MAX14724PMB1 [MAXIM]

8:4 Matrix Switch Multiplexer;
MAX14724PMB1
型号: MAX14724PMB1
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

8:4 Matrix Switch Multiplexer

文件: 总25页 (文件大小:1221K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
General Description  
Benefits and Features  
Flexible Architecture Enables Ease of Design and Control  
The MAX14724 is a serial-controlled, 8:4 full-matrix analog  
multiplexer. The device operates from either a single wide  
supply or dual ±2.5V supplies. A wide operating range  
makes the device ideal for battery-powered, portable  
instruments. All channels guarantee break-before-make  
switching.  
• 8:4 Matrix Switch Multiplexer  
• Fully Programmable with Simultaneous Updates  
• Independent Control of Each Switch  
• Serial Control  
2
- I C with Address-Select Pin  
- SPI with DO for Daisy-Chain  
- 1.6V Logic Compatible  
Low Distortion Switching Improves System  
Performance  
2
The serial control is selectable between I C and SPI. Both  
modes provide individual control of each independent switch  
so that any combination of switches can be applied.  
I C mode provides one address-select pin, allowing for  
addressing up to two devices on a single bus. The SPI  
mode includes a DO pin that can be used to daisy-chain  
multiple devices together with a single select signal.  
2
1Ω R  
(typ) with +5V or ±2.5V Supply  
ON  
0.5Ω R  
0.2Ω R  
Match Between Channels (typ)  
Flatness Over Signal Range (typ)  
ON  
ON  
• Low Leakage Current: 5nA at +25°C (typ)  
The MAX14724 features bidirectional operation and  
can handle rail-to-rail analog signals. All control inputs  
are 1.6V-logic compatible. This device is available in  
a small 20-pin, 4mm x 4mm, TQFN and 20-bump,  
2mm x 1.7mm, wafer-level package (WLP).  
● Integrated Protection for System Reliability  
• ±30kV HBM on NO_ and COM_  
• ±15kV IEC 61000-4-2 Air Gap Discharge on NO_  
and COM_  
• ±10kV IEC 61000-4-2 Contact Discharge on NO_  
and COM_  
Applications  
Medical Equipment  
Data Acquisition  
● High-Integration Multiplexing Reduces Footprint and  
System Complexity  
• 20 WLP (2mm x 1.7mm)  
Signal Switching  
• 20 TQFN (4mm x 4mm)  
Battery-Powered Equipment  
Ordering Information appears at end of data sheet.  
Typical Application Circuit  
3.3V  
V+  
2.5V  
B1-B4  
VL  
I2C/CS  
ADD/DO  
SDA/DI  
SCL/SCK  
COM_  
MAX14724  
A1-A8  
NO_  
V-  
-2.5V  
GND  
SDA  
µCONTROLLER  
SCL  
V+  
2.5V  
B5-B8  
VL  
I2C/CS  
ADD/DO  
SDA/DI  
SCL/SCK  
COM_  
MAX14724  
A1-A8  
NO_  
V-  
-2.5V  
GND  
19-7575; Rev 2; 9/15  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Absolute Maximum Ratings  
V+............................................................................-0.3V to +6V  
Continuous Power Dissipation  
V- .............................................................................-6V to +0.3V  
V ............................................................................-0.3V to +6V  
L
V+ to V- ...................................................................-0.3V to +6V  
20 TQFN (derate 25.6mW/°C above +70°C).............2051mW  
20 WLP(derate 21.7mW/°C above +70°C)................1736mW  
Operating Temperature Range........................... -40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -40°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
V
to V-....................................................................-0.3V to +9V  
L
NO_, COM_ (Note 1) ..........................(V- - 0.3V) to (V+ + 0.3V)  
SCL/SCK, SDA/DI, I2C/CS, ADD/DO .....................-0.3V to +6V  
ADD/DO to V-..........................................................-0.3V to +9V  
Continuous Current into NO_, COM_ ..............................±50mA  
Peak Current into NO_, COM_  
(pulsed at 1ms, 10% duty cycle) ................................±100mA  
Note 1: Signals on COM_ and NO_ exceeding V+ or V- are clamped by internal diodes.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 2)  
Package Thermal Characteristics  
TQFN  
WLP  
Junction-to-Ambient Thermal Resistance (θ ) ..........46°C/W  
Junction-to-Ambient Thermal Resistance (θ ) ..........39°C/W  
JA  
JA  
Junction-to-Case Thermal Resistance (θ ).................6°C/W  
JC  
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V+ = 1.6V to 5V, V- = (V+ - 5.5V) to 0V, V = 0V to 5.5V (Notes 3, 4), T = -40°C to +85°C, unless otherwise noted. Typical values are  
L
A
at V+ = 2.5V, V- = -2.5V, V = 2.5V, T = +25°C.) (Note 5)  
L
A
PARAMETER  
POWER SUPPLY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V+ Supply  
V- Supply  
V+  
V-  
1.6  
5.5  
0
V
V
V+ - 5.5  
V- > -2.5V  
0
0
5.5  
V- + 8  
5
V Supply  
L
V
V
L
V- ≤ -2.5V  
V+ Supply Current  
I+  
T
T
= +25°C  
= +25°C  
1
µA  
µA  
A
A
V Supply Current  
I
1.5  
5
L
VL  
ANALOG SWITCH (Note 6)  
V
V
COM_,  
Analog Signal Range  
V-  
V+  
3
V
NO_  
I
= 10mA, V+ = 2.5V,  
COM_  
1
V- = -2.5V, V  
= V- or V+  
NO_  
On-Resistance  
R
Ω
ON  
I
= 10mA, V+ = 3.0V,  
COM_  
5
V- = 0V, V  
= 1.5V  
NO_  
I
= 10mA, V+ = 2.5V,  
COM_  
0.5  
1.25  
V- = -2.5V, V  
= V- or V+  
NO_  
On-Resistance Match Between  
Channels (Note 7)  
ΔR  
Ω
ON  
I
= 10mA, V+ = 3.0V,  
COM_  
1.35  
V- = 0V , V  
= 1.5V  
NO_  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Electrical Characteristics (continued)  
(V+ = 1.6V to 5V, V- = (V+ - 5.5V) to 0V, V = 0V to 5.5V (Notes 3, 4), T = -40°C to +85°C, unless otherwise noted. Typical values are  
L
A
at V+ = 2.5V, V- = -2.5V, V = 2.5V, T = +25°C.) (Note 5)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
0.5  
UNITS  
V+ = 2.5V, V- = -2.5V,  
= 10mA, V = -2.5V,  
COM_  
-1.25V, 0V, 1.25V, 2.5V  
On-Resistance Flatness  
(Note 8, 9)  
R
I
0.2  
Ω
ON_FLAT  
COM_  
T
T
T
T
T
T
= 25°C, Figure 1 (Note 9)  
= 125°C, Figure 1 (Note 9)  
= 25°C, Figure 1 (Note 9)  
= 125°C, Figure 1 (Note 9)  
= 25°C, Figure 1 (Note 9)  
= 125°C, Figure 1 (Note 9)  
-0.25  
-0.25  
-0.25  
+0.005  
+0.5  
+0.25  
µA  
µA  
µA  
µA  
µA  
µA  
A
A
A
A
A
A
NO_ Off-Leakage Current  
COM_ Off-Leakage Current  
COM_ On-Leakage Current  
+0.005  
+1.0  
+0.25  
+0.25  
+0.005  
+1.5  
DIGITAL I/O  
2
Input Logic-High  
V
SCL/SCK, SDA/DI, I C/CS, ADD/DO  
0.7 x V  
1.6  
V
V
IH  
L
2
Input Logic-Low  
V
SCL/SCK, SDA/DI, I C/CS, ADD/DO  
0.3 x V  
IL  
L
V Shutdown Threshold High  
V
V
L
LIH  
V Shutdown Threshold Low  
L
V
0.4  
+1  
V
LIL  
Input Leakage Current  
I
, I  
V
= 0V, V+, or V-  
-1  
+0.005  
1
µA  
pF  
V
IH IL  
IN  
Digital Input Capacitance  
2
Output Logic-Low (I C Mode)  
V
I
I
I
= 3mA  
0.4  
OL_I2C  
OL_SPI  
OH_SPI  
SINK  
SINK  
Output Logic-Low (SPI Mode)  
V
= 200µA  
0.15 x V  
V
L
Output Logic-High (SPI Mode)  
V
= 200µA  
0.85 x V  
V
SOURCE  
L
DYNAMIC PERFORMANCE  
V+ = 2.5V, V- = -2.5V, R = 100Ω,  
L
Turn-Off Time  
t
0.6  
500  
1
µs  
ns  
OFF  
C = 35pF, V  
= 1V, Figure 2  
L
NO_  
V+ = 2.5V, V- = -2.5V, R = 100Ω,  
L
Break-Before-Make Time  
Turn-On Time  
t
0
BBM  
C = 35pF, V  
= 1V, Figure 2  
L
NO_  
V+ = 2.5V, V- = -2.5V, R = 100Ω,  
L
t
2
µs  
ON  
C = 35pF, V  
= 1V, Figure 2  
L
NO_  
R
= R = 50Ω, V  
= 0.5V  
,
S
L
NO_  
P-P  
Bandwidth -3dB  
BW  
50  
MHz  
C = 5pF, Figure 3  
L
Initial condition: V = V  
= GND.  
IN  
OUT  
Q
Q
,
COM_  
Charge Injection  
C
= 1nF, C  
= 1nF, Figure 4,  
-15  
pC  
IN  
OUT  
NO_  
(Note 10)  
NO_ Off-Capacitance  
COM_ Off-Capacitance  
C
V
V
V
= 0V, f = 1MHz, Figure 5  
50  
85  
pF  
pF  
NO_OFF  
NO_  
C
= 0V, f = 1MHz, Figure 5  
COM_OFF  
COM_  
= V  
= 0V, f = 1MHz,  
COM_  
NO_  
Switch On-Capacitance  
Off-Isolation  
C
125  
-60  
pF  
dB  
ON  
V+ - V- = 5V, Figure 5  
C = 5pF, R = 50Ω, f = 1MHz,  
V
L
L
= 1V  
, V+ - V- = 5V,  
NO_  
RMS  
Figure 3  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Electrical Characteristics (continued)  
(V+ = 1.6V to 5V, V- = (V+ - 5.5V) to 0V, V = 0V to 5.5V (Notes 3, 4), T = -40°C to +85°C, unless otherwise noted. Typical values are  
L
A
at V+ = 2.5V, V- = -2.5V, V = 2.5V, T = +25°C.) (Note 5)  
L
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C = 5pF, R = 50Ω, f = 1MHz,  
L
L
Crosstalk  
V
= 1V  
, V+ - V- = 5V,  
-65  
dB  
NO_  
RMS  
Figure 3  
R = 600Ω, f = 20Hz  
L
Total Harmonic Distortion Plus  
Noise  
to 20kHz,  
THD+N  
V+ - V- ≥ 3V  
0.1  
%
V
= 0.5V  
,
NO_  
P-P  
DC bias = (V+ + V-)/2  
SPI TIMING CHARACTERISTICS (Figure 14, Note 4)  
SCLK Clock Period  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
CS Fall to SCLK Rise Time  
DI Hold Time  
t
+ t  
95  
35  
45  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
CH  
CL  
t
CH  
t
CL  
t
CSS  
t
DH  
DI Setup Time  
t
DS  
C = 15pF, (V+ - V-) ≥ 2.7V and  
L
50  
Output Data Propagation  
Delay  
V ≥ 2.7V  
L
t
ns  
DO  
C = 15pF, V ≤ 2.7V  
125  
L
L
DO Rise and Fall Times  
t
C = 15pF  
10  
ns  
ns  
FT  
L
CS Hold Time  
t
60  
CSH  
2
I C TIMING (Figure 6, Note 4)  
2
I C Serial-Clock Frequency  
f
400  
kHz  
µs  
SCL  
Bus Free Time Between STOP  
and START Conditions  
t
1.3  
BUF  
START Condition Setup Time  
START Condition Hold Time  
STOP Condition Setup Time  
Clock Low Period  
t
0.6  
0.6  
0.6  
1.3  
0.6  
µs  
µs  
µs  
µs  
µs  
SU:STA  
t
HD:STA  
t
SU:STO  
t
LOW  
Clock High Period  
t
HIGH  
Write setup time,  
100  
V = (V+ - V-) ≥ 1.8V  
L
Data Valid to SCL Rise Time  
t
ns  
ns  
SU:DAT  
HD:DAT  
Write setup time,  
V = (V+ - V-) = 1.6V  
L
130  
0
Data Hold Time to SCL Fall  
t
Write hold time  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Electrical Characteristics (continued)  
(V+ = 1.6V to 5V, V- = (V+ - 5.5V) to 0V, V = 0V to 5.5V (Notes 3, 4), T = -40°C to +85°C, unless otherwise noted. Typical values are  
L
A
at V+ = 2.5V, V- = -2.5V, V = 2.5V, T = +25°C.) (Note 5)  
L
A
PARAMETER  
ESD PROTECTION  
All COM_ and NO_ pins  
All COM_ and NO_ pins  
All COM_ and NO_ pins  
All Other Pins  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Human Body Model (HBM)  
±30  
±15  
±10  
±2  
kV  
kV  
kV  
kV  
IEC 61000-4-2 Air Gap Discharge  
IEC 61000-4-2 Contact Discharge  
Human Body Model (HBM)  
Note 3:  
Note 4:  
V
V
maximum operating voltage is 5.5V if V- is greater than -2.5V, otherwise the V maximum operating voltage is (V- + 8V)  
L
has to be greater than 1.6V for proper I C and SPI communication and timing.  
L
L
2
Note 5: All devices are 100% production tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 6: (V+ - V-) has to be greater than 2.5V for good analog performance since on-resistance varies greatly when (V+ - V-) < 2.5V  
(see On-Resistance in Typical Operating Characteristics).  
Note 7: ΔR  
= R  
– R  
.
ON  
ON(MAX)  
ON(MIN)  
Note 8: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the  
specified analog signal ranges.  
Note 9: Guaranteed by design.  
Note 10: See the Typical Operating Characteristics for performance across operating range.  
Test Circuits/Timing Diagrams  
MAX14724  
NO_ OFF  
LEAKAGE  
COM_ OFF  
LEAKAGE  
NO_  
COM_  
V
NO_  
V
COM_  
A
A
ON  
LEAKAGE  
MAX14724  
NO1  
COM_  
V
COM_  
A
NO2-8  
V
NO_  
A
Figure 1. On/Off-Leakage Current  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Test Circuits/Timing Diagrams (continued)  
MAX14724  
CS  
1V  
V
OUT  
NO_  
NO_  
COM_  
t
ON  
1V  
R
L
t
t
BBM  
OFF  
4
SPI  
CONTROL  
SPI  
V
OUT  
R
L
NOTE: V = 1V x  
RIF  
R
+ R  
ON  
L
0V  
Figure 2. Turn-On/Turn-Off/Break-Before-Make  
NETWORK  
ANALYZER  
50  
50Ω  
V
V
IN  
COM_  
NO2-NO8  
V
OUT  
ON-LOSS = 20log  
V
IN  
NO1  
OUT  
MEAS  
REF  
REF  
REF  
MAX14724  
50Ω  
50Ω  
50Ω  
50Ω  
50Ω  
NETWORK  
ANALYZER  
COMB-D  
COMA  
50Ω  
50Ω  
V
V
IN  
NO2-NO8  
V
OUT  
OFF-ISOLATION = 20log  
V
IN  
OUT  
NO1  
MEAS  
MAX14724  
50Ω  
50Ω  
NETWORK  
ANALYZER  
50Ω  
50Ω  
V
V
IN  
COM_  
NO1  
NO2-NO8  
V
OUT  
CROSSTALK = 20log  
V
IN  
OUT  
MEAS  
MAX14724  
50Ω  
50Ω  
Figure 3. Insertion Loss, Off-Isolation, and Crosstalk  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Test Circuits/Timing Diagrams (continued)  
COM_ CHARGE INJECTION  
V+  
V+  
RS  
1MΩ  
MAX14724  
NO_  
COM_  
VOUT  
CL  
1nF  
VS  
GND  
V-  
V-  
SWITCH  
OFF  
SWITCH  
ON  
ΔVOUT  
VOUT  
NO_ CHARGE INJECTION  
V+  
V+  
ΔVOUT IS THE MEASURED VOLTAGE DUE TO CHARGE  
TRANSFER ERROR Q WHEN THE CHANNEL TURNS OF.F  
RS  
1MΩ  
MAX14724  
Q = ΔVOUT X CL  
COM_  
NO_  
VOUT  
CL  
1nF  
VS  
GND  
V-  
V-  
Figure 4. Charge Injection  
V+  
V+  
NO_  
MAX14724  
1MHz  
COM_  
V-  
V-  
V- IS CONNECTED TO GND (0V) FOR SINGLE-SUPPLY OPERATION.  
Figure 5. COM_, NO_ Capacitance  
CAPACITANCE  
ANALYZER  
GND  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Typical Operating Characteristics  
(V+ = 5V, V- = 0V, V = V+, T = +25°C, unless otherwise noted.)  
L
A
ON-RESISTANCE vs. COM_ VOLTAGE  
ON-RESISTANCE vs. COM_ VOLTAGE  
25  
20  
15  
10  
5
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
INO_ = 10mA  
TA = +125°C  
V+ = +1.8V  
TA = +25°C  
TA = -40°C  
INO_ = 10mA  
V+ = 3V  
V+ = 5V  
V+ = 2.5V, V- = -2.5V  
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
COM_ VOLTAGE (V)  
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5  
COM_ VOLTAGE (V)  
ON-RESISTANCE vs. COM_ VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
TA = +125°C  
TA = +25°C  
IVL  
TA = -40°C  
IV+  
INO_ = 10mA  
V+ = 3V  
V+ = VL  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
COM_ VOLTAGE (V)  
COM_/NO_ CHARGE INJECTION vs.  
NO_/COM_ VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
toc05  
20  
10  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
V+ = 5V, V- = 0V, NO_  
V+ = 2.5V, V- = -2.5V, NO_  
0
IVL  
-10  
-20  
-30  
-40  
-50  
IV+  
V+ = 5V, V- = 0V, COM_  
V+ = 2.5V, V- = -2.5V, COM_  
V+ = VL = 5V  
-2.5 -1.5 -0.5 0.5 1.5 2.5 3.5 4.5 5.5  
NO_/COM_ VOLTAGE (V)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Typical Operating Characteristics (continued)  
(V+ = 5V, V- = 0V, V = V+, T = +25°C, unless otherwise noted.)  
L
A
ENABLE TURN-ON/TURN-OFF TIME  
vs. V+ SUPPLY VOLTAGE  
toc08  
LOGIC-LEVEL THRESHOLD  
vs. SUPPLY VOLTAGE  
V
L
toc07  
4
3.5  
3
1.4  
1.2  
1
TA = +125°C  
TA = +25°C  
tON  
2.5  
2
0.8  
0.6  
0.4  
0.2  
0
TA = -40°C  
1.5  
1
tOFF  
0.5  
0
VIN = 1V  
RL = 100Ω, CL = 35pF  
VL = V+  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VL SUPPLY VOLTAGE (V)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
V+ SUPPLY VOLTAGE (V)  
ENABLE TURN-ON/TURN-OFF TIME  
vs. TEMPERATURE  
FREQUENCY RESPONSE  
toc09  
toc10  
1.4  
1.2  
1
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
ON-RESPONSE  
tON  
0.8  
0.6  
0.4  
0.2  
0
OFF-ISOLATION  
CROSSTALK  
tOFF  
VIN = 1V  
RL = 100Ω, CL = 35pF  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (ºC)  
0.1  
1
10  
100  
FREQUENCY (MHz)  
TOTAL HARMONIC DISTORTION PLUS  
NOISE (THD+N) vs. FREQUENCY  
ON/OFF-LEAKAGE CURRENT  
vs. TEMPERATURE  
toc12  
toc11  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
150  
100  
50  
0.5VP-P  
VIN = 5V, ON LEAKAGE  
VIN = 5V, OFF LEAKAGE  
0
-50  
-100  
-150  
-200  
-250  
VIN = 0V, ON LEAKAGE  
VIN = 0V, OFF LEAKAGE  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
0.02  
0.2  
2
20  
FREQUENCY (kHz)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Pin Configurations  
TOP VIEW  
(BUMPS ON BOTTOM)  
TOP VIEW  
MAX14724  
1
2
3
4
5
+
15  
14  
13  
12  
11  
A
V- 16  
10  
9
NO6  
NO5  
NO4  
NO3  
NO2  
COMA  
NO1  
NO2  
NO3  
NO4  
NO5  
NO6  
NO7  
NO8  
17  
B
GND  
MAX14724  
COMB  
18  
8
I2C/CS  
C
19  
20  
7
VL  
COMC  
I2C/CS ADD/DO SCL/SCK  
VL  
EP  
+
6
V+  
D
COMD  
V+  
GND  
V-  
SDA/DI  
1
2
3
4
5
WLP  
(2mm x 1.6mm)  
TQFN  
(4mm × 4mm)  
Pin Description  
PIN  
NAME  
FUNCTION  
TQFN  
1
WLP  
D1  
C1  
B1  
A1  
A2  
B2  
A3  
B3  
A4  
B4  
A5  
B5  
C5  
D5  
C4  
D4  
D3  
C3  
COMD  
COMC  
COMB  
COMA  
NO1  
Common Terminal D  
2
Common Terminal C  
3
Common Terminal B  
4
Common Terminal A  
5
Normally Open Terminal 1  
Normally Open Terminal 2  
Normally Open Terminal 3  
Normally Open Terminal 4  
Normally Open Terminal 5  
Normally Open Terminal 6  
Normally Open Terminal 7  
6
NO2  
7
NO3  
8
NO4  
9
NO5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
NO6  
NO7  
NO8  
Normally Open Terminal 8  
2
SCL/SCK  
SDA/DI  
ADD/DO  
V-  
I C Serial Clock/SPI Serial Clock  
2
I C Serial Data/SPI Data Input  
2
I C Address Bit/SPI Data Output  
Negative Supply Voltage Input  
GND  
Ground  
2
2
I2C/CS  
I C Select (High)/SPI CS (Low). (See the I C and SPI section).  
2
Logic Supply Voltage for SCL/SCK, SDA/DI, ADD/DO, and I C/CS. Drive V low to turn  
off all switches and reset all registers.  
L
19  
20  
C2  
D2  
V
L
V+  
EP  
Positive Supply Voltage Input  
Exposed Pad (TQFN Only). Internally connected to V-. Can be connected to a large  
plane to maximize thermal performance. Not intended as an electrical connection point.  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Functional Diagram  
MAX14724  
COMA  
COMB  
COMC  
COMD  
NO1  
NO2  
NO3  
NO4  
NO5  
NO6  
NO7  
NO8  
I2C/CS  
V+  
SCL/SCK  
V-  
VL  
CONTROL  
GND  
SDA/DI  
ADD/DO  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Table 1. Register Map  
ADDRESS  
0x00  
NAME  
DIR0  
TYPE  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
DEFAULT  
DESCRIPTION  
Switches 8A-1A direct read/write access  
Switches 8B-1B direct read/write access  
Switches 8C-1C direct read/write access  
Switches 8D-1D direct read/write access  
Switches 8A-1A shadow read/write access  
Switches 8B-1B shadow read/write access  
Switches 8C-1C shadow read/write access  
Switches 8D-1D shadow read/write access  
Set mux A and B command (reads 0x00)  
Set mux C and D command (reads 0x00)  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x01  
DIR1  
0x02  
DIR2  
0x03  
DIR3  
0x10  
SHDW0  
SHDW1  
SHDW2  
SHDW3  
CMD0  
CMD1  
0x11  
0x12  
0x13  
0x14  
0x15  
Table 2. Detailed Register Map  
DIR0 0x00  
BIT  
7
6
0
5
0
4
3
2
0
1
0
0
0
BIT NAME  
RESET VALUE  
Direct_SW8A-1A  
0
0
0
Direct Register Data for SW8A-1A  
0 = Switch open  
DESCRIPTION  
1 = Switch closed  
DIR1 0X01  
BIT  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
BIT NAME  
RESET VALUE  
Direct_SW8B-1B  
0
0
Direct Register Data for SW8B-1B  
0 = Switch open  
DESCRIPTION  
1 = Switch closed  
DIR2 0X02  
BIT  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
BIT NAME  
RESET VALUE  
Direct_SW8C-1C  
0
0
Direct Register Data for SW8C-1C  
0 = Switch open  
DESCRIPTION  
1 = Switch closed  
DIR3 0X03  
BIT  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
BIT NAME  
RESET VALUE  
Direct_SW8D-1D  
0
0
Direct Register Data for SW8D-1D  
0 = Switch open  
DESCRIPTION  
1 = Switch closed  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Table 2. Detailed Register Map (continued)  
SHDW0 0X10  
BIT  
7
0
6
0
5
4
3
2
0
1
0
0
0
BIT NAME  
RESET VALUE  
Shadow_SW8A-1A  
0
0
0
Shadow Register Data for SW8A-1A; temporarily holding register for simultaneous updates.  
DESCRIPTION  
0 = Switch open  
1 = Switch closed  
SHDW1 0X11  
BIT  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
BIT NAME  
RESET VALUE  
Shadow_SW8B-1B  
0
0
Shadow Register Data for SW8B-1B; temporarily holding register for simultaneous updates.  
DESCRIPTION  
0 = Switch open  
1 = Switch closed  
SHDW2 0X12  
BIT  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
BIT NAME  
RESET VALUE  
Shadow_SW8C-1C  
0
0
Shadow Register Data for SW8C-1C; temporarily holding register for simultaneous updates.  
DESCRIPTION  
0 = Switch open  
1 = Switch closed  
SHDW3 0X13  
BIT  
7
0
6
0
5
0
4
3
2
0
1
0
0
0
BIT NAME  
RESET VALUE  
Shadow_SW8D-1D  
0
0
Shadow Register Data for SW8D-1D; temporarily holding register for simultaneous updates.  
DESCRIPTION  
0 = Switch open  
1 = Switch closed  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Table 2. Detailed Register Map (continued)  
CMD0 0X14  
BIT  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
BIT NAME  
RESET VALUE  
SelB  
SelA  
0000 = Enable only SW1B (Set DIR1 = 0x01)  
0001 = Enable only SW2B (Set DIR1 = 0x02)  
0010 = Enable only SW3B (Set DIR1 = 0x04)  
0011 = Enable only SW4B (Set DIR1 = 0x08)  
0100 = Enable only SW5B (Set DIR1 = 0x10)  
0101 = Enable only SW6B (Set DIR1 = 0x20)  
0110 = Enable only SW7B (Set DIR1 = 0x40)  
0111 = Enable only SW8B (Set DIR1 = 0x80)  
1000 = Disable all bank B switches (Set DIR1 = 0x00)  
SelB  
1001 = Copy B shadow registers (Set DIR1 = SHDW1) to switches  
1010 .. 1111 = No change on bank B  
0000 = Enable only SW1A (Set DIR0 = 0x01)  
0001 = Enable only SW2A (Set DIR0 = 0x02)  
0010 = Enable only SW3A (Set DIR0 = 0x04)  
0011 = Enable only SW4A (Set DIR0 = 0x08)  
0100 = Enable only SW5A (Set DIR0 = 0x10)  
0101 = Enable only SW6A (Set DIR0 = 0x20)  
0110 = Enable only SW7A (Set DIR0 = 0x40)  
0111 = Enable only SW8A (Set DIR0 = 0x80)  
1000 = Disable all bank A switches (Set DIR0 = 0x00)  
1001 = Copy A shadow registers (Set DIR0 = SHDW0) to switches  
1010 .. 1111 = No change on bank A  
SelA  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Table 2. Detailed Register Map (continued)  
CMD1 0X15  
BIT  
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
BIT NAME  
RESET VALUE  
SelD  
SelC  
0000 = Enable only SW1D (Set DIR3 = 0x01)  
0001 = Enable only SW2D (Set DIR3 = 0x02)  
0010 = Enable only SW3D (Set DIR3 = 0x04)  
0011 = Enable only SW4D (Set DIR3 = 0x08)  
0100 = Enable only SW5D (Set DIR3 = 0x10)  
0101 = Enable only SW6D (Set DIR3 = 0x20)  
0110 = Enable only SW7D (Set DIR3 = 0x40)  
0111 = Enable only SW8D (Set DIR3 = 0x80)  
1000 = Disable all bank D switches (Set DIR3 = 0x00)  
SelD  
1001 = Copy D shadow registers (Set DIR3 = SHDW3) to switches  
1010 .. 1111 = No change on bank D  
0000 = Enable only SW1C (Set DIR2 = 0x01)  
0001 = Enable only SW2C (Set DIR2 = 0x02)  
0010 = Enable only SW3C (Set DIR2 = 0x04)  
0011 = Enable only SW4C (Set DIR2 = 0x08)  
0100 = Enable only SW5C (Set DIR2 = 0x10)  
0101 = Enable only SW6C (Set DIR2 = 0x20)  
0110 = Enable only SW7C (Set DIR2 = 0x40)  
0111 = Enable only SW8C (Set DIR2 = 0x80)  
1000 = Disable all bank C switches (Set DIR2 = 0x00)  
1001 = Copy C shadow registers (Set DIR2 = SHDW2) to switches  
1010 .. 1111 = No change on bank C  
SelC  
resets when power is removed from V+, but it is better  
Detailed Description  
The MAX14724 is a serial-controlled 8:4 full-matrix analog  
multiplexer. The serial control is selectable between I C  
and SPI. Both modes provide individual control of each  
independent switch so that any combination of switches  
can be applied.  
to use V to signal reset or shutdown since the voltag-  
L
es at the analog switch pins (NO_/COM_) must remain  
2
between V- and V+, but are independent of V .  
L
2
I C and SPI  
The I2C/CS pin is used simultaneously to select between  
2
The device does not require balanced positive (V+)  
and negative (V-) supply voltage. However, the voltage  
difference between the two supplies (V+ - V-) should not  
exceed 5.5V.  
the I C and SPI interfaces and as a chip-select pin  
for the SPI interface. When logic-high is applied on  
2
I2C/CS, the device enables I C communication. To  
enable SPI communication, I2C/CS needs to be driven  
low and a serial clock should be applied on SCL/SCK.  
After 21 periods of clock on SCL/SCK, the device latches  
into SPI mode and I2C/CS operates as a purely chip-  
Shutdown  
The V supply pin can be used as an active-low shutdown/  
L
reset signal. When the voltage at V is below the  
L
2
select pin. The device does not resume I C operation if  
V Shutdown Threshold Low, all switches are opened and  
L
I2C/CS is driven high. To return from the latched SPI state  
all registers reset, including the SPI-select latch. None of  
the switches can be activated until the voltage at V rises  
above the V Shutdown Threshold High. The device also  
L
2
and to the I C state, V or V+ must be driven low. Once  
L
L
V
or V+ returns high, a logic-high on I2C/CS puts the  
L
2
device in the I C state again.  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
2
single switch in bank D, to open all bank D switches, to  
copy SHDW3 to DIR3 register, or to leave bank D as is  
(no change). The CMD1[3:0] bits allow the user to turn on  
I C Serial Interface  
Direct Access Registers  
Direct-access registers (DIR0–DIR3) allow the user to  
read/write the switches eight at a time. These register  
addresses support autoincrementing so they can be read  
or written sequentially. The switches are updated once the  
last bit of the byte is clocked in.  
a single switch in bank C, to open all bank C switches, to  
copy SHDW2 to DIR2 register, or to leave bank C as is  
(no change). The values apply to the switches once both  
registers (CMD0 and CMD1) have been written. CMD0  
and CMD1 are single 16-bit registers. Therefore, CMD0  
must be programmed before CMD1.  
Shadow Registers  
Serial Addressing  
When in I C mode, the device operates as a slave device  
that sends/receives data through an I C-compatible  
Shadow registers (SHDW0–SHDW3) provide storage  
for switch values to allow for simultaneous updates  
of the switches. Unlike direct-access registers, these  
registers have no immediate effect until the copy command  
is issued. The copy command has to be written in the  
CMD0 and CMD1 registers. Write to the four registers  
with the desired state of each switch and then write the  
appropriate command to registers CMD0 and CMD1 to  
simultaneously apply the values to the switches.  
2
2
2-wire interface. The interface uses a serial-data line  
(SDA) and a serial-clock line (SCL) to achieve bidirec-  
tional communication between master(s) and slave(s).  
A master (typically a microcontroller) initiates all data  
transfers to and from the device and generates the SCL  
clock that synchronizes the data transfer. The SDA line  
operates as both an input and an open-drain output. A  
pullup resistor is required on SDA. The SCL line operates  
only as an input. A pullup resistor is required on SCL if  
there are multiple masters on the 2-wire interface, or if the  
master in a single-master system has an open-drain SCL  
output. Each transmission consists of a START condition  
sent by a master, followed by the MAX14724 7-bit slave  
address plus R/W bit, a register address byte, one or more  
data bytes, and, finally, a STOP condition (Figure 6).  
Set Mux Command Registers  
Set mux command registers (CMD0, CMD1) allow the  
user to easily select any single switch in a bank. The  
CMD0[7:4] bits allow the user to turn on one single switch  
in bank B, to open all bank B switches, to copy SHDW1 to  
DIR1 register, or to leave bank B as is (no change). The  
CMD0[3:0] bits allow the user to turn on a single switch  
in bank A, to open all bank A switches, to copy SHDW0  
to DIR0 register, or to leave bank A as is (no change).  
Similarly, the CMD1[7:4] bits allow the user to turn on a  
t
R
SDA  
t
BUF  
t
t
SU:STA  
SU:DAT  
t
HD:STA  
t
LOW  
t
SU:STO  
t
HD:DAT  
t
SCL  
HIGH  
t
HD:STA  
t
R
START  
CONDITION  
REPEATED START  
CONDITION  
STOP  
CONDITION  
START  
CONDITION  
2
Figure 6. I C Interface Timing Details  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
bits. The master generates the 9th clock pulse, and the  
recipient pulls down SDA during the acknowledge clock  
START and STOP Conditions  
Both SCL and SDA remain high when the interface is not  
busy. A master signals the beginning of a transmission  
with a START (S) condition by transitioning SDA from high  
to low while SCL is high (Figure 7). When the master has  
finished communicating with the slave, it issues a STOP  
(P) condition by transitioning SDA from low to high while  
SCL is high. The bus is then free for another transmission.  
pulse. The SDA line is stable low during the high period  
of the clock pulse. When the master is transmitting to the  
MAX14724, it generates the acknowledge bit because the  
device is the recipient. When the device is transmitting  
to the master, the master generates the acknowledge bit  
because the master is the recipient. If the device did not  
pull SDA low, a not acknowledge (NACK) is indicated.  
Bit Transfer  
Slave Address  
The device features a 7-bit slave address, configured by  
the ADD/DO input. To select the slave address, connect  
One data bit is transferred during each clock pulse  
(Figure 8). The data on SDA must remain stable while  
SCL is high.  
ADD/DO to GND or V , as indicated in Table 3. The  
L
Acknowledge  
device has two possible addresses, allowing up to two  
MAX14724 devices to share the same interface bus. The  
bit following a 7-bit slave address is the R/W bit, which is  
low for a write command and high for a read command.  
An acknowledge bit (ACK) is a clocked 9th bit (Figure 9),  
which the recipient uses to handshake receipt of each byte  
of data. Thus, each byte transferred effectively requires 9  
SDA  
SCL  
SDA  
SCL  
S
P
DATA LINE  
STABLE;  
DATA VALID  
CHANGE  
OF DATA  
ALLOWED  
START  
CONDITION  
STOP  
CONDITION  
Figure 7. START and STOP Conditions  
Figure 8. Bit Transfer  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
CONDITION  
SCL  
1
2
8
9
SDA BY  
TRANSMITTER  
SDA BY  
RECEIVER  
S
Figure 9. Acknowledge  
Table 3. Slave Address Configuration  
2
LOGIC INPUT  
I C SLAVE ADDRESS  
A0  
(ADD)  
R/W  
ADD/DO  
A6  
A5  
A4  
A3  
A2  
A1  
READ  
WRITE  
0
1
1
1
1
1
1
1
0
0
1
1
0
0
0
1
1/0  
1/0  
0xE9  
0xEB  
0xE8  
0xEA  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
device is to be written by the next byte, if received. If a  
STOP (P) condition is detected after the register address  
Bus Reset  
2
The device resets the bus with the I C START condition  
for reads. When the R/W bit is set to 1, the device transmits  
data to the master. Therefore, the master is reading from  
the device.  
is received, the device takes no further action beyond  
storing the register address. Any bytes received after the  
register address are data bytes. The first data byte goes  
into the register selected by the register address, with  
subsequent data bytes going into subsequent registers  
(Figure 10). If multiple data bytes are transmitted before  
a STOP condition, these bytes are stored in subsequent  
registers because the register addresses autoincrement  
(Figure 11).  
Format for Writing  
A write to the MAX14724 comprises the transmission  
of the slave address with the R/W bit set to zero,  
followed by at least 1 byte of information. The first byte of  
information is the register address or command byte.  
The register address determines which register of the  
ADDRESS = 0xE8  
REGISTER ADDRESS = 0x01  
0 = WRITE  
S
1
1
1
0
1
0
0
0
A
P
0
0
0
0
0
0
0
1
A
REGISTER 0x01 WRITE DATA  
S = START BIT  
P = STOP BIT  
A = ACK  
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
A
N = NACK  
d_ = DATA BIT  
2
Figure 10. Format for I C Write  
ADDRESS = 0xE8  
REGISTER ADDRESS = 0x01  
0 = WRITE  
S
1
1
1
0
1
0
0
0
A
0
0
0
0
0
0
0
1
A
REGISTER 0x02 WRITE DATA  
REGISTER 0x01 WRITE DATA  
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
A
A/N  
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
P
Figure 11. Format for Writing to Multiple Registers  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Format for Reading  
SPI Interface  
The device is read using the internally stored register  
address as an address pointer, the same way the stored  
register address is used as an address pointer for a  
write. The pointer autoincrements after each data byte is  
read using the same rules for a write. Therefore, a read  
is initiated by first configuring the register address by  
performing a write (Figure 11). The master can now read  
consecutive bytes from the device, with the first data byte  
being read from the register address pointed to by the  
previously written register address (Figure 12). Once the  
master sounds a NACK, the MAX14724 stops sending  
valid data.  
In SPI mode, the device operates a shift register designed  
to work with common serial interfaces. The bits are shift-  
ed through so that a large serial chain can be made to  
minimize pins needed for a system with multiple devices  
(see Figure 21). This shift register is also designed to be  
compatible with common microcontroller SPI-type inter-  
faces. The switches in the MAX14724 are all transitioned  
simultaneously. To update the switches in SPI mode,  
the user must shift in a bit with the desired state of each  
switch according to the data format listed in Table 4. The  
switches are updated at the rising edge of CS, with the last  
32 bits of data shifted in only if the number of bits clocked  
in is greater than or equal to the number of switches  
(32). The DO pin is the serial output of the shift register.  
0 = WRITE  
REGISTER ADDRESS = 0x01  
ADDRESS = 0xE8  
A
S
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
A/N  
1 = READ  
ADDRESS = 0xE9  
REGISTER 0x01 READ DATA  
A
Sr  
0
1
1
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
A/N  
P
Figure 12. Format for Reads (Repeated START)  
0 = WRITE  
REGISTER ADDRESS = 0x01  
ADDRESS = 0xE8  
A
A
S
Sr  
d7  
1
1
1
1
1
1
0
1
0
0
0
0
0
0
d7  
d7  
0
d6  
d6  
0
0
0
0
0
d1  
d1  
1
d0  
d0  
A/N  
1 = READ  
ADDRESS = 0xE9  
REGISTER 0x01 READ DATA  
0
1
1
d5  
d4  
d3  
d2  
A
REGISTER 0x02 READ DATA  
REGISTER 0x03 READ DATA  
A
d6  
d5  
d4  
d3  
d2  
d1  
d0  
d5  
d4  
d3  
d2  
A/N  
P
Figure 13. Format for Reading Multiple Registers  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
This outputs the data loaded into DI, delayed by 32  
clocks, and is intended for creating a serial daisy-chain to  
minimize the number of select lines required by the SPI  
interface. The first 32 bits out of DO after the falling edge  
of CS are the contents of the shift register prior to CS  
falling, followed by the data being clocked into DI. The bits  
in the shift register are all zero when power is applied or  
after shutdown is released.  
Note that the data in the shift register may not be the  
same as the state of the switches. The DO pin is intended  
for daisy-chain applications and not for switch readback.  
Note for (V+ - V-) less than 2.7V or V less than 2.7V, the  
L
DO propagation delay can limit the maximum SPI oper-  
ating frequency. See Figures 14 and 15 for SPI timing  
diagrams. The voltage level driven out by the DO buffer is  
set by the voltage applied to V . This allows the voltage  
L
to be independent of the supply voltage.  
CS  
t
CH  
t
t
CSS  
CSH  
t
CL  
SCLK  
t
DS  
t
MOSI (DI)  
DH  
t
DO  
MISO (DO)  
Figure 14. SPI Timing Details  
CS  
SCLK  
DI  
X
d0  
d1  
SW8D  
SW6D’  
SW7D  
SW5D’  
SW6D  
SW4D’  
SW5D  
SW3D’  
SW4A  
SW2A'  
SW3A  
SW1A'  
SW2A  
d0  
SW1A  
X
DO  
SW8D’  
SW7D’  
d1  
‘ REPRESENTS PREVIOUS DATA IN SHIFT REGISTER  
D0 AND D1 CAN BE ANY DATA. BITS. THEY ARE THERE SIMPLY TO DEMONSTRATE  
THAT THE DEVICE USES THE LAST N BITS RECEIVED TO UPDATE THE SWITCHES.  
Figure 15. SPI Timing Diagram  
Table 4. SPI Data Format  
BYTE  
First  
BIT7  
BIT6  
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
SW8D  
SW8C  
SW8B  
SW8A  
SW7D  
SW7C  
SW7B  
SW7A  
SW6D  
SW6C  
SW6B  
SW6A  
SW5D  
SW5C  
SW5B  
SW5A  
SW4D  
SW4C  
SW4B  
SW4A  
SW3D  
SW3C  
SW3B  
SW3A  
SW2D  
SW2C  
SW2B  
SW2A  
SW1D  
SW1C  
SW1B  
SW1A  
Second  
Third  
Fourth  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
(Human Body Model) encountered during handling and  
assembly. NO_ and COM_ are further protected against  
ESD up to ±30kV (Human Body Model), ±15kV (Air  
Gap Discharge method described in IEC 61000-4-2),  
and ±10kV (Contact Discharge method described in  
IEC 61000-4-2) without damage.  
Applications Information  
Serial Bus Configurations  
The MAX14724 was designed to support a wide variety of  
multiplexing applications. Multiple devices can be used in  
a system to expand the number of ports being multiplexed.  
2
With the address-select pin provided in I C mode, two devices  
The ESD structures withstand high ESD both in normal  
operation and when the device is powered down. After  
an ESD event, the device continues to function without  
latchup.  
2
can be attached to the same I C bus simultaneously. There  
are also several options for addressing multiple devices  
when using the SPI interface. Using only three pins on the  
microcontroller, as many devices as desired can be loaded  
by connecting all CS and SCK pins in parallel and chaining  
the DO pin from one device to the DI pin on the next. It  
is also acceptable to provide a separate CS pin for each  
device so they can be individually addressed and loaded.  
Alternatively, a separate data line can be used for each  
device to reduce the time required to load all the devices.  
Some of the options and tradeoffs are listed in Table 5,  
as well as example application diagrams in the typical  
application circuit.  
ESD Test Condition  
ESD performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents test  
setup, test methodology, and test results.  
Human Body Model  
Figure 16 shows the Human Body Model. Figure 17 shows  
the current waveform it generates when discharged into a  
low impedance. This model consists of a 100pF capacitor  
charged to the ESD voltage of interest that is then discharged  
into the device through a 1.5kΩ resistor.  
Extended ESD  
ESD-protection structures are incorporated on all pins  
to protect against electrostatic discharges up to ±2kV  
Table 5. Benefits and Limitations of Different Serial-Bus Configurations  
SERIAL BUS  
PINS  
BENEFITS  
LIMITATIONS  
Maximum two devices per bus, slow protocol,  
no simultaneous updates across all devices  
2
I C (Figure 20)  
2
Fewest pins  
2
SPI Daisy-Chain  
(Figure 21)  
Faster than I C with only one additional pin,  
3
n x 32 clocks required to load all devices  
simultaneous updates across all devices in chain  
n x 32 clocks required to load all devices,  
requires an additional pin per device, no  
simultaneous updates across all devices  
SPI Separate CS  
Common SPI implementation, quick for single  
device updates  
n+2  
n+2  
(Figure 22)  
SPI Separate  
Data (Figure 23)  
Fastest loading for multiple devices,  
simultaneous updates across all devices  
Requires an additional pin per device, may not  
be supported by the SPI controller  
R
R
D
1.5k  
C
1MΩ  
I
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
P
I
r
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
AMPERES  
36.8%  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
STORAGE  
CAPACITOR  
S
100pF  
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 16. Human Body ESD Test Model  
Figure 17. Human Body Current Waveform  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
4-2 because series resistance is lower in the IEC 61000-  
4-2 model. Hence, the ESD withstand voltage measured  
to IEC 61000-4-2 is generally lower than that measured  
using the Human Body Model. Figure 18 shows the IEC  
61000-4-2 model, and Figure 19 shows the current wave-  
form for the IEC 61000-4-2 ESD Contact Discharge test.  
IEC 61000-4-2  
The IEC 61000-4-2 standard covers ESD testing and  
performance of finished equipment. However, it does not  
specifically refer to integrated circuits. The major differ-  
ence between tests done using the Human Body Model  
and IEC 61000-4-2 is higher peak current in IEC 61000-  
I
(AMPS)  
PEAK  
R
R
D
C
50MTO 100MΩ  
330Ω  
100%  
90%  
CHARGE-CURRENT-  
LIMIT RESISTOR  
DISCHARGE  
RESISTANCE  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
150pF  
STORAGE  
CAPACITOR  
S
SOURCE  
10%  
t
t
R
= 0.7ns TO 1ns  
30ns  
60ns  
Figure 18. IEC 61000-4-2 ESD Test Model  
Figure 19. IEC 61000-4-2 ESD Generator Current Waveform  
Typical Application Circuit  
3.3V  
V+  
2.5V  
B1-B4  
VL  
I2C/CS  
ADD/DO  
SDA/DI  
SCL/SCK  
COM_  
MAX14724  
A1-A8  
NO_  
V-  
-2.5V  
GND  
SDA  
SCL  
µCONTROLLER  
V+  
2.5V  
B5-B8  
VL  
I2C/CS  
ADD/DO  
SDA/DI  
SCL/SCK  
COM_  
MAX14724  
A1-A8  
NO_  
V-  
-2.5V  
GND  
2
Figure 20. I C-Controlled 8:8 MUX  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Typical Application Circuit (continued)  
1.8V  
V+  
5V  
B1-B4  
VL  
I2C/CS  
ADD/DO  
SDA/DI  
SCL/SCK  
COM_  
MAX14724  
A1-A8  
NO_  
V-  
GND  
CS  
SCK  
µCONTROLLER  
MOSI  
V+  
5V  
VL  
B5-B8  
I2C/CS  
ADD/DO  
SDA/DI  
SCL/SCK  
COM_  
MAX14724  
A1-A8  
NO_  
V-  
GND  
Figure 21. SPI Daisy-Chain 8:8 MUX  
1.8V  
V+  
3V  
VL  
B1-B4  
I2C/CS  
ADD/DO  
SDA/DI  
SCL/SCK  
COM_  
MAX14724  
A1-A8  
NO_  
V-  
CS1  
CS0  
GND  
µCONTROLLER  
SCK  
MOSI  
V+  
3V  
VL  
B5-B8  
I2C/CS  
ADD/DO  
SDA/DI  
SCL/SCK  
COM_  
MAX14724  
A1-A8  
NO_  
V-  
GND  
Figure 22. SPI Separate CS 8:8 Mux  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Typical Application Circuit (continued)  
V+  
2.5V  
B1-B4  
VL  
I2C/CS  
ADD/DO  
SDA/DI  
SCL/SCK  
COM_  
MAX14724  
2.5V  
A1-A8  
NO_  
V-  
GPIO  
-2.5V  
CS  
GND  
D1  
µCONTROLLER  
D0  
SCK  
V+  
2.5V  
B5-B8  
VL  
I2C/CS  
ADD/DO  
SDA/DI  
SCL/SCK  
COM_  
MAX14724  
A1-A8  
NO_  
V-  
-2.5V  
GND  
Figure 23. SPI Parallel Data 8:8 Mux  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PART  
TEMP RANGE  
-40°C TO +85°C  
-40°C TO +85°C  
-40°C TO +85°C  
-40°C TO +85°C  
PIN-PACKAGE  
20 TQFN-EP*  
20 TQFN-EP*  
20 WLP  
MAX14724ETP+  
MAX14724ETP+T  
MAX14724EWP+  
MAX14724EWP+T  
PACKAGE  
PACKAGE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
20 WLP  
TYPE  
CODE  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
*EP = Exposed pad.  
20 TQFN  
20 WLP  
T2044+3C  
W201C2+1  
21-0139  
90-0037  
Refer to  
Application  
Note 1891  
21-0779  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX14724  
Serial-Controlled 8:4 Matrix Switch Multiplexer  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
3/15  
9/15  
9/15  
0
1
2
Initial release  
Removed future product designation from MAX14724ATP+T  
24  
24  
Updated Ordering Information  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2015 Maxim Integrated Products, Inc.  
25  

相关型号:

MAX14727

3V to 28V Operating Voltage Range
MAXIM

MAX14727EVKIT

3V to 28V Operating Voltage Range
MAXIM

MAX14727EWV+

Power Supply Support Circuit,
MAXIM

MAX14728

3V to 28V Operating Voltage Range
MAXIM

MAX1472AKA T

300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter
MAXIM

MAX1472AKA+T

300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter
MAXIM

MAX1472AKA-T

300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter
MAXIM

MAX1472EVKIT

Evaluation Kit for the MAX1472
MAXIM

MAX1472EVKIT-315

Evaluation Kit
MAXIM

MAX1472EVKIT-433

Evaluation Kit
MAXIM

MAX1472_05

300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter
MAXIM

MAX1472_09

300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter
MAXIM