DIN and DOUT are  
transferred as MSꢀ first (data is left justified). Figure 10  
shows detailed serial interface timing.  
between writes to the MAX1407/MAX1408/MAX1409/  
MAX1414. Figures 1114 show the read and write timing  
for 8- and 16-bit data. Data is updated on the last rising  
edge of the SCLK in the command word. CS should not  
go high between data transfers. If CS is toggled before  
the end of a write or read operation, the device can  
enter an incorrect mode. Clock in 72 zeros to clear this  
state and re-arm the serial interface.  
All communication with the MAX1407/MAX1408/  
MAX1409/MAX1414 begins with a command byte on  
DIN, where the first logic 1 on DIN will be recognized as  
the START bit (MSꢀ) for the command byte (Table 3).  
The following seven clock cycles load the command into  
a shift register. These seven bits specify which of the  
registers will be accessed, whether a read or write oper-  
ation will take place, and the length of the subsequent  
data (0-bit, 8-bit, 16-bit, or burst mode). Idle DIN low  
After loading the command byte into the shift register,  
additional clocks shift out data on DOUT for a read and  
shift in data on DIN for a write operation.  
CLKIN  
µP/µC  
32.768kHz  
CLKOUT  
FOUT  
CLKIN  
RESET  
RESET  
CS  
SCLK  
DIN  
OUTPUT  
SCK  
MAX1407  
MAX1408  
MAX1409  
MAX1414  
MOSI  
MISO  
DOUT  
INPUT  
INPUT  
INT  
DRDY  
WU1  
WU2  
I/O  
I/O  
DRDY NOT AVAILABLE ON MAX1409  
Figure 9. SPI/QSPI Interface Connections  
CS  
• • •  
• • •  
t
t
t
t
CSH  
CSS  
CYC  
CH  
t
t
CL  
CSH  
SCLK  
t
DS  
t
DH  
DIN  
• • •  
• • •  
t
DV  
t
t
TR  
DO  
DOUT  
Figure 10. Detailed Serial Interface Timing  
______________________________________________________________________________________ 23  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
CS  
SCLK  
1
0
A4 A3 A2 A1 A0  
x
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DIN  
DOUT  
Figure 11. Serial Interface 16-Bit Write Timing Diagram  
CS  
SCLK  
1
0
A4 A3 A2 A1 A0  
x
D7 D6 D5 D4 D3 D2 D1 D0  
DIN  
DOUT  
Figure 12. Serial Interface 8-Bit Write Timing Diagram  
CS  
SCLK  
1
1
A4 A3 A2 A1 A0  
x
DIN  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
Figure 13. Serial Interface 16-Bit Read Timing Diagram  
CS allows the SCLK, DIN, and DOUT signals to be  
shared among several devices. When short on proces-  
sor I/O pins, connect CS to DGND, and operate the seri-  
al digital interface in CPOL = 1, CPHA = 1 or CPOL = 0,  
CPHA = 0 modes using SCLK, DIN, and DOUT.  
24 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
CS  
SCLK  
DIN  
1
1
A4 A3 A2 A1 A0  
x
D7 D6 D5 D4 D3 D2 D1 D0  
DOUT  
Figure 14. Serial Interface 8-Bit Read Timing Diagram  
Table 2. Register Summary and Addressing  
TARGET REGISTER  
RTC_Sec Register  
RTC_Min Register  
RTC_Hour Register  
RTC_Date Register  
RTC_Month Register  
RTC_Day Register  
RTC_Year Register  
RTC_Century Register  
Power1 Register  
Power2 Register  
Sleep Register  
R/W ACCESS  
ADD4:ADD0  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
TARGET REGISTER  
ADC Register  
R/W ACCESS  
ADD4:ADD0  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
R/W  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
W
MUX Register  
Data Register  
Offset Register  
R/W  
R/W  
R/W  
R
DAC1 Register  
DAC2 Register  
Status Register  
Al_ꢀurst Register  
Al_Sec Register  
Al_Min Register  
Al_Hour Register  
Al_Day Register  
Al_Status Register  
Alarm/Clock_Ctrl Register  
RTC_ꢀurst Register  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Standby Register  
Idle Register  
W
W
R/W  
R/W  
Run Register  
W
Table 3. Command Byte Format  
COMMAND  
Write  
BIT 7 (MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0 (LSB)  
1
1
0
1
ADD4:ADD0 (see Table 2)  
ADD4:ADD0 (see Table 2)  
X
X
Read  
______________________________________________________________________________________ 25  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
On-Chip Registers  
ADC REGISTER (00000)  
FIRST BIT (MSB)  
(LSB)  
NAME  
MODE  
0
RATE  
GAIN1  
0
GAIN0  
0
ꢀUFP  
0
ꢀUFN  
0
ꢀIP  
0
STA1  
0
DEFAULTS  
0
MODE: Conversion Mode bit. A logic zero selects a  
normal ADC conversion, while a logic 1 selects an offset  
calibration conversion. After completing a calibration  
conversion, MODE automatically resets to zero.  
BIP: Unipolar/ꢀipolar bit. A logic zero selects unipolar  
mode while a logic 1 selects bipolar mode.  
STA1: Start bit. Setting STA1 to a logic 1 resets the reg-  
isters inside the ADC filter, updates the ADC configura-  
tion according to the ADC register, and initiates an  
analog-to-digital conversion or offset calibration. The  
initial conversion requires three cycles for valid output  
data, and each subsequent conversion cycle will output  
valid data. After completing the intial conversion, STA1  
automatically resets to 0; however, the ADC will contin-  
ue to do conversions until it is powered down.  
RATE: Conversion Rate bit. A logic zero selects a 30Hz  
conversion rate while a logic 1 selects a 60Hz conver-  
sion rate.  
GAIN1, GAIN0: Gain bits. The Gain bits select the PGA  
gain. For an ADC gain of +1/3, +1, and 2V/V, [GAIN1  
GAIN0] are 00, 01, and 10, respectively.  
BUFP: Positive ꢀuffer bit. When this bit is 0, the positive  
input buffer is bypassed and powered down. When this  
bit is 1 and the ꢀUFE bit in the Power1 register is 1, the  
positive input buffer drives the ADC input sampling  
capacitors.  
Writing to the ADC register with STA1 set to 0 updates  
the ADC register without changing the ADC configura-  
tion and allows the ADC to continue conversions unin-  
terrupted. This allows the ADC and MUX configuration  
to be updated simultaneously. See STA2 bit of the MUX  
register.  
BUFN: Negative ꢀuffer bit. When this bit is 0, the nega-  
tive input buffer is bypassed and powered-down. When  
this bit is 1 and the ꢀUFE bit in the Power1 register is 1,  
the negative input buffer drives the ADC input sampling  
capacitors.  
MUX REGISTER (00001)  
FIRST BIT (MSB)  
(LSB)  
NAME  
MUXP2  
0
MUXP1  
0
MUXP0  
0
MUXN2  
0
MUXN1  
0
MUXN0  
0
DꢀIT  
0
STA2  
0
DEFAULTS  
MUXP2, MUXP1, MUXP0: Positive Multiplexer bits.  
MUXP[2:0] direct one-of-eight positive inputs to the  
positive input of the ADC. Table 4 relates the MUXP bits  
to the positive multiplexer inputs.  
STA2: Start bit. Setting STA2 to a logic 1 updates the  
mux selection, resets the registers inside the ADC filter,  
updates the ADC configuration according to the ADC  
register, and initiates an analog-to-digital conversion.  
The initial conversion requires three cycles for valid out-  
put data, and each subsequent conversion cycle will  
output valid data. STA2 automatically resets to 0 after  
the initial conversion completes. The ADC will continue  
to do conversions until it is powered down. Writing to  
the MUX register with the STA2 bit set to 0, updates the  
MUX register and selection, but leaves the ADC config-  
uration unchanged. The MUX input can be switched  
with the ADC continuously converting without the digital  
filter resetting.  
MUXN2, MUXN1, MUXN0: Negative Multiplexer bits.  
MUXN[2:0] direct one-of-eight (one-of-four for the  
MAX1409) negative inputs to the negative input of the  
ADC. Table 5 relates the MUXN bits to the negative  
multiplexer inputs.  
DBIT: Digital Output bit. This bit controls the output  
state of D0. When the output buffer is enabled, D0 is  
low if Dbit is equal to 0, and high if Dbit is equal to 1.  
D0 is enabled by the D0E bit of the Power2 register.  
26 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Table 4. Positive Mux Decoding  
POSITIVE MUX INPUT  
MAX1408  
MUXP2  
MUXP1  
MUXP0  
MAX1407/MAX1414  
AV  
MAX1409  
AV  
AV  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
DD  
DD  
DD  
REF  
REF  
REF  
OUT1  
IN0  
IN4  
IN0  
IN1  
IN2  
IN3  
IN5  
OUT1  
IN0  
IN1  
IN2  
IN3  
OUT2  
Table 5. Negative Mux Decoding  
NEGATIVE MUX INPUT  
MUXN2  
MUXN1  
MUXN0  
MAX1407/MAX1414  
MAX1408  
AGND  
REF  
MAX1409  
AGND  
REF  
FB1  
IN0  
AGND  
REF  
FB1  
IN0  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IN6  
IN0  
IN1  
IN1  
IN2  
IN2  
IN3  
IN3  
FB2  
IN7  
DATA REGISTER—Read-Only (00010)  
FIRST BIT (MSB)  
ADC15  
ADC14  
ADC6  
ADC13  
ADC5  
ADC12  
ADC4  
ADC11  
ADC3  
ADC10  
ADC2  
ADC9  
ADC1  
ADC8  
ADC0  
(LSB)  
ADC7  
The Data register contains the 16-bit result from the  
most recently completed ADC conversion. The data for-  
mat is binary for unipolar mode and twos complement  
for bipolar mode. After power-up, the DATA register  
contains all zeros.  
______________________________________________________________________________________ 27  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
OFFSET REGISTER (00011)  
FIRST BIT (MSB)  
OFF15  
OFF14  
OFF6  
OFF13  
OFF5  
OFF12  
OFF4  
OFF11  
OFF3  
OFF10  
OFF2  
OFF9  
OFF1  
OFF8  
OFF0  
(LSB)  
OFF7  
The Offset register contains the 16-bit result from the  
most recently completed ADC offset calibration. The  
data format is twos complement and is subtracted from  
the filter output before writing to the Data register. After  
power-up, the Offset register contains all zeros.  
Force Sense DAC Registers  
(MAX1407/MAX1409/MAX1414 only)  
Writing to the DAC1 register updates the output of  
DAC1. Writing to the DAC2 register updates the output  
of DAC2. The DAC data is 10-bit long and left justified.  
Follow the timing diagrams of Figure 11 and Figure 13  
to program these registers. Writing a logic 0 to the  
DA1E or DA2E bit in the POWER2 register disables  
DAC1 or DAC2, respectively. At power-up, DAC1 and  
DAC2 are disabled.  
Each change in ambient operating condition (power  
supply and temperature), PGA gain, bipolar/unipolar  
input range, buffered/unbuffered mode, or conversion  
speed requires an offset calibration. The offset for a  
given ADC configuration can be read and stored by the  
µP to avoid ADC recalibration. When returning to an  
ADC configuration where the offset was stored, write  
back the stored offset to the Offset register. The stored  
offset stays valid as long as the ambient operating con-  
dition remains unchanged (within 20°C).  
DAC1 REGISTER (00100)  
FIRST BIT (MSB)  
DAC1[9]  
DAC1[1]  
DAC1[8]  
DAC1[0]  
DAC1[7]  
x
DAC1[6]  
x
DAC1[5]  
x
DAC1[4]  
x
DAC1[3]  
x
DAC1[2]  
x
(LSB)  
Writing to the DAC1 register will update the DAC1 output  
(OUT1). The output voltage in a unity gain configuration is  
REF  
(0 to 1023), and V  
DAC. The DAC1 data is 10-bit long and left justified. After  
power-up, the DAC1 register contains all zeros.  
is the reference voltage for the  
REF  
V
x N/(210), where N is the integer value of DAC1[9:0]  
DAC2 REGISTER (00101)  
FIRST BIT (MSB)  
DAC2[9]  
DAC2[8]  
DAC2[0]  
DAC2[7]  
x
DAC2[6]  
x
DAC2[5]  
x
DAC2[4]  
x
DAC2[3]  
x
DAC2[2]  
x
DAC2[1]  
(LSB)  
Writing to the DAC2 register will update the DAC2 output  
(OUT2). The output voltage in a unity-gain configuration is  
REF  
(0 to 1023), and V  
DAC. The DAC2 data is 10-bit long and left justified. After  
power-up, the DAC2 register contains all zeros.  
is the reference voltage for the  
REF  
V
x N/(210), where N is the integer value of DAC2[9:0]  
28 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
STATUS REGISTER (00110)  
FIRST BIT (MSB)  
(LSB)  
NAME  
WU2  
0
WU1  
0
RST  
1
LVD  
1
SDC  
0
CLK  
0
ADD  
0
DEFAULT  
0
Alarm Registers  
WU2: Wake-Up2 status bit. When WU2 is pulled low,  
WU2 is set to a logic 1. Reading the Status register  
clears WU2, unless WU2 is still low. When WU2 is  
pulled low when the device is awake (not in Sleep  
mode), WU2 is cleared.  
The Al_Sec, Al_Min, Al_Hour, Al_Day registers are pro-  
grammed through the serial port to store the preset  
time data in binary-coded decimal format (ꢀCD). See  
Table 6 for decimal to ꢀCD conversion. These registers  
can be accessed individually or consecutively using  
burst mode (see Al_Burst Register section).  
WU1: Wake-Up1 status bit. When WU1 is pulled low,  
WU1 is set to a logic 1. Reading the Status register  
clears WU1, unless WU1 is still low. When WU1 is  
pulled low when the device is awake (not in Sleep  
mode), WU1 is cleared.  
To enable the alarm, set the AE bit of the  
Alarm/Clock_Ctrl Register to 1 (see Alarm and RTC  
Programming section). When an alarm occurs in any  
mode, the ALIRQ bit of the AL_Status register will  
change from 0 to 1, and the INT output will go low  
unless you are in Sleep mode. If not already awake, the  
device will wake-up from Sleep mode to Standby mode  
and INT goes low when the PLL output is available. The  
crystal oscillator, RTC, wake-up circuitry, reset voltage  
RST: Reset status bit. When AV  
drops below the  
DD  
RESET Voltage Monitor trip threshold (+1.8V or +2.7V),  
RST is set to 1. This corresponds to the assertion of the  
RESET pin. Reading the Status register clears RST,  
unless AV  
is still below the RESET Voltage Monitor  
DD  
monitor, low V  
voltage monitor (if applicable), and  
the PLL are all powered up in standby mode.  
DD  
trip threshold. At power-up, RST is at a logic 1 until the  
Status register is read.  
Four alarm registers (Al_Sec, Al_Min, Al_Hour, and  
Al_Day) are used to store the preset time value for the  
alarm function. ꢀit 7 of the Al_Sec, Al_Min, Al_Hour,  
Al_Day registers is the mask bit and is used to program  
how often the alarm occurs. Table 7 shows how ꢀit 7 of  
the four alarm registers should be set for the time of  
day alarm to occur. Other combinations of mask bits  
are possible to set different alarms.  
LVD: Low V  
status bit. When AV  
drops below the  
DD  
DD  
Low V  
Voltage Monitor trip threshold (+2.7V), LVD is  
DD  
set to a logic 1. Reading the Status register clears LVD  
unless AV is still below 2.7V. At power-up, LVD is at  
DD  
a logic 1 until the Status register is read. When the Low  
V
Voltage Monitor is powered down (LVDE = 0), the  
DD  
LVD bit stays unchanged.  
SDC: Signal-Detect Comparator status bit. SDC is set  
to 1when the differential polarity voltage across the  
signal-detect comparator exceeds the signal-detect  
threshold (0mV for the MAX1407/MAX1408/MAX1409  
and 50mV for the MAX1414). This corresponds to the  
assertion of the INT pin. Reading the Status register  
clears SDC unless the condition remains true. SDC is  
also reset to 0 when the signal-detect comparator is  
powered down (SDCE = 0).  
Table 6. BCD Conversion  
DECIMAL DIGIT  
BCD  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
0
1
2
3
4
5
6
7
8
9
CLK: FOUT Clock Enable status bit. CLK is set to 1”  
after the FOUT clock pin has been enabled in t  
DFON  
milliseconds (see Figure 15). Reading the Status register  
clears the CLK bit.  
1000  
1001  
ADD: ADC Done Status bit. ADD is set to 1to indicate  
that the ADC has completed either a normal conversion  
or a calibration conversion, and the conversion result is  
available to be read. This corresponds to the assertion  
of the DRDY pin. Reading either the Data or Offset  
register clears the ADD bit. Reading the Status register  
WILL NOT clear this bit.  
UNUSED CODES  
1010  
1011  
1100  
1101  
1110  
1111  
______________________________________________________________________________________ 29  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Table 7. Common Mask Bits Combinations  
ALARM REGISTER MASK BITS (BIT 7)  
FUNCTION  
HOW OFTEN?  
AL_SEC  
AL_MIN  
M_HOUR  
M_DAY  
1
0
1
1
1
1
1
1
Alarm occurs once per second  
Once per second  
Once per minute  
Alarm occurs when seconds match  
Alarm occurs when minutes and  
seconds match  
0
0
0
0
0
0
1
0
0
1
1
0
Once per hour  
Once per day  
Once per week  
Alarm occurs when hours, minutes, and  
seconds match  
Alarm occurs when day, hours, minutes,  
and seconds match  
AL_BURST REGISTER (01000)  
Writing to this register begins the alarm burst mode  
transfer. All the alarm clock registers are consecutively  
read from or written to starting with ꢀit7 of the Al_Sec  
register followed by the Al_Min register, Al_Hour regis-  
ter, and finally the Al_Day register.  
AL_SEC REGISTER (01001)  
FIRST BIT (MSB)  
(LSB)  
NAME  
M_SEC  
0
10SEC2  
0
10SEC1  
0
10SEC0  
0
SEC3  
0
SEC2  
0
SEC1  
0
SEC0  
0
DEFAULT  
M_SEC: Alarm mask bit. A logic 1 masks out the sec-  
onds alarm comparator.  
SEC[3:0]: These are the second bits (09 seconds) of  
the alarm.  
10SEC[2:0]: These are the 10-second bits (050 sec-  
onds) of the alarm.  
AL_MIN REGISTER (01010)  
FIRST BIT (MSB)  
(LSB)  
NAME  
M_MIN  
0
10MIN2  
0
10MIN1  
0
10MIN0  
0
MIN3  
0
MIN2  
0
MIN1  
0
MIN0  
0
DEFAULT  
M_MIN: Alarm mask bit. A logic 1 masks out the minute  
alarm comparator.  
MIN[3:0]: These are the minute bits (09 minutes) of  
the alarm.  
10MIN[2:0]: These are the 10-minute bits (050 min-  
utes) of the alarm.  
30 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
AL_HOUR REGISTER (01011)  
FIRST BIT (MSB)  
(LSB)  
HR0  
0
NAME  
M_HR  
0
12/24  
0
AP  
0
10HR  
0
HR3  
0
HR2  
0
HR1  
0
DEFAULT  
M_HR: Alarm mask bit. A logic 1 masks out the hour  
AP: AM/PM bit. In 12-hour mode, a logic 1 indicates  
PM and a logic 0 indicates AM. In 24-hour mode, this  
bit is the second 10-hour bit (20 hours).  
alarm comparator.  
12/24: 12/24-hour mode bit. A logic 1 selects 12-hour  
mode while a logic 0 selects 24-hour mode. This bit  
must be the same as the 12/24-bit of the RTC_Hour  
register for correct operation.  
10HR: This is the 10-hour bit (010 hours) of the alarm.  
HR[3:0]: These are the hour bits (09 hours) of the  
alarm.  
AL_DAY REGISTER (01100)  
FIRST BIT (MSB)  
(LSB)  
NAME  
M_DAY  
0
DAY2  
0
DAY1  
0
DAY0  
1
DEFAULT  
0
0
0
0
M_DAY: Alarm mask bit. A logic 1 masks out the day  
alarm comparator.  
DAY[2:0]: These are the day of the week bits (Sunday  
Saturday). The following table is the Hex code for  
each day of the week.  
AL_DAY  
DAY[2:0]  
SUN  
1h  
MON  
2h  
TUE  
3h  
WED  
4h  
THU  
5h  
FRI  
6h  
SAT  
7h  
AL_STATUS REGISTER (01101)  
FIRST BIT (MSB)  
(LSB)  
NAME  
ALIRQ  
0
DEFAULT  
0
0
0
0
0
0
0
ALIRQ: Alarm Interrupt Request ꢀit. A logic 1 indicates  
that the current time has matched the preset time in the  
alarm registers (this corresponds to the assertion of the  
INT pin). ALIRQ resets to 0 when any alarm register is  
read or written to.  
______________________________________________________________________________________ 31  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
ALARM/CLOCK_CTRL REGISTER (01110)  
FIRST BIT (MSB)  
(LSB)  
AE  
NAME  
WE  
0
DEFAULT  
0
0
0
0
0
0
0
WE: Write Enable bit. WE must be set to 1before any  
write operation to the clock and the alarm register. A  
logic 0 disables write operations to the clock and alarm  
registers, including the AE bit. The WE signal takes  
effect after the 8th SCLK rising edge for an 8-bit write.  
sequentially with the MSꢀ of the Seconds register first.  
They must all be read out as a group of eight registers  
of eight bits each, for proper execution of the burst  
read function. The worst-case error that can occur  
between the actualtime and the reportedtime is  
one second. As with a read operation, using single  
writes to update the RTC can lead to collisions. To  
guarantee an accurate update of the RTC, use the  
ꢀurst Write mode (see Alarm and RTC Programming  
section).  
AE: Alarm Enable bit. A logic 0 disables the alarm func-  
tion. When AE equals 1, the ALIRQ bit in the Al_Status  
register will be set to 1 whenever the current time  
matches that of the alarm registers.  
Real-Time Clock (RTC)  
The RTC_Sec, RTC_Min, RTC_Hour, RTC_Date,  
RTC_Month, RTC_Day, RTC_Year, and RTC_Century  
registers can be accessed one register at a time or in  
ꢀurst mode (see RTC_BURST REGISTER section). The  
RTC runs continuously and does not stop for read or  
write operations. To prevent the data from changing  
during a read operation, complete all read operations  
on the RTC registers (single register reads and burst  
reads) in less than 1ms.  
The RTC defaults to 24-hr mode, 00:00:00, Sunday,  
January 01, 1970 during power-up. January 01, 1970  
falls on a Thursday, but since this RTC is not time-  
based, the default values do not have an impact on the  
functionality of the clock, and they merely provide some  
means for testing. If the alarm or RTC registers are pro-  
grammed to some unused states, the device chooses  
the default values.  
RTC_BURST REGISTER (01111)  
Writing to this address begins the burst mode transfer.  
In this mode, all the real-time clock registers are contin-  
uously read or written starting with ꢀit 7 of the  
RTC_Sec, RTC_Min, RTC_Hour, RTC_Date,  
RTC_Month, RTC_Day, RTC_Year, and RTC_Century  
registers. When reading, the contents of DIN will be  
ignored and each registers 8-bit data will be clocked  
out at DOUT on the falling edge of SCLK (total of 64  
clock cycles). When writing, start with the Seconds’  
register MSꢀ first and continue through the Century  
register (see Alarm and RTC Programming section).  
Using single reads to read all the RTC registers could  
lead to errors as much as a century. Since the registers  
are updated between read operations, the register con-  
tents may change before all RTC registers have been  
read, when reading one register at a time. The most  
accurate way to get the time information of the RTC  
registers is with a burst read. In the burst read, a snap-  
shot of the eight RTC registers (RTC_Sec, RTC_Min,  
RTC_Hour, RTC_Date, RTC_Month, RTC_Day,  
RTC_Year, RTC_Century) is taken once and read  
RTC_SEC REGISTER (10000)  
FIRST BIT (MSB)  
(LSB)  
NAME  
CH  
0
10SEC2  
0
10SEC1  
0
10SEC0  
0
SEC3  
0
SEC2  
0
SEC1  
0
SEC0  
0
DEFAULT  
CH: Clock Halt bit. Writing a 1to CH disables the  
real-time clock and oscillator.  
SEC[3:0]: These are the second bits (09 seconds) of  
the RTC.  
10SEC[2:0]: These are the 10 second bits (1050 sec-  
onds) of the RTC.  
32 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
RTC_MIN REGISTER (10001)  
FIRST BIT (MSB)  
(LSB)  
MIN0  
0
NAME  
10MIN2  
10MIN1  
0
10MIN0  
0
MIN3  
0
MIN2  
0
MIN1  
0
DEFAULT  
0
0
10MIN[2:0]: These are the 10 minute bits (050 min-  
utes) of the RTC.  
MIN[3:0]: These are the minute bits (09 minutes) of  
the RTC.  
RTC_HOUR REGISTER (10010)  
FIRST BIT (MSB)  
(LSB)  
NAME  
12/24  
0
AP  
0
10HR  
0
HR3  
0
HR2  
0
HR1  
0
HR0  
0
DEFAULT  
0
12/24: 12/24-hour mode bit. A logic 1 selects 12-hour  
mode while a logic 0 selects 24-hour mode. This bit  
must be the same as the 12-/24-bit of the AL_Hour reg-  
ister for correct operation.  
AP: AM/PM-bit. In 12-hour mode, a logic 1 indicates  
PM and a logic 0 indicates AM. In 24 hour mode, this  
bit is the second 10-hour bit (20 hours).  
10HR: This is the 10-hour bit (010 hours) of the RTC.  
HR[3:0]: These are the hour bits (09 hours) of the RTC.  
RTC_DATE REGISTER (10011)  
FIRST BIT (MSB)  
(LSB)  
NAME  
10DATE1  
0
10DATE0  
0
DATE3  
0
DATE2  
0
DATE1  
0
DATE0  
1
DEFAULT  
0
0
10DATE[1:0]: These are the 10 day bits (030 days) of  
the RTC.  
DATE[3:0]: These are the day bits (09 days) of the RTC.  
RTC_MONTH REGISTER (10100)  
FIRST BIT (MSB)  
(LSB)  
NAME  
10MO  
0
MO3  
0
MO2  
0
MO1  
0
MO0  
1
DEFAULT  
0
0
0
10MO: This is the 10 month bit (010 months) of the RTC.  
______________________________________________________________________________________ 33  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
10MO: This is the 10 month bit (1012 months)  
MO[3:0]: These are the month bits (09 months) for the  
RTC. The following table is the Hex code for the twelve  
months of the year.  
MONTH  
10MO MO[3:0]  
MONTH  
JAN  
01h  
JUL  
07h  
FEB  
02h  
AUG  
08h  
MAR  
03h  
SEP  
09h  
APR  
04h  
OCT  
10h  
MAY  
05h  
NOV  
11h  
JUN  
06h  
DEC  
12h  
10MO MO[3:0]  
RTC_DAY REGISTER (10101)  
FIRST BIT (MSB)  
(LSB)  
NAME  
DAY2  
0
DAY1  
0
DAY0  
1
DEFAULT  
0
0
0
0
0
DAY[2:0]: These bits select the day of the week  
(SundaySaturday). The following table is the Hex code  
for day of the week.  
AL_DAY  
DAY[2:0]  
SUN  
1h  
MON  
2h  
TUE  
3h  
WED  
4h  
THU  
5h  
FRI  
6h  
SAT  
7h  
RTC_YEAR REGISTER (10110)  
FIRST BIT (MSB)  
(LSB)  
NAME  
10YEAR3  
0
10YEAR2  
10YEAR1  
1
10YEAR0  
1
YEAR3  
0
YEAR2  
YEAR1  
0
YEAR0  
0
DEFAULT  
1
0
10YEAR[3:0]: These are the 10 year bits (090 years) of  
the RTC.  
YEAR[3:0]: These are the year bits (09 years) of the RTC.  
RTC_CENTURY REGISTER (10111)  
FIRST BIT (MSB)  
(LSB)  
NAME  
MILL3  
0
MILL2  
0
MILL1  
0
MILL0  
1
CENT3  
1
CENT2  
0
CENT1  
0
CENT0  
1
DEFAULT  
MILL[3:0]: These are the millennium bits (00009000  
years) of the RTC.  
CENT[3:0]: These are the century bits (000900 years)  
of the RTC.  
34 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Table 8. Related Bit Values During Specified Mode  
CIRCUIT BLOCK  
32kHz Oscillator  
RTC  
BIT  
CH  
CH  
INITIAL POWER-UP  
0 (oscillator is on)  
0 (RTC is on)  
SLEEP  
N/A  
STANDBY  
N/A  
IDLE  
N/A  
RUN  
N/A  
WAKE-UP EVENT  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
Low V  
Monitor (2.7V)  
Voltage  
1 (2.7V monitor is  
on)  
1 if VM = 0  
0 if VM = 1  
DD  
LVDE  
LSDE  
1
1
1
1
RESET Voltage  
Monitor (1.8V)  
0 (1.8V monitor is  
off)  
0 if VM = 0 0 if VM = 0 0 if VM = 0 0 if VM = 0  
1 if VM = 1 1 if VM = 1 1 if VM = 1 1 if VM = 1  
N/A  
Reset ꢀit  
RST  
LVD  
1 (RESET asserted)  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
1 (low V )  
DD  
Low V  
Status ꢀit  
DD  
Voltage-Monitor  
Threshold Selection  
VM  
0 (select 2.7V)  
N/A  
0
N/A  
1
N/A  
1
N/A  
1
N/A  
1
ꢀiase = 1 (biase  
circuit is on)  
ꢀias Circuit  
ꢀIASE  
PLL  
PLLE  
PLLE  
SHDE  
DA1E  
DA2E  
MUX  
1 (PLL is on)  
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
PLL Output  
SHDN Output  
DAC1  
1 (FOUT is enabled)  
1
1 (SH  D N pin = high)  
1
0
0
0
0
N/A  
N/A  
N/A  
N/A  
DAC2  
ADC MUX  
ꢀandgap Reference  
REFE  
Signal-Detect  
Comparator  
SDCE  
0
0
0
1
1
N/A  
ADC ꢀuffers  
ADC  
ꢀUFE  
ADC  
0
0
0
0
0
0
0
0
1
1
N/A  
N/A  
N/A: Programming the part into these modes would not alter the content of the corresponding bit.  
Power-Control Registers  
Table 8 shows the bit values of some key registers in  
different power modes under various conditions. Use  
this as a quick reference when programming the  
MAX1407/MAX1408/MAX1409/MAX1414 family.  
POWER1 REGISTER (11000)  
FIRST BIT (MSB)  
(LSB)  
NAME  
REFE  
0
ADCE  
0
BUFE  
0
MUXE  
0
DA1E  
0
DA2E  
0
DEFAULT  
0
0
REFE: Internal Reference Power Enable. When REFE is  
set to 1, the internal reference is powered up. When  
REFE is set to 0, the internal reference is powered down  
allowing an external reference to be connected to REF.  
BUFE: ADC Input ꢀuffer Power Enable. A logic 1  
enables the power-up of the ADC input buffers, while a  
logic 0 powers-down the buffers.  
MUXE: Multiplexer enable. A logic 0 disables the multi-  
plexer outputs while a logic 1 enables them.  
ADCE: ADC Power Enable. When ADCE is set to 1, the  
ADC is powered up. When ADCE is set to 0, the ADC is  
powered down.  
______________________________________________________________________________________ 35  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
DA1E: DAC1 Power Enable. A logic 1 powers DAC1,  
while a logic 0 powers it down. The output buffer goes  
high impedance in power-down mode.  
DA2E: DAC2 Power Enable. A logic 1 powers DAC2,  
while a logic 0 powers it down. The output buffer goes  
high impedance in power-down mode.  
POWER2 REGISTER (11001)  
FIRST BIT (MSB)  
(LSB)  
NAME  
SHDE  
PLLE  
1
LVDE  
1
LSDE  
0
SDCE  
0
D0E  
0
VM  
0
ꢀIASE  
1
DEFAULT  
1
SLEEP REGISTER (11010)  
SHDE: Shutdown Enable bar. If SHDE is set to 1,  
SHDN is pulled high. A wake-up event such as an  
assertion of WU1 or WU2, a time-of-day alarm, or by  
writing to the Power1, Power2, Standby, Idle, or Run  
registers sets this bit to 1 and drives SHDN high. If the  
SHDE bit is set to 0 in Standby, Idle, or Run mode and  
the PLL is still operational (PLLE = 1), the SHDN pin will  
Addressing the Sleep register places the MAX1407/  
MAX1408/MAX1409/MAX1414 in Sleep mode. This  
occurs after the last bit of the command byte is clocked  
into the device. It requires an 8-bit write, no data bits  
are needed. Sleep mode powers down all functional  
blocks except for the crystal oscillator, RTC, alarm, ser-  
ial interface, wake-up circuitry, and RESET voltage  
monitor. While in Sleep mode, pulling either WU1 or  
WU2 low or an alarm event places the device into  
Standby mode.  
remain high until 2.93ms (t  
) after PLLE is set to 0.  
DPD  
PLLE: Phase-Locked Loop Power Enable. A logic 1  
powers the PLL and enables FOUT while a logic 0 pow-  
ers down the PLL and disables FOUT. A wake-up event  
sets this bit to 1. See Wake-Up section.  
STANDBY REGISTER (11011)  
Addressing the Standby register places the MAX1407/  
MAX1408/MAX1409/MAX1414 in Standby mode. This  
occurs after the last bit of the address byte is clocked  
into the device. It requires an 8-bit write, no data bits  
are needed. Standby mode powers up the same blocks  
as Sleep mode, as well as the master bias circuitry, the  
LVDE: +2.7V Voltage Monitor Power Enable. A logic 1  
powers the +2.7V voltage comparator circuitry, while a  
logic 0 powers down the +2.7V voltage comparator cir-  
cuitry. A wake-up event sets LVDE to 1. See Wake-Up  
section.  
LSDE: +1.8V Voltage Monitor Power Enable. A logic 1  
powers the +1.8V voltage comparator circuitry, while a  
logic 0 powers down the +1.8V voltage comparator cir-  
cuitry. See Wake-Up section.  
PLL, and the Low V  
Voltage Monitor. FOUT is also  
enabled and SHDN is set high in Standby mode.  
DD  
IDLE REGISTER (11100)  
SDCE: Signal-Detect Comparator Power Enable. A  
logic 1 powers the signal-detect comparator while a  
logic 0 powers down this comparator.  
Addressing the Idle register places the MAX1407/  
MAX1408/MAX1409/MAX1414 in Idle mode. This  
occurs after the last bit of the address byte is clocked  
into the device. Requires an 8-bit write, no data bits are  
needed. In Idle mode, all circuits are powered up with  
the exception of the ADC and the ADC Input ꢀuffers.  
D0E: D0 Enable bit. A logic 0 three-states the D0  
ouput. When D0E is set to 1, the output of D0 is con-  
tolled by the state of DꢀIT in the MUX register.  
Programming the device in different modes does not  
alter the state of this bit.  
RUN REGISTER (11101)  
Addressing the Run register puts the MAX1407/  
MAX1408/MAX1409/MAX1414 into Run mode. This  
occurs after the last bit of the address byte is clocked  
into the device. Requires an 8-bit write, no data bits are  
needed. All the functional blocks are powered up in  
Run mode.  
VM: RESET Voltage Monitor Threshold Selection bit. A  
logic 0 selects a +2.7V threshold while a logic 1 selects  
a +1.8V threshold for the RESET Voltage Monitor. The  
VM bit effects the LVDE and LSDE bits in different  
modes of operation (see Table 8).  
BIASE: ꢀias Enable. A logic 1 powers up the master  
bias circuit block. A wake-up event sets this bit to a  
logic 1. See Wake-Up section.  
36 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Idle Mode  
Applications Information  
In Idle mode, only the ADC and ADC input buffers are  
Alarm and RTC Programming  
Three write operations are needed for every update of  
the ALARM and RTC registers. First set the WE bit of  
the Alarm/Clock_CTRL Register to 1. Update the Alarm,  
RTC, and Alarm/Clock_CTRL Register with the new val-  
ues, and then set the WE bit back to 0. This will avoid  
collisions in setting the time.  
shutdown. All the other blocks are powered up. Enter  
Idle mode by addressing the Idle register.  
Run Mode  
In Run mode, all the functional blocks are powered up  
and the ADC is ready to start conversion. Enter Run  
mode by either writing to the Run register or by individu-  
ally powering up each circuit through the serial interface.  
Power-On Reset or Power-Up  
At initial power-up, the MAX1407/MAX1408/MAX1409/  
MAX1414 are in Standby mode. Figure 15 illustrates the  
timing of various signals during initial Power-Up, Sleep  
Wake-Up  
Wake-Up mode is entered whenever a wake-up event,  
such as an assertion of WU1 or WU2 or a time-of-day  
alarm occurs. The Low V  
monitor, PLL, FOUT are  
DD  
mode, and Wake-Up. t  
after AV  
exceeds +2.7V,  
DD  
DSLP  
enabled, and SHDN goes high. Different from the  
Standby mode, the status of the other power blocks  
remains unchanged.  
RESET goes high. t  
after RESET goes high, FOUT  
DFON  
is enabled. INT is enabled to t  
after FOUT is  
DFI  
enabled.  
Analog Filtering  
The digital filter does not provide any rejection close to  
the harmonics of the modulator sample frequency.  
However, due to the high oversampling ratio of the  
MAX1407/MAX1408/MAX1409/MAX1414, these bands  
occupy only a small fraction of the spectrum and most  
broadband noise is filtered. Therefore, the analog filter-  
ing requirements in front of the MAX1407/MAX1408/  
MAX1409/MAX1414 are considerably reduced com-  
pared to a conventional converter with no on-chip filter-  
ing. In addition, because the parts common-mode  
rejection of 90dꢀ extends out to several kHz, common-  
mode noise susceptibility in this frequency range is  
substantially reduced.  
Power Modes  
The MAX1407/MAX1408/MAX1409/MAX1414 have fou  
distinct power modes, Sleep mode, Standby mode, Idle  
mode, and Run mode. Table 9 lists the power-on status  
of the various blocks of the MAX1407/MAX1408/  
MAX1409/MAX1414. Each individual circuit block can  
be powered up through the serial interface by writing to  
the appropriate power registers.  
Sleep Mode  
In Sleep mode, only the crystal oscillator, RTC, data  
registers, wake-up circuitry, and RESET Voltage  
Monitor are powered up. Sleep mode is entered by  
addressing the Sleep register through the serial inter-  
face. Sleep mode preserves any data in the data regis-  
ters. To exit Sleep mode, pull either WU1 or WU2 low or  
address other Power mode registers (Standby, Idle,  
Run, Power1, or Power2 registers). Asserting WU1 or  
WU2 or the occurence of a Time of Day Alarm while in  
Sleep mode places the device in Standby mode.  
Depending on the application, it may be necessary to  
provide filtering prior to the MAX1407/MAX1408/  
MAX1409/MAX1414 to eliminate unwanted frequencies  
the digital filter does not reject. It may also be necessary  
in some applications to provide additional filtering to  
ensure that differential noise signals outside the frequen-  
cy band of interest do not saturate the analog modulator.  
Standby Mode  
After initial power-up or after exiting Sleep mode  
through a wake-up event, the MAX1407/MAX1408/  
MAX1409/MAX1414 are in Standby mode. Standby  
mode can also be entered by addressing the Standby  
register. In Standby mode, SHDN is high, FOUT is  
If passive components are placed in front of the  
MAX1407/MAX1408/MAX1409/MAX1414 when the part  
is used in unbuffered mode, ensure that the source  
impedance is low enough not to introduce gain errors in  
the system. This can significantly limit the amount of  
passive anti-aliasing filtering that can be applied in  
front of the MAX1407/MAX1408/MAX1409/MAX1414 in  
unbuffered mode. However, when the part is used in  
buffered mode, large source impedances will simply  
result in a small DC offset error (a 1ksource resis-  
tance will cause an offset error of less than 0.5µV).  
Therefore, where significant source impedances are  
required, operate the device in buffered mode.  
enabled, the Low V  
voltage monitor and the PLL are  
DD  
powered up, and INT is low. INT will return to a logic  
high after the µP begins writing to any register through  
the serial interface (once a start bit is detected through  
the serial interface).  
______________________________________________________________________________________ 37  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
4
AV  
DD  
3
2
2.7V  
1
0v  
HI  
RESET  
(OPEN-DRAIN)  
t
DSLP  
LO  
HI  
LO  
HI  
32kHz CLOCK  
WU1,WU2  
(INT. PULLUP)  
t
WU  
LO  
HI  
t
DPU  
SHDN  
LO  
HI  
t
t
DFON  
t
DPD  
DFON  
FOUT  
(2.4576MHz)  
LO  
HI  
t
t
DFOF  
t
DFI  
DFI  
INT  
LO  
HI  
DRDY  
DOUT  
CS  
LO  
HI  
THREE-STATED  
LO  
HI  
SLEEP  
WRITE  
LO  
HI  
SCLK,  
DIN  
LO  
INITIAL POWER-UP  
SLEEP MODE  
WAKE-UP  
Figure 15. Initial Power-up, Sleep Mode, and Wake-Up Timing Diagram with AV  
>2.7V  
DD  
tages of series input resistance. A series resistor  
reduces the transient current impulse to the external  
driving amplifier. This improves the amplifier phase  
margin and reduces the possibility of ringing. The resis-  
Dynamic Input Impedance  
When designing with the MAX1407/MAX1408/  
MAX1409/MAX1414, as with any other switched-capac-  
itor ADC input, consider the advantages and disadvan-  
38 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Table 9. Power States of Individual Blocks at Different Modes of Operation  
POWER MODES  
CIRCUIT BLOCKS  
SLEEP  
x
STANDBY  
IDLE  
x
RUN  
x
WAKE-UP EVENT  
Serial Interface  
x
x
x
x
Wake-Up Circuitry  
Crystal Oscillator  
RTC with Alarm  
x
x
x
x
x
x
x
x
x
x
x
x
x
RESET Voltage Monitor  
x
x
x
x
x
Low V  
Voltage Monitor  
x
x
x
x
DD  
Master Bias Circuit  
PLL  
x
x
x
x
x
x
x
x
FOUT  
x
x
x
x
SHDN = High  
DAC1  
x
x
x
x
x
x
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
DAC2  
x
x
Bandgap  
x
x
Bandgap Buffer  
Signal Detect Comparator  
ADC Multiplexer  
ADC Input Buffers  
ADC  
x
x
x
x
x
x
x
x
x = powered-up  
N/A = programming the parts into the wake-up mode would not alter the content of these blocks  
Table 10. REXT, CEXT Values for Less than 16-Bit Gain Error in Unbuffered Mode  
EXTERNAL RESISTANCE R  
(k)  
EXT  
PGA GAIN  
(V/V)  
C
= 0pF  
C
= 50pF  
56  
C
= 100pF  
33  
C
= 200pF  
C = 500pF  
EXT  
EXT  
EXT  
EXT  
EXT  
1
2
194  
100  
19  
9
9
30  
16  
4.5  
tor spreads the transient-load current from the sampler  
over time due to the RC time constant of the circuit.  
However, an improperly chosen series resistance can  
hinder performance in high-resolution converters. The  
settling time of the RC network can limit the speed at  
which the converter can operate properly, or reduce  
the settling accuracy of the sampler. In practice, this  
means ensuring that the RC time constant, resulting  
from the product of the driving source impedance and  
the capacitance presented by both the devices input  
and any external capacitance is sufficiently small to  
allow settling to the desired accuracy. Table 10 sum-  
marizes the maximum allowable series resistance vs.  
external shunt capacitance for each different gain set-  
ting in order to ensure 16-bit performance in unbuffered  
mode (for 60sps conversion rate).  
Performing a Conversion or Offset-  
Calibration with the ADC  
Upon power-up, the MAX1407/MAX1408/MAX1409/  
MAX1414 are in Standby mode. At this point, the ADC  
register default settings are set for a normal ADC conver-  
sion (MODE = 0), conversion rate of 30Hz (RATE = 0),  
gain of 1/3 V/V (GAIN [00]), input buffers bypassed and  
powered down (ꢀUFP = ꢀUFN = 0), and unipolar mode  
______________________________________________________________________________________ 39  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
R1  
R2  
REF  
MAX1407/MAX1409/MAX1414  
FB1  
FB_  
+5V  
V
OUT  
DAC 1  
REF  
OUT1  
OUT2  
DAC_  
OUT_  
-5V  
FB2  
R2 = R1  
MAX1407/MAX1409/MAX1414  
DAC 2  
Figure 18. Bipolar Output Circuit  
DGND  
AGND  
will keep doing conversions at a rate of 30Hz until pow-  
ered down.  
THE MAX1409 HAS ONE DAC  
= 1.25V  
V
REF  
To perform an on-chip offset calibration on a specific  
configuration, write to the ADC register with the MODE  
bit and STA1 bit set to 1. The ADC will do one calibra-  
tion using the inputs to the ADC specified in the MUX  
register and then stop. The calibration result will be  
stored in the Offset register in twos complement form.  
Subsequent ADC conversion results will have the offset  
value subtracted before written to the DATA register.  
The MODE bit will be reset to 0 automatically upon  
completion of the calibration. The ADC is now ready for  
a normal conversion.  
Figure 16. Unipolar Output Circuit  
10kΩ  
MAX1407/MAX1409/MAX1414  
FB1  
FB2  
10kΩ  
DAC 1  
REF  
OUT1  
OUT2  
The offset for a given ADC configuration can be stored  
by the µP to avoid another ADC recalibration. Write the  
stored offset back to the offset register when returning  
back to that particular ADC configuration where the cal-  
ibration was taken. Subsequent ADC conversion results  
will have the offset value subtracted before they are  
written to the DATA register.  
10kΩ  
10kΩ  
DAC 2  
DGND  
AGND  
DAC Unipolar Output  
For a unipolar output, the output voltages and the refer-  
ence have the same polarity. Figure 16 shows the  
MAX1407/MAX1409/MAX1414sunipolar output circuit,  
which is also the typical operating circuit for the DACs.  
Table 11 lists some unipolar input codes and their cor-  
responding output voltages.  
THE MAX1409 HAS ONE DAC  
REF  
V
= 1.25V  
Figure 17. Unipolar Rail-to-Rail Output Circuit  
For larger output swing see Figure 17. This circuit  
shows the output amplifiers configured with a closed-  
loop gain of +2V/V to provide 0 to 2.5V full-scale range  
with the 1.25V reference.  
(ꢀIP = 0). To initiate an ADC conversion: 1) Enter Run  
mode by addressing the Run register 2) Select the  
desired channels for conversion by writing to the MUX  
register, (e.g., 94h selects IN1 for the positive channel  
and IN2 for the negative channel) 3) Initiate the conver-  
sion by writing to the ADC register, (e.g., 01h). The first  
conversion result becomes available in 100ms. The ADC  
DAC Bipolar Output  
The MAX1407/MAX1409/MAX1414 DAC outputs can be  
configured for bipolar operation using the application  
circuit on Figure 18:  
40 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Table 12. Bipolar Code Table  
Table 11. Unipolar Code Table  
DAC CONTENTS  
DAC CONTENTS  
ANALOG OUTPUT  
ANALOG OUTPUT  
MSB  
LSB  
MSB  
LSB  
1111 1111 11  
1000 0000 01  
1000 0000 00  
0111 1111 11  
0000 0000 01  
0000 0000 00  
+V  
(511/512)  
(1/512)  
1111 1111 11  
1000 0000 01  
1000 0000 00  
0111 1111 11  
0000 0000 01  
0000 0000 00  
+V  
(1023/1024)  
(513/1024)  
REF  
REF  
+V  
+V  
REF  
REF  
0
+V  
(512/1024) = +V  
/2  
REF  
REF  
-V  
(1/512)  
+V  
(511/1024)  
(1/1024)  
REF  
REF  
-V  
REF  
(511/512)  
+V  
REF  
-V  
(512/512) = -V  
0
REF  
REF  
V
= 3.3V OR V  
BAT  
DD  
LX  
OUT  
RST  
10µF  
10µH  
18nF  
0.1µF  
0.1µF  
0.1µF  
MAX1833  
SHDN  
BATT  
CPLL  
SHDN  
AV  
DV  
V
DD  
DD  
DD  
GND  
RESET  
WU1  
RESET  
INPUT  
MAX1407  
MAX1408  
MAX1414  
µP/µC  
IN0  
10µF  
V
E1*  
BAT  
AGND  
DGND  
V
SS  
*ONE Li+ COIN, TWO ALKALINE, OR TWO BUTTON CELLS  
Figure 19. Power-Supply Circuit Using MAX1833 Step-Up DC-DC Converter  
0.33µF  
CXN CXP  
V
= 3.3V  
DD  
IN  
OUT  
POK  
10µF  
18nF  
0.1µF  
0.1µF  
0.1µF  
MAX1759  
SHDN  
GND PGND  
CPLL  
AV  
DD  
DV  
V
DD  
DD  
FB  
SHDN  
IN0  
RESET  
WU1  
RESET  
INPUT  
MAX1407  
MAX1408  
MAX1414  
µP/µC  
R
AGND  
DGND  
V
R
SS  
10µF  
V
E1*  
BAT  
*ONE Li+ COIN, ONE Li+, 2-3 ALKALINE, 2-3 NIMH, OR 2-3 BUTTON CELLS  
Figure 20. Power-Supply Circuit Using MAX1759 Buck-Boost DC-DC Converter  
______________________________________________________________________________________ 41  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
100µH  
V
(+3.3V)  
DD  
V+  
LX  
MAX640  
D1  
SHDN  
100µF  
18nF  
0.1µF  
0.1µF  
0.1µF  
VOUT  
CPLL  
AV  
DV  
V
DD  
DD  
DD  
LBI  
VFB  
GND  
RESET  
WU1  
RESET  
INPUT  
MAX1407  
MAX1408  
MAX1409  
MAX1414  
µP/µC  
2R  
IN0  
R
V
BAT  
E1*  
AGND  
DGND  
V
33µF  
SS  
*ONE TRANSISTOR (9V), ONE J CELL (6V), OR FOUR ALKALINE CELLS  
Figure 21. Power-Supply Circuit Using MAX640 Step-Down DC-DC Converter  
20, 21, and 22 are power-supply circuits using a step-up  
converter, buck-boost converter, step-down converter,  
and a direct battery, respectively. Choose the correct  
power-supply circuit for your specific application.  
10µF  
18nF  
0.1µF  
V
BAT  
E1*  
0.1µF  
0.1µF  
Connect the MAX1407/MAX1408/MAX1409/MAX1414  
AV  
and DV  
power supplies together. While the  
DD  
DD  
CPLL  
AV  
DV  
V
DD  
DD  
DD  
latch-up performance of the MAX1407/MAX1408/  
MAX1409/MAX1414 is adequate, it is important that  
power is applied to the device before the analog input  
signals (IN_) to avoid latch-up. If this is not possible,  
limit the current flow into any of these pins to 50mA.  
RESET  
WU1  
RESET  
µP/µC  
INPUT  
MAX1407  
MAX1408  
MAX1409  
MAX1414  
AGND  
DGND  
V
SS  
Electrochemical Sensor Operation  
The MAX1407/MAX1408/MAX1409/MAX1414 family inter-  
face with electrochemical sensors. The 10-bit DACs with  
the force/sense buffers have the flexibility to connect to  
many different types of sensors. Figure 23 shows how to  
interface with a two electrode potentiostat. A single DAC  
is required to set the bias across the sensor relative to  
ground and an external precision resistor completes the  
transimpedance amplifier configuration to convert the  
current generated by the sensor to a voltage to be mea-  
sured by the ADC. The induced error from this source is  
negligible due to Fꢀ1s extremely low input bias current.  
Internally, the ADC can differentially measure directly  
*ONE Li+ COIN OR TWO BUTTON CELLS  
Figure 22. Power-Supply Circuit Using Direct Battery Connection  
2Nꢀ  
1024  
V
= V  
1  
OUT  
REF  
where Nꢀ is the decimal value of the DACs binary  
input code. Table 12 shows digital codes (offset binary)  
and corresponding output voltages for Figure 18  
assuming R1 = R2.  
across the external transimpedance resistor, R , eliminat-  
F
ing any errors due to voltages drifting over time, tempera-  
ture, or supply voltage. Figure 24 shows a two electrode  
potentiostat application that is driven at the working elec-  
trode and measured at the counter electrode. With this  
application, the DAC connected to the working electrode  
is configured in unity gain and the DAC connected to the  
Power Supplies  
Power to the MAX1407/MAX1408/MAX1409/MAX1414  
family can be supplied in a number of ways. Figures 19,  
42 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
MAX1407  
MAX1409  
MAX1414  
MAX1407  
MAX1414  
REF  
OUT1  
FB1  
10-BIT DAC  
REF  
10-BIT DAC  
OUT1  
FB1  
F
I
F
R
IN0  
AUX.  
VOLTAGE  
INPUTS  
IN1  
IN2  
IN3  
F
I
F
R
WE  
IN0  
SENSOR  
AUX.  
VOLTAGE  
INPUTS  
WE  
IN1  
IN2  
IN3  
CE  
REF  
SENSOR  
OUT2  
FB2  
CE  
10-BIT DAC  
REF  
BAND  
GAP  
BUF  
REF  
BAND  
GAP  
BUF  
4.7µF  
4.7µF  
ALL I/O AVAILABLE AS INPUTS TO ADC AND COMPARATOR.  
MAX1409 HAS IN0, OUT1, FB1, AND REF ONLY.  
ALL I/O AVAILABLE AS INPUTS TO ADC AND COMPARATOR.  
Figure 23. Self-Biased Two Electrode Potentiostat Application  
Figure 24. Driven Two Electrode Potentiostat Application  
V
BAT  
MAX1407  
MAX1414  
LED  
MAX1407  
MAX1414  
REF  
REF  
OUT1  
FB1  
OUT1  
10-BIT DAC  
10-BIT DAC  
QB  
F
I
F
R
IN0  
IN1  
IN2  
IN3  
AUX.  
VOLTAGE  
INPUTS  
FB1  
FB2  
B
R
WE  
RE  
CE  
REF  
OUT2  
REF  
10-BIT DAC  
OUT2  
SENSOR  
10-BIT DAC  
F
I
F
R
FB2  
REF  
IN0  
AUX.  
VOLTAGE  
INPUTS  
REF  
BAND  
GAP  
IN1  
IN2  
IN3  
BAND  
GAP  
PHOTO-  
DIODE  
BUF  
BUF  
4.7µF  
4.7µF  
ALL I/O AVAILABLE AS INPUTS TO ADC AND COMPARATOR.  
ALL I/O AVAILABLE AS INPUTS TO ADC AND COMPARATOR.  
Figure 25. Driven Three Electrode Potentiostat Application  
Figure 26. Optical Reflectometry Application  
counter electrode is configured as a transimpedance  
amplifier to measure the current. Figure 25 shows a three  
electrode potentiostat application that is driven at all the  
electrodes and measured at the working electrode. With  
this application, the DAC connected to the working elec-  
trode sets the bias voltage relative to the reference elec-  
trode and also measures the current that the sensor pro-  
duces. The DAC connected to the reference and counter  
electrodes takes advantage of the force/sense outputs to  
______________________________________________________________________________________ 43  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
REF  
R
L
REF  
IN0  
8:1  
MUX  
16b ADC  
DRDY  
INT  
R
T
INTERRUPT  
GENERATOR  
CMP  
8:1  
MUX  
AGND  
WAKE-UP  
MAX1407  
MAX1408  
MAX1409  
MAX1414  
BAND  
GAP  
REF  
4.7µF  
BUF  
DRDY NOT AVAILABLE ON THE MAX1409  
Figure 27. Thermistor Application Circuit  
CJC  
REF  
THERMOCOUPLE  
JUNCTION  
IN0  
R
R
8:1  
MUX  
16b ADC  
IN1  
C
C
DRDY  
INT  
INTERRUPT  
GENERATOR  
CMP  
AGND  
IN2  
8:1  
MUX  
WAKE-UP  
REF  
BAND  
GAP  
MAX1407  
MAX1408  
MAX1414  
BUF  
4.7µF  
Figure 28. Thermocouple Application Circuit  
maintain the reference electrode bias voltage by virtue of  
the feedback path through the sensor.  
photodiode. Set the LED bias current externally if the  
MAX1409 is used in this application.  
Optical Reflectometry  
Figure 26 illustrates the MAX1407/MAX1414 in an optical  
reflectometry application. The first DAC is used with an  
external transistor to set the bias current through the LED  
and the second DAC is used to properly bias and convert  
the photodiode current to a voltage measured by the  
ADC. The low input bias current into the DAC feedback  
pin (FB2) allows the measurement of very small currents.  
The DACs provide the flexibility in setting an accurate  
and stable LED current and adjusting the bias across the  
Thermistor Measurement  
A thermistor connected in a half-bridge configuration  
as shown in Figure 27 is used to measure temperatures  
very accurately with the MAX1407/MAX1408/  
MAX1409/MAX1414. The internal reference drives the  
thermistor as well as the ADC, so the reference varia-  
tion is cancelled out when calculating the temperature.  
The only significant errors are from the R resistor and  
L
the thermistor itself. The ADC performs a unipolar con-  
version with the PGA set to a gain of 1V/V.  
44 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
REF OR AV  
DD  
REF  
IN0  
8:1  
MUX  
R
R
A
B
16-BIT ADC  
DRDY  
INT  
INTERRUPT  
GENERATOR  
CMP  
IN1  
R
R
8:1  
MUX  
D
C
WAKE-UP  
MAX1407  
MAX1408  
MAX1414  
BAND  
GAP  
REF  
4.7µF  
BUF  
DRDY NOT AVAILABLE ON THE MAX1409  
Figure 29. Strain-Gauge Application Circuit  
MAX1408/MAX1409/MAX1414. In systems where multi-  
ple devices require AGND to DGND connections, the  
connection should still be made at only one point. Make  
the star ground as close to the MAX1407/MAX1408/  
MAX1409/MAX1414 as possible.  
Thermocouple Measurement  
Figure 28 shows a thermocouple connected to the dif-  
ferential inputs of the MAX1407/MAX1408/MAX1409/  
MAX1414. In this application, the internal buffers are  
enabled to allow for the decoupling shown at the input.  
The decoupling eliminates noise pickup from the ther-  
mocouple. With the internal buffers enabled, the input  
common-mode range is reduced so the IN2 input is  
biased to the internal reference voltage at +1.25V. When  
the buffer is enabled, the IN1 input is limited to +1.4V.  
Avoid running digital lines under the device because  
these may couple noise onto the die. Run the analog  
ground plane under the MAX1407/MAX1408/  
MAX1409/MAX1414 to minimize coupling of digital  
noise. Make the power-supply lines to the MAX1407/  
MAX1408/MAX1409/MAX1414 as wide as possible to  
provide low-impedance paths and reduce the effects of  
glitches on the power-supply line.  
Strain-Gauge Operation  
Connect the differential inputs of the MAX1407/  
MAX1408/MAX1409/MAX1414 to the bridge network of  
the strain gauge as shown in Figure 29. When connect-  
ed to the internal reference, the ADC can resolve below  
10µV at the differential inputs. The internal buffers pro-  
vide a high input impedance as long as the signal is  
within the reduced common-mode range of the input  
buffers. The bridge may also be driven directly from the  
supply voltage. In this configuration, the ADC first mea-  
sures the supply voltage and then the differential input  
in sequence, and then calculates the ratio.  
Shield fast switching signals such as clocks with digital  
ground to avoid radiating noise to other sections of the  
board. Avoid running clock signals near the analog  
inputs. Avoid crossover of digital and analog signals.  
Traces on opposite sides of the board should run at  
right angles to each other. This will reduce the effects  
of feedthrough on the board. A microstrip technique is  
best, but is not always possible with double-sided  
boards. In this technique, the component side of the  
board is dedicated to ground planes while signals are  
placed on the solder side.  
Grounding and Layout  
For best performance, use printed circuit boards with  
separate analog and digital ground planes. The device  
perfomance will be highly degraded when using wire-  
wrap boards.  
Good coupling is important when using high-resolution  
ADCs. Decouple all analog supplies with 1µF capaci-  
tors in parallel with 0.1µF HF ceramic capacitors to  
AGND. Place these components as close to the device  
as possible to achieve the best decoupling.  
Design the printed circuit board so that the analog and  
digital sections are separated and confined to different  
areas of the board. Join the digital and analog ground  
planes at one point. If the MAX1407/MAX1408/  
MAX1409/MAX1414 is the only device requiring an  
AGND to DGND connection, then the ground planes  
should be connected at the AGND pin of the MAX1407/  
Crystal Layout  
Since it is possible for noise to be coupled onto the  
crystal pins, care must be taken when placing the  
external crystal on a PC board layout. It is very impor-  
tant to follow a few basic layout guidelines concerning  
______________________________________________________________________________________ 45  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
the placement of the crystal on the PC board layout to  
insure that extra clock ticksdo not couple onto the  
crystal pins.  
to CLKIN or CLKOUT.  
5) It may also be helpful to place a local ground plane  
on the PC board layer immediately below the crystal  
guard ring. This helps to isolate the crystal from  
noise coupling from signals on other PC board lay-  
ers. Note: The ground plane needs to be in the  
vicinity of the crystal only and not on the entire  
board.  
1) It is important to place the crystal as close as possi-  
ble to the CLKIN and CLKOUT pins. Keeping the  
trace lengths between the crystal and pins as small  
as possible reduces the probability of noise cou-  
pling by reducing the length of the antennae.  
Keeping the trace lengths small also decreases the  
amount of stray capacitance.  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function (with offset and gain error  
removed) from a straight line. This straight line can be  
either a best straight-line fit or a line drawn between the  
endpoints of the transfer function, once offset and gain  
errors have been nullified. The static linearity parame-  
ters for the MAX1407/MAX1408/MAX1409/MAX1414 are  
measured using the endpoint method.  
2) Keep the crystal bond pads and trace width to the  
CLKIN and CLKOUT pins as small as possible. The  
larger these bond pads and traces are, the more  
likely it is that noise can couple from adjacent signals.  
3) If possible, place a guard ring (connect to ground)  
around the crystal. This helps to isolate the crystal  
from noise coupled from adjacent signals.  
4) Insure that no signals on other PC board layers run  
directly below the crystal or below the traces to the  
CLKIN and CLKOUT pins. The more the crystal is  
isolated from other signals on the board, the less  
likely it is that noise will be coupled into the crystal.  
There should be a minimum of 0.200 inches  
between any digital signal and any trace connected  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1LSꢀ. A  
DNL error specification of less than 1LSꢀ guarantees  
no missing codes and a monotonic transfer function.  
Pin Configurations (continued)  
TOP VIEW  
FB1  
OUT1  
IN0  
1
2
20 DV  
DD  
IN7  
DO  
1
2
28 IN5  
27 IN3  
19 DGND  
18  
3
CS  
IN6  
3
26 DV  
DD  
REF  
4
17 SCLK  
16 DIN  
IN4  
4
25 DGND  
24  
MAX1409  
AGND  
5
IN0  
5
CS  
AV  
DD  
6
15 DOUT  
REF  
AGND  
6
23 SCLK  
22 DIN  
CPLL  
7
14  
INT  
7
MAX1408  
8
13 CLKIN  
12 CLKOUT  
11 FOUT  
AV  
8
21 DOUT  
20 INT  
WU1  
WU2  
DD  
9
CPLL  
WU1  
WU2  
9
RESET  
10  
10  
11  
19 CLKIN  
18 CLKOUT  
17 FOUT  
RESET 12  
IN1 13  
16  
DRDY  
IN2 14  
15 SHDN  
46 ______________________________________________________________________________________  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Typical Operating Circuit  
LX  
OUT  
RST  
DC-DC  
CONVERTER  
SHDN  
BATT  
CPLL  
AV  
DV  
V
DD  
DD  
DD  
GND  
SHDN  
RESET  
CLKIN  
RESET  
CLKIN  
µP/µC  
IN0  
REF  
V
BAT  
CLKOUT  
FOUT  
IN1  
CS  
SCLK  
DIN  
OUTPUT  
SCK  
MAX1407  
MAX1414  
MOSI  
MISO  
DOUT  
OUT1  
INPUT  
INPUT  
INT  
DRDY  
FB1  
FB2  
WU1  
WU2  
I/O  
I/O  
WE  
RE  
CE  
SENSOR  
OUT2  
AGND  
DGND  
V
SS  
______________________________________________________________________________________ 47  
Low-Power, 16-Bit Multichannel DAS with  
Internal Reference,10-Bit DACs, and RTC  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
48 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1409CAP-T

Analog Circuit, 1 Func, PDSO20, 5.30 MM, 0.65 MM PITCH, SSOP-20
MAXIM

MAX140C/D

3Digit A/D Converters with Bandgap Refrence and Charge-Pump Voltage Converter
MAXIM

MAX140CMH

3Digit A/D Converters with Bandgap Refrence and Charge-Pump Voltage Converter
MAXIM

MAX140CMH+

ADC, Dual-Slope, 24-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP44, MQFP-44
MAXIM

MAX140CMH+D

ADC, Dual-Slope, 1 Func, 1 Channel, PQFP44, LEAD FREE, MQFP-44
MAXIM

MAX140CMH+T

ADC, Dual-Slope, 24-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP44, MQFP-44
MAXIM

MAX140CMH+TD

暂无描述
MAXIM

MAX140CMH-D

暂无描述
MAXIM

MAX140CMH-T

暂无描述
MAXIM

MAX140CMH-TD

ADC, Dual-Slope, 1 Func, 1 Channel, PQFP44, MQFP-44
MAXIM

MAX140CPL

3Digit A/D Converters with Bandgap Refrence and Charge-Pump Voltage Converter
MAXIM

MAX140CPL+

ADC, Dual-Slope, 24-Bit, 1 Func, 1 Channel, Parallel, Word Access, CMOS, PDIP40, PLASTIC, DIP-40
MAXIM