MAX1421_V01 [MAXIM]

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference;
MAX1421_V01
型号: MAX1421_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

12-Bit, 40Msps, 3.3V, Low-Power ADC with Internal Reference

文件: 总17页 (文件大小:571K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1900; Rev 1; 5/06  
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
General Description  
Features  
The MAX1421 is a 3.3V, 12-bit analog-to-digital con-  
verter (ADC), featuring a fully-differential input,  
pipelined, 12-stage ADC architecture with wideband  
track-and-hold (T/H) and digital error correction incor-  
porating a fully-differential signal path. The MAX1421 is  
optimized for low-power, high-dynamic performance  
applications in imaging and digital communications.  
The converter operates from a single 3.3V supply, con-  
suming only 188mW while delivering a typical signal-to-  
noise ratio (SNR) of 66dB at an input frequency of  
15MHz and a sampling frequency of 40Msps. The fully-  
differential input stage has a small signal -3dB band-  
width of 400MHz and may be operated with  
single-ended inputs.  
Single 3.3V Power Supply  
67dB SNR at f = 5MHz  
IN  
66dB SNR at f = 15MHz  
IN  
Internal, 2.048V Precision Bandgap Reference  
Differential, Wideband Input T/H Amplifier  
Power-Down Modes  
180mW (Reference Shutdown Mode)  
10µW (Shutdown Mode)  
Space-Saving 48-Pin TQFP Package  
An internal 2.048V precision bandgap reference sets  
the full-scale range of the ADC. A flexible reference  
structure accommodates an internal or externally  
applied buffered or unbuffered reference for applica-  
tions requiring increased accuracy or a different input  
voltage range.  
Ordering Information  
PIN-  
PKG  
PART*  
TEMP RANGE  
PACKAGE CODE  
MAX1421CCM  
MAX1421ECM  
MAX1421ECM+  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
48 TQFP  
48 TQFP  
48 TQFP  
C48-2  
C48-2  
C48-2  
In addition to low operating power, the MAX1421 fea-  
tures two power-down modes, a reference power-down  
and a shutdown mode. In reference power-down, the  
internal bandgap reference is deactivated, resulting in  
a typical 2mA supply current reduction. For idle peri-  
ods, a full shutdown mode is available to maximize  
power savings.  
+Denotes lead-free package.  
Pin Configuration  
The MAX1421 provides parallel, offset binary, CMOS-  
compatible three-state outputs.  
The MAX1421 is available in a 7mm x 7mm, 48-pin  
TQFP package, and is specified over the commercial  
(0°C to +70°C) and the extended industrial (-40°C to  
+85°C) temperature ranges.  
AGND  
1
2
36 D9  
35 D8  
34 D7  
33 D6  
Pin-compatible higher- and lower-speed versions of the  
MAX1421 are also available. Please refer to the  
MAX1420 data sheet for a frequency of 60Msps and  
the MAX1422 data sheet for a frequency of 20Msps.  
AV  
AV  
DD  
DD  
3
AGND  
AGND  
INP  
4
5
32 DV  
31 DV  
DD  
DD  
6
MAX1421  
________________________Applications  
INN  
7
30 DGND  
29 DGND  
AGND  
AGND  
8
Medical Ultrasound Imaging  
CCD Pixel Processing  
Data Acquisition  
D5  
D4  
D3  
D2  
9
28  
27  
26  
25  
AV  
DD  
10  
11  
12  
AV  
DD  
AGND  
Radar  
IF and Baseband Digitization  
48-TQFP  
Functional Diagram appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
ABSOLUTE MAXIMUM RATINGS  
AV , DV  
to AGND..............................................-0.3V to +4V  
to DGND..............................................-0.3V to +4V  
Maximum Junction Temperature .....................................+150°C  
Operating Temperature Ranges  
DD  
DD  
DD  
DV , AV  
DD  
MAX1421CCM ...................................................0°C to +70°C  
MAX1421ECM ................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Continuous Power Dissipation (T = +70°C)  
A
48-Pin TQFP (derate 12.5mW/°C above +70°C)........1000mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
f
= V  
= 3.3V, AGND = DGND = 0, V =  
IN  
1.024V, differential input voltage at -0.5dB FS, internal reference,  
AVDD  
DVDD  
= 40MHz (50% duty cycle), digital output load C 10pF, T +25°C guaranteed by production test, T < +25°C guarnateed  
A
A
CLK  
L
A
by design and characterization. Typical values are at T = +25°C.)  
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
-1  
TYP  
MAX  
+1  
UNITS  
Resolution  
RES  
DNL  
12  
Bits  
T
A
T
A
T
A
= +25°C, no missing codes  
Differential Nonlinearity  
LSB  
= T  
to T  
0.5  
2
MIN  
MIN  
MAX  
MAX  
Integral Nonlinearity  
Midscale Offset  
INL  
= T  
to T  
LSB  
MSO  
-3  
.75  
+3  
%FSR  
Midscale Offset Temperature  
Coefficient  
-4  
MSOTC  
GE  
3
10  
%/°C  
%FSR  
%/°C  
Internal reference (Note 1)  
-5  
-5  
+0.1  
3
+5  
+5  
External reference applied to REFIN (Note 2)  
Gain Error  
External reference applied to REFP, CML,  
and REFN (Note 3)  
-1.5  
0.5  
+1.5  
Gain-Error Temperature  
Coefficient  
External reference applied to REFP, CML,  
and REFN (Note 3)  
-6  
GETC  
15 10  
DYNAMIC PERFORMANCE (f  
= 40MHz, 4096-point FFT)  
CLK  
f
f
f
f
f
f
f
f
f
f
= 5MHz  
67  
66  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Signal-to-Noise Ratio  
SNR  
SFDR  
THD  
dB  
dBc  
dBc  
dB  
= 15MHz, T = +25°C  
62  
64  
A
= 5MHz  
73  
Spurious-Free Dynamic Range  
Total Harmonic Distortion  
Signal-To-Noise Plus Distortion  
Effective Number of Bits  
= 15MHz, T = +25°C  
70  
A
= 5MHz  
-74  
-69  
66  
= 15MHz, T = +25°C  
-62  
A
= 5MHz  
SINAD  
ENOB  
= 15MHz, T = +25°C  
60  
60  
63.5  
10.7  
10.3  
A
= 5MHz  
Bits  
dBc  
= 15MHz, T = +25°C  
A
Two-Tone Intermodulation  
Distortion  
f
= 11.569MHz, f  
= 13.445MHz  
IN1  
IN2  
IMD  
-80  
TT  
(Note 4)  
2
_______________________________________________________________________________________  
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
f
= V  
= 3.3V, AGND = DGND = 0, V =  
IN  
1.024V, differential input voltage at -0.5dB FS, internal reference,  
AVDD  
CLK  
DVDD  
= 40MHz (50% duty cycle), digital output load C 10pF, T +25°C guaranteed by production test, T < +25°C guarnateed  
A
A
L
A
by design and characterization. Typical values are at T = +25°C.)  
PARAMETER  
Differential Gain  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DG  
DP  
1
%
Differential Phase  
0.25  
degrees  
ANALOG INPUTS (INP, INN, CML)  
Input Resistance  
R
C
Either input to ground  
Either input to ground  
32.5  
4
kΩ  
IN  
Input Capacitance  
pF  
IN  
Common-Mode Input Level  
(Note 5)  
V
AVDD  
× 0.5  
V
V
V
CML  
Common-Mode Input Voltage  
Range (Note 5)  
V
CML  
5%  
V
CMVR  
Differential Input Range  
Small-Signal Bandwidth  
Large-Signal Bandwidth  
V
V
- V  
(Note 6)  
V
DIFF  
V
IN  
INP  
INN  
BW  
(Note 7)  
(Note 7)  
400  
MHz  
MHz  
-3dB  
FPBW  
150  
-3dB  
Clock  
Cycle  
Overvoltage Recovery  
OVR  
1.5 FS input  
1
INTERNAL REFERENCE (REFIN bypassed with 0.22µF in parallel with 1nF)  
Common-Mode Reference Input  
Voltage  
V
AVDD  
V
At CML  
V
V
CML  
REFP  
REFN  
0.5  
Positive Reference Voltage  
Range  
V
CML  
+ 0.512  
V
V
At REFP  
Negative Reference Voltage  
Range  
V
CML  
- 0.512  
At REFN  
(Note 6)  
V
V
Differential Reference Voltage  
Range  
1.024  
5%  
V
DIFF  
Differential Reference  
Temperature Coefficient  
REFTC  
100  
ppm/°C  
EXTERNAL REFERENCE (V  
REFIN Input Resistance  
REFIN Input Capacitance  
= 2.048V)  
REFIN  
R
(Note 8)  
5
kΩ  
IN  
IN  
C
10  
pF  
2.048  
10%  
REFIN Reference Input Voltage  
V
V
V
REFIN  
0.92  
V
1.08  
V
V
REFIN /  
2
Differential Reference Voltage  
V
(Note 6)  
DIFF  
REFIN /  
2
REFIN /  
2
EXTERNAL REFERENCE (V  
= AGND, reference voltage applied to REFP, REFN, and CML)  
REFIN  
REFP, REFN, CML Input Current  
I
-200  
+200  
µA  
pF  
IN  
REFP, REFN, CML Input  
Capacitance  
C
15  
IN  
_______________________________________________________________________________________  
3
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
f
= V  
= 3.3V, AGND = DGND = 0, V =  
IN  
1.024V, differential input voltage at -0.5dB FS, internal reference,  
AVDD  
CLK  
DVDD  
= 40MHz (50% duty cycle), digital output load C 10pF, T +25°C guaranteed by production test, T < +25°C guarnateed  
A
A
L
A
by design and characterization. Typical values are at T = +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Differential Reference Voltage  
Range  
1.024  
10%  
V
V
(Note 6)  
V
DIFF  
CML  
1.65  
10%  
CML Input Voltage Range  
REFP Input Voltage Range  
REFN Input Voltage Range  
V
V
V
V
CML  
DIFF  
+
/ 2  
V
REFP  
V
REFN  
V
V
-
CML  
V
/ 2  
DIFF  
DIGITAL INPUTS (CLK, CLK, OE, PD)  
0.7  
Input Logic-High  
Input Logic-Low  
V
V
V
IH  
V
DVDD  
0.3  
V
V
IL  
DVDD  
CLK, CLK  
PD  
330  
Input Current  
µA  
pF  
-20  
-20  
+20  
+20  
OE  
Input Capacitance  
10  
DIGITAL OUTPUTS (D0–D11)  
V
DVDD  
- 0.5  
Output Logic-High  
V
I
I
= 200µA  
= -200µA  
V
V
OH  
OH  
DVDD  
Output Logic-Low  
V
0
0.5  
V
OL  
OL  
Three-State Leakage  
Three-State Capacitance  
POWER REQUIREMENTS  
Analog Supply Voltage  
Digital Supply Voltage  
Analog Supply Current  
-10  
+10  
µA  
pF  
2
V
V
3.135  
2.7  
3.3  
3.3  
52  
3.465  
3.6  
V
V
AVDD  
DVDD  
AVDD  
I
65  
mA  
Analog Supply Current with  
Internal Reference in Shutdown  
REFIN = AGND  
50  
63  
20  
mA  
Analog Shutdown Current  
Digital Supply Current  
Digital Shutdown Current  
Power Dissipation  
PD = DV  
µA  
mA  
DD  
I
5.5  
DVDD  
PD = DV  
20  
µA  
DD  
P
Analog power  
(Note 9)  
188  
1
214  
mW  
mV/V  
DISS  
Power-Supply Rejection Ratio  
TIMING CHARACTERISTICS  
Clock Frequency  
PSRR  
f
Figure 5  
0.1  
40.0  
MHz  
ns  
CLK  
Clock High  
t
Figure 5, clock period 25ns  
Figure 5, clock period 25ns  
12.5  
12.5  
CH  
Clock Low  
t
ns  
CL  
4
_______________________________________________________________________________________  
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
f
= V  
= 3.3V, AGND = DGND = 0, V =  
IN  
1.024V, differential input voltage at -0.5dB FS, internal reference,  
AVDD  
CLK  
DVDD  
= 40MHz (50% duty cycle), digital output load C 10pF, T +25°C guaranteed by production test, T < +25°C guarnateed  
A
A
L
A
by design and characterization. Typical values are at T = +25°C.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
CLK  
Pipeline Delay (Latency)  
Figure 5  
7
cycles  
Aperture Delay  
Aperture Jitter  
t
Figure 9  
Figure 9  
Figure 5  
Figure 4  
Figure 4  
2
2
ns  
AD  
t
ps  
AJ  
Data Output Delay  
Bus Enable Time  
Bus Disable Time  
t
5
10  
5
14  
ns  
OD  
t
ns  
BE  
t
5
ns  
BD  
Note 1: Internal reference, REFIN bypassed to AGND with a combination of 0.22µF in parallel with 1nF capacitor.  
Note 2: External 2.048V reference applied to REFIN.  
Note 3: Internal reference disabled. V  
= 0, V  
= 2.162V, V  
= 1.65V, and V  
= 1.138V.  
REFIN  
REFP  
CML  
REFN  
Note 4: IMD is measured with respect to either of the fundamental tones.  
Note 5: Specifies the common-mode range of the differential input signal supplied to the MAX1421.  
Note 6: V = V - V  
.
REFN  
DIFF  
REFP  
Note 7: Input bandwidth is measured at a 3dB level.  
Note 8: V is internally biased to 2.048V through a 10kresistor.  
REFIN  
Note 9: Measured as the ratio of the change in mid-scale offset voltage for a 5% change in V  
using the internal reference.  
AVDD  
Typical Operating Characteristics  
(V  
AVDD  
= V  
= 3.3V, AGND = DGND = 0, V  
=
1.024V, differential input voltage, f  
= 40MHz (50% duty cycle), digital output  
DVDD  
IN  
CLK  
load C = 10pF, T = T  
to T unless otherwise noted. Typical values are at T = +25°C.)  
MAX, A  
L
A
MIN  
FFT PLOT, 4096-POINT RECORD,  
DIFFERENTIAL INPUT  
FFT PLOT, 4096-POINT RECORD,  
DIFFERENTIAL INPUT  
FFT PLOT, 4096-POINT RECORD,  
DIFFERENTIAL INPUT  
0
-20  
0
-20  
0
-20  
f
A
= 7.54MHz  
f
A
= 38.54MHz  
= -0.49dB FS  
IN  
f
A
= 19.90MHz  
IN  
IN  
IN  
= -0.45dB FS  
IN  
= -0.50dB FS  
IN  
f
IN  
-40  
-40  
-40  
HD2  
HD3  
HD2  
HD3  
-60  
-60  
-60  
HD3  
HD2  
-80  
-80  
-80  
-100  
-120  
-100  
-120  
-100  
-120  
0
5
10  
15  
20  
0
5
10  
15  
20  
0
5
10  
15  
20  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
_______________________________________________________________________________________  
5
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= 3.3V, AGND = DGND = 0, V  
=
1.024V, differential input voltage, f  
= 40MHz (50% duty cycle), digital output  
DVDD  
IN  
CLK  
load C = 10pF, T = T  
to T unless otherwise noted. Typical values are at T = +25°C.)  
MAX, A  
L
A
MIN  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
TWO-TONE IMD, 8192-POINT RECORD,  
DIFFERENTIAL INPUT  
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
85  
77  
69  
61  
53  
45  
0
70  
66  
62  
58  
54  
50  
f
f
= 11.51MHz  
= 13.51MHz  
IN1  
IN2  
-20  
-40  
A
= A = -6.5dB FS  
IN2  
IN1  
f
f
IN2  
IN1  
-60  
IM3  
IM2  
-80  
-100  
-120  
0
5
10 15 20 25 30 35 40 45 50 55  
ANALOG INPUT FREQUENCY (MHz)  
0
2
4
6
8
10 12 14 16 18 20  
0
5
10 15 20 25 30 35 40 45 50 55  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. ANALOG INPUT FREQUENCY  
SPURIOUS-FREE DYNAMIC RANGE  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT FREQUENCY  
vs. ANALOG INPUT POWER (f = 15MHz)  
IN  
-50  
-56  
-62  
-68  
-74  
-80  
70  
66  
62  
58  
54  
50  
80  
70  
60  
50  
40  
30  
20  
0
5
10 15 20 25 30 35 40 45 50 55  
ANALOG INPUT FREQUENCY (MHz)  
0
5
10 15 20 25 30 35 40 45 50 55  
ANALOG INPUT FREQUENCY (MHz)  
-60  
-50  
-40  
-30  
-20  
-10  
0
ANALOG INPUT POWER (dBFS)  
SIGNAL-TO-NOISE RATIO  
TOTAL HARMONIC DISTORTION  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. ANALOG INPUT POWER (f = 15MHz)  
vs. ANALOG INPUT POWER (f = 15MHz)  
vs. ANALOG INPUT POWER (f = 15MHz)  
IN  
IN  
IN  
80  
70  
60  
50  
40  
30  
20  
10  
0
-30  
-40  
-50  
-60  
-70  
-80  
80  
70  
60  
50  
40  
30  
20  
10  
0
-60  
-50  
-40  
-30  
-20  
-10  
0
-60  
-50  
-40  
-30  
-20  
-10  
0
-60  
-50  
-40  
-30  
-20  
-10  
0
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
6
_______________________________________________________________________________________  
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= 3.3V, AGND = DGND = 0, V  
=
1.024V, differential input voltage, f  
= 40MHz (50% duty cycle), digital output  
DVDD  
IN  
CLK  
load C = 10pF, T = T  
to T unless otherwise noted. Typical values are at T = +25°C.)  
MAX, A  
L
A
MIN  
SPURIOUS-FREE DYNAMIC RANGE  
vs. TEMPERATURE  
TOTAL HARMONIC DISTORTION  
vs. TEMPERATURE  
SIGNAL-TO-NOISE RATIO  
vs. TEMPERATURE  
84  
80  
76  
72  
68  
64  
-70  
-72  
-74  
-76  
-78  
-80  
70  
68  
66  
64  
62  
60  
f
IN  
= 5.52MHz  
f = 5.52MHz  
IN  
f
IN  
= 5.52MHz  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INTEGRAL NONLINEARITY  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. TEMPERATURE  
vs. DIGITAL OUTPUT CODE  
2.0  
1.5  
1.0  
0.5  
0.500  
0.375  
0.250  
0.125  
70  
68  
66  
64  
62  
60  
f
IN  
= 5.52MHz  
0
0
-0.5  
-1.0  
-1.5  
-0.125  
-0.250  
-0.375  
-0.500  
-2.0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
0
-40  
-15  
10  
35  
60  
85  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
TEMPERATURE (°C)  
GAIN ERROR vs. TEMPERATURE, EXTERNAL  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
DIGITAL SUPPLY CURRENT  
vs. TEMPERATURE  
REFERENCE (V  
= 2.048V)  
REFIN  
0.50  
0.25  
0
70  
60  
50  
40  
30  
12  
10  
8
C 10pF  
L
-0.25  
-0.50  
6
4
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
________________________________________________________________________________________  
7
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
Typical Operating Characteristics (continued)  
(V  
AVDD  
= V  
= 3.3V, AGND = DGND = 0, V  
=
1.024V, differential input voltage, f  
= 40MHz (50% duty cycle), digital output  
DVDD  
IN  
CLK  
load C = 10pF, T = T  
to T unless otherwise noted. Typical values are at T = +25°C.)  
MAX, A  
L
A
MIN  
INTERNAL REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
SNR/SINAD, -THD/SFDR  
vs. CLOCK FREQUENCY  
2.0750  
2.0625  
2.0500  
2.0375  
2.0250  
80  
-THD  
SFDR  
75  
70  
65  
SNR  
60  
55  
50  
45  
SINAD  
f
= 5MHz  
35  
IN  
40  
3.1  
3.2  
3.3  
(V)  
3.4  
3.5  
10  
15  
20  
25  
30  
40  
V
CLOCK FREQUENCY (MHz)  
DD  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
OUTPUT NOISE HISTOGRAM (DC-INPUT)  
50,000  
45,000  
40,000  
2.10  
2.08  
2.06  
2.04  
2.02  
2.00  
43707  
35,000  
30,000  
25,000  
20,000  
15,000  
10,000  
5000  
10824  
N+1  
10709  
N-1  
179  
N-2  
116  
N+2  
1
0
0
N-3  
N
N+3  
-40  
-15  
10  
35  
60  
85  
DIGITAL OUTPUT NOISE  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
Pin Description  
PIN  
NAME  
FUNCTION  
1, 4, 5, 8,  
9, 12, 13,  
16, 19, 41,  
48  
AGND  
Analog Ground. Connect all return paths for analog signals to AGND.  
2, 3, 10,  
11, 14, 15,  
20, 42, 47  
Analog Supply Voltage. For optimum performance bypass each pin to the closest AGND with a  
parallel combination of a 0.1µF and a 1nF capacitor. Connect a single 10µF and 1µF capacitor  
AV  
DD  
combination between AV  
and AGND.  
DD  
6
INP  
Positive Analog Signal Input  
7
INN  
Negative Analog Signal Input  
17  
CLK  
Clock Frequency Input. Clock frequency input ranges from 100kHz to 40MHz.  
Complementary Clock Frequency Input. This input is used for differential clock inputs. If the ADC is  
driven with a single-ended clock, bypass CLK with a 0.1µF capacitor to AGND.  
18  
CLK  
Digital Supply Voltage. For optimum performance bypass each pin to the closest DGND with a  
parallel combination of a 0.1µF and a 1nF capacitor. Connect a single 10µF and 1µF capacitor  
21, 31, 32,  
DV  
DD  
combination between DV  
and DGND.  
DD  
22, 29, 30  
23–28  
DGND  
D0–D5  
D6–D11  
Digital Ground  
Digital Data Outputs. Data bits D0 through D5, where D0 represents the LSB.  
Digital Data Outputs. D6 through D11, where D11 represents the MSB.  
33–38  
Output Enable Input. A logic “1” on OE places the outputs D0–D11 into a high-impedance state. A  
logic “0” allows for the data bits to be read from the outputs.  
39  
40  
OE  
PD  
Shutdown Input. A logic “1” on PD places the ADC into shutdown mode.  
External Reference Input. Bypass to AGND with a capacitor combination of 0.22µF in parallel with  
1nF. REFIN can be biased externally to adjust reference levels and calibrate full-scale errors. To  
disable the internal reference, connect REFIN to AGND.  
43  
REFIN  
Positive Reference I/O. Bypass to AGND with a capacitor combination of 0.22µF in parallel with 1nF.  
44  
45  
46  
REFP  
REFN  
CML  
With the internal reference disabled (REFIN = AGND), REFP should be biased to V  
+ V  
/ 2.  
CML  
DIFF  
Negative Reference I/O. Bypass to AGND with a capacitor combination of 0.22µF in parallel with 1nF.  
With the internal reference disabled (REFIN = AGND), REFN should be biased to V - V / 2.  
CML  
DIFF  
Common-Mode Level Input. Bypass to AGND with a capacitor combination of 0.22µF in parallel  
with 1nF. With the internal reference disabled (REFIN = AGND).  
_______________________________________________________________________________________  
9
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
(OTA) input, and open simultaneously with S1, sam-  
Detailed Description  
pling the input waveform. The resulting differential volt-  
age is held on capacitors C2a and C2b. Switches S4a  
and S4b are then opened before switches S3a and S3b,  
connecting capacitors C1a and C1b to the output of the  
amplifier, and switch S4c is closed. The OTA is used to  
charge capacitors C1a and C1b to the same values  
originally held on C2a and C2b. This value is then pre-  
sented to the first-stage quantizer and isolates the  
pipeline from the fast-changing input. The wide-input  
bandwidth, T/H amplifier allows the MAX1421 to track  
and sample/hold analog inputs of high frequencies  
beyond Nyquist. The analog inputs INP and INN can be  
driven either differentially or single-ended. Match the  
impedance of INP and INN and set the common-mode  
The MAX1421 uses a 12-stage, fully-differential, pipe-  
lined architecture (Figure 1) that allows for high-speed  
conversion while minimizing power consumption. Each  
sample moves through a pipeline stage every half-  
clock-cycle. Including the delay through the output latch,  
the latency is seven clock cycles.  
A 2-bit (2-comparator) flash ADC converts the held-  
input voltage into a digital code. The following digital-to-  
analog converter (DAC) converts the digitized result  
back into an analog voltage, which is then subtracted  
from the original held-input signal. The resulting error  
signal is then multiplied by two, and the product is  
passed along to the next pipeline stage. This process is  
repeated until the signal has been processed by all 12  
stages. Each stage provides a 1-bit resolution. Digital  
error correction compensates for ADC comparator off-  
sets in each pipeline stage and ensures no missing  
codes.  
voltage to midsupply (AV  
mance.  
/ 2) for optimum perfor-  
DD  
Analog Input and Reference Configuration  
The full-scale range of the MAX1421 is determined by  
the internally generated voltage difference between  
Input Track-and-Hold Circuit  
Figure 2 displays a simplified functional diagram of the  
input T/H circuit in both track-and-hold modes. In track  
mode, switches S1, S2a, S2b, S4a, S4b, S5a, and S5b  
are closed. The fully differential circuit passes the input  
signal to the two capacitors (C2a and C2b) through-  
switches (S4a and S4b). Switches S2a and S2b set the  
common mode for the transconductance amplifier  
REFP (AV  
REFIN  
/ 2 + V  
/ 4) and REFN (AV  
/ 2 -  
DD  
DD  
REFIN  
V
/ 4). The MAX1421’s full-scale range is  
adjustable through REFIN, which provides a high input  
impedance for this purpose. REFP, CML (AV  
/ 2), and  
DD  
REFN are internally buffered low impedance outputs.  
MDAC  
INTERNAL  
BIAS  
CML  
S5a  
V
V
IN  
OUT  
x2  
Σ
T/H  
S2a  
C1a  
S3a  
TO NEXT  
STAGE  
FLASH  
ADC  
DAC  
S4a  
S4b  
2 BITS  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
OTA  
C1b  
V
IN  
STAGE 1  
STAGE 2  
STAGE 12  
S3b  
DIGITAL CORRECTION LOGIC  
12  
S2b  
S5b  
CML  
INTERNAL  
BIAS  
D11–D0  
Figure 1. Pipelined Architecture  
Figure 2. Internal Track-and-Hold Circuit  
10 ______________________________________________________________________________________  
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
AV  
DD  
50Ω  
AV  
2
DD  
CML  
( )  
R
0.22µF  
50Ω  
1nF  
1nF  
AV  
DD  
2
R
AV  
DD  
+ 1V  
REFP  
(
)
MAX4284  
2
0.22µF  
R
R
AV  
DD  
2
MAX1421  
AV  
4
DD  
R
50Ω  
AV  
2
DD  
REFN  
+ 1V  
(
)
MAX4284  
R
0.22µF  
1nF  
R
R
AV  
4
DD  
REFIN  
AGND  
+1V  
Figure 3. Unbuffered External Reference Drive—Internal Reference Disabled  
The MAX1421 provides three modes of reference oper-  
ation:  
single-ended clock signal, bypass CLK with a 0.1µF  
capacitor to AGND. Since the interstage conversion of  
the device depends on the repeatability of the rising  
and falling edges of the external clock, use a clock with  
low jitter and fast rise and fall times (< 2ns). In particu-  
lar, sampling occurs on the rising edge of the clock sig-  
nal, requiring this edge to have the lowest possible  
jitter. Any significant aperture jitter limits the SNR per-  
formance of the ADC according to the following rela-  
tionship:  
Internal reference mode  
Buffered external reference mode  
Unbuffered external reference mode  
In internal reference mode, the on-chip +2.048V  
bandgap reference is active and REFIN, REFP, CML,  
and REFN are left floating. For stability purposes,  
bypass REFIN, REFP, REFN, and CML with a capacitor  
network of 0.22µF, in parallel with a 1nF capacitor to  
AGND.  
1
SNR = 20 × log  
dB  
10  
2π × ƒ × t  
IN  
AJ  
In buffered external reference mode, the reference volt-  
age levels can be adjusted externally by applying a  
stable and accurate voltage at REFIN.  
where f represents the analog input frequency and  
IN  
t
AJ  
is the aperture jitter.  
In unbuffered external reference mode, REFIN is con-  
nected to AGND, which deactivates the on-chip buffers  
of REFP, CML, and REFN. With their buffers shut down,  
these nodes become high impedance and can be dri-  
ven by external reference sources, as shown in Figure 3.  
Clock jitter is especially critical for high input frequency  
applications. The clock input should always be consid-  
ered as an analog input and routed away from any ana-  
log or digital signal lines.  
The MAX1421 clock input operates with a voltage  
threshold set to AV  
/ 2. Clock inputs must meet the  
CLK  
Clock Inputs (CLK,  
)
DD  
specifications for high and low periods, as stated in the  
The MAX1421’s CLK and CLK inputs accept both sin-  
gle-ended and differential input operation, and accept  
CMOS-compatible clock signals. If CLK is driven with a  
Electrical Characteristics.  
______________________________________________________________________________________ 11  
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
OE  
INP  
ADC  
D11–D0  
INN  
t
t
BD  
BE  
A
VDD  
OUTPUT  
DATA D11–D0  
HIGH-Z  
HIGH-Z  
VALID DATA  
10kΩ  
10kΩ  
10kΩ  
CLK  
Figure 5. Output Enable Timing  
10kΩ  
cycle latency between any particular sample and its  
valid output data. The output coding is in offset binary  
format (Table 1).  
CLK  
MAX1421  
AGND  
The capacitive load on the digital outputs D0 through  
D11 should be kept as low as possible (10pF), to avoid  
large digital currents that could feed back into the analog  
portion of the MAX1421, thereby degrading its dynamic  
performance. The use of digital buffers (e.g.,  
74LVCH16244) on the digital outputs of the ADC can fur-  
ther isolate the digital outputs from heavy capacitive  
loads. To further improve the dynamic performance of  
the MAX1421, add small-series resistors of 100to the  
digital output paths, close to the ADC. Figure 5 displays  
the timing relationship between output enable and data  
output.  
Figure 4. Simplified Clock Input Circuit  
Figure 4 shows a simplified model of the clock input cir-  
cuit. This circuit consists of two 10kresistors to bias  
the common-mode level of each input. This circuit may  
be used to AC-couple the system clock signal to the  
MAX1421 clock input.  
OE  
Output Enable ( ), Power-Down (PD), and  
Output Data (D0–D11)  
With OE high, the digital outputs enter a high-imped-  
ance state. If OE is held low with PD high, the outputs  
are latched at the last value prior to the power-down. All  
data outputs, D0 (LSB) through D11 (MSB), are  
TTL/CMOS-logic compatible. There is a seven clock-  
System Timing Requirements  
Figure 6 depicts the relationship between the clock  
input, analog input, and data output. The MAX1421  
samples at the rising edge of CLK (falling edge of CLK)  
and output data is valid seven clock cycles (latency)  
later. Figure 6 also displays the relationship between  
the input clock parameters and the valid output data.  
Table 1. MAX1421 Output Code for  
Differential Inputs  
Applications Information  
DIFFERENTIAL  
INPUT VOLTAGE*  
DIFFERENTIAL  
INPUT  
OFFSET  
BINARY  
Figure 7 depicts a typical application circuit containing  
a single-ended to differential converter. The internal ref-  
erence provides an AV  
/ 2 output voltage for level-  
DD  
+FULL SCALE -  
1LSB  
V
V
× 2047/2048  
× 2046/2048  
1111 1111 1111  
1111 1111 1110  
REF  
REF  
shifting purposes. The input is buffered and then split to  
a voltage follower and inverter. A lowpass filter at the  
input suppresses some of the wideband noise associat-  
+FULL SCALE -  
2LSB  
ed with high-speed op amps. Select the R  
and C  
IN  
ISO  
values to optimize the filter performance and to suit a  
particular application. For the application in Figure 7, a  
ISO  
V
× 1/2048  
0
+ 1 LSB  
Bipolar Zero  
- 1 LSB  
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
REF  
R
of 50is placed before the capacitive load to pre-  
-V  
× 1/2048  
REF  
vent ringing and oscillation. The 22pF C capacitor  
IN  
-FULL SCALE +  
1 LSB  
acts as a small bypassing capacitor.  
-V  
× 2046/2048  
× 2047/2048  
0000 0000 0001  
0000 0000 0000  
REF  
Connecting C from INN to INP may further improve  
IN  
dynamic performance.  
-V  
-FULL SCALE  
REF  
*V  
= V  
- V  
REFP REFN  
REF  
12 ______________________________________________________________________________________  
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
7 CLOCK-CYCLE LATENCY  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
ANALOG INPUT  
CLK  
t
t
CH  
DO  
t
CL  
CLK  
N - 7  
N - 6  
N - 5  
N - 4  
N - 3  
N - 2  
N - 1  
N
DATA OUTPUT  
Figure 6. System and Output Timing Diagram  
network of a 10µF bipolar capacitor in parallel with two  
ceramic capacitors of 1nF and 0.1µF. Follow the same  
Using Transformer Coupling  
An RF transformer (Figure 8) provides an excellent solu-  
tion to convert a single-ended signal to a fully differen-  
tial signal, required by the MAX1421 for optimum  
performance. Connecting the center tap of the trans-  
rules to bypass the digital supply DV  
to DGND.  
DD  
Multilayer boards with separate ground and power  
planes produce the highest level of signal integrity.  
Consider the use of a split ground plane arrangement  
to match the physical location of the analog ground  
(AGND) and the digital output driver ground (DGND) on  
the ADCs package. The two ground planes should be  
joined at a single point so that the noisy digital ground  
currents do not interfere with the analog ground plane.  
Alternatively, all ground pins could share the same  
ground plane, if the ground plane is sufficiently isolated  
from any noisy, digital systems ground plane (e.g.,  
downstream output buffer, DSP ground plane). Route  
high-speed digital signal traces away from sensitive  
analog traces and remove digital ground and power  
planes from underneath digital outputs. Keep all signal  
lines short and free of 90 degree turns.  
former to CML provides an AV  
/ 2 DC level shift to  
DD  
the input. Although a 1:1 transformer is shown, a 1:2 or  
1:4 step-up transformer may be selected to reduce the  
drive requirements.  
In general, the MAX1421 provides better SFDR and  
THD with fully differential input signals over single-  
ended input signals, especially for very high input fre-  
quencies. In differential input mode, even-order  
harmonics are suppressed and each of the inputs  
requires only half the signal swing compared to single-  
ended mode.  
Single-Ended AC-Coupled Input Signal  
Figure 9 shows an AC-coupled, single-ended applica-  
tion, using a MAX4108 op amp. This configuration pro-  
vides high-speed, high-bandwidth, low noise, and low  
distortion to maintain the integrity of the input signal.  
Static Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. This straight-  
line can be either a best straight-line fit or a line drawn  
between the endpoints of the transfer function, once off-  
set and gain errors have been nullified. The static lin-  
earity parameters for the MAX1421 are measured using  
the best straight-line fit method.  
Grounding, Bypassing, and  
Board Layout  
The MAX1421 requires high-speed board layout design  
techniques. Locate all bypass capacitors as close to  
the device as possible, preferably on the same side of  
the board as the ADC, using surface-mount devices for  
minimum inductance. Bypass REFP, REFN, REFIN, and  
CML with a parallel network of 0.22µF capacitors and  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an  
actual step-width and the ideal value of 1LSB. A DNL  
1nF to AGND. AV  
should be bypassed with a similar  
DD  
______________________________________________________________________________________ 13  
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
+5V  
0.1µF  
LOWPASS FILTER  
INP  
MAX4108  
R
50Ω  
0.1µF  
ISO  
300Ω  
C
22pF  
*
IN  
0.1µF  
-5V  
MAX1421  
600Ω  
0.1µF  
44pF*  
300Ω  
600Ω  
CML  
0.1µF  
0.22µF  
1nF  
+5V  
+5V  
0.1µF  
0.1µF  
600Ω  
INPUT  
0.1µF  
0.1µF  
LOWPASS FILTER  
MAX4108  
300Ω  
300Ω  
INN  
MAX4108  
R
ISO  
C
22pF  
*
IN  
50Ω  
-5V  
-5V  
300Ω  
300Ω  
300Ω  
*TWO C (22pF) CAPS MAY BE REPLACED BY  
IN  
ONE 44pF CAP, TO IMPROVE PERFORMANCE.  
Figure 7. Typical Application Circuit for Single-Ended to Differential Conversion  
error specification of less than 1LSB guarantees no  
missing codes.  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADCs reso-  
lution (N-bits):  
Dynamic Parameter Definitions  
Aperture Jitter  
Figure 10 depicts the aperture jitter (t ), which is the  
AJ  
SNR  
= (6.02 N + 1.76)dB  
(MAX)  
sample-to-sample variation in the aperture delay.  
In reality, there are other noise sources besides quanti-  
zation noise e.g., thermal noise, reference noise, clock  
jitter, etc. SNR is computed by taking the ratio of the  
RMS signal to the RMS noise, which includes all spec-  
tral components minus the fundamental, the first four  
harmonics, and the DC offset.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
falling edge of the sampling clock and the instant when  
an actual sample is taken (Figure 10).  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
14 ______________________________________________________________________________________  
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
25Ω  
INP  
*
22pF  
MAX1421  
0.1µF  
*
1
2
3
6
5
4
44pF  
T1  
V
IN  
N.C.  
CML  
0.22µF  
1nF  
MINICIRCUITS  
T1–1T–KK81  
25Ω  
INN  
*
22pF  
*REPLACE BOTH 22pF CAPS WITH 44pF BETWEEN  
INP AND INN TO IMPROVE DYNAMIC PERFORMANCE.  
Figure 8. Using a Transformer for AC-Coupling  
R
50Ω  
ISO  
V
IN  
0.1µF  
INP  
MAX4108  
C
IN  
22pF  
100Ω  
100Ω  
1kΩ  
MAX1421  
CML  
1nF  
0.22µF  
R
ISO  
50Ω  
INN  
C
IN  
22pF  
Figure 9. Single-Ended AC-Coupled Input Signal  
Signal-to-Noise Plus Distortion (SINAD)  
CLK  
CLK  
SINAD is computed by taking the ratio of the RMS sig-  
nal to all spectral components minus the fundamental  
and the DC offset.  
ANALOG  
INPUT  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at  
a specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. ENOB  
is computed from:  
t
AD  
t
AJ  
SAMPLED  
DATA (T/H)  
SINAD-1.76  
ENOB =  
6.02  
HOLD  
TRACK  
TRACK  
T/H  
Figure 10. Track-and-Hold Aperture Timing  
______________________________________________________________________________________ 15  
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
Total Harmonic Distortion (THD)  
Functional Diagram  
THD is typically the ratio of the RMS sum of the first four  
harmonics of the input signal to the fundamental itself.  
This is expressed as:  
CLK  
CLK  
AV  
DD  
MAX1421  
AGND  
INTERFACE  
2
V22 + V32 + V42 + V5  
(
)
THD = 20 × log10  
INP  
INN  
OUTPUT  
DRIVERS  
D11–D0  
T/H  
PIPELINE ADC  
V
1
DV  
DD  
BANDGAP  
REFERENCE  
REF SYSTEM +  
BIAS  
where V1 is the fundamental amplitude, and V2 through  
V5 are the amplitudes of the 2nd- through 5th-order har-  
monics.  
PD  
DGND  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next largest spurious  
component, excluding DC offset.  
REFIN REFP CML REFN  
OE  
Intermodulation Distortion (IMD)  
The two-tone IMD is the ratio expressed in decibels of  
either input tone to the worst 3rd-order (or higher) inter-  
modulation products. The individual input tone levels  
are at -6.5dB full scale and their envelope is at -0.5dB  
full scale.  
16 ______________________________________________________________________________________  
12-Bit, 40Msps, 3.3V, Low-Power ADC  
with Internal Reference  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 32/48L LQFP, 7x7x1.4mm  
1
21-0054  
F
2
PACKAGE OUTLINE, 32/48L LQFP, 7x7x1.4mm  
2
21-0054  
F
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
17 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX1422

12-Bit, 20Msps, 3.3V, Low-Power ADC with Internal Reference
MAXIM

MAX1422CCM

12-Bit, 20Msps, 3.3V, Low-Power ADC with Internal Reference
MAXIM

MAX1422CCM+TD

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026-BBC, TQFP-48
MAXIM

MAX1422CCM-D

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026-BBC, TQFP-48
MAXIM

MAX1422CCM-T

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026-BBC, TQFP-48
MAXIM

MAX1422CCM-TD

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026-BBC, TQFP-48
MAXIM

MAX1422ECM

12-Bit, 20Msps, 3.3V, Low-Power ADC with Internal Reference
MAXIM

MAX1422ECM+D

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026-BBC, TQFP-48
MAXIM

MAX1422ECM-D

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026-BBC, TQFP-48
MAXIM

MAX1422ECM-T

ADC, Proprietary Method, 12-Bit, 1 Func, 1 Channel, Parallel, Word Access, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, MS-026-BBC, TQFP-48
MAXIM

MAX1425

10-Bit, 20Msps ADC
MAXIM

MAX1425CAI

10-Bit, 20Msps ADC
MAXIM