MAX14661ETI+T [MAXIM]

Beyond-the-Rails 16:2 Multiplexer;
MAX14661ETI+T
型号: MAX14661ETI+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Beyond-the-Rails 16:2 Multiplexer

文件: 总27页 (文件大小:1256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
General Description  
The MAX14661 is a serially controlled, dual-channel  
analog multiplexer allowing any of the 16 pins to be  
connected to either common pin simultaneously in any  
combination. The device features Beyond-the-Rails  
capability so that ±5.5V signals can be passed with any  
single supply between +1.6V and +5.5V.  
Features and Benefits  
●ꢀ Beyond-the-RailsꢀTechnologyꢀReducesꢀCostꢀandꢀ  
Complexity  
• Switch ±5.5V Signals from a +1.6V Single Supply  
• Wide +1.6V to +5.5V Supply Range  
TM  
• Low 5.5W R  
(typ) Across the Supply Range  
ON  
●ꢀ FlexibleꢀMultiplexingꢀEnablesꢀDesignꢀReuse  
• 16:2 Matrix Switch Multiplexer Connects Any Input  
Pin To Either Common Pin In Any Combination  
2
The serial control is selectable between I C and SPI.  
Both modes provide individual control of each indepen-  
dent switch so that any combination of switches can  
2
• Each Switch is Independently Controlled via I C or  
SPI  
2
be applied. I C mode provides two address-select pins  
• Programmable Shadow Registers Allow  
Simultaneous Updating  
allowing for addressing up to four devices on a single bus.  
The SPI mode includes a DOUT pin that can be used to  
chain multiple devices together with a single select signal.  
●ꢀ LowꢀDistortionꢀSwitchingꢀImprovesꢀSystemꢀ  
Performance  
The IC is available in a 28-pin (4mm x 4mm) TQFN pack-  
age and is specified over the -40ºC to +85ºC extended  
temperature range. The AB_ and COM_ pins provide  
±10kV ESD protection (HBM).  
Total Harmonic Distortion + Noise 0.005% (typ)  
• R ꢀFlatnessꢀ2.5mΩꢀ(typ)ꢀAcrossꢀCompleteꢀ  
ON  
Signal Range  
●ꢀ IntegratedꢀProtectionꢀforꢀSystemꢀReliability  
• ±10kV HBM ESD Protection on all AB_ and COM_  
Pins, Even When Powered Down  
Applications  
●ꢀ SystemꢀDiagnostics  
●ꢀ DataꢀAcquisition  
●ꢀ I C Signal Switching  
Ordering Information appears at end of data sheet.  
2
●ꢀ AudioꢀInputꢀSelection  
Beyond-the-Rails™ is a trademark Maxim Integrated Products, Inc.  
19-6739; Rev 2; 1/15  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Functional Diagram  
MAX14661  
COMA  
AB01  
AB02  
AB03  
AB04  
AB05  
AB06  
AB07  
AB08  
AB09  
AB10  
AB11  
AB12  
AB13  
AB14  
AB15  
AB16  
COMB  
SCLK/SCL  
DIN/SDA  
CS/A0  
V
CC  
GND  
SERIAL CONTROL  
2
SPI/I C  
DOUT/A1  
SD  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Absolute Maximum Ratings  
(All voltages referenced to GND.)  
Continuous Power Dissipation  
V
, DIN/SDA, SCLK/SCL, DOUT/A1,  
28 TQFN (derate 28.6mW/ºC above +70ºC)..........2285.7mW  
Operating Temperature Range............................-40ºC to +85ºC  
Maximum Junction Temperature .....................................+150ºC  
Storage Temperature Range.............................-65ºC to +150ºC  
Lead Temperature (soldering, 10s) .................................+300ºC  
Soldering Temperature (reflow).......................................+260ºC  
CC  
CS/A0, SD ....................................................... -0.3V to +6.0V  
2
SPI/I C................................. -0.3V to min (V  
to +0.3V, 6V)  
CC  
AB_, COM_ .........................................................-6.0V to +6.0V  
Continuous Current (AB_ or COM_ to any switch)..........±50mA  
Peak Current (AB_ or COM_ to any switch)  
(pulsed at 1ms, maximum 10% duty cycle)................±100mA  
(Note 1)  
Package Thermal Characteristics  
Junction-to-Case Thermal Resistance (θ  
)
Junction-to-Ambient Thermal Resistance (θ  
)
JA  
JC  
TQFN.................................................................................3ºC/W  
TQFN...........................................................................35ºC/W  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= +1.6V to +5.5V, T = -40ºC to +85ºC, unless otherwise noted. Typical values are at V  
= +3.3V, T = +25ºC, unless otherwise  
CC  
A
CC A  
noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY  
Power-Supply Range  
V
1.6  
5.5  
V
CC  
R
ꢀ=ꢀ50Ω,  
COM  
Power-Supply Rejection Ratio  
PSRR  
-84  
dB  
V
V
V
V
= +3.3V ±0.1V, f = 10kHz  
= +3.3V, all switches on  
= +3.3V, two switches on  
= +3.3V, SD = 0  
CC  
CC  
CC  
CC  
675  
115  
1500  
200  
1
V
Supply Current  
I
µA  
CC  
CC  
ANALOG SWITCH  
V
,
AB_  
Analog Signal Range  
-5.5  
+5.5  
V
V
V
COM_  
V
> 2.5V  
11  
11  
6
CC  
Analog Signal Amplitude  
(Notes 3, 4)  
V
f < 500kHz  
P-P  
V
V
V
< 2.5V, f > 500kHz  
= +5V  
CC  
CC  
CC  
8
On-Resistance  
R
ON  
= +1.8V  
12  
On-Resistance Match between  
Channels  
ΔR  
V
= 3.3V, between COM_ and AB_  
0.25  
25  
ON  
CC  
V
V
= 3.3V, I  
= 10mA,  
COM_  
CC  
On-Resistance Flatness  
R
mΩ  
FLAT  
= -5.5V to +5.5V  
COM_  
V
V
V
= 3.3V, switch open,  
CC  
= -5.5V, +5.5V  
COM_  
AB_, COM_ Off-Leakage Current  
I
-50  
+50  
nA  
OFF  
= +5.5V, -5.5V, unconnected  
AB_  
(Notes 3, 5)  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Electrical Characteristics (continued)  
(V  
= +1.6V to +5.5V, T = -40ºC to +85ºC, unless otherwise noted. Typical values are at V  
= +3.3V, T = +25ºC, unless otherwise  
CC  
A
CC A  
noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
= 3.3V, switch closed,  
CC  
AB_, COM_ On-Leakage Current  
I
-50  
+50  
nA  
ON  
= V  
= ±5.5V (Notes 3, 5)  
COM_  
AB_  
DYNAMIC PERFORMACE (Notes 6, 7)  
V
= 3.0V, R ꢀ=ꢀ100Ω,ꢀC = 33pF,  
L L  
COM_  
Turn-Off Time  
t
5
µs  
µs  
OFF  
open COM_ and AB_ together  
V
= 3.0V, R ꢀ=ꢀ100Ω,ꢀC = 33pF,  
COM_  
L
L
Break-Before-Make Time  
Turn-On Time  
t
time for both switching channels are open  
during transition  
0
BBM  
V
= 3.0V, R = 100W, C = 33pF;  
L L  
COM_  
25  
t
close AB_ and COMA or AB_ and COMB  
together  
13  
µs  
µs  
ON  
Time from when SD pin goes high to  
when the device is ready to listen for  
I2C/SPI comunications  
Enable Time  
t
300  
EN  
R
0.6V  
= R ꢀ=ꢀ50Ωꢀ(Notesꢀ7,ꢀ8),ꢀV  
=
S
L
COM_  
Bandwidth -3dB  
BW  
60  
MHz  
%
P-P  
Total Harmonic Distortion Plus  
Noise  
f = 20Hz to 20kHz, V  
R
= 0.5V  
,
COM_  
P-P  
THD + N  
0.005  
= R =ꢀ50Ω,ꢀDCꢀbiasꢀ=ꢀ0  
L
S
R
= R ꢀ=ꢀ50Ω,ꢀV  
= 0.6V  
,
S
L
COM_  
P-P  
Off-Isolation  
Crosstalk  
V
-62  
-80  
dB  
dB  
ISO  
f = 1MHz (Note 8)  
R
= R =ꢀ50Ω,ꢀV  
= 0.6V  
,
S
L
COM  
P-P  
V
CT  
f = 1MHz (Note 8)  
Thermal Shutdown  
Thermal Hysteresis  
T
150  
25  
ºC  
ºC  
SDW  
T
HYST  
SPI TIMING CHARACTERISTICS (See Figure 12)  
t
t
SCLK Clock Period  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
CS Fall to SCLK Rise Time  
DIN Hold Time  
95  
35  
45  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
CH + CL  
t
CH  
t
CL  
t
CSS  
t
DH  
t
DIN Setup Time  
DS  
C
C
C
= 15pF, V  
≥ꢀ2.7V  
40  
80  
L
L
L
CC  
t
Output Data Propagation Delay  
ns  
DO  
ꢀ=ꢀ15pF,ꢀ1.6Vꢀ≤ꢀV  
< 2.7V  
CC  
tFT  
DOUT Rise and Fall Times  
CS Hold Time  
= 15pF  
10  
ns  
ns  
t
60  
CSH  
I2C TIMING (See Figure 4)  
I2CꢀSerial-ClockꢀFrequency  
f
400  
kHz  
µs  
SCL  
Bus Free Time Between STOP  
and START Conditions  
t
1.3  
BUF  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Electrical Characteristics (continued)  
(V  
= +1.6V to +5.5V, T = -40ºC to +85ºC, unless otherwise noted. Typical values are at V  
= +3.3V, T = +25ºC, unless otherwise  
CC  
A
CC A  
noted.) (Note 2)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
START Condition  
Setup Time  
t
0.6  
µs  
SU:STA  
HD:STA  
START Condition Hold Time  
STOP Condition Setup Time  
Clock Low Period  
t
0.6  
0.6  
1.3  
0.6  
100  
0
µs  
µs  
µs  
µs  
ns  
ns  
t
SU:STO  
t
LOW  
Clock High Period  
t
HIGH  
Data Valid to SCL Rise Time  
Data Hold Time to SCL Fall  
DIGITAL I/O  
t
Write setup time  
Write hold time  
SU:DAT  
HD:DAT  
t
Input Logic-High Voltage  
V
1.4  
V
V
IH  
Input Logic-Low Voltage  
(DIN/SDA, SCLK/SCL, CS/A0)  
V
0.5  
0.4  
IL_FAST  
Input Logic-Low Voltage (DOUT/  
A1 SD)  
V
V
IL_SLOW  
Input Leakage Current  
SPI/I2C I2C Threshold  
SPI/I2C SPI Threshold  
I
-1  
+1  
µA  
V
IN  
V
0.4  
I2C  
SPI  
V
1.5  
V
Output Logic Low  
(I2C mode)  
V
I
= 3mA  
0.4  
5.5  
V
V
V
OL_I2C  
SINK  
SPI/I2C SPI Supply Voltage  
V
1.5  
OVDD  
Output Logic-Low  
(SPI Mode)  
V
I
I
= 200µA  
0.15 x V  
OVDD  
OL_SPI  
SINK  
Output Logic-High  
(SPI Mode)  
V
= 200µA  
0.85 x V  
V
OH_SPI  
SOURCE  
OVDD  
ESD PROTECTION  
All AB_ and COM_ Pins  
All Others Pins  
HBM  
HBM  
±10  
±2  
kV  
kV  
Note 2: All devices are 100% production tested at T = +25ºC. Specifications over temperature are guaranteed by design.  
A
Note 3: Guaranteed by design.  
Note 4: See the Typical Operating Characteristics Maximum Signal Amplitude vs. Supply Voltage for f > 500kHz for more details.  
Note 5: Test circuit Figure 1.  
Note 6: Test circuit Figure 2.  
Note 7: Supplyꢀvoltageꢀandꢀsignalꢀamplitudeꢀcanꢀaffectꢀtheꢀfrequencyꢀresponseꢀofꢀtheꢀdevice.ꢀSeeꢀamplitudeꢀfrequencyꢀstabilityꢀinꢀ  
the Typical Operating Characteristics for more details.  
Note 8: Test circuit Figure 3.  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Test Circuits/Timing Diagrams  
MAX14661  
AB_ OFF  
LEAKAGE  
COM_ OFF  
LEAKAGE  
AB_  
COM_  
V
AB_  
V
COM_  
A
A
ON  
LEAKAGE  
MAX14661  
AB01  
COM_  
CHANNEL TO  
CHANNEL LEAKAGE  
V
COM_  
A
AB02-16  
V
AB_  
A
Figure 1. On-/Off-/Channel-to-Channel Leakage Current  
CS  
MAX14661  
+3V  
t
ON  
V
OUT  
AB_  
AB_  
COM_  
+3V  
t
t
BBM  
OFF  
4
SPI  
CONTROL  
SPI  
V
OUT  
R
L
NOTE: V = 3V x  
RIF  
R
+ R  
ON  
L
0V  
Figure 2. Turn-On/Turn-Off/Break-Before-Make  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
NETWORK  
ANALYZER  
50  
50Ω  
V
V
IN  
COM_  
AB01  
AB02-AB16  
V
OUT  
ON-LOSS = 20log  
V
IN  
OUT  
MEAS  
REF  
MAX14661  
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
NETWORK  
ANALYZER  
COMA  
COMB  
50Ω  
50Ω  
V
V
IN  
AB02-AB16  
V
OUT  
OFF-ISOLATION = 20log  
V
IN  
OUT  
AB01  
MEAS  
REF  
MAX14661  
50Ω  
50Ω  
NETWORK  
ANALYZER  
50Ω  
50Ω  
V
V
IN  
COM_  
AB01  
AB02-AB16  
V
OUT  
CROSSTALK = 20log  
V
IN  
OUT  
MEAS  
REF  
MAX14661  
50Ω  
50Ω  
Figure 3. Insertion Loss, Off-Isolation, and Crosstalk  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Typical Operating Characteristics  
(V  
= +1.6V to +5.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V = +3.3V, T = +25°C, unless otherwise  
CC  
A
CC A  
noted.)  
COM_ LEAKAGE CURRENT  
vs. TEMPERATURE  
ON-RESISTANCE vs. COM_ VOLTAGE  
ON-RESISTANCE vs. COM_ VOLTAGE  
10  
8
10  
8
6
COM_ = +5V  
SWITCH ON  
V
CC  
= 1.8V  
4
T
= +85°C  
A
COM_ = +5V  
SWITCH OFF  
2
6
6
0
V
= 2.5V  
CC  
4
4
V
0
= 5.0V  
CC  
COM_ = -5V  
SWITCH OFF  
-2  
-4  
-6  
T
= +25°C  
A
T
= -40°C  
A
2
2
COM_ = -5V  
SWITCH ON  
0
0
-6  
-4  
-2  
0
2
4
6
-6  
-4  
-2  
2
4
6
-40  
-15  
10  
35  
60  
85  
COM_ VOLTAGE (V)  
COM_ VOLTAGE (V)  
TEMPERATURE (°C)  
COM_ LEAKAGE CURRENT  
vs. COM_ VOLTAGE  
COM_ LEAKAGE CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SUPPLY  
VOLTAGE (TWO SWITCHES ON)  
6
4
6
4
160  
120  
80  
40  
0
COM_ = +5V  
SWITCH ON  
COM_ = +5V  
SWITCH OFF  
2
2
SWITCH ON  
0
0
SWITCH OFF  
-2  
-4  
-6  
-2  
-4  
-6  
COM_ = -5V  
SWITCH OFF  
COM_ = -5V  
SWITCH ON  
-6  
-4  
-2  
0
2
4
6
1.5  
2.5  
3.5  
4.5  
5.5  
1.5  
2.5  
3.5  
4.5  
5.5  
COM_ VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY CURRENT vs. TEMPERATURE  
(TWO SWITCHES ON)  
FREQUENCY RESPONSE  
0
-1  
-2  
-3  
-4  
-5  
160  
130  
100  
70  
40  
0.1  
1
10  
100  
-40  
-15  
10  
35  
60  
85  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
Maxim Integrated  
8
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Typical Operating Characteristics (continued)  
(V  
= +1.6V to +5.5V, T = -40°C to +85°C, unless otherwise noted. Typical values are at V  
= +3.3V, T = +25°C, unless otherwise  
CC  
A
CC A  
noted.)  
OFF-ISOLATION vs. FREQUENCY  
CROSSTALK vs. FREQUENCY  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TOTAL HARMONIC DISTORTION  
+ NOISE (THD+N) vs. FREQUENCY  
MAXIMUM SIGNAL AMPLITUDE  
vs. SUPPLY VOLTAGE f > 500kHz  
PSRR vs. FREQUENCY  
0
-20  
0.005  
0.004  
0.003  
0.002  
0.001  
0
15  
V
CC  
= 3.3V ± 0.1V  
THIS PLOT SHOWS THE MAXIMUM  
SIGNAL AMPLITUDE THAT ALLOWS  
DISTORTION-FREE OPERATION AT  
A GIVEN SUPPLY VOLTAGE  
12  
9
-40  
-60  
-80  
TYPICAL LIMIT  
6
RECOMMENDED  
OPERATING RANGE  
-100  
-120  
-140  
3
0
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
0
1.6 2 2.5  
4
6
20  
200  
2k  
20k  
SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Pin Configurations  
TOP VIEW  
21 20 19 18 17 16 15  
14  
13  
SD 22  
CS/A0 23  
AB16  
COMB  
12 N.C.  
24  
25  
26  
27  
28  
SCLK/SCL  
GND  
MAX14661  
GND  
11  
10  
9
V
CC  
COMA  
AB08  
AB07  
DIN/SDA  
DOUT/A1  
*EP  
6
+
8
1
2
3
4
5
7
TQFN  
(4mm x 4mm)  
*CONNECT EP TO GND  
Pin Description  
PIN  
1
NAME  
FUNCTION  
2
2
SPI/ I C  
Serial Mode Select SPI (high) or I C (low), Supply Input for DOUT  
AB Connection to Switches 1A and 1B  
AB Connection to Switches 2A and 2B  
AB Connection to Switches 3A and 3B  
AB Connection to Switches 4A and 4B  
AB Connection to Switches 5A and 5B  
AB Connection to Switches 6A and 6B  
AB Connection to Switches 7A and 7B  
AB Connection to Switches 8A and 8B  
Common Connection to All A Switches  
2
AB01  
AB02  
AB03  
AB04  
AB05  
AB06  
AB07  
AB08  
COMA  
3
4
5
6
7
8
9
10  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Pin Description (continued)  
PIN  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
NAME  
GND  
FUNCTION  
Ground  
N.C.  
Not Connected  
COMB  
AB16  
AB15  
AB14  
AB13  
AB12  
AB11  
Common Connection to All B Switches  
AB Connection to Switches 16A and 16B  
AB Connection to Switches 15A and 15B  
AB Connection to Switches 14A and 14B  
AB Connection to Switches 13A and 13B  
AB Connection to Switches 12A and 12B  
AB Connection to Switches 11A and 11B  
AB Connection to Switches 10A and 10B  
AB Connection to Switches 9A and 9B  
AB10  
AB09  
SD  
Active-Low Shutdown/Low-Power Mode, Turns All Switches Off  
2
CS/A0  
SCLK/SCL  
GND  
I C Address Bit 0/SPI CS Signal  
2
I C Serial Clock/SPI Serial Clock  
Ground  
V
Power-Supply Input  
CC  
2
I C Serial Data/SPI Data Input  
DIN/SDA  
DOUT/A1  
2
I C Address Bit 1/SPI Data Output  
Exposed Pad. Internally connected to GND. Connect to a large ground plane to maximize thermal  
performance. Not intended as an electrical connection point.  
EP  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Table 1. Register Map  
ADDRESS  
0x00  
NAME  
DIR0  
TYPE  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DEFAULT  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
DESCRIPTION  
Switches 8A1A direct read/write access  
0x01  
DIR1  
Switches 16A9A direct read/write access  
Switches 8B1B direct read/write access  
Switches 16B9B direct read/write access  
Switches 8A1A shadow read/write access  
Switches 16A9A shadow read/write access  
Switches 8B1B shadow read/write access  
Switches 16B9B shadow read/write access  
Set mux A command (reads 0x00)  
0x02  
DIR2  
0x03  
DIR3  
0x10  
SHDW0  
SHDW1  
SHDW2  
SHDW3  
CMD_A  
CMD_B  
0x11  
0x12  
0x13  
0x14  
0x15  
Set mux B command (reads 0x00)  
Register Types: RW = Read/Write  
Table 2. Detailed Register Map  
DIR0 0x00  
BIT  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
BIT Name  
Reset Value  
Direct_SW8A–1A  
0
0
Direct Register Data for SW8A–1A  
0 = Switch open  
Description  
1 = Switch closed  
DIR1 0x01  
BIT  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
BIT Name  
Reset Value  
Direct_SW16A–9A  
0
0
Direct Register Data for SW16A–9A  
0 = Switch open  
Description  
1 = Switch closed  
DIR2 0x02  
BIT  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
BIT Name  
Reset Value  
Direct_SW8B–1B  
0
0
Direct Register Data for SW8B–1B  
0 = Switch open  
Description  
1 = Switch closed  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Table 2. Detailed Register Map (continued)  
DIR3 0x03  
BIT  
7
6
5
4
0
3
0
2
0
1
0
0
0
BIT Name  
Reset Value  
Direct_SW16B–9B  
0
0
0
Direct Register Data for SW16B–9B  
0 = Switch open  
Description  
1 = Switch closed  
SHDW0 0x10  
BIT  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
BIT Name  
Reset Value  
Shadow_SW8A–1A  
0
0
Shadow Register Data for SW8A–1A; temporarily holding registers that support simultaneous  
updates.  
0 = Switch open  
1 = Switch closed  
Description  
SHDW1 0x11  
BIT  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
BIT Name  
Reset Value  
Shadow_SW16A–9A  
0
0
Shadow Register Data for SW16A–9A; temporarily holding registers that support simultaneous  
updates.  
0 = Switch open  
1 = Switch closed  
Description  
SHDW2 0x12  
BIT  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
BIT Name  
Reset Value  
Shadow_SW8B–1B  
0
0
Shadow Register Data for SW8B–1B; temporarily holding registers that support simultaneous  
updates.  
0 = Switch open  
1 = Switch closed  
Description  
SHDW3 0x13  
BIT  
7
6
5
0
4
0
3
0
2
0
1
0
0
0
BIT Name  
Reset Value  
Shadow_SW16B–1B  
0
0
Shadow Register Data for SW16B–9B; temporarily holding registers that support simultaneous  
updates.  
0 = Switch open  
1 = Switch closed  
Description  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Table 2. Detailed Register Map (continued)  
CMD_A 0x14  
BIT  
7
6
5
4
3
0
2
0
1
0
0
0
BIT Name  
Reset Value  
RFU  
RFU  
0
RFU  
0
SelA  
0
0
SelA  
00000 = Enable only SW01A (0x0001)  
00001 = Enable only SW02A (0x0002)  
00010 = Enable only SW03A (0x0004)  
00011 = Enable only SW04A (0x0008)  
00100 = Enable only SW05A (0x0010)  
00101 = Enable only SW06A (0x0020)  
00110 = Enable only SW07A (0x0040)  
00111 = Enable only SW08A (0x0080)  
01000 = Enable only SW09A (0x0100)  
01001 = Enable only SW10A (0x0200)  
01010 = Enable only SW11A (0x0400)  
01011 = Enable only SW12A (0x0800)  
01100 = Enable only SW13A (0x1000)  
01101 = Enable only SW14A (0x2000)  
01110 = Enable only SW15A (0x4000)  
01111 = Enable only SW16A (0x8000)  
10000 = Disable all bank A switches (0x0000)  
Description  
10001 = Copy A shadows registers (SHDW0 and SHDW1) to switches  
10010 ..11111 = No change on bank A  
CMD_B 0x15  
BIT  
7
6
5
4
3
0
2
0
1
0
0
0
BIT Name  
Reset Value  
RFU  
0
RFU  
0
RFU  
0
SelB  
0
SelB  
00000 = Enable only SW01B (0x0001)  
00001 = Enable only SW02B (0x0002)  
00010 = Enable only SW03B (0x0004)  
00011 = Enable only SW04B (0x0008)  
00100 = Enable only SW05B (0x0010)  
00101 = Enable only SW06B (0x0020)  
00110 = Enable only SW07B (0x0040)  
00111 = Enable only SW08B (0x0080)  
01000 = Enable only SW09B (0x0100)  
01001 = Enable only SW10B (0x0200)  
01010 = Enable only SW11B (0x0400)  
01011 = Enable only SW12B (0x0800)  
01100 = Enable only SW13B (0x1000)  
01101 = Enable only SW14B (0x2000)  
01110 = Enable only SW15B (0x4000)  
01111 = Enable only SW16B (0x8000)  
10000 = Disable all bank B switches (0x0000)  
RFU = Reserved  
Description  
10001 = Copy B shadows registers (SHDW2 and SHDW3) to switches  
10010 .. 11111 = No change on bank B  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Set Mux Command Registers  
Detailed Description  
The set mux command registers allow the user to easily  
select any one single switch in a bank. The CMD_A regis-  
ter allows the user to turn on one single switch in bank A,  
to open the entire bank A switches, to copy SHDW0 and  
SHDW1 registers to DIR0 and DIR1 registers, or to leave  
bank A as it is (no changes). Similarly, the CMD_B reg-  
ister allows the user to turn on one single switch in bank  
B, to open the entire bank B switches, to copy SHDW2  
and SHDW3 registers to DIR2 and DIR3 registers, or to  
leave bank B as it is (no changes). The values apply to  
the switches after both registers (CMD_A and CMD_B)  
have been written. CMD_A and CMD_B are a single  
16-bit register; therefore, CMD_A must be programmed  
before CMD_B.  
Low-Power Shutdown  
The device includes an active-low shutdown pin (SD).  
When this pin is low, all registers are cleared and all  
switches are open. The serial interface is not functional  
when in shutdown. All switch connections are open and  
tolerant of the full ±5.5V specified signal range. In this  
mode the part consumes minimal power.  
SPI Output Supply  
2
The SPI/I C pin has a dual purpose. In addition to select-  
ing which serial protocol the part uses, it also functions as  
the I/O voltage power pin for the SPI DOUT signal. This  
allows the user to set the output voltage independent of  
the device supply voltage.  
Serial Addressing  
When in I C mode, the MAX14661 operates as a slave  
device that sends and receives data through an I C-  
2
I C Serial Interface  
2
2
Direct Access Registers  
compatible 2-wire interface. The interface uses a serial-  
data line (SDA) and a serial-clock line (SCL) to achieve  
bidirectional communication between master(s) and  
slave(s). A master (typically a microcontroller) initiates all  
data transfers to and from the MAX14661 and generates  
the SCL clock that synchronizes the data transfer. The  
SDA line operates as both an input and an open-drain  
output.ꢀAꢀpullupꢀresistorꢀisꢀrequiredꢀonꢀSDA.ꢀTheꢀSCLꢀlineꢀ  
operatesꢀonlyꢀasꢀanꢀinput.ꢀAꢀpullupꢀresistorꢀisꢀrequiredꢀonꢀ  
SCL if there are multiple masters on the 2-wire interface,  
or if the master in a single-master system has an open-  
drain SCL output. Each transmission consists of a START  
condition sent by a master, followed by the MAX14661  
7-bit slave address plus R/W bit, a register address byte,  
one or more data bytes, and finally a STOP condition  
(Figure 4).  
The direct access registers (DIR0–DIR3) allow the user to  
read or write the switches eight at a time. These register  
addresses support automatic incrementing so they can  
beꢀreadꢀorꢀwrittenꢀsequentially.ꢀTheꢀswitchesꢀareꢀupdatedꢀ  
after the last bit of the byte clocked in.  
Shadow Registers  
The shadow registers (SHDW0–SHDW3) provide storage  
for switch values to allow for simultaneous updates of the  
switches. Unlike the direct access registers, these regis-  
ters have no immediate effect until the copy command is  
issued. The copy command has to be written in CMD_A  
and CMD_B registers. Simply write to the four registers  
with the desired state of each switch, and then write the  
appropriate command to registers CMD_A and CMD_B to  
simultaneously apply the values to the switches.  
t
R
SDA  
t
BUF  
t
t
SU:STA  
SU:DAT  
t
HD:STA  
t
LOW  
t
SU:STO  
t
HD:DAT  
t
SCL  
HIGH  
t
HD:STA  
t
R
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
2
Figure 4. I C Interface Timing Details  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
bits. The master generates the 9th clock pulse, and the  
recipient pulls down SDA during the acknowledge clock  
pulse. The SDA line is stable low during the high period  
of the clock pulse. When the master is transmitting to the  
MAX14661, it generates the acknowledge bit because the  
device is the recipient. When the device is transmitting  
to the master, the master generates the acknowledge bit  
because the master is the recipient. If the device did not  
pull SDA low, a not acknowledge is indicated.  
Start and Stop Conditions  
Both SCL and SDA remain high when the interface is not  
busy. A master signals the beginning of a transmission  
with a START (S) condition by transitioning SDA from high  
to low while SCL is high (Figure 5). When the master has  
finished communicating with the slave, it issues a STOP  
(P) condition by transitioning SDA from low to high while  
SCL is high. The bus is then free for another transmission.  
Bit Transfer  
Slave Address  
The MAX14661 features a 7-bit slave address, configured  
by the A0 and A1 inputs. To select the slave address, con-  
One data bit is transferred during each clock pulse  
(Figure 6). The data on SDA must remain stable while  
SCL is high.  
nect A0 and A1 to GND or V , as indicated in Table 3.  
CC  
Acknowledge  
The IC has four possible addresses, allowing up to four  
MAX14661 devices to share the same interface bus. The  
bit following a 7-bit slave address is the R/W bit, which is  
low for a write command and high for a read command.  
The acknowledge bit is a clocked 9th bit (Figure 7), which  
the recipient uses to handshake receipt of each byte of  
data.ꢀ Thus,ꢀ eachꢀ byteꢀ transferredꢀ effectivelyꢀ requiresꢀ 9ꢀ  
SDA  
SCL  
SDA  
SCL  
S
P
DATA LINE  
STABLE;  
DATA VALID  
CHANGE  
OF DATA  
ALLOWED  
START  
CONDITION  
STOP  
CONDITION  
Figure 6. Bit Transfer  
Figure 5. Start and Stop Conditions  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
CONDITION  
SCL  
1
2
8
9
SDA BY  
TRANSMITTER  
SDA BY  
RECEIVER  
S
Figure 7. Acknowledge  
Table 3. Slave Address Configuration  
2
I C SLAVE ADDRESS  
LOGIC INPUTS  
READ  
ADD  
WRITE  
ADD  
A1  
A0  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
0
0
1
1
0
1
0
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
1/0  
1/0  
1/0  
1/0  
0X99  
0X9B  
0X9D  
0X9F  
0X98  
0X9A  
0X9C  
0X9E  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
dataꢀbytesꢀgoꢀintoꢀsubsequentꢀregistersꢀ(Figure 8). If mul-  
tiple data bytes are transmitted before a STOP condition,  
thesebytesarestoredinsubsequentregistersbecauseꢀ  
the register addresses autoincrement (Figure 9).  
Bus Reset  
2
The MAX14661 resets the bus with the I C start condi-  
tion for reads. When the R/W bit is set to 1, the device  
transmits data to the master, thus the master is reading  
from the device.  
Format for Reading  
The MAX14661 is read using the internally stored register  
address as an address pointer, the same way the stored  
register address is used as an address pointer for a write.  
The pointer autoincrements after each data byte is read  
using the same rules as for a write. Thus, a read is initiat-  
ed by first configuring the register address by performing  
a write (Figure 10). The master can now read consecutive  
bytes from the device, with the first data byte being read  
from the register addressed pointed by the previously  
written register address (Figure 11). Once the master  
sounds a NACK, the MAX14661 stops sending valid data.  
Format for Writing  
A write to the MAX14661 comprises the transmission of  
the slave address with the R/W bit set to zero, followed  
by at least 1 byte of information. The first byte of informa-  
tion is the register address or command byte. The register  
address determines which register of the device is to be  
written by the next byte, if received. If a STOP (P) condi-  
tion is detected after the register address is received,  
then the device takes no further action beyond storing  
the register address. Any bytes received after the register  
address are data bytes. The first data byte goes into the  
registerꢀselectedꢀbyꢀtheꢀregisterꢀaddressꢀandꢀsubsequentꢀ  
ADDRESS = 0x98  
REGISTER ADDRESS = 0x01  
0 = WRITE  
S
1
0
0
1
1
0
0
0
A
P
0
0
0
0
0
0
0
1
A
REGISTER 0x01 WRITE DATA  
S = START BIT  
P = STOP BIT  
A = ACK  
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
A
N = NACK  
d_ = DATA BIT  
2
Figure 8. Format for I C Write  
ADDRESS = 0x98  
REGISTER ADDRESS = 0x01  
0 = WRITE  
S
1
0
0
1
1
0
0
0
A
0
0
0
0
0
0
0
1
A
REGISTER 0x02 WRITE DATA  
REGISTER 0x01 WRITE DATA  
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
A
A/N  
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
P
Figure 9. Format for Writing to Multiple Registers  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
0 = WRITE  
REGISTER ADDRESS = 0x01  
ADDRESS = 0x98  
A
S
1
1
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
1
A/N  
1 = READ  
ADDRESS = 0x99  
REGISTER 0x01 READ DATA  
A
Sr  
1
1
1
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
A/N  
P
Figure 10. Format for Reads (Repeated Start)  
0 = WRITE  
REGISTER ADDRESS = 0x01  
ADDRESS = 0x98  
A
A
S
Sr  
d7  
1
1
0
0
0
0
1
1
0
0
0
0
0
0
d7  
d7  
0
d6  
d6  
0
0
0
0
0
d1  
d1  
1
d0  
d0  
A/N  
1 = READ  
ADDRESS = 0x99  
REGISTER 0x01 READ DATA  
1
1
1
d5  
d4  
d3  
d2  
A
REGISTER 0x02 READ DATA  
REGISTER 0x03 READ DATA  
A
d6  
d5  
d4  
d3  
d2  
d1  
d0  
d5  
d4  
d3  
d2  
A/N  
P
Figure 11. Format for Reading Multiple Registers  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
by the SPI interface. The first 32 bits out of DOUT after  
the falling edge of CS are the contents of the shift register  
prior to CS falling, followed by the data being clocked into  
DIN. The bits in the shift register are all zero when power  
is applied or after shutdown is released.  
SPI Interface  
In SPI mode, the device operates a shift register designed  
to work with common serial interfaces. The bits are shifted  
through so that a large serial chain can be made to  
minimize pins needed for a system with multiple devices.  
(See Figure 12.) This shift register is also designed to  
be compatible with common microcontroller SPI-type  
interfaces. The switches in the MAX14661 are all tran-  
sitioned simultaneously. To update the switches in SPI  
mode, the user must shift in a bit with the desired state of  
each switch according to the data format listed in Table 4.  
The switches are updated at the rising edge of CS with  
the last 32 bits of data shifted in only if the number of  
bits clocked in is greater than or equal to the number  
of switches (32). The DOUT pin is the serial output of  
the shift register. This outputs the data loaded into DIN,  
delayed by 32 clocks, and is intended for creating a serial  
daisyꢀchainꢀtoꢀminimizeꢀtheꢀnumberꢀselectꢀlinesꢀrequiredꢀ  
Note that the data in the shift register may not be the same  
as the state of the switches. The DOUT pin is intended  
for daisy chain applications and not for switch readback.  
Note for V  
less than 2.7V, the DOUT propagation  
CC  
delayꢀ canꢀ limitꢀ theꢀ maximumꢀ SPIꢀ operatingꢀ frequency.ꢀ  
See Figures 12 and 13 for the SPI timing diagrams. The  
voltage level driven out by the DOUT buffer is set by the  
2
voltage applied to SPI/I C. This allows the voltage to be  
independent from the supply voltage. While we expect the  
2
voltage at SPI/I CꢀtoꢀbeꢀlessꢀthanꢀorꢀequalꢀtoꢀVCC in most  
applications, it can be higher than VCC as long as it does  
not exceed VCC before VCC has reached at least 1.8V.  
Table 4. SPI Data Format  
BYTE  
First  
BIT7  
SW16B  
SW08B  
SW16A  
SW08A  
BIT6  
SW15B  
SW07B  
SW15A  
SW07A  
BIT5  
SW14B  
SW06B  
SW14A  
SW06A  
BIT4  
SW13B  
SW05B  
SW13A  
SW05A  
BIT3  
SW12B  
SW04B  
SW12A  
SW04A  
BIT2  
SW11B  
SW03B  
SW11A  
SW03A  
BIT1  
SW10B  
SW02B  
SW10A  
SW02A  
BIT0  
SW09B  
SW01B  
SW09A  
SW01A  
Second  
Third  
Fourth  
CS  
t
CH  
t
t
CSS  
CSH  
t
CL  
SCLK  
t
DS  
t
DH  
MOSI  
MISO  
t
DO  
Figure 12. SPI Timing Details  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
CS  
SCLK  
DIN  
X
d0  
d1  
SW16B  
SW14B'  
SW15B  
SW13B'  
SW14B  
SW12B'  
SW13B  
SW11B'  
SW04A  
SW02A'  
SW03A  
SW01A'  
SW02A  
d0  
SW01A  
X
DOUT  
SW16B'  
SW15B'  
d1  
‘ REPRESENTS PREVIOUS DATA IN SHIFT REGISTER  
D0 AND D1 CAN BE ANY DATA. BITS. THEY ARE THERE SIMPLY TO DEMONSTRATE  
THAT THE DEVICE USES THE LAST N BITS RECEIVED TO UPDATE THE SWITCHES.  
Figure 13. SPI Timing Diagram  
troller, as many devices as desired can be loaded by con-  
necting all the CS and SCK pins in parallel and chaining  
the DOUT pin from one device to the DIN pin on the next.  
It is also acceptable to provide a separate CS pin for each  
device so that they can be individually addressed and  
loaded. Alternatively a separate data line can be used for  
eachꢀ deviceꢀ toꢀ reduceꢀ theꢀ timeꢀ requiredꢀ toꢀ loadꢀ allꢀ theꢀ  
devices. Some of the options and tradeoffs are listed in  
Table 5, as well as example application diagrams in the  
Typical Application Circuit.  
Applications Information  
Serial Bus Configurations  
The MAX14661 was designed to support a wide variety  
of multiplexing applications. Multiple devices can be used  
in a system to expand the number of ports being multi-  
plexed. With the two address-select pins provided in I C  
mode, four devices can be attached to the same I C bus  
simultaneously using only two pins. There are also sev-  
eral options for addressing multiple devices when using  
the SPI interface. Using only three pins on the microcon-  
2
2
Table 5. Benefits and Limitations of Different Serial-Bus Configurations  
SERIAL BUS  
PINS  
BENEFITS  
LIMITATIONS  
Maximum four devices per bus, slow protocol, no  
simultaneous updates across all devices  
I2C (Figure 16)  
2
Fewest Pins  
SPI Daisy  
Chain  
(Figure 19)  
Faster than I2C with only one additional pin,  
simultaneous updates across all devices in chain  
3
nꢀxꢀ32ꢀclocksꢀrequiredꢀtoꢀloadꢀallꢀdevices  
nꢀxꢀ32ꢀclocksꢀrequiredꢀtoꢀloadꢀallꢀdevices,ꢀ  
requiresꢀanꢀadditionalꢀpinꢀperꢀdevice,ꢀnoꢀ  
simultaneous updates across all devices  
SPI Separate  
CS (Figure 17)  
CommonꢀSPIꢀimplementation,ꢀquickꢀforꢀsingleꢀ  
device updates  
n+2  
n+2  
SPI Separate  
Data  
(Figure 18)  
Fastest loading for multiple devices,  
simultaneous updates across all devices  
Requiresꢀanꢀadditionalꢀpinꢀperꢀdevice,ꢀꢀmayꢀnotꢀ  
be supported by SPI controller  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Extended ESD  
ESD Test Conditions  
ESD protection structures are incorporated on all pins  
to protect against electrostatic discharges up to ±2kV  
(HBM) encountered during handling and assembly. AB_  
and COM_ are further protected against ESD up to ±10kV  
(HBM) without damage. The ESD structures withstand  
high ESD both in normal operation and when the device  
is powered down. After an ESD event, the MAX14661  
continues to function without latchup.  
ESD performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents test  
setup, test methodology, and test results.  
Human Body Model  
Figure 14 shows the Human Body Model. Figure 15  
shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of a  
100pF capacitor charged to the ESD voltage of interest  
thatisthendischargedintothedevicethrougha1.5kΩꢀ  
resistor.  
R
R
D
1.5k  
C
1MΩ  
I
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
P
I
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
AMPERES  
36.8%  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
S
100pF  
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 14. Human Body ESD Test Model  
Figure 15. Human Body Current Waveform  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Typical Application Circuit  
2V5  
V
CC  
COMB  
COMB  
SD  
SCL  
COMA  
COMA  
SDA  
SCL  
A1  
µCONTROLLER  
SDA  
MAX14661  
A0  
AB1–AB16  
AB0–AB15  
2
SPI/I C  
GND  
2V5  
2V5  
2V5  
V
CC  
COMB  
COMA  
COMB  
COMA  
SD  
SDA  
SCL  
A1  
MAX14661  
A0  
AB1–AB16  
AB16–AB31  
2
SPI/I C  
GND  
V
CC  
COMB  
COMA  
COMB  
COMA  
SD  
SDA  
SCL  
A1  
MAX14661  
A0  
AB1–AB16  
AB32–AB47  
2
SPI/I C  
GND  
V
CC  
COMB  
COMA  
1V8  
COMB  
COMA  
SD  
SDA  
MAX14661  
SCL  
A1  
A0  
AB1–AB16  
AB48–AB63  
2
SPI/I C  
GND  
2
Figure 16. I C Controlled 64:2 MUX  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Typical Application Circuit (continued)  
1V8 3V3  
V
CC  
COMD  
COMB  
SD  
2
MOSO  
MOSI  
SCK  
SPI/I C  
COMC  
COMA  
MAX14661  
DIN  
µCONTROLLER  
SCLK  
CS  
CS1  
AB1–AB16  
AB0–AB15  
CS0  
DOUT  
GND  
1V8 3V3  
V
CC  
COMB  
COMA  
SD  
COMB  
COMA  
2
SPI/I C  
MAX14661  
DIN  
SCLK  
CS  
AB1–AB16  
AB0–AB15  
DOUT  
GND  
Figure 17. SPI Separate CS 16:4  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Typical Application Circuit (continued)  
3V3  
3V3  
V
V
CC  
CC  
B15  
B14  
B7  
B6  
COMB  
COMB  
2
2
SPI/I C  
SD  
SPI/I C  
SD  
COMA  
MAX14661  
AB1–AB16  
COMA  
MAX14661  
AB1–AB16  
DIN  
DIN  
SCLK  
CS  
SCLK  
CS  
A0–A15  
A0–A15  
DOUT  
GND  
DOUT  
GND  
3V3  
3V3  
V
V
CC  
CC  
B13  
B12  
B5  
B4  
COMB  
COMB  
2
2
SPI/I C  
SD  
SPI/I C  
SD  
COMA  
MAX14661  
AB1–AB16  
COMA  
MAX14661  
AB1–AB16  
DIN  
DIN  
SCLK  
CS  
SCLK  
CS  
A0–A15  
A0–A15  
DOUT  
GND  
DOUT  
GND  
3V3  
3V3  
V
V
CC  
CC  
B11  
B10  
B3  
B2  
COMB  
COMB  
2
2
SPI/I C  
SD  
SPI/I C  
SD  
COMA  
MAX14661  
AB1–AB16  
COMA  
MAX14661  
AB1–AB16  
DIN  
DIN  
SCLK  
CS  
SCLK  
CS  
A0–A15  
A0–A15  
DOUT  
GND  
DOUT  
GND  
3V3  
3V3  
V
V
CC  
CC  
B9  
B8  
B1  
B0  
COMB  
COMB  
2
2
SPI/I C  
SD  
SPI/I C  
SD  
COMA  
MAX14661  
AB1–AB16  
COMA  
MAX14661  
AB1–AB16  
DIN  
DIN  
SCLK  
CS  
SCLK  
CS  
D7  
D6  
A0–A15  
A0–A15  
DOUT  
GND  
DOUT  
GND  
D5  
D4  
D3  
D2  
D1  
D0  
SCK  
CS  
Figure 18. SPI Separate Data 16:16 MUX  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Typical Application Circuit (continued)  
2V5  
V
CC  
COMB  
COMB  
2
SPI/I C  
SD  
COMA  
COMA  
MISO  
MOSI  
MAX14661  
DIN  
SCLK  
CS  
SCK  
CS  
AB1–AB16  
AB0–AB15  
DOUT  
GND  
2V5  
2V5  
2V5  
V
CC  
COMB  
COMA  
COMB  
COMA  
2
SPI/I C  
SD  
MAX14661  
DIN  
SCLK  
CS  
AB1–AB16  
AB1–AB15  
DOUT  
GND  
V
CC  
COMB  
COMA  
COMB  
COMA  
2
SPI/I C  
SD  
DIN  
SCLK  
CS  
MAX14661  
AB1–AB16  
AB1–AB15  
DOUT  
GND  
V
CC  
COMB  
COMA  
COMB  
COMA  
2
SPI/I C  
SD  
MAX14661  
DIN  
SCLK  
CS  
AB1–AB16  
AB1–AB15  
DOUT  
GND  
Figure 19. SPI Daisy Chain 256:2 MUX  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PART  
TEMP RANGE  
PIN-PACKAGE  
28 TQFN  
4mm x 4mm  
MAX14661ETI+  
-40°C to +85°C  
-40°C to +85°C  
28 TQFN  
4mm x 4mm  
MAX14661ETI+T  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
+Denotes lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel  
28 TQFN-EP  
T2844+1  
21-0139  
90-0035  
*EP = Exposed Pad.  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX14661  
Beyond-the-Rails 16:2 Multiplexer  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
1
2
6/13  
1/14  
1/15  
Initial release  
26  
1
Added MAX14661ETI+  
Updated page 1 content  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2015 Maxim Integrated Products, Inc.  
27  

相关型号:

MAXIM

MAX14667

Dual USB Charger Adapter Emulator
MAXIM

MAX14670

Bidirectional Current-Blocking, High-Input Overvoltage Protector with Adjustable OVLO
MAXIM

MAX14670EWL

Bidirectional Current-Blocking, High-Input Overvoltage Protector with Adjustable OVLO
MAXIM

MAX14671EWL

Bidirectional Current-Blocking, High-Input Overvoltage Protector with Adjustable OVLO
MAXIM

MAX14672

Bidirectional Current-Blocking, High-Input Overvoltage Protector with Adjustable OVLO
MAXIM

MAX14672ETB

Bidirectional Current-Blocking, High-Input Overvoltage Protector with Adjustable OVLO
MAXIM

MAX14673

Bidirectional Current-Blocking, High-Input Overvoltage Protector with Adjustable OVLO
MAXIM

MAX14673ETB

Bidirectional Current-Blocking, High-Input Overvoltage Protector with Adjustable OVLO
MAXIM

MAX14676

Wearable Charge Management Solution
MAXIM

MAX14676A

Wearable Charge Management Solution
MAXIM

MAX14676AEWOT

Wearable Charge Management Solution
MAXIM