MAX149BEAP-TG071 [MAXIM]

D/A Converter, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SSOP-20;
MAX149BEAP-TG071
型号: MAX149BEAP-TG071
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

D/A Converter, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SSOP-20

光电二极管
文件: 总23页 (文件大小:1916K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
+3V  
V
DD  
CH0  
V
DD  
0.1FF  
O TO  
+2.5V  
ANALOG  
INPUTS  
DGND  
MAX149  
AGND  
COM  
CH7  
CPU  
VREF  
4.7FF  
CS  
SCLK  
DIN  
I/O  
SCK (SK)  
MOSI (SO)  
MISO (SI)  
READJ  
DOUT  
0.01FF  
SSTRB  
SHDN  
V
SS  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
ABSOLUTE MAXIMUM RATINGS  
DD  
AGND to DGND ...................................................-0.3V to +0.3V  
CH0–CH7, COM to AGND, DGND........... -0.3V to (V  
VREF, REFADJ to AGND...........................-0.3V to (V  
Digital Inputs to DGND ...........................................-0.3V to +6V  
Digital Outputs to DGND.......................... -0.3V to (V + 0.3V)  
Digital Output Sink Current ................................................25mA  
V
to AGND, DGND..............................................-0.3V to +6V  
SSOP (derate 8.00mW/NC above +70NC)....................640mW  
CERDIP (derate 11.11mW/NC above +70NC) ..............889mW  
Operating Temperature Ranges  
MAX148_C_P/MAX149_C_P .............................. 0NC to +70NC  
MAX148_E_P/MAX149_E_P............................ -40NC to +85NC  
MAX148_MJP/MAX149_MJP ........................ -55NC to +125NC  
MAX149BMAP............................................... -55NC to +125NC  
Storage Temperature Range............................ -60NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
DD  
Continuous Power Dissipation (T = +70NC)  
A
Plastic DIP (derate 11.11mW/NC above +70NC)..........889mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may  
affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.7V to +5.25V; COM = 0; f  
= 2.0MHz; external clock (50% duty cycle); 15 clocks/conversion cycle (133ksps);  
DD  
SCLK  
MAX149—4.7FF capacitor at VREF pin; MAX148—external reference, VREF = 2.500V applied to VREF pin; T = T  
to T  
, unless  
MAX  
A
MIN  
otherwise noted.)  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
10  
Bits  
LSB  
LSB  
LSB  
MAX14_A  
MAX14_B  
0.5  
1.0  
1
Relative Accuracy (Note 2)  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
No missing codes over temperature  
MAX14_A  
MAX14_B  
MAX14_A  
MAX14_B  
0.15  
0.15  
1
2
1
Gain Error (Note 3)  
LSB  
2
Gain Temperature Coefficient  
0.25  
0.05  
ppm/°C  
Channel-to-Channel Offset  
Matching  
LSB  
DYNAMIC SPECIFICATIONS (10kHz Sine-Wave Input, 0 to 2.500V , 133ksps, 2.0MHz External Clock, Bipolar Input Mode)  
P-P  
Signal-to-Noise + Distortion  
Noise  
SINAD  
66  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Channel-to-Channel Crosstalk  
Small-Signal Bandwidth  
Full-Power Bandwidth  
THD  
Up to the 5th harmonic  
-70  
70  
dB  
dB  
SFDR  
65kHz, 2.500V  
-3dB rolloff  
(Note 4)  
-75  
2.25  
1.0  
dB  
P-P  
MHz  
MHz  
CONVERSION RATE  
5.5  
35  
7.5  
65  
Internal clock, SHDN = unconnected  
Internal clock, SHDN = V  
DD  
Conversion Time (Note 5)  
t
μs  
CONV  
External clock = 2MHz, 12 clocks/  
conversion  
6
Track/Hold Acquisition Time  
Aperture Delay  
t
1.5  
μs  
ns  
ps  
ACQ  
30  
Aperture Jitter  
< 50  
2
______________________________________________________________________________________  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.7V to +5.25V; COM = 0; f  
= 2.0MHz; external clock (50% duty cycle); 15 clocks/conversion cycle (133ksps);  
DD  
SCLK  
MAX149—4.7FF capacitor at VREF pin; MAX148—external reference, VREF = 2.500V applied to VREF pin; T = T  
to T  
, unless  
MAX  
A
MIN  
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CONVERSION RATE (continued)  
1.8  
SHDN = unconnected  
SHDN = V  
Internal Clock Frequency  
MHz  
MHz  
0.225  
DD  
0.1  
1
2.0  
2.0  
External Clock Frequency  
Data transfer only  
ANALOG/COM INPUTS  
Unipolar, COM = 0  
0 to VREF  
VREF/2  
1
Input Voltage Range, Single-  
Ended and Differential (Note 6)  
V
Bipolar, COM = VREF/2  
On/off leakage current, V  
Multiplexer Leakage Current  
Input Capacitance  
= 0 or V  
0.01  
16  
μA  
pF  
CH_  
DD  
INTERNAL REFERENCE (MAX149 Only, Reference Buffer Enabled)  
VREF Output Voltage  
2.470  
2.500  
2.530  
30  
V
T
= +25°C (Note 7)  
A
VREF Short-Circuit Current  
VREF Temperature Coefficient  
Load Regulation (Note 8)  
mA  
MAX149  
30  
ppm/°C  
mV  
0 to 0.2mA output load  
0.35  
Internal compensation mode  
External compensation mode  
0
Capacitive Bypass at VREF  
μF  
4.7  
0.01  
Capacitive Bypass at REFADJ  
REFADJ Adjustment Range  
μF  
%
1.5  
EXTERNAL REFERENCE AT VREF (Buffer Disabled)  
V
+
VREF Input Voltage Range  
(Note 9)  
DD  
1.0  
18  
V
50mV  
VREF Input Current  
VREF = 2.500V  
100  
25  
150  
μA  
kΩ  
μA  
VREF Input Resistance  
Shutdown VREF Input Current  
0.01  
10  
V
0.5  
-
DD  
REFADJ Buffer-Disable Threshold  
EXTERNAL REFERENCE AT REFADJ  
Capacitive Bypass at VREF  
V
Internal compensation mode  
External compensation mode  
MAX149  
0
μF  
V/V  
μA  
4.7  
2.06  
2.00  
Reference Buffer Gain  
REFADJ Input Current  
MAX148  
MAX149  
50  
10  
MAX148  
_______________________________________________________________________________________  
3
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.7V to +5.25V; COM = 0; f  
= 2.0MHz; external clock (50% duty cycle); 15 clocks/conversion cycle (133ksps);  
DD  
SCLK  
MAX149—4.7FF capacitor at VREF pin; MAX148—external reference, VREF = 2.500V applied to VREF pin; T = T  
to T  
, unless  
MAX  
A
MIN  
otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (DIN, SCLK, CS, SHDN)  
V
V
≤ 3.6V  
> 3.6V  
2.0  
3.0  
DD  
V
V
DIN, SCLK, CS Input High Voltage  
IH  
DD  
V
0.8  
V
V
DIN, SCLK, CS Input Low Voltage  
DIN, SCLK, CS Input Hysteresis  
DIN, SCLK, CS Input Leakage  
DIN, SCLK, CS Input Capacitance  
IL  
V
0.2  
HYST  
I
V
= 0 or V  
DD  
0.01  
1
μA  
pF  
IN  
IN  
C
IN  
(Note 10)  
15  
V
-
DD  
0.4  
V
V
V
SHDN Input High Voltage  
SHDN Input Mid Voltage  
SH  
V
-
DD  
V
1.1  
SM  
1.1  
V
0.4  
V
μA  
V
SHDN Input Low Voltage  
SHDN Input Current  
SL  
I
4.0  
SHDN = 0 or V  
S
DD  
V
FLT  
V /2  
DD  
SHDN Voltage, Unconnected  
SHDN = unconnected  
SHDN Maximum Allowed  
Leakage, Mid Input  
100  
nA  
SHDN = unconnected  
DIGITAL OUTPUTS (DOUT, SSTRB)  
I
I
= 5mA  
0.4  
0.8  
SINK  
Output-Voltage Low  
V
V
V
OL  
= 16mA  
SINK  
V
DD  
0.5  
-
Output-Voltage High  
V
I
= 0.5mA  
OH  
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
Positive Supply Voltage  
I
0.01  
10  
15  
μA  
pF  
CS = V  
CS = V  
L
DD  
C
(Note 10)  
OUT  
DD  
V
DD  
2.70  
5.25  
3.0  
2.0  
15  
V
V
DD  
V
DD  
V
DD  
V
DD  
= 5.25V  
= 3.6V  
= 5.25V  
= 3.6V  
1.6  
1.2  
3.5  
1.2  
30  
Operating mode, full-scale  
input (Note 11)  
mA  
Positive Supply Current  
I
DD  
Full power-down  
10  
μA  
Fast power-down (MAX149)  
70  
Full-scale input, external reference =  
2.500V, V = 2.7V to 5.25V  
Supply Rejection (Note 12)  
PSR  
0.3  
mV  
DD  
4
______________________________________________________________________________________  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
TIMING CHARACTERISTICS  
(V  
= +2.7V to +5.25V, T = T  
A
to T , unless otherwise noted.)  
MAX  
DD  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.5  
100  
0
TYP  
MAX  
UNITS  
μs  
Acquisition Time  
DIN to SCLK Setup  
DIN to SCLK Hold  
t
ACQ  
t
ns  
DS  
DH  
t
ns  
MAX14_ _C/E  
MAX14_ _M  
20  
200  
240  
240  
240  
SCLK Fall to Output Data Valid  
t
Figure 1  
ns  
DO  
20  
t
Figure 1  
Figure 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS Fall to Output Enable  
CS Rise to Output Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
SCLK Pulse Width High  
SCLK Pulse Width Low  
SCLK Fall to SSTRB  
DV  
t
TR  
t
100  
0
CSS  
CSH  
t
t
200  
200  
CH  
t
CL  
t
Figure 1  
240  
240  
240  
SSTRB  
t
External clock mode only, Figure 1  
External clock mode only, Figure 2  
Internal clock mode only (Note 7)  
CS Fall to SSTRB Output Enable  
CS Rise to SSTRB Output Disable  
SSTRB Rise to SCLK Rise  
SDV  
t
STR  
t
0
SCK  
Note 1: Tested at V  
= 2.7V; COM = 0; unipolar single-ended input mode.  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range has  
been calibrated.  
Note 3: MAX149—internal reference, offset nulled; MAX148—external reference (V  
Note 4: Ground “on” channel; sine wave applied to all “off” channels.  
= +2.500V), offset nulled.  
REF  
Note 5: Conversion time defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.  
Note 6: The common-mode range for the analog inputs is from AGND to V  
Note 7: Sample tested to 0.1% AQL.  
.
DD  
Note 8: External load should not change during conversion for specified accuracy.  
Note 9: ADC performance is limited by the converter’s noise floor, typically 300FV  
Note 10: Guaranteed by design. Not subject to production testing.  
.
P-P  
Note 11: The MAX148 typically draws 400FA less than the values shown.  
Note 12: Measured as |V (2.7V) - V (5.25V)|.  
FS  
FS  
_______________________________________________________________________________________  
5
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
Typical Operating Characteristics  
(V  
DD  
= 3.0V, VREF = 2.500V, f  
= 2.0MHz, C  
= 20pF, T = +25NC, unless otherwise noted.)  
SCLK  
LOAD  
A
INTEGRAL NONLINEARITY  
vs. SUPPLY VOLTAGE  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
INTEGRAL NONLINEARITY  
vs. CODE  
0.125  
0.125  
0.100  
0.075  
0.050  
0.025  
0
V
= 2.7V  
DD  
0.10  
0.100  
0.075  
0.050  
0.025  
0
0.05  
0
MAX149  
MAX148  
MAX149  
MAX148  
-0.05  
-0.10  
0
256  
512  
768  
1024  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
-60  
-20  
20  
60  
100  
140  
CODE  
TEMPERATURE (NC)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
MAX149 INTERNAL REFERENCE  
VOLTAGE vs. SUPPLY VOLTAGE  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5020  
2.5015  
2.5010  
2.5005  
2.5000  
2.4995  
2.4990  
RL = J  
CODE = 1010101000  
FULL POWER-DOWN  
C
= 50pF  
LOAD  
MAX149  
C
= 20pF  
LOAD  
MAX148  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
2.25 2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
MAX149 INTERNAL REFERENCE  
VOLTAGE vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
2.0  
1.6  
1.2  
0.8  
0.4  
0
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
2.494  
V
= 5.25V  
DD  
MAX149  
V
DD  
= 3.6V  
V
= 2.7V  
DD  
MAX148  
R
= J  
L0AD  
CODE = 1010101000  
-20 20  
TEMPERATURE (NC)  
-60  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (NC)  
TEMPERATURE (NC)  
6
______________________________________________________________________________________  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
Pin Description  
PIN  
NAME  
CH0–CH7 Sampling Analog Inputs  
FUNCTION  
1–8  
Ground Reference for Analog Inputs. COM sets zero-code voltage in single-ended mode. Must be  
stable to 0.5 LSB.  
9
COM  
Three-Level Shutdown Input. Pulling SHDN low shuts the MAX148/MAX149 down; otherwise, they  
are fully operational. Pulling SHDN high puts the reference-buffer amplifier in internal compensation  
mode. Leaving SHDN unconnected puts the reference-buffer amplifier in external compensation  
mode.  
10  
SHDN  
Reference-Buffer Output/ADC Reference Input. Reference voltage for analog-to-digital conversion.  
In internal reference mode (MAX149 only), the reference buffer provides a 2.500V nominal output,  
externally adjustable at REFADJ. In external reference mode, disable the internal buffer by pulling  
11  
VREF  
REFADJ to V  
.
DD  
12  
13  
14  
15  
REFADJ  
AGND  
DGND  
DOUT  
Input to the Reference-Buffer Amplifier. To disable the reference-buffer amplifier, tie REFADJ to V  
.
DD  
Analog Ground  
Digital Ground  
Serial-Data Output. Data is clocked out at SCLK’s falling edge. High impedance when CS is high.  
Serial-Strobe Output. In internal clock mode, SSTRB goes low when the MAX148/MAX149 begin  
the A/D conversion, and goes high when the conversion is finished. In external clock mode, SSTRB  
pulses high for one clock period before the MSB decision. High impedance when CS is high  
(external clock mode).  
16  
SSTRB  
17  
18  
DIN  
Serial-Data Input. Data is clocked in at SCLK’s rising edge.  
Active-Low Chip Select. Data will not be clocked into DIN unless CS is low. When CS is high, DOUT  
is high impedance.  
CS  
Serial-Clock Input. Clocks data in and out of serial interface. In external clock mode, SCLK also sets  
the conversion speed (duty cycle must be 40% to 60%).  
19  
20  
SCLK  
V
Positive Supply Voltage  
DD  
V
DD  
V
DD  
6kI  
6kI  
DOUT  
6kI  
DOUT  
DOUT  
DOUT  
C
50pF  
C
50pF  
LOAD  
LOAD  
C
50pF  
C
LOAD  
50pF  
LOAD  
6kI  
DGND  
DGND  
DGND  
HIGH-Z  
DGND  
a) HIGH-Z TO V AND V TO V  
a) V  
b) V  
OL TO  
HIGH-Z  
b) HIGH-Z TO V AND V TO V  
OL  
OH TO  
OH  
OL  
OH  
OL  
OH  
Figure 1. Load Circuits for Enable Time  
Figure 2. Load Circuits for Disable Time  
_______________________________________________________________________________________  
7
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
control word has been entered. At the end of the acquisi-  
tion interval, the T/H switch opens, retaining charge on  
as a sample of the signal at IN+.  
Detailed Description  
The MAX148/MAX149 analog-to-digital converters  
(ADCs) use a successive-approximation conversion  
technique and input track/hold (T/H) circuitry to convert  
an analog signal to a 10-bit digital output. A flexible  
serial interface provides easy interface to microproces-  
sors (FPs). Figure 3 is a block diagram of the MAX148/  
MAX149.  
C
HOLD  
The conversion interval begins with the input multiplexer  
switching C from the positive input (IN+) to the  
HOLD  
negative input (IN-). In single-ended mode, IN- is simply  
COM. This unbalances node ZERO at the comparator’s  
input. The capacitive DAC adjusts during the remainder  
of the conversion cycle to restore node ZERO to 0 within  
the limits of 10-bit resolution. This action is equivalent to  
Pseudo-Differential Input  
The sampling architecture of the ADC’s analog com-  
parator is illustrated in the equivalent input circuit (Figure  
4). In single-ended mode, IN+ is internally switched to  
CH0–CH7, and IN- is switched to COM. In differential  
mode, IN+ and IN- are selected from the following  
pairs: CH0/CH1, CH2/CH3, CH4/CH5, and CH6/CH7.  
Configure the channels with Tables 2 and 3.  
transferring a 16pF x [(V ) - (V )] charge from C  
IN+  
IN-  
HOLD  
to the binary-weighted capacitive DAC, which in turn  
forms a digital representation of the analog input signal.  
Track/Hold  
The T/H enters its tracking mode on the falling clock  
edge after the fifth bit of the 8-bit control word has been  
shifted in. It enters its hold mode on the falling clock  
edge after the eighth bit of the control word has been  
shifted in. If the converter is set up for single-ended  
inputs, IN- is connected to COM, and the converter  
samples the “+” input. If the converter is set up for dif-  
ferential inputs, IN- connects to the “-” input, and the  
difference of |IN+ - IN-| is sampled. At the end of the  
conversion, the positive input connects back to IN+, and  
In differential mode, IN- and IN+ are internally switched  
to either of the analog inputs. This configuration is  
pseudo-differential to the effect that only the signal at  
IN+ is sampled. The return side (IN-) must remain stable  
within Q0.5 LSB (Q0.1 LSB for best results) with respect  
to AGND during a conversion. To accomplish this, con-  
nect a 0.1FF capacitor from IN- (the selected analog  
input) to AGND.  
C
HOLD  
charges to the input signal.  
During the acquisition interval, the channel selected as  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens, and more time must be  
the positive input (IN+) charges capacitor C  
. The  
HOLD  
acquisition interval spans three SCLK cycles and ends  
on the falling SCLK edge after the last bit of the input  
18  
CS  
19  
SCLK  
CAPACITIVE DAC  
VREF  
INPUT  
SHIFT  
INT  
CLOCK  
17  
10  
DIN  
CONTROL  
LOGIC  
REGISTER  
COMPARATOR  
INPUT  
MUX  
SHDN  
C
-
HOLD  
ZERO  
1
2
3
4
5
6
7
8
9
15  
16  
+
OUTPUT  
SHIFT  
REGISTER  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
DOUT  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
16pF  
SSTRB  
R
IN  
ANALOG  
INPUT  
MUX  
T/H  
C
SWITCH  
CLOCK  
9k  
10+2-BIT  
SAR  
ADC  
IN  
HOLD  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
TRACK  
T/H  
SWITCH  
OUT  
REF  
20  
14  
13  
A 2.06*  
V
DD  
20kΩ  
+1.21V  
REFERENCE  
(MAX149)  
DGND  
AGND  
SINGLE-ENDED MODE: IN+ = CH0–CH7, IN- = COM.  
DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIRS OF  
CH0/CH1, CH2/CH3, CH4/CH5, AND CH6/CH7.  
REFADJ  
VREF  
12  
11  
MAX148  
MAX149  
+2.500V  
*A 2.00 (MAX148)  
Figure 3. Block Diagram  
Figure 4. Equivalent Input Circuit  
8
______________________________________________________________________________________  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
OSCILLOSCOPE  
V
+3V  
DD  
0.1µF  
DGND  
AGND  
COM  
CS  
SCLK  
MAX148  
MAX149  
0 TO  
+2.500V  
ANALOG  
INPUT  
SSTRB  
DOUT*  
CH7  
0.01µF  
SCLK  
DIN  
+3V  
2MHz  
OSCILLATOR  
REFADJ  
VREF  
+3V  
2.5V  
+3V  
CH1  
CH2  
CH3  
CH4  
V
OUT  
DOUT  
SSTRB  
C1  
0.1µF  
1000pF  
MAX872  
COMP  
SHDN  
N.C.  
OPTIONAL FOR MAX149,  
REQUIRED FOR MAX148  
*FULL-SCALE ANALOG INPUT, CONVERSION RESULT = $FFF (HEX)  
Figure 5. Quick-Look Circuit  
allowed between conversions. The acquisition time,  
, is the maximum time the device takes to acquire  
the signal, and is also the minimum time needed for the  
signal to be acquired. It is calculated by the following  
equation:  
Analog Input Protection  
Internal protection diodes, which clamp the analog  
input to V and AGND, allow the channel input pins to  
t
ACQ  
DD  
swing from AGND - 0.3V to V  
+ 0.3V without damage.  
DD  
However, for accurate conversions near full scale, the  
inputs must not exceed V by more than 50mV or be  
DD  
t
= 7 x (R + R ) x 16pF  
S IN  
ACQ  
lower than AGND by 50mV.  
where R = 9kI, R = the source impedance of the  
IN  
S
If the analog input exceeds 50mV beyond the sup-  
plies, do not forward bias the protection diodes of off  
channels over 2mA.  
input signal, and t  
is never less than 1.5Fs. Note that  
ACQ  
source impedances below 4kIdo not significantly affect  
the ADC’s AC performance.  
Higher source impedances can be used if a 0.01FF  
capacitor is connected to the individual analog inputs.  
Note that the input capacitor forms an RC filter with  
the input source impedance, limiting the ADC’s signal  
bandwidth.  
Quick Look  
To quickly evaluate the MAX148/MAX149’s analog per-  
formance, use the circuit of Figure 5. The MAX148/  
MAX149 require a control byte to be written to DIN  
before each conversion. Tying DIN to +3V feeds in  
control bytes of $FF (HEX), which trigger single-ended  
unipolar conversions on CH7 in external clock mode  
without powering down between conversions. In external  
clock mode, the SSTRB output pulses high for one clock  
period before the most significant bit of the conversion  
result is shifted out of DOUT. Varying the analog input to  
CH7 will alter the sequence of bits from DOUT. A total of  
15 clock cycles is required per conversion. All transitions  
of the SSTRB and DOUT outputs occur on the falling  
edge of SCLK.  
Input Bandwidth  
The ADC’s input tracking circuitry has a 2.25MHz  
small-signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate  
by using undersampling techniques. To avoid high-  
frequency signals being aliased into the frequency band  
of interest, anti-alias filtering is recommended.  
_______________________________________________________________________________________  
9
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
Table 1. Control-Byte Format  
BIT 7  
(MSB)  
BIT 0  
(LSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
START  
SEL2  
SEL1  
SEL0  
PD1  
PD0  
UNI/BIP  
SGL//DIF  
BIT  
NAME  
DESCRIPTION  
The first logic “1” bit after CS goes low defines the beginning of the control byte.  
7(MSB)  
START  
6
5
4
SEL2  
SEL1  
SEL0  
These three bits select which of the eight channels are used for the conversion (Tables 2 and 3)  
1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode. In unipolar mode, an  
analog input signal from 0 to VREF can be converted; in bipolar mode, the signal can range from  
-VREF/2 to +VREF/2.  
3
UNI/BIP  
1 = single ended, 0 = differential. Selects single-ended or differential conversions. In single-  
ended mode, input signal voltages are referred to COM. In differential mode, the voltage  
difference between two channels is measured (Tables 2 and 3).  
2
1
SGL/DIF  
PD1  
Selects clock and power-down modes.  
PD1  
0
PD0  
0
Mode  
Full power-down  
0(LSB)  
PD0  
0
1
Fast power-down (MAX149 only)  
Internal clock mode  
External clock mode  
1
0
1
1
Table 2. Channel Selection in Single-Ended Mode (SGL/DIF = 1)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
+
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
polarity and sampling edge in the SPI control registers:  
set CPOL = 0 and CPHA = 0. MICROWIRE, SPI, and  
QSPI all transmit a byte and receive a byte at the same  
time. Using the Typical Operating Circuit, the simplest  
software interface requires only three 8-bit transfers to  
perform a conversion (one 8-bit transfer to configure  
the ADC, and two more 8-bit transfers to clock out the  
conversion result). See Figure 20 for MAX148/ MAX149  
QSPI connections.  
How to Start a Conversion  
Start a conversion by clocking a control byte into DIN.  
With CS low, each rising edge on SCLK clocks a bit from  
DIN into the MAX148/MAX149’s internal shift register.  
After CS falls, the first arriving logic “1” bit defines the  
control byte’s MSB. Until this first “start” bit arrives, any  
number of logic “0” bits can be clocked into DIN with no  
effect. Table 1 shows the control-byte format.  
The MAX148/MAX149 are compatible with SPI/QSPI and  
MICROWIRE devices. For SPI, select the correct clock  
10 _____________________________________________________________________________________  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
Table 3. Channel Selection in Differential Mode (SGL/DIF = 0)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+
-
+
-
+
-
+
-
-
-
+
-
+
-
+
+
CS  
SCLK  
DIN  
t
ACQ  
1
4
8
12  
16  
20  
24  
UNI/  
BIP  
SGL/  
DIF  
SEL2 SEL1 SEL0  
PD1 PD0  
START  
SSTRB  
DOUT  
RB1  
RB2  
B6  
RB3  
S0  
FILLED WITH  
ZEROS  
B9  
MSB  
B0  
LSB  
B8  
B7  
B5  
B4  
B3  
B2  
B1  
S1  
ACQUISITION  
A/D STATE  
1.5Fs  
IDLE  
CONVERSION  
IDLE  
(f  
= 2MHz)  
SCLK  
Figure 6. 24-Clock External Clock Mode Conversion Timing (MICROWIRE and SPI-Compatible, QSPI-Compatible with f  
SCLK  
P2MHz)  
Simple Software Interface  
Make sure the CPU’s serial interface runs in master  
mode so the CPU generates the serial clock. Choose a  
clock frequency from 100kHz to 2MHz.  
Figure 6 shows the timing for this sequence. Bytes RB2  
and RB3 contain the result of the conversion, padded  
with one leading zero, two sub-LSB bits, and three  
trailing zeros. The total conversion time is a function of  
the serial-clock frequency and the amount of idle time  
between 8-bit transfers. To avoid excessive T/H droop,  
make sure the total conversion time does not exceed  
120Fs.  
1) Set up the control byte for external clock mode and  
call it TB1. TB1 should be of the format: 1XXXXX11  
binary, where the Xs denote the particular channel  
and conversion mode selected.  
Digital Output  
In unipolar input mode, the output is straight binary  
(Figure 17). For bipolar input mode, the output is twos  
complement (Figure 18). Data is clocked out at the fall-  
ing edge of SCLK in MSB-first format.  
2) Use a general-purpose I/O line on the CPU to pull CS  
low.  
3) Transmit TB1 and, simultaneously, receive a byte  
and call it RB1. Ignore RB1.  
4) Transmit a byte of all zeros ($00 hex) and, simultane-  
ously, receive byte RB2.  
Clock Modes  
The MAX148/MAX149 may use either an external serial  
clock or the internal clock to perform the successive-  
approximation conversion. In both clock modes, the exter-  
nal clock shifts data in and out of the MAX148/MAX149.  
5) Transmit a byte of all zeros ($00 hex) and, simultane-  
ously, receive byte RB3.  
6) Pull CS high.  
______________________________________________________________________________________ 11  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
CS  
t
t
CSH  
t
CSS  
CH  
t
t
CL  
CSH  
SCLK  
t
DS  
t
DH  
DIN  
t
DV  
t
DO  
t
TR  
DOUT  
Figure 7. Detailed Serial-Interface Timing  
CS  
t
t
STR  
SDV  
SSRTB  
SCLK  
t
t
SSTRB  
SSTRB  
PD0 CLOCKED IN  
Figure 8. External Clock Mode SSTRB Detailed Timing  
The T/H acquires the input signal as the last three bits of  
the control byte are clocked into DIN. Bits PD1 and PD0  
of the control byte program the clock mode. Figures 7–10  
show the timing characteristics common to both modes.  
and DOUT go into a high-impedance state when CS goes  
high; after the next CS falling edge, SSTRB outputs a  
logic-low. Figure 8 shows the SSTRB timing in external  
clock mode.  
The conversion must complete in some minimum time, or  
droop on the sample-and-hold capacitors may degrade  
conversion results. Use internal clock mode if the serial-  
clock frequency is less than 100kHz, or if serial-clock  
interruptions could cause the conversion interval to  
exceed 120Fs.  
External Clock  
In external clock mode, the external clock not only shifts  
data in and out, but it also drives the analog-to-digital  
conversion steps. SSTRB pulses high for one clock period  
after the last bit of the control byte. Successive- approxi-  
mation bit decisions are made and appear at DOUT on  
each of the next 12 SCLK falling edges (Figure 6). SSTRB  
12 _____________________________________________________________________________________  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
CS  
1
2
3
4
5
6
7
8
9
10 11 12  
18 19 20 21 22 23 24  
SCLK  
UNI/ SGL/  
BIP DIF  
SEL2 SEL1 SEL0  
PD1 PD0  
DIN  
START  
SSTRB  
t
CONV  
FILLED WITH  
ZEROS  
B9  
MSB  
B0  
LSB  
DOUT  
B8 B7  
S1 S0  
ACQUISITION  
CONVERSION  
1.5Fs  
7.5Fs MAX  
AD STATE  
IDLE  
IDLE  
(f  
= 2MHz)(SHDN = UNCONNECTED)  
SCLK  
Figure 9. Internal Clock Mode Timing  
CS  
t
CONV  
t
CSS  
t
t
SCK  
CSH  
SSTRB  
SCLK  
t
SSTRB  
t
D0  
PD0 CLOCK IN  
DOUT  
NOTE: FOR BEST NOISE PERFORMANCE, KEEP SCLK LOW DURING CONVERSION.  
Figure 10. Internal Clock Mode SSTRB Detailed Timing  
Internal Clock  
not need to be held low once a conversion is started.  
Pulling CS high prevents data from being clocked into  
the MAX148/MAX149 and three-states DOUT, but it  
does not adversely affect an internal clock mode con-  
version already in progress. When internal clock mode  
is selected, SSTRB does not go into a high-impedance  
state when CS goes high.  
In internal clock mode, the MAX148/MAX149 generate  
their own conversion clocks internally. This frees the FP  
from the burden of running the SAR conversion clock  
and allows the conversion results to be read back at  
the processor’s convenience, at any clock rate from 0  
to 2MHz. SSTRB goes low at the start of the conversion  
and then goes high when the conversion is complete.  
SSTRB is low for a maximum of 7.5Fs (SHDN = uncon-  
nected), during which time SCLK should remain low for  
best noise performance.  
Figure 10 shows the SSTRB timing in internal clock  
mode. In this mode, data can be shifted in and out of  
the MAX148/MAX149 at clock rates exceeding 2.0MHz if  
the minimum acquisition time (t ) is kept above 1.5Fs.  
ACQ  
An internal register stores data when the conversion  
is in progress. SCLK clocks the data out of this regis-  
ter at any time after the conversion is complete. After  
SSTRB goes high, the next falling clock edge produces  
the MSB of the conversion at DOUT, followed by the  
remaining bits in MSB-first format (Figure 9). CS does  
Data Framing  
The falling edge of CS does not start a conversion. The  
first logic high clocked into DIN is interpreted as a start  
bit and defines the first bit of the control byte. A conver-  
sion starts on SCLK’s falling edge, after the eighth bit of  
______________________________________________________________________________________ 13  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
Table 4. Typical Power-Up Delay Times  
REFERENCE-  
VREF  
CAPACITOR  
(µF)  
MAXIMUM  
SAMPLING RATE  
(ksps)  
REFERENCE  
BUFFER  
BUFFER  
COMPENSATION  
MODE  
POWER-DOWN POWER-UP DELAY  
MODE  
(µs)  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Internal  
Internal  
External  
External  
Fast  
Full  
5
26  
300  
26  
4.7  
4.7  
Fast  
Full  
See Figure 14c  
133  
133  
133  
133  
See Figure 14c  
Fast  
Full  
2
2
Reference-Buffer Compensation  
the control byte (the PD0 bit) is clocked into DIN. The  
start bit is defined as follows:  
In addition to its shutdown function, SHDN selects inter-  
nal or external compensation. The compensation affects  
both power-up time and maximum conversion speed.  
The 100kHz minimum clock rate is limited by droop on  
the sample-and-hold and is independent of the compen-  
sation used.  
The first high bit clocked into DIN with CS low any time  
the converter is idle; e.g., after V  
is applied.  
DD  
OR  
The first high bit clocked into DIN after bit 3 of a con-  
version in progress is clocked onto the DOUT pin.  
Unconnect SHDN to select external compensation. The  
Typical Operating Circuit uses a 4.7FF capacitor at VREF.  
A 4.7FF value ensures reference-buffer stability and  
allows converter operation at the 2MHz full clock speed.  
External compensation increases power-up time (see the  
Choosing Power-Down Mode section and Table 4).  
If CS is toggled before the current conversion is com-  
plete, the next high bit clocked into DIN is recognized  
as a start bit; the current conversion is terminated, and  
a new one is started.  
The fastest the MAX148/MAX149 can run with CS held  
low between conversions is 15 clocks per conversion.  
Figure 11a shows the serial-interface timing necessary  
to perform a conversion every 15 SCLK cycles in exter-  
nal clock mode. If CS is tied low and SCLK is continuous,  
guarantee a start bit by first clocking in 16 zeros.  
Pull SHDN high to select internal compensation. Internal  
compensation requires no external capacitor at VREF  
and allows for the shortest power-up times. The maxi-  
mum clock rate is 2MHz in internal clock mode and  
400kHz in external clock mode.  
Most microcontrollers (FCs) require that conversions  
occur in multiples of 8 SCLK clocks; 16 clocks per con-  
version is typically the fastest that a FC can drive the  
MAX148/MAX149. Figure 11b shows the serialinterface  
timing necessary to perform a conversion every 16 SCLK  
cycles in external clock mode.  
Choosing Power-Down Mode  
You can save power by placing the converter in a low-  
current shutdown state between conversions. Select full  
power-down mode or fast power-down mode via bits 1  
and 0 of the DIN control byte with SHDN high or uncon-  
nected (Tables 1 and 5). In both software power-down  
modes, the serial interface remains operational, but the  
ADC does not convert. Pull SHDN low at any time to shut  
down the converter completely. SHDN overrides bits 1  
and 0 of the control byte.  
Applications Information  
Power-On Reset  
When power is first applied, and if SHDN is not pulled  
low, internal power-on reset circuitry activates the  
MAX148/MAX149 in internal clock mode, ready to con-  
vert with SSTRB = high. After the power supplies stabi-  
lize, the internal reset time is 10Fs, and no conversions  
should be performed during this phase. SSTRB is high  
on power-up and, if CS is low, the first logical 1 on DIN is  
interpreted as a start bit. Until a conversion takes place,  
DOUT shifts out zeros. Also see Table 4.  
Full power-down mode turns off all chip functions that  
draw quiescent current, reducing supply current to  
2FA (typ). Fast power-down mode turns off all circuitry  
except the bandgap reference. With fast power-down  
mode, the supply current is 30FA. Power-up time can be  
shortened to 5Fs in internal compensation mode.  
Table 4 shows how the choice of reference-buffer com-  
pensation and power-down mode affects both power-up  
14 _____________________________________________________________________________________  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
CS  
1
8
15  
1
8
15  
1
SCLK  
DIN  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
S
CONTROL BYTE 2  
DOUT  
SSTRB  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 0  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 1  
Figure 11a. External Clock Mode, 15 Clocks/Conversion Timing  
CS  
1
8
16  
1
8
16  
SCLK  
DIN  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 S1 S0  
CONVERSION RESULT 0  
B9 B8 B7 B6  
DOUT  
CONVERSION RESULT 1  
Figure 11b. External Clock Mode, 16 Clocks/Conversion Timing  
CLOCK  
MODE  
EXTERNAL  
EXTERNAL  
SHDN  
SETS SOFTWARE  
POWER-DOWN  
SETS EXTERNAL  
CLOCK MODE  
SETS EXTERNAL  
CLOCK MODE  
S X X X X X 1 1  
S X X X X X 0 0  
S X X X X X 1 1  
DIN  
10 + 2 DATA BITS  
10 + 2 DATA BITS  
VALID  
DATA  
INVALID  
DATA  
DOUT  
HARDWARE  
POWER-DOWN  
POWERED UP  
POWERED UP  
POWERED UP  
MODE  
SOFTWARE  
POWER-DOWN  
Figure 12a. Timing Diagram Power-Down Modes, External Clock  
delay and maximum sample rate. In external compensa-  
tion mode, power-up time is 20ms with a 4.7FF com-  
pensation capacitor when the capacitor is initially fully  
discharged. From fast power-down, startup time can be  
eliminated by using low-leakage capacitors that do not  
discharge more than ½ LSB while shut down. In power-  
down, leakage currents at VREF cause droop on the  
reference bypass capacitor. Figures 12a and 12b show  
the various power-down sequences in both external and  
internal clock modes.  
______________________________________________________________________________________ 15  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
CLOCK  
MODE  
INTERNAL  
SETS INTERNAL  
CLOCK MODE  
SETS  
POWER-DOWN  
5 X X X X X 0 0  
S
S X X X X X 1 0  
DIN  
DATA VALID  
DATA VALID  
DOUT  
SSTRB  
CONVERSION  
CONVERSION  
MODE  
POWER-DOWN  
POWERED OFF  
POWERED UP  
Figure 12b. Timing Diagram Power-Down Modes, Internal Clock  
Table 5. Software Power-Down and Clock  
Mode  
Table 6. Hard-Wired Power-Down and  
Internal Clock Frequency  
PD1  
PD0  
DEVICE MODE  
Full Power-Down  
Fast Power-Down  
Internal Clock  
REFERENCE  
BUFFER  
COMPENSATION FREQUENCY  
INTERNAL  
CLOCK  
DEVICE  
MODE  
SHDN  
STATE  
0
0
1
1
0
1
0
1
1
Enabled  
Internal  
External  
225kHz  
1.8MHz  
External Clock  
Unconnected Enabled  
Power-  
Down  
0
AVERAGE SUPPLY CURRENT vs. CONVERSION  
RATE WITH EXTERNAL REFERENCE  
AVERAGE SUPPLY CURRENT  
vs. CONVERSION RATE (USING FULLPD)  
10,000  
100  
10  
1
R
=  
LOAD  
VREF = V = 3.0V  
DD  
CODE = 1010101000  
R
LOAD  
=  
1000  
100  
10  
CODE = 1010101000  
8 CHANNELS  
8 CHANNELS  
1 CHANNEL  
1 CHANNEL  
1
0.1  
0.1  
1
10 100 1k  
10k 100k 1M  
0.01  
0.1  
1
10  
100  
1k  
CONVERSION RATE (Hz)  
CONVERSION RATE (Hz)  
Figure 13. Average Supply Current vs. Conversion Rate with  
External Reference  
Figure 14a. MAX149 Supply Current vs. Conversion Rate,  
FULLPD  
16 _____________________________________________________________________________________  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
The first logical 1 on DIN is interpreted as a start bit and  
powers up the MAX148/MAX149. Following the start bit, the  
data input word or control byte also determines clock mode  
and power-down states. For example, if the DIN word con-  
tains PD1 = 1, then the chip remains powered up. If PD0  
= PD1 = 0, a power-down resumes after one conversion.  
AVERAGE SUPPLY CURRENT  
vs. CONVERSION RATE (USING FASTPD)  
10,000  
1000  
100  
0
R
=  
LOAD  
CODE = 1010101000  
8 CHANNELS  
Hardware Power-Down  
Pulling SHDN low places the converter in hardware pow-  
er-down (Table 6). Unlike software power-down mode, the  
conversion is not completed; it stops coincidentally with  
SHDN being brought low. SHDN also controls the clock  
frequency in internal clock mode. Leaving SHDN uncon-  
nected sets the internal clock frequency to 1.8MHz. When  
returning to normal operation with SHDN unconnected,  
1 CHANNEL  
1
0.1  
1
10 100 1k  
10k 100k 1M  
there is a t delay of approximately 2MI x C , where C  
RC  
L
L
CONVERSION RATE (Hz)  
is the capacitive loading on the SHDN pin. Pulling SHDN  
high sets internal clock frequency to 225kHz. This feature  
eases the settling-time requirement for the reference volt-  
age. With an external reference, the MAX148/MAX149  
can be considered fully powered up within 2Fs of actively  
pulling SHDN high.  
Figure 14b. MAX149 Supply Current vs. Conversion Rate,  
FASTPD  
TYPICAL REFERENCE-BUFFER POWER-UP  
DELAY vs. TIME IN SHUTDOWN  
Power-Down Sequencing  
The MAX148/MAX149 auto power-down modes can  
save considerable power when operating at less than  
maximum sample rates. Figures 13, 14a, and 14b show  
the average supply current as a function of the sampling  
rate. The following discussion illustrates the various  
power-down sequences.  
2.0  
1.5  
1.0  
0.5  
0
Lowest Power at Up to 500  
Conversions/Channel/Second  
The following examples show two different power-down  
sequences. Other combinations of clock rates, compen-  
sation modes, and power-down modes may give lowest  
power consumption in other applications.  
0.001  
0.01  
0.1  
1
10  
TIME IN SHUTDOWN (s)  
Figure 14a depicts the MAX149 power consumption for  
one or eight channel conversions utilizing full power-  
down mode and internal-reference compensation. A  
0.01FF bypass capacitor at REFADJ forms an RC filter  
with the internal 20kI reference resistor with a 0.2ms  
time constant. To achieve full 10-bit accuracy, 8 time  
constants or 1.6ms are required after power-up. Waiting  
this 1.6ms in FASTPD mode instead of in full power-up  
can reduce power consumption by a factor of 10 or  
more. This is achieved by using the sequence shown in  
Figure 15.  
Figure 14c. Typical Reference-Buffer Power-Up Delay vs.  
Time in Shutdown  
Software Power-Down  
Software power-down is activated using bits PD1 and  
PD0 of the control byte. As shown in Table 5, PD1 and  
PD0 also specify the clock mode. When software shut-  
down is asserted, the ADC operates in the last specified  
clock mode until the conversion is complete. Then the  
ADC powers down into a low quiescent-current state.  
In internal clock mode, the interface remains active  
and conversion results may be clocked out after the  
MAX148/MAX149 enter a software power-down.  
______________________________________________________________________________________ 17  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
COMPLETE CONVERSION SEQUENCE  
1.6ms WAIT  
0 1  
(ZEROS)  
CH1  
CH7  
(ZEROS)  
DIN  
1
0 0  
1
1
1 1  
1
0 0  
1
0 1  
FULLPD  
FASTPD  
FULLPD  
NOPD  
FASTPD  
1.21V  
0
REFADJ  
VREF  
H= RC = 20kIx C  
REFADJ  
2.50V  
0
t
75Fs  
BUFFEN =  
Figure 15. MAX149 FULLPD/FASTPD Power-Up Sequence  
+3.3V  
OUTPUT CODE  
24kI  
FULL-SCALE  
TRANSITION  
TRANSITION  
11...111  
MAX149  
510kI  
11...110  
11...101  
REFADJ  
100kI  
12  
0.01µF  
FS = VREF + COM  
ZS = COM  
VREF  
1 LSB =  
Figure 16. MAX149 Reference-Adjust Circuit  
1024  
00...011  
00...010  
00...001  
00...000  
Lowest Power at Higher Throughputs  
Figure 14b shows the power consumption with external-  
reference compensation in fast power-down, with one  
and eight channels converted. The external 4.7FF com-  
pensation requires a 75Fs wait after power-up with one  
dummy conversion. This graph shows fast multichannel  
conversion with the lowest power consumption possible.  
Full power-down mode may provide increased power  
savings in applications where the MAX148/MAX149 are  
inactive for long periods of time, but where intermittent  
bursts of high-speed conversions are required.  
0
1
2
3
FS  
(COM)  
INPUT VOLTAGE (LSB)  
FS - 3/2 LSB  
Figure 17. Unipolar Transfer Function, Full Scale (FS) = VREF  
+ COM, Zero Scale (ZS) = COM  
Internal Reference (MAX149)  
The MAX149’s full-scale range with the internal refer-  
ence is 2.5V with unipolar inputs and Q1.25V with bipolar  
inputs. The internal reference voltage is adjustable to  
Q1.5% with the circuit in Figure 16.  
Internal and External References  
The MAX149 can be used with an internal or external  
reference voltage, whereas an external reference is  
required for the MAX148. An external reference can be  
connected directly at VREF or at the REFADJ pin.  
External Reference  
With both the MAX149 and MAX148, an external refer-  
ence can be placed at either the input (REFADJ) or the  
output (VREF) of the internal reference-buffer amplifier.  
The REFADJ input impedance is typically 20kI for the  
MAX149, and higher than 100kI for the MAX148. At  
VREF, the DC input resistance is a minimum of 18kI.  
During conversion, an external reference at VREF must  
An internal buffer is designed to provide 2.5V at VREF  
for both the MAX149 and the MAX148. The MAX149’s  
internally trimmed 1.21V reference is buffered with a  
2.06 gain. The MAX148’s REFADJ pin is also buffered  
with a 2.00 gain to scale an external 1.25V reference at  
REFADJ to 2.5V at VREF.  
18 _____________________________________________________________________________________  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
Table 7. Full Scale and Zero Scale  
UNIPOLAR MODE  
BIPOLAR MODE  
Zero Scale  
COM  
Full Scale  
Zero Scale  
COM  
Positive Full Scale  
VREF/2 + COM  
Negative Full Scale  
-VREF/2 + COM  
VREF + COM  
OUTPUT CODE  
VREF  
2
FS  
=
+ COM  
+ COM  
011 . . . 111  
011 . . . 110  
SUPPLIES  
ZS = COM  
+3V  
+3V  
GND  
-VREF  
2
-FS =  
000 . . . 010  
000 . . . 001  
000 . . . 000  
VREF  
1024  
1LSB =  
R* = 10  
111 . . . 111  
111 . . . 110  
111 . . . 101  
V
DD  
AGND  
COM  
DGND  
+3V  
DGND  
DIGITAL  
CIRCUITRY  
100 . . . 001  
100 . . . 000  
MAX148  
MAX149  
COM*  
- FS  
+FS - 1LSB  
*OPTIONAL  
INPUT VOLTAGE (LSB)  
*COM VREF/2  
Figure 19. Power-Supply Grounding Connection  
Figure 18. Bipolar Transfer Function, Full Scale (FS) = VREF/2  
+ COM, Zero Scale (ZS) = COM  
deliver up to 350FA DC load current and have 10I or  
less output impedance. If the reference has a higher out-  
put impedance or is noisy, bypass it close to the VREF  
pin with a 4.7FF capacitor.  
Transfer Function  
Table 7 shows the full-scale voltage ranges for unipolar  
and bipolar modes.  
The external reference must have a temperature coef-  
ficient of 20ppm/NC or less to achieve accuracy to within  
1 LSB over the 0NC to +70NC commercial temperature  
range.  
Using the REFADJ input makes buffering the external  
reference unnecessary. To use the direct VREF input,  
disable the internal buffer by tying REFADJ to V  
.
DD  
In power-down, the input bias current to REFADJ is  
Figure 17 depicts the nominal, unipolar input/output  
(I/O) transfer function, and Figure 18 shows the bipolar  
input/output transfer function. Code transitions occur  
halfway between successive-integer LSB values. Output  
coding is binary, with 1 LSB = 2.44mV (2.500V/1024)  
for unipolar operation, and 1 LSB = 2.44mV [(2.500V/2 -  
-2.500V/2)/1024] for bipolar operation.  
typically 25FA (MAX149) with REFADJ tied to V . Pull  
DD  
REFADJ to AGND to minimize the input bias current in  
power-down.  
______________________________________________________________________________________ 19  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
+3V  
+3V  
0.1µF  
1µF  
(POWER SUPPLIES)  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
SHDN  
V
DD  
SCK  
SCLK  
CS  
PCS0  
3
MAX148  
MAX149  
4
MOSI  
DIN  
ANALOG  
INPUTS  
5
SSTRB  
DOUT  
DGND  
AGND  
REFADJ  
VREF  
MC683XX  
MISO  
6
7
8
9
(GND)  
10  
0.1µF  
+2.5V  
Figure 20. MAX148/MAX149 QSPI Connections, External Reference  
Layout, Grounding, and Bypassing  
For best performance, use PCBs. Wire-wrap boards  
are not recommended. Board layout should ensure that  
digital and analog signal lines are separated from each  
other. Do not run analog and digital (especially clock)  
lines parallel to one another, or digital lines underneath  
the ADC package.  
XF  
CLKX  
CLKR  
DX  
CS  
SCLK  
TMS320LC3x  
MAX148  
MAX149  
Figure 19 shows the recommended system ground con-  
nections. Establish a single-point analog ground (star  
ground point) at AGND, separate from the logic ground.  
Connect all other analog grounds and DGND to the star  
ground. No other digital system ground should be con-  
nected to this ground. For lowest-noise operation, the  
ground return to the star ground’s power supply should  
be low impedance and as short as possible.  
DIN  
DR  
DOUT  
SSTRB  
FSR  
High-frequency noise in the V  
power supply may  
DD  
affect the high-speed comparator in the ADC. Bypass  
the supply to the star ground with 0.1FF and 1FF capaci-  
tors close to pin 20 of the MAX148/MAX149. Minimize  
capacitor lead lengths for best supply-noise rejection.  
If the power supply is very noisy, a 10I resistor can be  
connected as a lowpass filter (Figure 19).  
Figure 21. MAX148/MAX149-to-TMS320 Serial Interface  
20 _____________________________________________________________________________________  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
CS  
SCLK  
DIN  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP  
SGL/DIF  
PD1  
PD0  
HIGH  
IMPEDANCE  
SSTRB  
HIGH  
IMPEDANCE  
DOUT  
MSB  
B8  
S1  
S0  
Figure 22. TMS320 Serial-Interface Timing Diagram  
2) The MAX148/MAX149’s CS pin is driven low by the  
TMS320’s XF_ I/O port to enable data to be clocked  
into the MAX148/MAX149’s DIN.  
High-Speed Digital Interfacing with QSPI  
The MAX148/MAX149 can interface with QSPI using the  
circuit in Figure 20 (f  
= 2.0MHz, CPOL = 0, CPHA =  
SCLK  
0). This QSPI circuit can be programmed to do a conver-  
sion on each of the eight channels. The result is stored  
in memory without taxing the CPU, since QSPI incorpo-  
rates its own microsequencer.  
3) An 8-bit word (1XXXXX11) should be written to the  
MAX148/MAX149 to initiate a conversion and place  
the device into external clock mode. See Table 1 to  
select the proper XXXXX bit values for your specific  
application.  
The MAX148/MAX149 are QSPI compatible up to the  
maximum external clock frequency of 2MHz.  
4) The MAX148/MAX149’s SSTRB output is monitored  
through the TMS320’s FSR input. A falling edge on  
the SSTRB output indicates that the conversion is in  
progress and data is ready to be received from the  
MAX148/MAX149.  
TMS320LC3x Interface  
Figure 21 shows an application circuit to interface the  
MAX148/MAX149 to the TMS320 in external clock mode.  
The timing diagram for this interface circuit is shown in  
Figure 22.  
5) The TMS320 reads in one data bit on each of the  
next 16 rising edges of SCLK. These data bits rep-  
resent the 10 + 2-bit conversion result followed by 4  
trailing bits, which should be ignored.  
Use the following steps to initiate a conversion in the  
MAX148/MAX149 and to read the results:  
1) The TMS320 should be configured with CLKX (trans-  
mit clock) as an active-high output clock and CLKR  
(TMS320 receive clock) as an active-high input  
clock. CLKX and CLKR on the TMS320 are tied  
together with the MAX148/MAX149’s SCLK input.  
6) Pull CS high to disable the MAX148/MAX149 until  
the next conversion is initiated.  
______________________________________________________________________________________ 21  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
Ordering Information (continued)  
Pin Configuration  
PIN-  
INL  
PART†  
TEMP RANGE  
PACKAGE (LSB)  
TOP VIEW  
MAX148AEPP  
MAX148BEPP  
MAX148AEAP  
MAX148BEAP  
MAX148AMJP  
MAX148BMJP  
MAX149ACPP  
MAX149BCPP  
MAX149ACAP  
MAX149BCAP  
MAX149AEPP  
MAX149BEPP  
MAX149AEAP  
MAX149BEAP  
MAX149AMJP  
MAX149BMAP/PR  
MAX149BMAP/PR2  
MAX149BMAP/PR3  
MAX149BMJP  
-40°C to +85°C 20PlasticDIP  
-40°C to +85°C 20PlasticDIP  
1/2  
1
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
CHO  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
SHDN  
V
DD  
-40°C to +85°C  
-40°C to +85°C  
20 SSOP  
20 SSOP  
1/2  
1
SCLK  
CS  
3
-55°C to +125°C 20 CERDIP*  
-55°C to +125°C 20 CERDIP*  
1/2  
1
MAX148  
MAX149  
4
DIN  
5
SSTRB  
DOUT  
DGND  
AGND  
REFADJ  
VREF  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
20PlasticDIP  
20PlasticDIP  
20 SSOP  
1/2  
1
6
7
1/2  
1
8
0°C to +70°C 20PlasticDIP  
-40°C to +85°C 20PlasticDIP  
-40°C to +85°C 20PlasticDIP  
9
1/2  
1
10  
-40°C to +85°C  
-40°C to +85°C  
20 SSOP  
20 SSOP  
1/2  
1
DIP/SSOP  
-55°C to +125°C 20 CERDIP*  
1/2  
1
-55°C to +125°C  
-55°C to +125°C  
-55°C to +125°C  
20 SSOP  
20 SSOP  
20 SSOP  
1
1
-55°C to +125°C 20 CERDIP*  
1
Package Information  
Contact factory for availability of alternate surface-mount  
For the latest package outline information and land patterns,  
go to www.maxim-ic.com/packages. Note that a “+”, “#”, or  
“-” in the package code indicates RoHS status only. Package  
drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
package. Specify lead-free by placing + by the part number  
when ordering.  
*Contact factory for availability of CERDIP package, and for  
processing to MIL-STD-883B. Not available in lead-free.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
20 Plastic Dip  
20 SSOP  
P20-4  
A20-1  
J20-2  
21-0043  
21-0056  
21-0045  
20 CERDIP  
22 _____________________________________________________________________________________  
+2.7V to +5.25V, Low-Power, 8-Channel,  
Serial 10-Bit ADCs  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
Revised Ordering Information, Electrical Characteristics table, Pin  
Description, Figure 9, added ruggedized plastic information.  
1–4, 7, 13, 14, 16, 17,  
22–23  
3
4
5/09  
1/10  
Revised Ordering Information.  
22  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
23  
©
2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX149BEPP

+2.7V to +5.25V, Low-Power, 8-Channel, Serial 10-Bit ADCs
MAXIM

MAX149BEPP+

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDIP20, LEAD FREE, PLASTIC, DIP-20
MAXIM

MAX149BEWP

Converter IC
MAXIM

MAX149BMAP/PR

+2.7V to +5.25V, Low-Power, 8-Channel, Serial 10-Bit ADCs
MAXIM

MAX149BMAP/PR2

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SSOP-20
MAXIM

MAX149BMAP/PR2+

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, PDSO20, LEAD FREE, SSOP-20
MAXIM

MAX149BMAP/PR3

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, SSOP-20
MAXIM

MAX149BMAP/PR3+T

ADC, Successive Approximation,
MAXIM

MAX149BMJP

+2.7V to +5.25V, Low-Power, 8-Channel, Serial 10-Bit ADCs
MAXIM

MAX149BMJP+

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Serial Access, CDIP20, CERDIP-20
MAXIM

MAX149X1EVKIT

Operates From a Single 3.3V Supply
MAXIM

MAX149X2EVKIT

Terminal Block Connectors for Easy RS-485/ PROFIBUS Evaluation
MAXIM