MAX15015A [MAXIM]

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators;
MAX15015A
型号: MAX15015A
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators

文件: 总25页 (文件大小:2456K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
General Description  
Features  
The MAX15014–MAX15017 combine a step-down DC-DC  
converter and a 50mA, low-quiescent-current low-dropout  
(LDO) regulator. The LDO regulator is ideal for powering  
always-on circuitry. The DC-DC converter input voltage  
range is 4.5V to 40V for the MAX15015/MAX15016, and  
7.5V to 40V for the MAX15014/MAX15017.  
Combined DC-DC Converters and Low-Quiescent-  
Current LDO Regulators  
1A DC-DC Converters Operate from 4.5V to 40V  
(MAX15015/MAX15016) or 7.5V to 40V  
(MAX15014/MAX15017)  
Switching Frequency of 135kHz  
(MAX15014/MAX15016) or 500kHz  
(MAX15015/MAX15017)  
The DC-DC converter output is adjustable from 1.26V  
to 32V and can deliver up to 1A of load current. These  
devices utilize a feed-forward voltage-mode-control  
scheme for good noise immunity in the high-voltage  
switching environment and offer external compensation  
allowing for maximum flexibility with a wide selection  
of inductor values and capacitor types. The switching  
frequency is internally fixed at 135kHz and 500kHz,  
depending on the version chosen. Moreover, the switch-  
ing frequency can be synchronized to an external clock  
signal through the SYNC input. Light-load efficiency  
is improved by automatically switching to a pulse-skip  
mode. The soft-start time is adjustable with an external  
capacitor. The DC-DC converter can be disabled inde-  
pendent of the LDO, thus reducing the quiescent current  
to 47μA (typ).  
50mA LDO Regulator Operates from 5V to 40V  
Independent of the DC-DC Converter  
● 47μA Quiescent Current with DC-DC Converter  
Off and LDO On  
● 6μA System Shutdown Current  
Frequency Synchronization Input  
Shutdown/Enable Inputs  
Adjustable Soft-Start Time  
Active-Low Open-Drain RESET Output with  
Programmable Timeout Delay  
Thermal Shutdown and Output Short-Circuit  
Protection  
The LDO linear regulators operate from 5V to 40V and  
deliver a guaranteed 50mA load current. The devices  
feature a preset output voltage of 5V (MAX1501_A) or  
3.3V (MAX1501_B). Alternatively, the output voltage  
can be adjusted from 1.5V to 11V by using an external  
resistive divider. The LDO section also features a RESET  
output with adjustable timeout period.  
Space-Saving (6mm x 6mm) Thermally Enhanced  
36-Pin TQFN Package  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
Protection features include cycle-by-cycle current limit,  
hiccup-mode output short-circuit protection, and thermal  
shutdown. All devices are available in a space-saving,  
high-power (2.86W), 36-pin TQFN package and are rated  
for operation over the -40°C to +125°C automotive tem-  
perature range.  
MAX15014AATX+  
MAX15014BATX+  
MAX15015AATX+  
MAX15015BATX+  
MAX15016AATX+  
MAX15016BATX+  
MAX15017AATX+  
MAX15017BATX+  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
-40°C to +125°C  
36 TQFN-EP*  
36 TQFN-EP*  
36 TQFN-EP*  
36 TQFN-EP*  
36 TQFN-EP*  
36 TQFN-EP*  
36 TQFN-EP*  
36 TQFN-EP*  
Applications  
Mobile Radios  
Navigation Systems  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
19-0734; Rev 1; 11/14  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Absolute Maximum Ratings  
IN_SW, IN_LDO, DRAIN, EN_SYS, EN_SW  
to SGND ............................................................-0.3V to +45V  
IN_LDO to IN_SW................................................-0.3V to +0.3V  
LDO_OUT Output Current................................Internally Limited  
Switch DC Current (DRAIN and LX pins combined)  
T = +125°C .........................................................................1.9A  
J
LX to SGND.........................................-0.3V to (V  
LX to PGND.........................................-0.3V to (V  
BST to SGND.......................................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
+ 12V)  
T = +150°C .......................................................................1.25A  
IN_SW  
IN_SW  
J
RESET Sink Current ............................................................5mA  
Continuous Power Dissipation (T = +70°C)  
IN_SW  
A
BST to LX..............................................................-0.3V to +12V  
PGND to SGND....................................................-0.3V to +0.3V  
REG, DVREG, SYNC, RESET, CT to SGND .......-0.3V to +12V  
36-Pin TQFN (derate 26.3mW/°C above +70°C)  
Single-Layer Board....................................................2105mW  
36-Pin TQFN (derate 35.7mW/°C above +70°C)  
Multilayer Board.........................................................2857mW  
Operating Temperature Range......................... -40°C to +125°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range............................ -60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
FB, COMP_SW, SS to SGND................-0.3V to (V  
+ 0.3V)  
REG  
SET_LDO, LDO_OUT to SGND............................-0.3V to +12V  
C+ to PGND  
(MAX15015/MAX15016 only)............(V  
C- to PGND  
- 0.3V) to 12V  
DVREG  
(MAX15015/MAX15016 only)........ -0.3V to (V  
+ 0.3V)  
DVREG  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Electrical Characteristics  
(V  
= V  
= V  
= 14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V,  
PGND  
IN_SW  
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
C
= 1μF, C  
= 0.1μF, C  
= 0.1μF, C  
= 10μF, C  
= 0.22μF, T = T = -40°C to +125°C, unless otherwise  
DRAIN A J  
REG  
IN_SW  
IN_LDO  
LDO_OUT  
noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 1.3V,  
MIN  
TYP  
MAX  
UNITS  
V
FB  
0.7  
1.8  
MAX15014/MAX15017  
System Supply Current (Not  
Switching)  
I
No load  
No load  
mA  
SYS  
V
= 1.3V,  
FB  
0.85  
5.6  
1.8  
MAX15015/MAX15016  
V
= 0V, MAX15014/  
FB  
MAX15017  
Switching System Supply  
Current  
I
mA  
SW  
V
= 0V, MAX15015/  
FB  
8.6  
MAX15016  
I
= 100µA  
= 50mA  
47  
130  
6
63  
200  
10  
V
V
= 14V,  
= 0V  
LDO_OUT  
LDO_OUT  
EN_SYS  
EN_SW  
LDO Quiescent Current  
I
µA  
µA  
LDO  
I
System Shutdown Current  
I
V
= 0V, V  
= 0V  
SHDN  
EN_SYS  
EN_SW  
V
EN_SYS = high, system on  
EN_SYS = low, system off  
2.4  
EN_SYSH  
System Enable Voltage  
V
V
0.8  
EN_SYSL  
EN_SYS  
System Enable Hysteresis  
System Enable Input Current  
BUCK CONVERTER  
220  
0.5  
0.6  
mV  
µA  
V
V
= 2.4V  
= 14V  
2
2
EN_SYS  
I
EN_SYS  
MAX15014/MAX15017  
MAX15015/MAX15016  
7.5  
4.5  
40.0  
40.0  
Input Voltage Range  
V
V
IN_SW  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Electrical Characteristics (continued)  
(V  
= V  
= V  
= 14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V,  
PGND  
IN_SW  
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
C
= 1μF, C  
= 0.1μF, C  
= 0.1μF, C  
= 10μF, C  
= 0.22μF, T = T = -40°C to +125°C, unless otherwise  
DRAIN A J  
REG  
IN_SW  
IN_LDO  
LDO_OUT  
noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
and IN_LDO rising, MAX15014/  
MIN  
TYP  
MAX  
UNITS  
V
IN_SW  
MAX15017  
and IN_LDO rising, MAX15015/  
6.7  
7.0  
7.4  
Undervoltage Lockout  
Threshold  
UVLO  
V
TH  
V
IN_SW  
3.90  
4.08  
4.25  
MAX15016  
MAX15014/MAX15017  
0.54  
0.3  
1.26  
32  
Undervoltage Lockout  
Hysteresis  
UVLO  
V
HYST  
MAX15015/MAX15016  
Minimum output  
Output Voltage Range  
Output Current  
V
V
A
OUT  
Maximum output  
I
1
OUT  
V
EN_SW = high, switching power supply is on  
EN_SW = low, switching power supply is off  
2.4  
EN_SWH  
EN_SW Input Voltage  
Threshold  
V
V
0.8  
EN_SWL  
EN_SW Hysteresis  
220  
0.5  
0.6  
mV  
µA  
V
V
= 2.4V  
= 14V  
2
2
EN_SW  
EN_SW  
Switching Enable Input Current  
I
EN_SW  
INTERNAL VOLTAGE REGULATOR  
MAX15014/MAX15017, V  
MAX15015/MAX15016, V  
= 9V to 40V  
7.6  
8.4  
IN_SW  
IN_SW  
Output Voltage  
V
V
REG  
= 5.5V to 40V  
4.75  
5.25  
V
V
= 9.0V to 40V, MAX15014/MAX15017  
= 5.5V to 40V, MAX15015/MAX15016  
1
1
IN_SW  
Line Regulation  
Load Regulation  
mV/V  
V
IN_SW  
I
= 0 to 20mA  
0.25  
0.5  
REG  
V
V
= 7.5V (MAX15014/MAX15017),  
= 4.5V (MAX15015/MAX15016),  
IN_SW  
IN_SW  
Dropout Voltage  
V
I
= 20mA  
REG  
OSCILLATOR  
V
V
V
= 0V, MAX15014/MAX15016  
= 0V, MAX15015/MAX15017  
122  
425  
136  
500  
150  
575  
SYNC  
SYNC  
SYNC  
Frequency Range  
f
kHz  
CLK  
= 0V, V  
= 7.5V, MAX15014  
= 4.5V, MAX15016  
= 4.5V, MAX15015  
= 7.5V, MAX15017  
IN_SW  
IN_SW  
IN_SW  
IN_SW  
90  
90  
90  
90  
98  
98  
96  
98  
(135kHz)  
V
= 0V, V  
SYNC  
(135kHz)  
Maximum Duty Cycle  
D
%
MAX  
V
= 0V, V  
SYNC  
(500kHz)  
V
= 0V, V  
SYNC  
(500kHz)  
Minimum LX Low Time  
SYNC High-Level Voltage  
SYNC Low-Level Voltage  
V
= 0V  
94  
ns  
V
SYNC  
2.2  
0.8  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Electrical Characteristics (continued)  
(V  
= V  
= V  
= 14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V,  
PGND  
IN_SW  
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
C
= 1μF, C  
= 0.1μF, C  
= 0.1μF, C  
= 10μF, C  
= 0.22μF, T = T = -40°C to +125°C, unless otherwise  
DRAIN A J  
REG  
IN_SW  
IN_LDO  
LDO_OUT  
noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MAX15014/MAX15016  
MAX15015/MAX15017  
MIN  
100  
400  
TYP  
MAX  
200  
UNITS  
kHz  
V
SYNC Frequency Range  
f
SYNC  
600  
Ramp Level Shift (Valley)  
ERROR AMPLIFER  
0.3  
Soft-Start Reference Voltage  
V
1.210  
7
1.235  
12  
1.260  
17  
V
µA  
V
SS  
Soft-Start Current  
FB Regulation Voltage  
FB Input Range  
I
V
V
= 0V  
SS  
SS  
V
V
1.210  
0
1.235  
1.260  
1.5  
FB  
FB  
FB  
V
FB Input Current  
I
= 1.244V  
-250  
0.25  
+250  
4.5  
nA  
FB  
COMP Voltage Range  
Open-Loop Gain  
I
= -500µA to +500µA  
V
COMP  
80  
1.8  
10  
dB  
Unity-Gain Bandwidth  
MHz  
f
f
= 500kHz, MAX15015/MAX15017  
= 135kHz, MAX15014/MAX15016  
SYNC  
PWM Modulator Gain  
V/V  
10  
SYNC  
CURRENT-LIMIT COMPARATOR  
Pulse Skip Threshold  
IPFM  
100  
1.3  
200  
2
300  
2.6  
mA  
A
Cycle-by-Cycle Current Limit  
I
ILIM  
Number of Consecutive ILIM  
Events to Hiccup  
7
Clock  
periods  
Hiccup Timeout  
512  
POWER SWITCH  
Switch On-Resistance  
Switch Gate Charge  
V
- V = 6V  
LX  
0.15  
0.4  
4
0.80  
BST  
V
V
- V = 6V  
LX  
nC  
BST  
= V  
IN_LDO  
= V = V =  
LX DRAIN  
IN_SW  
Switch Leakage Current  
BST Quiescent Current  
BST Leakage Current  
10  
600  
1
µA  
µA  
µA  
40V, V = 0V  
FB  
V
= 40V, V  
DRAIN  
= 40V, V = 0V,  
FB  
BST  
DVREG = 5V  
400  
V
= V  
DRAIN  
= V = V  
LX IN_SW  
= V  
IN_  
BST  
= 40V, EN_SW = 0V  
LDO  
CHARGE PUMP (MAX15015/MAX15016)  
C- Output Voltage Low  
Sinking 10mA  
0.1  
0.1  
10  
V
V
C- Output Voltage High  
DVREG to C+ On-Resistance  
LX to PGND On-Resistance  
LDO  
Relative to DVREG, sourcing 10mA  
Sourcing 10mA  
Sinking 10mA  
12  
Input Voltage Range  
V
5
40  
V
V
IN_LDO  
Undervoltage Lockout Threshold  
UVLO_LDO  
V
rising  
3.90  
4.1  
4.25  
TH  
IN_LDO  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Electrical Characteristics (continued)  
(V  
= V  
= V  
= 14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V,  
PGND  
IN_SW  
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
C
= 1μF, C  
= 0.1μF, C  
= 0.1μF, C  
= 10μF, C  
= 0.22μF, T = T = -40°C to +125°C, unless otherwise  
DRAIN A J  
REG  
IN_SW  
IN_LDO  
LDO_OUT  
noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Undervoltage Lockout  
Hysteresis  
UVLO_  
0.3  
LDO  
HYST  
Output Current  
I
V
= 6V (Note 2)  
IN  
65  
200  
5.06  
5.06  
mA  
OUT  
I
I
= 100µA  
4.90  
4.90  
5
5
LDO_OUT  
LDO_OUT  
= 1mA  
≤ 40V,  
SET_LDO = SGND,  
MAX1501_A  
6V ≤ V  
I
IN_LDO  
4.85  
4.85  
5
5
5.15  
5.15  
= 1mA  
LDO_OUT  
1mA ≤ I  
V
≤ 50mA,  
OUT  
= 14V  
IN_LDO  
Output Voltage  
V
V
LDO_OUT  
I
I
= 100µA  
= 1mA  
3.22  
3.22  
3.3  
3.3  
3.35  
3.35  
LDO_OUT  
LDO_OUT  
SET_LDO = SGND,  
MAX1501_B  
6V ≤ V  
≤ 40V,  
= 1mA  
IN_LDO  
3.2  
3.2  
1.5  
3.3  
3.3  
3.4  
3.4  
I
LDO_OUT  
1mA ≤ I  
50mA, V  
LDO_OUT  
= 14V  
IN_LDO  
Adjustable Output Voltage  
Range  
V
V
V
> 0.25V  
SET_LDO  
11.0  
V
V
ADJ  
I
I
I
I
= 10mA  
0.6  
0.82  
0.1  
OUT  
OUT  
OUT  
OUT  
= 5V,  
IN_LDO  
MAX1501_A  
= 50mA  
= 10mA  
= 50mA  
Dropout Voltage  
ΔV  
DO  
V
= 4.0V,  
IN_LDO  
MAX1501_B  
0.4  
From EN_SYS high to LDO_OUT rise,  
Startup Response Time  
400  
µs  
R = 500Ω, SET_LDO = SGND  
L
SET_LDO Reference Voltage  
Minimum SET_LDO Threshold  
V
1.220  
1.241  
185  
1.265  
100  
V
SET_LDO  
(Note 3)  
mV  
SET_LDO Input Leakage  
Current  
I
V
= 11V  
0.5  
78  
nA  
SET_LDO  
SET_LDO  
I
= 10mA, f = 100Hz, 500mV , V  
P-P LDO_  
OUT  
= 5V  
OUT  
Power-Supply Rejection Ratio  
Short-Circuit Current  
PSRR  
dB  
I
= 10mA, f = 1MHz, 500mV , V  
P-P LDO_  
OUT  
24  
= 5V  
OUT  
I
125  
185  
300  
mA  
SC  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Electrical Characteristics (continued)  
(V  
= V  
= V  
= 14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V,  
PGND  
IN_SW  
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
C
= 1μF, C  
= 0.1μF, C  
= 0.1μF, C  
= 10μF, C  
= 0.22μF, T = T = -40°C to +125°C, unless otherwise  
DRAIN A J  
REG  
IN_SW  
IN_LDO  
LDO_OUT  
noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
RESET OUTPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RESET goes high after rising V  
crosses this threshold  
LDO_OUT  
RESET Threshold  
V
90  
92.5  
95  
0.4  
1
%V  
RESET  
OUT  
RESET Output Low Voltage  
V
(V  
– V  
) / I  
= 4kΩ  
V
RL  
LDO_OUT  
RESET  
RESET  
RESET Output High Leakage  
Current  
V
V
= 3.3V (For MAX15_ _ _B),  
= 5V (For MAX15_ _ _A)  
RESET  
RESET  
I
µA  
µs  
RH  
RESET Output Minimum  
Timeout Period  
When LDO_OUT reaches RESET threshold,  
CT = unconnected  
50  
When EN_SYS goes high, C  
=
LDO_OUT  
ENABLE to RESET Minimum  
Timeout Period  
10µF, I  
= 50mA,  
650  
µs  
LDO_OUT  
V
= 3.3V, CT = unconnected  
LDO_OUT  
Delay Comparator Threshold  
(Rising)  
V
1.220  
1.5  
1.241  
100  
1.265  
3
V
CT-TH  
Delay Comparator Threshold  
Hysteresis  
V
mV  
CTTH-HYST  
CT Charge Current  
I
V
= 0V  
CT  
2
µA  
CT-CHQ  
CT Discharge Current  
THERMAL SHUTDOWN  
I
18  
mA  
CT-DIS  
Thermal Shutdown  
Temperature  
Temperature rising  
+160  
20  
°C  
°C  
Thermal Shutdown Hysteresis  
Note 1: Limits at -40°C are guaranteed by design and not production tested.  
Note 2: Maximum output current is limited by package power dissipation.  
Note 3: This is the minimum voltage needed at SET_LDO for the system to recognize that the user wants an adjustable LDO_OUT.  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Typical Operating Characteristics  
(V  
= V  
= V  
=14V, V  
EN_SYS  
= V  
EN_SW  
= 2.4V, V  
= V  
, V  
= V  
SET_LDO  
= V  
SGND  
= V  
PGND  
= 0V, C =  
REG  
IN_SW  
IN_LDO  
DRAIN  
REG  
DVREG SYNC  
F, C  
= 0.1μF, C  
= 0.1μF, C  
LDO_OUT  
= 10μF, C  
DRAIN  
= 0.22μF, see Figures 6 and 7, T = +25°C, unless otherwise noted.)  
IN_SW  
IN_LDO  
A
SYSTEM SHUTDOWN CURRENT  
vs. TEMPERATURE  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
10  
9
8
7
6
5
4
3
2
1
0
140  
530  
520  
510  
500  
490  
480  
470  
460  
450  
MAX15015A  
MAX15016  
MAX15016A  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
-50  
0
50  
100  
150  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAXIMUM DUTY CYCLE  
MAXIMUM DUTY CYCLE  
ERROR AMPLIFIER OPEN-LOOP GAIN  
vs. INPUT VOLTAGE (MAX15016A)  
vs. INPUT VOLTAGE (MAX15015A)  
AND PHASE vs. FREQUENCY  
MAX15014 toc06  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3
3
2
2
1
1
1
6
GAIN  
PHASE  
-10  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0.1  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
OUTPUT CURRENT LIMIT  
vs. INPUT VOLTAGE  
TURN-ON/-OFF WAVEFORM  
TURN-ON/-OFF WAVEFORM  
MAX15014 toc08  
MAX15014 toc09  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
= 1A  
I
= 100mA  
LOAD  
LOAD  
T
= 0°C  
A
T
A
= +25°C  
EN_SW  
2V/div  
EN_SW  
2V/div  
0V  
0V  
T
A
= +85°C  
T
A
= +135°C  
V
OUT  
V
OUT  
2V/div  
2V/div  
0V  
0V  
0
10  
20  
30  
40  
50  
2ms/div  
2ms/div  
INPUT VOLTAGE (V)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
=14V, V  
EN_SYS  
= V  
EN_SW  
= 2.4V, V  
= V  
, V  
= V  
SET_LDO  
= V  
SGND  
= V  
PGND  
= 0V, C =  
REG  
IN_SW  
IN_LDO  
DRAIN  
REG  
DVREG SYNC  
F, C  
= 0.1μF, C  
= 0.1μF, C  
LDO_OUT  
= 10μF, C  
DRAIN  
= 0.22μF, see Figures 6 and 7, T = +25°C, unless otherwise noted.)  
IN_SW  
IN_LDO  
A
TURN-ON/-OFF WAVEFORM  
TURN-ON/-OFF WAVEFORM  
INCREASING V  
INCREASING V  
OUTPUT VOLTAGE vs. TEMPERATURE  
IN  
IN  
MAX15014 toc10  
MAX15014 toc11  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
I
= 1A  
I
= 100mA  
LOAD  
LOAD  
V
IN  
V
IN  
5V/div  
5V/div  
I
= 0A  
LOAD  
0V  
0V  
0V  
0V  
V
OUT  
V
OUT  
2V/div  
2V/div  
I
= 1A  
LOAD  
-40 -15  
10  
35  
60  
85 110 135  
10ms/div  
10ms/div  
TEMPERATURE (°C)  
EFFICIENCY vs. LOAD CURRENT  
(MAX15015A)  
EFFICIENCY vs. LOAD CURRENT  
(MAX15014)  
EFFICIENCY vs. LOAD CURRENT  
100  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.3V  
V
= 3.3V  
V
= 5V  
OUT  
OUT  
OUT  
V
IN  
= 7.5V  
V
IN  
= 7.5V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN  
= 4.5V  
V
= 4.5V  
IN  
V
= 7.5V  
IN  
V
IN  
= 24V  
V
IN  
= 12V  
V
IN  
= 12V  
V
IN  
= 12V  
V
IN  
= 24V  
V = 24V  
IN  
V
IN  
= 40V  
V
IN  
= 40V  
V
IN  
= 40V  
MAX15016A  
= 0A  
I
LDO_OUT  
100  
10  
LOAD CURRENT (mA)  
1
10  
100  
1000  
1
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
EFFICIENCY vs. LOAD CURRENT  
(MAX15017A)  
LOAD-TRANSIENT RESPONSE  
LOAD-TRANSIENT RESPONSE  
MAX15014 toc18  
MAX15014 toc17  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 4.5V, I  
= 0.25A TO 1A  
OUT  
V
= 5V  
V
= 12V, I  
= 0.25A TO 1A  
OUT  
IN  
OUT  
IN  
MAX15015A  
MAX15015A  
V
V
OUT  
AC-COUPLED  
100mV/div  
V
= 7.5V  
OUT  
IN  
AC-COUPLED  
100mV/div  
V
= 24V  
IN  
V
= 12V  
IN  
I
LOAD  
V
IN  
= 40V  
500mA/div  
I
LOAD  
500mA/div  
0
0
1
10  
100  
1000  
200µs/div  
200µs/div  
LOAD CURRENT (mA)  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
=14V, V  
EN_SYS  
= V  
EN_SW  
= 2.4V, V  
REG  
= V  
, V  
= V  
SET_LDO  
= V  
SGND  
= V  
PGND  
= 0V, C =  
REG  
IN_SW  
IN_LDO  
DRAIN  
DVREG SYNC  
F, C  
= 0.1μF, C  
= 0.1μF, C  
LDO_OUT  
= 10μF, C  
DRAIN  
= 0.22μF, see Figures 6 and 7, T = +25°C, unless otherwise noted.)  
IN_SW  
IN_LDO  
A
LX VOLTAGE AND INDUCTOR CURRENT  
LX VOLTAGE AND INDUCTOR CURRENT  
MAX15014 toc19  
MAX15014 toc20  
MAX150_ _  
V
LX  
V
LX  
5V/div  
5V/div  
0V  
0V  
INDUCTOR CURRENT  
200mA/div  
INDUCTOR CURRENT  
100mA/div  
0V  
I
= 40mA  
LOAD  
I
= 160mA  
LOAD  
2µs/div  
2µs/div  
MINIMUM LX PULSE WIDTH  
vs. LOAD CURRENT  
LX VOLTAGE AND INDUCTOR CURRENT  
MAX15014 toc21  
400  
350  
300  
250  
200  
150  
100  
50  
V
LX  
5V/div  
0V  
INDUCTOR CURRENT  
500mA/div  
I
= 1A  
V
OUT  
= 3.3V  
LOAD  
0
300 400 500 600 700 800 900 1000  
LOAD CURRENT (mA)  
2µs/div  
LDO QUIESCENT CURRENT  
vs. TEMPERATURE  
OUTPUT VOLTAGE  
vs. TEMPERATURE  
OUTPUT VOLTAGE  
vs. TEMPERATURE  
70  
60  
50  
40  
30  
20  
10  
0
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
3.23  
I
= 1mA  
LOAD  
I
= 100A  
LOAD  
I
= 1mA  
LOAD  
I
= 10mA  
= 50mA  
LOAD  
I
= 10mA  
LOAD  
NO LOAD  
I
= 50mA  
LOAD  
I
LOAD  
MAX15015A  
85 110 135  
MAX15015B  
MAX15015B  
85 110 135  
-50 -25  
0
25  
50  
75 100 125  
-40 -15  
10  
35  
60  
-40 -15  
10  
35  
60  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
=14V, V  
EN_SYS  
= V  
EN_SW  
= 2.4V, V  
REG  
= V  
, V  
= V  
SET_LDO  
= V  
SGND  
= V  
PGND  
= 0V, C =  
REG  
IN_SW  
IN_LDO  
DRAIN  
DVREG SYNC  
F, C  
= 0.1μF, C  
= 0.1μF, C  
LDO_OUT  
= 10μF, C  
DRAIN  
= 0.22μF, see Figures 6 and 7, T = +25°C, unless otherwise noted.)  
IN_SW  
IN_LDO  
A
TURN-ON/-OFF WAVEFORM  
DROPOUT VOLTAGE vs. LOAD CURRENT  
POWER-SUPPLY REJECTION RATIO  
TOGGLING EN_SYS  
MAX15014 toc28  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
10  
0
V
= 5V, I  
= 0 TO 50mA  
LOAD  
IN  
I
= 50mA  
LOAD  
MAX15015A  
T
A
= +135°C  
I
= 50mA  
LDO_OUT  
EN_SYS  
2V/div  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
T
= +85°C  
A
I
= 10mA  
LDO_OUT  
0V  
0V  
T
A
= +25°C  
T
A
= -40°C  
V
OUT  
2V/div  
I
= 1mA  
LDO_OUT  
0
10  
20  
30  
40  
50  
0.1k  
1k  
10k  
100k  
1M  
10M  
2ms/div  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
TURN-ON/-OFF WAVEFORM  
TOGGLING EN_SYS  
TURN-ON/-OFF WAVEFORM  
TOGGLING EN_SYS  
MAX15014 toc29  
MAX15014 toc30  
R
LOAD  
= 1k  
MAX15015B  
= 66  
R
LOAD  
EN_SYS  
2V/div  
EN_SYS  
2V/div  
0V  
0V  
0V  
V
V
LDO_OUT  
1V/div  
OUT  
2V/div  
0V  
10ms/div  
10ms/div  
TURN-ON/-OFF WAVEFORM  
TOGGLING EN_SYS  
TURN-ON/-OFF WAVEFORM  
INCREASING V  
IN  
MAX15014 toc31  
MAX15014 toc32  
I
= 50mA  
LOAD  
MAX15015B  
= 660  
R
LOAD  
EN_SYS  
2V/div  
V
IN  
5V/div  
0V  
0V  
0V  
0V  
V
LDO_OUT  
V
LDO_OUT  
1V/div  
2V/div  
10ms/div  
10ms/div  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Typical Operating Characteristics (continued)  
(V  
= V  
= V  
=14V, V  
EN_SYS  
= V  
EN_SW  
= 2.4V, V  
REG  
= V  
, V  
= V  
SET_LDO  
= V  
SGND  
= V  
PGND  
= 0V, C =  
REG  
IN_SW  
IN_LDO  
DRAIN  
DVREG SYNC  
F, C  
= 0.1μF, C  
= 0.1μF, C  
LDO_OUT  
= 10μF, C  
DRAIN  
= 0.22μF, see Figures 6 and 7, T = +25°C, unless otherwise noted.)  
IN_SW  
IN_LDO  
A
LDO TURN-ON/-OFF WAVEFORM  
WITH INCREASING V  
TURN-ON/-OFF WAVEFORM  
INCREASING V  
IN  
IN  
MAX15014 toc33  
MAX15014 toc34  
I
= 5mA  
LOAD  
MAX15015B  
= 66  
R
LOAD  
V
IN  
5V/div  
V
IN  
2V/div  
0V  
0V  
0V  
0V  
V
LDO_OUT  
1V/div  
V
LDO_OUT  
2V/div  
10ms/div  
10ms/div  
TURN-ON/-OFF WAVEFORM  
INCREASING V  
LOAD-TRANSIENT RESPONSE  
IN  
MAX15014 toc35  
MAX15014 toc36  
MAX15015B  
= 660  
R
LOAD  
V
IN  
5V/div  
V
LDO_OUT  
AC-COUPLED  
100mV/div  
0V  
0V  
V
LDO_OUT  
I
LOAD  
1V/div  
20mA/div  
0
10ms/div  
100µs/div  
RESIDUAL SWITCHING NOISE  
ON THE LDO OUTPUT  
INPUT-VOLTAGE STEP RESPONSE  
MAX15014 toc38  
MAX15014 toc37  
DC-DC  
= 1A  
LOAD  
MAX15015B  
I
= 1mA  
LOAD  
V
IN  
20V/div  
V
LDO_OUT  
10mV/div  
0V  
V
LDO_OUT  
AC-COUPLED  
100mV/div  
1ms/div  
400ns/div  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX15014/  
MAX15017  
MAX15015/  
MAX15016  
1–3, 9, 12, 14,  
16, 19, 24, 26,  
27, 30, 35  
1–3, 9, 12, 14,  
16, 19, 24, 26,  
27, 30, 35  
N.C.  
I.C.  
No Connection. Not internally connected. Leave unconnected or connect to SGND.  
Internally Connected. Leave unconnected.  
23, 28  
Active-Low Reset Output. When the rising V  
voltage crosses the reset  
LDO_OUT  
4
4
RESET  
threshold, RESET goes high after an adjustable delay. Pull up RESET to LDO_OUT  
with at least 4kΩ. RESET is an active-low open-drain output.  
Signal Ground Connection. Connect SGND and PGND together at one point near  
the input bypass capacitor negative terminal.  
5
6
5
6
SGND  
CT  
Reset Timeout Delay Capacitor Connection. CT is pulled low during reset. When out  
of reset, CT is pulled up to an internal 3.6V rail with a 2µA current source. When the  
rising CT voltage reaches the trip threshold (typically 1.24V), RESET is deasserted.  
When EN_SYS is low or in thermal shutdown, CT is low.  
Switching Regulator Enable Input (Active High). If EN_SW is high and EN_SYS is  
high, the switching power supply is enabled. EN_SW is internally pulled down to  
SGND through a 0.5µA current sink.  
7
8
7
8
EN_SW  
Active-High System Enable Input. Connect EN_SYS high to turn on the system. The  
LDO is active if EN_SYS is high; once EN_SYS is high, the switching regulator can  
be turned on if EN_SW is high. EN_SYS is internally pulled down to SGND through  
a 0.5µA current sink.  
EN_SYS  
LDO Feedback Input/Output Voltage Setting. Connect SET_LDO to SGND to select  
10  
11  
10  
11  
SET_LDO the preset output voltage (5V or 3.3V). Connect SET_LDO to an external resistor-  
divider network for adjustable output operation.  
Linear Regulator Output. Bypass with at least 10µF low-ESR capacitor from LDO_  
OUT to SGND. In the 5V LDO versions (A), the LDO operates in dropout below 6V  
LDO_  
OUT  
down to the UVLO trip point.  
LDO Input Voltage. The input voltage range for the LDO extends from 5V to 40V.  
Bypass with a 0.1µF ceramic capacitor to SGND.  
13  
13  
IN_LDO  
High-Side Gate Driver Supply. Connect BST to the cathode of the bootstrap diode  
and to the positive terminal of the bootstrap capacitor.  
15  
15  
BST  
Source Connection of Internal High-Side Switch. Connect both LX pins to the  
inductor and the cathode of the freewheeling diode.  
17, 18  
20, 21  
17, 18  
20, 21  
LX  
Drain Connection of the Internal High-Side Switch. Connect both DRAIN inputs  
together.  
DRAIN  
Power Ground Connection. Connect the input bypass capacitor negative terminal,  
the anode of the freewheeling diode, and the output filter capacitor negative terminal  
to PGND. Connect PGND to SGND together at a single point near the input bypass  
22  
22  
PGND  
capacitor negative terminal.  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Pin Description (continued)  
PIN  
NAME  
C-  
FUNCTION  
MAX15014/  
MAX15017  
MAX15015/  
MAX15016  
23  
Charge-Pump Flying Capacitor Negative Connection (MAX15015/MAX15016 only)  
Gate Drive Supply for the High-Side MOSFET Driver. Connect to REG and to  
the anode of the bootstrap diode for MAX15014/MAX15017. Connect to REG for  
MAX15015/MAX15016.  
25  
25  
DVREG  
Charge-Pump Flying Capacitor Positive Connection (MAX15015/MAX15016 only).  
Connect to the positive terminal of the external pump capacitor and to the anode of  
the bootstrap diode.  
28  
C+  
Oscillator Synchronization Input. SYNC can be driven by an external clock to  
synchronize the switching frequency. Connect SYNC to SGND when not used.  
29  
31  
29  
31  
SYNC  
COMP  
Error Amplifier Output. Connect COMP to the compensation feedback network.  
Feedback Regulation Point. Connect to the center tap of a resistive divider from  
converter output to SGND to set the output voltage. The FB voltage regulates to the  
voltage present at SS (1.235V).  
32  
32  
FB  
Soft-Start and Reference Output. Connect a capacitor from SS to SGND to set the  
soft-start time. See the Applications Information section to calculate the value of the  
33  
34  
33  
34  
SS  
C
SS  
capacitor.  
Internal Regulator Output. 5V output for the MAX15015/MAX15016 and 8V output for  
the MAX15014/MAX15017. Bypass to SGND with at least a 1µF ceramic capacitor.  
REG  
Supply Input Connection. Connect to IN_LDO and an external voltage source from  
4.5V to 40V. EN_SW and EN_SYS must be high and IN_SW must be above its  
UVLO threshold for operation of the switching regulator.  
36  
36  
IN_SW  
EP  
Exposed Pad. The exposed pad must be electrically connected to SGND. For an  
effective heatsinking, solder the exposed pad to a large copper plane.  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
the supply current falls to 6μA. Additional features include  
a programmable soft-start, cycle-by-cycle current limit,  
hiccup-mode output short-circuit protection, and thermal  
shutdown.  
Detailed Description  
The MAX15014–MAX15017 combine a voltage-mode  
buck converter with an internal 0.5Ω power-MOSFET  
switch and a low-quiescent-current LDO regulator. The  
buck converter of the MAX15015/MAX15016 has a wide  
input voltage range of 4.5V to 40V. The MAX15014/  
MAX15017’s input voltage range is 7.5V to 40V. Fixed  
switching frequencies of 135kHz and 500kHz are avail-  
The LDO linear regulator operates from 5V to 40V and  
delivers a guaranteed 50mA load current. The devices  
feature a preset output voltage of 5.0V (MAX1501_A) or  
3.3V (MAX1501_B). Alternatively, the output voltage can  
be adjusted from 1.5V to 11V using an external resistive  
divider. The LDO section also features a RESET output  
with adjustable timeout period.  
able. The internal low R  
switch allows for up to 1A  
DS_ON  
of output current, and the output voltage can be adjusted  
from 1.26V to 32V. External compensation and volt-  
age feed-forward simplify loop-compensation design and  
allow for a wide variety of L and C filter components. All  
devices offer an automatic switchover to pulse-skipping  
(PFM) mode, providing low-quiescent current and high  
efficiency at light loads. Under no load, PFM mode opera-  
tion reduces the current consumption to 5.6mA for the  
MAX15014/MAX15017 and 8.6mA for the MAX15015/  
MAX15016. In shutdown (DC-DC and LDO regulator off),  
Enable Inputs and UVLO  
The MAX15014–MAX15017 feature two logic inputs,  
EN_SW (active-high) and EN_SYS (active-high) that  
can be used to enable the switching power supply and  
the LDO_OUT outputs. When V  
is higher than  
EN_SW  
the threshold and EN_SYS is high, the switching power  
supply is enabled. When EN_SYS is high, the LDO is  
IN_SW  
EN_SYS  
IN_LDO  
C-  
C+  
DVREG  
DVREG  
MAX15015  
MAX15016  
IN_LDO  
7.0V OR 4.1V  
LEVEL  
SHIFT  
PCLK  
UVLO_SW  
UVLO_LDO  
V
V
REFOK  
V
INT  
INTOK  
LDO_OUT  
SET_LOD  
-
PASS ELEMENT  
4.1V  
REG  
+
V
V
REG_LDO  
REFOK  
INT  
INTOK  
REG_EN  
+
-
PREREG  
V
INTOK  
VINT  
+
V
ENABLE LDO  
MUX  
V
REF  
V
REF  
VREG_OK  
EN_SW  
V
UVLO_SW  
TSD  
-
SHDN  
V
INT  
V
INT  
SHDN  
V
INT  
2A  
OUT_LDO  
UVLO_LDO  
TSD  
185mV  
V
V
V
INT  
INT  
INT  
-
SHDN  
-
RESET  
V
I
SS  
REF  
THERMAL  
SHDN  
V
TSD  
REF  
+
REF  
0.925 x V  
REF  
+
V
REFOK  
DELAY COMPARATOR  
CT  
EN  
VREG_ OK  
DRAIN  
+
SS  
FB  
+
E/A  
-
+
SSA  
-
-
REF_ILIM  
HIGH-SIDE  
CURRENT  
SENSE  
+
V
REF  
PFM  
-
REF_PFM  
DVREG  
OVERLOAD  
MANAGEMENT  
BST  
LX  
COMP  
CLK  
OVERL  
IN S/W  
RAMP  
-
CPWM  
LOGIC  
SYNC  
SGND  
EN  
OSC  
-
+
+
PFM  
SCLK  
PCLK  
0.3V  
PGND  
CLK  
Figure 1. MAX15015/MAX15016 Simplified Block Diagram  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
IN_SW  
EN_SYS  
IN_LDO  
MAX15014  
MAX15017  
IN_LDO  
7.0V OR 4.1V  
UVLO_SW  
UVLO_LDO  
V
V
REFOK  
V
INT  
INTOK  
-
PASS ELEMENT  
LDO_OUT  
SET_LOD  
4.1V  
+
V
V
REG_LDO  
REG  
REFOK  
INT  
INTOK  
REG_EN  
+
-
PREREG  
SHDN  
V
INTOK  
VINT  
+
V
ENABLE LDO  
MUX  
V
REF  
V
REF  
VREG_OK  
V
UVLO_SW  
TSD  
SHDN  
-
EN_SW  
V
INT  
V
INT  
V
INT  
2A  
OUT_LDO  
UVLO_LDO  
TSD  
185mV  
V
INT  
V
V
INT  
INT  
-
SHDN  
-
V
REF  
I
SS  
THERMAL  
SHDN  
V
V
TSD  
REF  
+
RESET  
REF  
0.925 x V  
REF  
+
REFOK  
DELAY COMPARATOR  
EN  
CT  
VREG_ OK  
+
DRAIN  
+
E/A  
-
+
SSA  
-
SS  
FB  
-
REF_ILIM  
HIGH-SIDE  
CURRENT  
SENSE  
ILIM  
+
V
REF  
PFM  
-
REF_PFM  
DVREG  
OVERLOAD  
MANAGEMENT  
CLK  
BST  
LX  
COMP  
OVERL  
IN S/W  
RAMP  
-
CPWM  
LOGIC  
EN  
OSC  
-
+
+
SYNC  
SGND  
PFM  
SCLK  
PCLK  
0.3V  
CLK  
PGND  
Figure 2. MAX15014/MAX15017 Simplified Block Diagram  
Table 1. Enable Inputs Configuration  
DC-DC SWITCHING  
CONVERTER  
EN_SYS  
EN_SW  
LDO REGULATOR  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Off  
Off  
On  
On  
Off  
Off  
Off  
On  
active. When EN_SYS is low, the entire chip is off (see  
Table 1).  
Internal Linear Regulator (REG)  
REG is the output terminal of a 5V (MAX15015/  
MAX15016), or 8V (MAX15014/MAX15017) LDO that  
is powered from IN_SW and provides power to the IC.  
Connect REG externally to DVREG to provide power for  
the high-side MOSFET gate driver. Bypass REG to SGND  
The MAX15014–MAX15017 provide undervoltage lockout  
(UVLO). The UVLO monitors the input voltage (V  
)
IN_LDO  
and is fixed at 4.1V (MAX15015/MAX15016) or 7V  
(MAX15014/MAX15017).  
with a ceramic capacitor (C  
) of at least 1μF. Place the  
REG  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
capacitor physically close to the MAX15014–MAX15017  
to provide good bypassing. During normal operation, REG  
is intended for powering up only the internal circuitry and  
should not be used to supply power to external loads.  
Error Amplifier  
The output of the internal error amplifier (COMP) is avail-  
able for frequency compensation (see the Compensation  
Design section). The inverting input is FB, the noninvert-  
ing input SS, and the output COMP. The error amplifier  
has an 80dB open-loop gain and a 1.8MHz GBW product.  
See the Typical Operating Characteristics for the Gain  
and Phase vs. Frequency graph.  
Soft-Start and Reference (SS)  
SS is the 1.235V reference bypass connection for the  
MAX15014–MAX15017 and also controls the soft-start  
period. At startup, after input voltage is applied at IN_SW,  
IN_LDO and the UVLO thresholds are reached, the  
device enters soft-start. During soft-start, 14μA is sourced  
Oscillator/Synchronization Input (SYNC)  
With SYNC connected to SGND, the MAX15014–  
MAX15017 use their internal oscillator and switch at a  
fixed frequency of 135kHz and 500kHz. The MAX15014/  
MAX15016 are the 135kHz options and MAX15015/  
MAX15017 are the 500kHz options. For external synchro-  
nization, drive SYNC with an external clock from 400kHz  
to 600kHz (MAX15015/MAX15017), or 100kHz to 200kHz  
(MAX15014/MAX15016). When driven with an external  
clock, the device synchronizes to the rising edge of SYNC.  
into the capacitor (C ) connected from SS to SGND  
SS  
causing the reference voltage to ramp up slowly. When  
V
SS  
reaches 1.244V, the output becomes fully active. Set  
the soft-start time (t ) using following equation:  
SS  
V
×C  
SS  
I
SS  
t
=
SS  
SS  
where V  
= soft-start reference voltage = 1.235V  
SS  
-6  
(typ), I  
= soft-start current = 14 x 10 A (typ), t  
is in  
SS  
SS  
PWM Comparator/Voltage Feed-Forward  
seconds and C is in Farads.  
SS  
An internal ramp generator clocked by the internal  
oscillator is compared against the output of the error  
amplifier to generate the PWM signal. The maximum  
amplitude of the ramp (V  
compensate for input voltage and oscillator frequency  
changes. This causes the V /V to be a con-  
stant 10V/V across the input voltage range of 4.5V to 40V  
(MAX15015/MAX15016), or 7.5V to 40V (MAX15014/  
MAX15017), and the SYNC frequency range of 400kHz  
to 600kHz (MAX15015/MAX15017), or 100kHz to 200kHz  
(MAX15014/MAX15016).  
Internal Charge Pump (MAX15015/MAX15016)  
The MAX15015/MAX15016 feature an internal charge  
pump to enhance the turn-on of the internal MOSFET,  
allowing for operation with input voltages down to 4.5V.  
) automatically adjusts to  
RAMP  
IN_SW RAMP  
Connect a flying capacitor (C ) between C+ and C-,  
F
a boost diode from C+ to BST, as well as a bootstrap  
capacitor (C  
) between BST and LX to provide the  
BST  
gate-drive voltage for the high-side n-channel DMOS  
switch. During the on-time, the flying capacitor is charged  
to V  
. During the off-time, the positive terminal of  
DVREG  
the flying capacitor (C+) is pumped to two times V  
,
DVREG  
Output Short-Circuit Protection  
(Hiccup Mode)  
and charge is dumped onto C  
to provide twice the  
BST  
regulator voltage across the high-side DMOS driver. Use  
The MAX15014–MAX15017 protect against an output  
short circuit by utilizing hiccup-mode protection. In hiccup  
mode, a series of sequential cycle-by-cycle current-limit  
events cause the part to shut down and restart with a soft-  
start sequence. This allows the device to operate with a  
continuous output short circuit.  
a ceramic capacitor of at least 0.1μF for C  
and C ,  
BST  
F
located as close as possible to the device.  
Gate-Drive Supply (DVREG)  
DVREG is the supply input for the internal high-side  
MOSFET driver. The power for DVREG is derived from  
the output of the internal regulator (REG). Connect  
DVREG to REG externally. To filter the switching noise,  
the use of an RC filter (1Ω and 0.47μF) from REG to  
DVREG is recommended. In the MAX15015/MAX15016,  
the high-side drive supply is generated using the inter-  
nal charge pump along with the bootstrap diode and  
capacitor. In the MAX15014/MAX15017, the high-side  
MOSFET driver supply is generated using only the boot-  
strap diode and capacitor.  
During normal operation, the current is monitored at the  
drain of the internal power MOSFET. When the current  
limit is exceeded, the internal power MOSFET turns off until  
the next on-cycle and a counter increments. If the counter  
counts seven consecutive current-limit events, the device  
discharges the soft-start capacitor and shuts down for 512  
clock periods before restarting with a soft-start sequence.  
Each time the power MOSFET turns on and the device  
does not exceed the current limit, the counter is reset.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
where V = 1.235V.  
FB  
LDO Regulator  
The LDO regulator operates over an input voltage from  
5V to 40V, and can be enabled independently of the  
DC-DC converter section. Its quiescent current is as  
low as 47μA with a load current of 100μA. All devices  
feature a preset output voltage of 5V (MAX1501_A) or  
3.3V (MAX1501_B). Alternatively, the output voltage can  
be adjusted using an external resistive-divider network  
connected between LDO_OUT, SET_LDO, and SGND.  
See Figure 5.  
Inductor Selection  
Three key inductor parameters must be speci-  
fied for operation with the MAX15014–MAX15017:  
inductance value (L), peak inductor current (I  
inductor saturation current (I  
), and  
PEAK  
). The minimum required  
SAT  
inductance is a function of operating frequency, input-  
to-output voltage differential, and the peak-to-peak  
inductor current (ΔI ). Higher ΔI  
allows for a lower  
requires a higher  
P-P  
P-P  
P-P  
inductor value, while a lower ΔI  
inductor value. A lower inductor value minimizes size and  
cost and improves large-signal and transient response,  
but reduces efficiency due to higher peak currents and  
higher peak-to-peak output-voltage ripple for the same  
output capacitor. On the other hand, higher inductance  
RESET Output  
The RESET output is typically connected to the reset  
input of a microprocessor (μP). A μP’s reset input starts  
or restarts the μP in a known state. The MAX15014–  
MAX15017 supervisory circuits provide the reset logic to  
prevent code-execution errors during power-up, power-  
down, and brownout conditions. RESET changes from  
high to low whenever the monitored voltage drops below  
the RESET threshold voltage. Once the monitored volt-  
age exceeds its respective RESET threshold voltage(s),  
RESET remains low for the RESET timeout period, then  
goes high. The RESET timeout period is adjustable with  
increases efficiency by reducing the ΔI . Resistive  
P-P  
losses due to extra wire turns can exceed the ben-  
efit gained from lower ΔI  
levels, especially when the  
P-P  
inductance is increased without also allowing for larger  
inductor dimensions. A good compromise is to choose  
ΔI  
P-P  
equal to 40% of the full load current. Calculate the  
inductor using the following equation:  
an external capacitor (C ) connected to CT.  
CT  
V
(V V  
)
OUT  
OUT IN  
L =  
V
× f  
× ∆I  
Thermal-Shutdown Protection  
IN SW PP  
The MAX15014–MAX15017 feature thermal-shutdown  
protection that limits the total power dissipation in the  
device and protects it in the event of an extended  
thermal-fault condition. When the die temperature exceeds  
+160°C, an internal thermal sensor shuts down the part,  
turning off the DC-DC converter and the LDO regulator,  
and allowing the IC to cool. After the die temperature falls  
by 20°C, the part restarts with a soft-start sequence.  
V
and V  
are typical values so that efficiency is  
IN  
OUT  
optimum for typical conditions. The switching frequency  
(f ) is internally fixed at 135kHz (MAX15014/MAX15016)  
SW  
or 500kHz (MAX15015/MAX15017) and can vary when  
synchronized to an external clock (see the Oscillator/  
Synchronization Input (SYNC) section). The ΔI , which  
reflects the peak-to-peak output ripple, is worst at the maxi-  
mum input voltage. See the Output Capacitor Selection  
section to verify that the worst-case output ripple is accept-  
able. The inductor current (I  
current runaway during continuous output short circuit.  
Select an inductor with an I specification higher than  
P-P  
Applications Information  
) is also important to avoid  
SAT  
Setting the Output Voltage  
Connect a resistive divider (R3 and R4, see Figures  
6 and 7) from OUT to FB to SGND to set the output  
voltage. Choose R3 and R4 so that DC errors due to the FB  
input bias current do not affect the output-voltage setting  
precision. For the most common output-voltage  
settings (3.3V or 5V), R3 values in the 10kΩ range are  
adequate. Select R3 first and calculate R4 using the  
following equation:  
SAT  
the maximum peak current limit of 2.6A.  
Input Capacitor Selection  
The discontinuous input current of the buck converter  
causes large input ripple currents and therefore the input  
capacitor must be carefully chosen to keep the input  
voltage ripple within design requirements. The input volt-  
age ripple is comprised of ΔV (caused by the capacitor  
Q
discharge) and ΔV  
capacitor). The total voltage ripple is the sum of ΔV and  
(caused by the ESR of the input  
ESR  
R3  
R4 =  
Q
V
OUT  
ΔV . Calculate the input capacitance and ESR required  
ESR  
1  
V
FB  
for a specified ripple using the following equations:  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
The output capacitor supplies the load current during  
a load step until the controller responds with a greater  
V  
ESR  
ESR =  
I  
PP  
2
I
+
OUT_MAX  
duty cycle. The response time (t  
) depends  
RESPONSE  
on the closed-loop bandwidth of the converter (see  
the Compensation Design section). The resistive drop  
across the output capacitor’s ESR, the drop across the  
I
×D  
OUT_MAX  
C
=
IN  
V × f  
Q
SW  
capacitor’s ESL (ΔV  
causes a voltage droop during the load step.  
), and the capacitor discharge  
ESL  
where C is the sum of C  
capacitance at the buck converter input,  
and additional decoupling  
IN  
DRAIN  
Use a combination of low-ESR tantalum/aluminum  
electrolytic and ceramic capacitors for better  
transient load and voltage-ripple performance. Non-leaded  
capacitors and capacitors in parallel help reduce the ESL.  
Keep the maximum output-voltage deviation below the  
tolerable limits of the electronics being powered. Use the  
following equations to calculate the required ESR, ESL,  
and capacitance value during a load step:  
(V V  
)× V  
OUT  
×L  
IN  
OUT  
× f  
I  
=
and  
PP  
V
IN SW  
V
OUT  
D =  
V
IN  
I
is the maximum output current, D is the duty  
OUT_MAX  
cycle, and f  
is the switching frequency.  
SW  
V  
ESR  
The MAX15014–MAX15017 include UVLO hysteresis  
and soft-start to avoid chattering during turn-on. However,  
use additional bulk capacitance if the input source  
impedance is high. Use enough input capacitance  
at lower input voltages to avoid possible undershoot  
below the undervoltage-lockout threshold during transient  
loading.  
ESR =  
I
STEP  
I
× t  
V  
STEP RESPONSE  
C
=
OUT  
Q
V  
× t  
STEP  
ESL  
I
ESL =  
STEP  
1
Output Capacitor Selection  
The allowable output-voltage ripple and the maximum  
deviation of the output voltage during load steps deter-  
t
RESPONSE  
3ƒ  
C
where I  
the load step, t  
controller, and f is the closed-loop crossover frequency.  
is the load step, t  
is the rise time of  
STEP  
mine the output capacitance (C  
) and its equivalent  
STEP  
OUT  
is the response time of the  
series resistance (ESR). The output ripple is mainly  
composed of Δ (caused by the capacitor discharge)  
RESPONSE  
C
VQ  
and ΔV  
(caused by the voltage drop across the ESR  
ESR  
Compensation Design  
of the output capacitor). The equations for calculating the  
peak-to-peak output-voltage ripple are:  
The MAX15014–MAX15017 use a voltage-mode-control  
scheme that regulates the output voltage by comparing  
the error-amplifier output (COMP) with an internal ramp  
to produce the required duty cycle. The output lowpass  
LC filter creates a double pole at the resonant frequency,  
which has a gain drop of -40dB/decade. The error ampli-  
fier must compensate for this gain drop and phase shift to  
achieve a stable closed-loop system.  
I  
PP  
V  
V  
=
Q
8×C  
× f  
OUT SW  
= ESR× ∆I  
ESR  
PP  
Normally, a good approximation of the output-voltage  
ripple is ΔV = ΔV + ΔV . If using ceramic  
RIPPLE  
ESR  
Q
capacitors, assume the contribution to the output-voltage  
ripple from ESR and the capacitor discharge to be equal  
The basic regulator loop consists of a power modulator,  
an output feedback-divider, and a voltage error amplifier.  
to 20% and 80%, respectively. ΔI  
is the peak-to-  
P-P  
The power modulator has a DC gain set by V /V  
,
IN RAMP  
peak inductor current (see the Input Capacitor Selection  
section) and f is the converter’s switching frequency.  
with a double pole and a single zero set by the output  
inductance (L), the output capacitance (C ), and its  
SW  
OUT  
The allowable deviation of the output voltage during fast-  
load transients also determines the output capacitance,  
its ESR, and its equivalent series inductance (ESL).  
ESR. The power modulator incorporates a voltage feed-  
forward feature, which automatically adjusts for variations  
in the input voltage, resulting in a DC gain of 10.  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
The following equations define the power modulator:  
C8  
V
IN  
G
=
= 10  
MOD_DC  
V
RAMP  
C7  
R5  
1
C6  
R6  
f
f
=
LC  
2× π× L×C  
OUT  
R3  
1
V
=
OUT  
ZESR  
2× π×C  
×ESR  
OUT  
EA  
COMP  
R4  
REF  
The switching frequency is internally set at 500kHz  
for MAX15015/MAX15017 and can vary from 400kHz  
to 600kHz when driven with an external SYNC signal.  
The switching frequency is internally set at 135kHz for  
MAX15014/MAX15016 and can vary from 100kHz to  
200kHz when driven with an external SYNC signal. The  
GAIN  
(dB)  
CLOSED-LOOP  
GAIN  
EA  
GAIN  
crossover frequency (f ), which is the frequency when the  
C
closed-loop gain is equal to unity, should be set to around  
1/10 of the switching frequency or below.  
The crossover frequency occurs above the LC double-pole  
frequency, and the error amplifier must provide a gain and  
phase bump to compensate for the rapid gain and phase  
loss from the LC double pole, which exhibits little damping.  
f
f
f
f f  
P2 P3  
Z1 Z2  
C
FREQUENCY  
Figure 3. Error Amplifier Compensation Circuit (Closed-Loop  
and Error-Amplifier Gain Plot) for Ceramic Capacitors  
This is accomplished by utilizing a Type 3 compensator  
that introduces two zeroes and three poles into the control  
applications, but are limited in capacitance value and  
tend to be more expensive. Aluminum electrolytic capaci-  
tors have much larger ESR but can reach much larger  
capacitance values.  
loop. The error amplifier has a low-frequency pole (f  
)
P1  
near the origin so that tight voltage regulation at DC can  
be achieved.  
The two zeroes are at:  
Compensation when f < f  
C
ZESR  
This is usually the case when a ceramic capacitor is  
selected. In this case, f occurs after f . Figure 3  
1
f
=
ZI  
2π×R5×C7  
ZESR  
C
shows the error amplifier feedback as well as its gain  
response.  
and  
1
f
is set to 0.5 to 0.8 x f  
and f  
is set to f  
to  
Z1  
LC  
Z2  
LC  
f
=
Z2  
compensate for the gain and phase loss due to the double  
pole. To achieve a 0dB crossover with -20dB/decade  
2π×(R3 + R6)×C6  
and the higher frequency poles are at:  
slope, poles f  
and f  
are set above the crossover  
P2  
P3  
frequency (f ).  
C
1
f
f
=
=
The values for R3 and R4 are already determined in the  
Setting the Output Voltage section. The value of R3 is  
also used in the following calculations.  
P2  
P3  
2π×R6×C6  
and  
Since f < f < f , then R3 >> R6, and R3 + R6 can be  
Z2  
C
P2  
1
approximated as R3.  
C7×C8  
C7 + C8  
2π×R5×  
Now we can calculate C6 for zero f  
:
Z2  
1
C6 =  
The compensation design primarily depends on the type  
of output capacitor. Ceramic capacitors exhibit very low  
ESR, and are well suited for high-switching-frequency  
2π× f ×R3  
LC  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
f
occurs between f  
and f . In this region, the  
Z2 P2  
C
compensatorgain (G ) at f is due primarily to C6 and  
C8  
EA  
C
R5. Therefore, G (f ) = 2π x f x C6 x R5 and the  
EA C  
C
modulator gain at f is:  
C7  
R5  
C
C6  
R6  
G
MOD_DC  
2
G
(f ) =  
C
MOD  
(2π× f ) ×L×C  
C
OUT  
R3  
V
OUT  
Since G (f ) x G  
(f ) = 1, R5 is calculated by:  
MOD C  
EA C  
EA  
COMP  
R4  
f
×L×C  
× 2π  
OUT  
C
REF  
R5 =  
C6×G  
MOD_DC  
The frequency of f is set to 0.5 x f and now we can  
calculate C7 by:  
Z1  
LC  
GAIN  
(dB)  
CLOSED-LOOP  
GAIN  
EA  
1
GAIN  
C7 =  
0.5× 2π×R5× f  
LC  
f
P2  
is set at 1/2 the switching frequency (f ). R6 is then  
SW  
calculated by:  
f
f
f
f
C
f
P3  
Z1 Z2  
P2  
FREQUENCY  
1
R6 =  
2π×C6×(0.5× f  
)
SW  
Figure 4. Error Amplifier Compensation Circuit (Closed-  
Loop and Error-Amplifier Gain Plot) for Higher ESR Output  
Capacitors  
Note that if the crossover frequency has been chosen as  
1/10 of the switching frequency, then f = 5xf .  
P2  
C
The purpose of f  
switching ripple at the COMP pin.  
is to further attenuate the residual  
frequency. The equations that define the error amplifier’s  
P3  
poles and zeros (f , f , f , and f ) are the same as  
Z1 Z2 P2  
P3  
before; however, f  
is now lower than the closed-loop  
If the ESR zero (f ) occurs in a region between f and  
P2  
ZESR  
C
crossover frequency. Figure 4 shows the error-amplifier  
feedback as well as its gain response for circuits that  
use higher-ESR output capacitors (tantalum or aluminum  
electrolytic).  
f
/2, then f  
can be used to cancel it. This way, the  
SW  
P3  
Bode plot of the loop-gain plot does not flatten out soon  
after the 0dB crossover, and maintains its -20dB/decade  
slope up to 1/2 of the switching frequency.  
Again, starting from R3, calculate C6 for zero f  
:
Z2  
If the ESR zero well exceeds f /2 (or even f ), f  
SW  
SW P3  
should in any case be set high enough not to erode the  
phase margin at the crossover frequency. For example, it  
1
C6 =  
2π× f ×R3  
LC  
can be set between 5 x f and 10 x f .  
C
C
The value for C8 is calculated from:  
and then place f  
calculated as:  
to cancel the ESR zero. R6 is  
P2  
C7  
C8 =  
C
×ESR  
(2π×C7 ×R5 × f 1)  
OUT  
P3  
R6 =  
C6  
Compensation when fC > fZESR  
For larger ESR capacitors such as tantalum and  
If the value obtained here for R6 is not considerably  
smaller than R3, recalculate C6 using (R3 + R6) in place  
of R3. Then use the new value of C6 to obtain a better  
approximation for R6. The process can be further iterated,  
aluminum electrolytic, f  
can occur before f . If f  
ZESR  
C ZESR  
< f , then f occurs between f  
and f . f and f  
P3 Z1 Z2  
C
C
P2  
remain the same as before; however, f is now set equal  
P2  
and convergence is ensured as long as f < f  
.
LC  
ZESR  
to f . The output capacitor’s ESR zero frequency is  
ZESR  
higher than f but lower than the closed-loop crossover  
LC  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
The error-amplifier gain between f and f is approxi-  
P2  
P3  
mately equal to R5/(R6 || R3).  
V
IN_LDO  
The ESR zero frequency (f ) might not be very much  
ZESR  
higher than the double-pole frequency f ; therefore, the  
LC  
value of R5 can be calculated as:  
2
IN_LDO  
f
R3×R6  
R3 + R6  
LDO_OUT  
SET_LDO  
C
R5 =  
×
2
G
× f  
MOD_DC LC  
MAX15014–  
MAX15017  
R1  
R2  
C7 can still be calculated as:  
1
0.5× 2π×R5× f  
C7 =  
LC  
f
P3  
is set at 5xf . Therefore, C8 is calculated as:  
C
SGND  
C7  
C8 =  
2π×C7×R5× f 1  
P3  
Figure 5. Setting the Output Voltage Using a Resistive Divider  
Setting the LDO Linear Regulator  
Output Voltage  
Connect CT to LDO_OUT to select the internally  
fixed timeout period. C  
must be a low-leakage-type  
CT  
The MAX15014–MAX15017 LDO regulator features Dual  
Mode™ operation: it can operate in either a preset volt-  
age mode or an adjustable mode. In preset-voltage mode,  
internal trimmed feedback resistors set the internal linear  
regulator to 3.3V or 5V (see the Selector Guide). Select  
preset-voltage mode by connecting SET_LDO to ground.  
In adjustable mode, select an output voltage between  
1.5V and 11V using two external resistors connected as  
a voltage-divider to SET_LDO (see Figure 5). Set the  
output voltage using the following equation:  
capacitor. Ceramic capacitors are recommended; do not  
use capacitors lower than 200pF to avoid the influence of  
parasitic capacitances.  
Capacitor Selection and Regulator Stability  
For stable operation over the full temperature range and  
with load currents up to 50mA, use a 10μF (min) output  
capacitor (C  
) with a maximum ESR of 0.4Ω.  
LDO_OUT  
To reduce noise and improve load-transient response,  
stability, and power-supply rejection, use larger output  
capacitor values. Some ceramic dielectrics such as  
Z5U and Y5V exhibit very large capacitance and ESR  
variation with temperature and are not recommended.  
With X7R or X5R dielectrics, 15μF should be sufficient for  
operation over their rated temperature range. For higher  
ESR tantalum capacitors (up to 1Ω), use 22μF or more  
to maintain stability. To improve power-supply rejection  
and transient response, use a minimum 0.1μF capacitor  
between IN_LDO and SGND.  
R1  
R2  
V
= V  
1+  
OUT  
SET_LDO  
where V  
= 1.241V and the recommended value  
SET_LDO  
for R2 is around 50kΩ.  
Setting the RESET Timeout Delay  
The RESET timeout period is adjustable to accommodate  
a variety of μP applications. Adjust the RESET timeout  
period by connecting a capacitor (C ) between CT and  
CT  
Power Dissipation  
The MAX15014–MAX15017 are available in a thermally  
SGND.  
enhanced package and can dissipate up to 2.86W at T  
C
× V  
-
A
CT TH  
CT  
I
t
=
RP  
= +70°C. When the die temperature reaches +160°C,  
the part shuts down and is allowed to cool. After the die  
cools by 20°C, the device restarts with a soft-start. The  
power dissipated in the device is the sum of the power  
dissipated in the LDO, power dissipated from supply  
-
CT THQ  
where V  
1.241V (typ), I  
= delay-comparator threshold (rising) =  
-6  
CT-TH  
= CT charge current = 2 x 10 A  
CT-THQ  
(typ), t  
is in seconds and C is in Farads.  
RP  
CT  
current (P ), transition losses due to switching the  
Q
internal power MOSFET (P ), and the power  
SW  
Dual Mode is a trademark of Maxim Integrated Products, Inc.  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
C
C
C
DRAIN  
IN_LDO  
IN_SW  
V
IN  
R6  
C6  
R3  
4.5V TO 40V  
D1  
C8  
IN_LDO  
IN_SW  
DRAIN  
C7  
R5  
BST  
LX  
COMP  
FB  
C
BST  
L
V
OUT1  
AT 1A  
V
IN  
EN_SW  
5V TO 40V  
R4  
EN_SYS  
C+  
D2  
C
OUT  
MAX15015  
MAX15016  
C
F
C-  
RESET  
CT  
SS  
10k  
V
OUT2  
AT 50mA  
SYNC  
REG  
LDO_OUT  
PGND SGND  
C
C
C
LDO_OUT  
SS  
CT  
1Ω  
C
REG  
DVREG  
SET_LDO  
0.47µF  
PGND  
SGND  
Figure 6. MAX15015/MAX15016 Typical Application Circuit (4.5V to 40V Input Operation)  
dissipated due to the RMS current through the internal  
power MOSFET (P ). The total power dissipated  
R
is the on-resistance of the internal power MOSFET  
ON  
(see the Electrical Characteristics).  
MOSFET  
in the package must be limited such that the junction  
temperature does not exceed its absolute maximum rating  
of +150°C at maximum ambient temperature. Calculate  
the power lost in the MAX15014–MAX15017 using the  
following equations:  
The power loss due to switching the internal MOSFET:  
V
×I  
×(t + t )× f  
IN OUT R F SW  
P
=
SW  
4
t
and t are the rise and fall times of the internal power  
F
R
The power loss through the switch:  
MOSFET measured at LX.  
The power loss due to the switching supply current (I ):  
2
) ×R  
RMS_MOSFET ON  
P
= (I  
MOSFET  
SW  
D
2
P
= V  
×I  
2
Q
IN_SW SW  
I
I
I
=
× I  
+ (I ×I ) +I  
PK PK DC DC  
RMS_MOSFET  
3
The power loss due to the LDO regulator:  
= (V − V ) ×I  
LDO_OUT  
I  
PP  
= I  
= I  
+
PK  
DC  
OUT  
P
LDO  
IN_LDO  
LDO_OUT  
2
I  
The total power dissipated in the device will be:  
= P + P + P + P  
LDO  
PP  
OUT  
2
P
TOTAL  
MOSFET  
SW  
Q
V
OUT  
D =  
V
IN  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
C
C
C
DRAIN  
IN_LDO  
IN_SW  
V
IN  
R6  
C6  
R3  
7.5V TO 40V  
D1  
C8  
IN_LDO  
IN_SW  
DRAIN  
C7  
R5  
BST  
LX  
COMP  
FB  
C
BST  
L
V
AT 1A  
OUT1  
V
IN  
EN_SW  
7.5V TO 40V  
R4  
EN_SYS  
D2  
C
OUT  
MAX15014  
MAX15017  
RESET  
CT  
SS  
10k  
V
OUT2  
AT 50mA  
SYNC  
REG  
LDO_OUT  
PGND SGND  
C
C
CT  
C
LDO_OUT  
SS  
1
C
REG  
DVREG  
SET_LDO  
0.47µF  
PGND  
SGND  
Figure 7. MAX15014/MAX15017 Typical Application Circuit (7.5V to 40V Input-Voltage Operation)  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Pin Configuration  
Chip Information  
PROCESS: BiCMOS/DMOS  
TOP VIEW  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
N.C.  
N.C.  
N.C.  
+
Package Information  
N.C.  
N.C.  
DVREG  
N.C.  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
RESET  
SGND  
CT  
C- (I.C.)  
PGND  
DRAIN  
DRAIN  
N.C.  
MAX15014–  
MAX15017  
EN_SW  
EN_SYS  
N.C.  
EP*  
PACKAGE  
TYPE  
PACKAGE OUTLINE  
CODE  
LAND  
PATTERN NO.  
NO.  
36 TQFN  
T3666+3  
21-0141  
90-0050  
TQFN  
( ) MAX15014/MAX15017  
*EP = EXPOSED PAD.  
Selector Guide  
LDO OUTPUT  
SWITCHING  
FREQUENCY (kHz)  
DC-DC MINIMUM  
INPUT VOLTAGE (V)  
CHARGE  
PUMP  
PART  
ADJUSTABLE  
5V  
3.3V  
OUTPUT  
MAX15014A  
MAX15014B  
MAX15015A  
MAX15015B  
MAX15016A  
MAX15016B  
MAX15017A  
MAX15017B  
135  
135  
500  
500  
135  
135  
500  
500  
7.5  
7.5  
4.5  
4.5  
4.5  
4.5  
7.5  
7.5  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Maxim Integrated  
24  
www.maximintegrated.com  
MAX15014–MAX15017  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
1
1/07  
Initial release  
No /V OPNs in Ordering Information; deleted automotive reference in  
Applications section; update Packaging Information  
11/14  
1, 25  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2014 Maxim Integrated Products, Inc.  
25  

相关型号:

MAX15015AATX+

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15015AATX+T

Switching Regulator, Voltage-mode, 2.6A, 575kHz Switching Freq-Max, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WJJD-1, TQFN-36
MAXIM

MAX15015B

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15015BATX+

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15015BATX+T

Switching Regulator, Voltage-mode, 2.6A, 575kHz Switching Freq-Max, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WJJD-1, TQFN-36
MAXIM

MAX15016A

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15016AATX+

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15016AATX+T

暂无描述
MAXIM

MAX15016B

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15016BATX+

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15017A

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15017AATX+

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM