MAX15041 [MAXIM]

Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM Step-Down DC-DC Regulator with Internal; 低成本, 3A , 4.5V至28V输入,在350kHz , PWM降压型DC -DC稳压器,内置
MAX15041
型号: MAX15041
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM Step-Down DC-DC Regulator with Internal
低成本, 3A , 4.5V至28V输入,在350kHz , PWM降压型DC -DC稳压器,内置

稳压器
文件: 总18页 (文件大小:1441K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4815; Rev 3; 3/11  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
MAX5041  
General Description  
Features  
o Up to 3A of Continuous Output Current  
The MAX15041 low-cost, synchronous DC-DC convert-  
er with internal switches delivers an output current up to  
3A. The MAX15041 operates from an input voltage of  
4.5V to 28V and provides an adjustable output voltage  
o ±±1 Output Aꢀꢀurꢁꢀc Oꢂer ꢃeꢄperꢁture  
o 4.5V to 28V Input Voltꢁge Rꢁnge  
o Adjustꢁble Output Voltꢁge Rꢁnge froꢄ 0.606V to  
from 0.6V to 90% of V , set with two external resistors.  
IN  
0.9 x V  
IN  
The MAX15041 is ideal for distributed power systems,  
preregulation, set-top boxes, television, and other con-  
sumer applications.  
o Internꢁl ±70ꢄR  
High-Side ꢁnd ±05ꢄΩ  
DS-ON  
R
Low-Side Power Switꢀhes  
DS-ON  
o Fixed 350kHz Switꢀhing Frequenꢀc  
o Up to 931 Effiꢀienꢀc  
o Ccꢀle-Bc-Ccꢀle Oꢂerꢀurrent Proteꢀtion  
o Progrꢁꢄꢄꢁble Soft-Stꢁrt  
o Stꢁble with Low-ESR Cerꢁꢄiꢀ Output Cꢁpꢁꢀitors  
o Sꢁfe Stꢁrtup into Prebiꢁsed Output  
o Enꢁble Input ꢁnd Power-Good Output  
The MAX15041 features a peak-current-mode PWM con-  
troller with internally fixed 350kHz switching frequency  
and a 90% maximum duty cycle. The current-mode con-  
trol architecture simplifies compensation design, and  
ensures a cycle-by-cycle current limit and fast response  
to line and load transients. A high-gain transconductance  
error amplifier allows flexibility in setting the external com-  
pensation by using a type II compensation scheme,  
thereby allowing the use of all ceramic capacitors.  
o Fullc Proteꢀted Agꢁinst Oꢂerꢀurrent ꢁnd  
Oꢂerteꢄperꢁture  
This synchronous buck regulator features internal  
MOSFETs that provide better efficiency than asynchro-  
nous solutions, while simplifying the design relative to  
discrete controller solutions. In addition to simplifying  
the design, the integrated MOSFETs minimize EMI,  
reduce board space, and provide higher reliability by  
minimizing the number of external components.  
o V  
LDO Underꢂoltꢁge Loꢀkout  
DD  
o Spꢁꢀe-Sꢁꢂing, ꢃherꢄꢁllc Enhꢁnꢀed, 3ꢄꢄ x 3ꢄꢄ  
Pꢁꢀkꢁge  
Ordering Information  
The MAX15041 also features thermal shutdown and  
overcurrent protection (high-side sourcing and low-side  
sinking), and an internal 5V LDO with undervoltage  
lockout. In addition, this device ensures safe startup  
when powering into a prebiased output.  
PIN-  
PACKAGE  
ꢃOP  
MARK  
PARꢃ  
ꢃEMP RANGE  
MAX15041ETE+ -40°C to +85°C 16 TQFN-EP*  
AGV  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Other features include an externally adjustable soft-start  
that gradually ramps up the output voltage and reduces  
inrush current. Independent enable control and power-  
good signals allow for flexible power sequencing.  
Typical Operating Circuit  
INPUT  
12V  
The MAX15041 is available in a space-saving, high-  
power, 3mm x 3mm, 16-pin TQFN-EP package and is  
fully specified from -40°C to +85°C.  
IN  
BST  
OUTPUT  
EN  
1.8V AT 3A  
Applications  
MAX15041 LX  
Distributed Power Systems  
Wall Adapters  
V
DD  
PGND  
Preregulators  
Set-Top Boxes  
PGOOD  
SS  
FB  
Televisions  
PGOOD  
COMP  
xDSL Modems  
SGND  
Consumer Products  
________________________________________________________________ Mꢁxiꢄ Integrꢁted Produꢀts  
±
For priꢀing, deliꢂerc, ꢁnd ordering inforꢄꢁtion, pleꢁse ꢀontꢁꢀt Mꢁxiꢄ Direꢀt ꢁt ±-888-629-4642,  
or ꢂisit Mꢁxiꢄ’s website ꢁt www.ꢄꢁxiꢄ-iꢀ.ꢀoꢄ.  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
ABSOLUꢃE MAXIMUM RAꢃINGS  
IN to SGND.............................................................-0.3V to +30V  
LX Current (Note 1) ....................................................-5A to +8A  
Converter Output Short-Circuit Duration ...................Continuous  
EN to SGND.................................................-0.3V to (V + 0.3V)  
IN  
LX to PGND ................................-0.3V to min (+30V, V + 0.3V)  
Continuous Power Dissipation (T = +70°C)  
16-Pin TQFN (derate 14.7mW/°C above +70°C)  
IN  
A
LX to PGND .....................-1V to min (+30V, V + 0.3V) for 50ns  
IN  
PGOOD to SGND .....................................................-0.3V to +6V  
Multilayer Board .........................................................1666mW  
Operating Temperature Range ..........................-40°C to +85°C  
Junction Temperature .....................................................+150°C  
Storage Temperature Range ............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
V
to SGND............................................................-0.3V to +6V  
DD  
COMP, FB, SS to SGND..............-0.3V to min (+6V, V  
+ 0.3V)  
DD  
BST to LX .................................................................-0.3V to +6V  
BST to SGND .........................................................-0.3V to +36V  
SGND to PGND ....................................................-0.3V to +0.3V  
MAX5041  
Note ±: LX has internal clamp diodes to PGND and IN. Applications that forward bias these diodes should take care not to exceed  
the IC’s package power dissipation.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
PACKAGE ꢃHERMAL CHARACꢃERISꢃICS (Note 2)  
16 TQFN-EP  
Junction-to-Ambient Thermal Resistance (θJA).........+48°C/W  
Junction-to-Case Thermal Resistance (θJC) ...............+7°C/W  
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.ꢄꢁxiꢄ-iꢀ.ꢀoꢄ/therꢄꢁl-tutoriꢁl.  
ELECꢃRICAL CHARACꢃERISꢃICS  
(V = 12V, C  
= 1µF, C = 22µF, T = T = -40°C to +85°C, typical values are at T = +25°C, unless otherwise noted.) (Note 3)  
IN  
VDD  
IN  
A
J
A
PARAMEꢃER  
SYMBOL  
CONDIꢃIONS  
MIN  
ꢃYP  
MAX  
UNIꢃS  
SꢃEP-DOWN CONVERꢃER  
Input-Voltage Range  
Quiescent Current  
V
4.5  
28  
4
V
IN  
I
Not switching  
= 0V, V regulated by internal  
LDO  
2.1  
2
mA  
IN  
V
EN  
DD  
12  
28  
Shutdown Input Supply Current  
µA  
V
V
V
V
V
= 0V, V = V = 5V  
18  
EN  
EN  
IN  
DD  
ENABLE INPUꢃ  
EN Shutdown Threshold Voltage  
EN Shutdown Voltage Hysteresis  
V
rising  
rising  
= 2.9V  
rising  
1.4  
100  
1.95  
100  
5.3  
V
EN_SHDN  
V
mV  
V
EN_HYST  
V
1.7  
2
2.15  
9
EN_LOCK  
EN  
EN Lockout Threshold Voltage  
V
mV  
µA  
EN_LOCK_HYST  
EN Input Current  
I
EN  
EN  
POWER-GOOD OUꢃPUꢃ  
PGOOD Threshold  
V
540  
560  
15  
584  
100  
mV  
mV  
mV  
nA  
PGOOD_TH  
FB  
PGOOD Threshold Hysteresis  
PGOOD Output Low Voltage  
PGOOD Leakage Current  
ERROR AMPLIFIER  
V
PGOOD_HYST  
V
I
= 5mA, V = 0.5V  
35  
PGOOD_OL  
PGOOD  
FB  
I
V
= 5V, V = 0.7V  
10  
PGOOD  
PGOOD  
FB  
Error Amplifier  
Transconductance  
g
1.6  
mS  
MV  
Error Amplifier Voltage Gain  
FB Set-Point Accuracy  
A
90  
dB  
VEA  
V
600  
606  
612  
mV  
FB  
2
_______________________________________________________________________________________  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
MAX5041  
ELECꢃRICAL CHARACꢃERISꢃICS (ꢀontinued)  
(V = 12V, C  
= 1µF, C = 22µF, T = T = -40°C to +85°C, typical values are at T = +25°C, unless otherwise noted.) (Note 3)  
IN A J A  
IN  
VDD  
PARAMEꢃER  
FB Input Bias Current  
SS Current  
SYMBOL  
CONDIꢃIONS  
MIN  
-100  
-100  
4.5  
ꢃYP  
MAX  
+100  
+100  
5.5  
UNIꢃS  
V
V
V
= 0.5V  
= 0.7V  
FB  
FB  
SS  
I
I
nA  
µA  
FB  
SS  
= 0.45V, sourcing  
5
6
SS Discharge Resistance  
R
I
= 10mA, sinking, V = 1.6V  
SS EN  
SS  
SS Prebiased Mode Stop Voltage  
0.65  
9
V
Current Sense to COMP  
Transconductance  
G
S
MOD  
COMP Clamp Low  
V
= 0.7V  
0.68  
830  
V
FB  
PWM Compensation Ramp Valley  
PWM CLOCK  
mV  
Switching Frequency  
f
315  
350  
90  
385  
5.5  
kHz  
%
SW  
D
Maximum Duty Cycle  
Minimum Controllable On-Time  
150  
ns  
INꢃERNAL LDO OUꢃPUꢃ (V  
)
DD  
V
V
Output Voltage  
V
I
= 1mA to 25mA, V = 6.5V  
IN  
4.75  
30  
5.1  
80  
V
DD  
DD  
DD  
VDD  
Short-Circuit Current  
V
= 6.5V  
mA  
mV  
IN  
LDO Dropout Voltage  
I
= 25mA, V  
rising  
DD  
drops by -2%  
DD  
250  
600  
VDD  
V
Undervoltage Lockout  
DD  
V
V
4
4.25  
V
UVLO_TH  
Threshold  
V
Undervoltage Lockout  
DD  
V
150  
mV  
UVLO_HYST  
Hysteresis  
POWER SWIꢃCH  
High-side switch, I = 1A  
170  
105  
305  
175  
LX  
LX On-Resistance  
m  
A
Low-side switch, I = 1A  
LX  
High-Side Switch Source  
Current-Limit Threshold  
5
6
7.2  
Low-Side Switch Sink  
Current-Limit Threshold  
-3  
A
V
V
V
= 33V, V = V = 28V  
10  
10  
10  
BST  
BST  
BST  
IN  
LX  
LX Leakage Current  
nA  
nA  
= 5V, V = 28V, V = 0V  
IN  
LX  
BST Leakage Current  
= 33V, V = V = 28V  
IN LX  
ꢃHERMAL SHUꢃDOWN  
Thermal-Shutdown Threshold  
Rising  
+155  
20  
°C  
°C  
Thermal-Shutdown Hysteresis  
HICCUP PROꢃECꢃION  
16 x Soft-  
Start Time  
Blanking Time  
Note 3: Specifications are 100% production tested at T = +25°C. Limits over the operating temperature range are guaranteed by  
A
design and characterization.  
_______________________________________________________________________________________  
3
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
Typical Operating Characteristics  
(V = 12V, V  
= 3.3V, C  
= 1µF, C = 22µF, T = +25°C, circuit of Figure 3 (see Table 1 for values), unless otherwise specified.)  
IN  
OUT  
VDD IN A  
OUTPUT-VOLTAGE REGULATION  
vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
0.2  
0
V
= 12V  
V
= 5V  
IN  
IN  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
MAX5041  
V
V
= 5.0V  
= 3.3V  
OUT  
OUT  
V
V
= 3.3V  
= 2.5V  
OUT  
OUT  
V
= 2.5V  
OUT  
V
V
= 1.8V  
= 1.2V  
OUT  
OUT  
V
V
= 1.8V  
= 1.2V  
OUT  
OUT  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
NORMALIZED OUTPUT VOLTAGE  
vs. TEMPERATURE  
NORMALIZED OUTPUT VOLTAGE  
vs. TEMPERATURE  
LOAD-TRANSIENT WAVEFORMS  
MAX15041 toc04  
1.004  
1.002  
1.000  
0.998  
0.996  
0.994  
0.992  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
I
= 2A  
I
= 0A  
LOAD  
LOAD  
I
LOAD  
2A/div  
V
OUT  
AC-COUPLED  
200mV/div  
V
PGOOD  
5V/div  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
200µs/div  
TEMPERATURE (NC)  
TEMPERATURE (NC)  
SWITCHING FREQUENCY  
vs. INPUT VOLTAGE  
FB SET POINT vs.TEMPERATURE  
610  
608  
606  
604  
602  
600  
385  
375  
365  
355  
345  
335  
325  
315  
T
T
= +85NC  
= +25NC  
= -40NC  
A
A
T
A
-40  
-15  
10  
35  
60  
85  
0
5
10  
15  
20  
25  
TEMPERATURE (NC)  
INPUT VOLTAGE (V)  
4
_______________________________________________________________________________________  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
MAX5041  
Typical Operating Characteristics (continued)  
(V = 12V, V  
IN  
= 3.3V, C  
= 1µF, C = 22µF, T = +25°C, circuit of Figure 3 (see Table 1 for values), unless otherwise specified.)  
OUT  
VDD IN A  
INPUT SUPPLY CURRENT  
vs. INPUT VOLTAGE  
SHUTDOWN CURRENT  
vs. INPUT VOLTAGE  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
16  
10  
9
8
7
6
5
4
3
2
1
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
L = 4.7FH  
= 0A  
I
LOAD  
15  
14  
13  
12  
11  
10  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
-40  
-15  
10  
35  
60  
85  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
TEMPERATURE (NC)  
SHUTDOWN WAVEFORMS  
OUTPUT SHORT-CIRCUIT WAVEFORMS  
MAX15041 toc12  
MAX15041 toc13  
V
EN  
V
OUT  
2V/div  
5V/div  
I
IN  
V
OUT  
5A/div  
2V/div  
I
L
I
L
5A/div  
2A/div  
V
V
SS  
PGOOD  
5V/div  
2V/div  
100µs/div  
10ms/div  
SOFT-START WAVEFORMS  
SWITCHING WAVEFORMS  
MAX15041 toc15  
MAX15041 toc14  
V
V
EN  
LX  
5V/div  
10V/div  
V
OUT  
2V/div  
I
L
2A/div  
I
L
2A/div  
V
OUT  
AC-COUPLED  
50mV/div  
V
PGOOD  
5V/div  
400µs/div  
1µs/div  
_______________________________________________________________________________________  
5
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
Typical Operating Characteristics (continued)  
(V = 12V, V  
= 3.3V, C  
= 1µF, C = 22µF, T = +25°C, circuit of Figure 3 (see Table 1 for values), unless otherwise specified.)  
IN  
OUT  
VDD  
IN  
A
SOFT-START TIME  
vs. CAPACITANCE  
STARTUP INTO PREBIASED OUTPUT  
MAX15041 toc17  
1000  
100  
10  
V
EN  
5V/div  
MAX5041  
V
OUT  
2V/div  
I
L
2A/div  
1
I
OUT  
2A/div  
0.1  
400µs/div  
1
10  
100  
1000  
C
SS  
(nF)  
MAXIMUM LOAD CURRENT  
vs. AMBIENT TEMPERATURE  
STARTUP INTO PREBIASED OUTPUT  
MAX15041 toc18  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
V
J
= 5V  
T P +150NC  
IN  
V
EN  
5V/div  
V
OUT  
2V/div  
V
V
= 3.3V  
= 2.5V  
OUT  
OUT  
I
L
5A/div  
V
V
= 1.8V  
= 1.2V  
OUT  
OUT  
I
OUT  
5A/div  
5
15 25 35 45 55 65 75 85  
400µs/div  
AMBIENT TEMPERATURE (NC)  
6
_______________________________________________________________________________________  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
MAX5041  
Typical Operating Characteristics (continued)  
(V = 12V, V  
= 3.3V, C  
= 1µF, C = 22µF, T = +25°C, circuit of Figure 3 (see Table 1 for values), unless otherwise specified.)  
IN  
OUT  
VDD  
IN  
A
MAXIMUM LOAD CURRENT  
vs. AMBIENT TEMPERATURE  
MAXIMUM LOAD CURRENT  
vs. AMBIENT TEMPERATURE  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
V
J
= 28V  
T P +150NC  
V
J
= 12V  
T P +150NC  
IN  
IN  
V
= 3.3V  
OUT  
V
V
OUT  
V
OUT  
V
OUT  
= 1.2V  
= 3.3V  
= 2.5V  
= 2.5V  
OUT  
V
= 1.8V  
OUT  
V
= 1.2V  
OUT  
V
OUT  
= 1.8V  
5
15 25 35 45 55 65 75 85  
5
15 25 35 45 55 65 75 85  
AMBIENT TEMPERATURE (NC)  
AMBIENT TEMPERATURE (NC)  
DEVICE POWER DISSIPATION  
vs. LOAD CURRENT  
DEVICE POWER DISSIPATION  
vs. LOAD CURRENT  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.0  
V
= 12V  
V
IN  
= 5V  
IN  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
OUT  
= 3.3V  
V
= 3.3V  
OUT  
V
= 2.5V  
OUT  
V
= 2.5V  
OUT  
V
OUT  
= 1.8V  
V
= 1.8V  
OUT  
V
OUT  
= 1.2V  
V
= 1.2V  
OUT  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
_______________________________________________________________________________________  
7
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
Pin Configuration  
TOP VIEW  
12  
11  
10  
9
I.C.  
8
7
6
5
PGND 13  
PGND 14  
IN 15  
SGND  
SS  
MAX5041  
MAX15041  
*EP  
16  
FB  
IN  
+
1
2
3
4
ꢃQFN  
*EXPOSED PAD, CONNECT TO SGND.  
Pin Description  
PIN  
1
NAME  
FUNCꢃION  
Internal LDO 5V Output. Supply input for the internal analog core. Bypass with a ceramic capacitor of at  
least 1µF to SGND. See Figure 3.  
V
DD  
2
PGOOD Power-Good Open-Drain Output. PGOOD goes low if FB is below 545mV.  
Enable Input. EN is a digital input that turns the regulator on and off. Drive EN high to turn on the regulator.  
Connect to IN for always-on operations.  
3
EN  
4
COMP  
FB  
Voltage Error-Amplifier Output. Connect the necessary compensation network from COMP to SGND.  
Feedback Input. Connect FB to the center tap of an external resistor-divider from the output to SGND to set  
5
the output voltage from 0.606V to 90% of V  
.
IN  
Soft-Start Input. Connect a capacitor from SS to SGND to set the soft-start time (see the Setting the Soft-  
Start Time section).  
6
SS  
7
8
SGND  
I.C.  
Analog Ground. Connect to PGND plane at one point near the input bypass capacitor return terminal.  
Internally Connected. Connect to SGND.  
High-Side MOSFET Driver Supply. Bypass BST to LX with a 10nF capacitor. Connect an external diode  
9
10, 11, 12  
13, 14  
15, 16  
BST  
LX  
(see the Diode Selection section) from V  
to BST.  
DD  
Inductor Connection. Connect the LX pin to the switched side of the inductor. LX is high impedance when  
the IC is in shutdown mode, thermal shutdown mode, or V is below the UVLO threshold.  
DD  
Power Ground. Connect to the SGND PCB copper plane at one point near the input bypass capacitor  
return terminal.  
PGND  
IN  
Input Power Supply. Input supply range is from 4.5V to 28V. Bypass with a ceramic capacitor of at least  
22µF to PGND.  
Exposed Pad. Connect to SGND externally. Solder the exposed pad to a large contiguous copper plane to  
maximize thermal performance.  
EP  
8
_______________________________________________________________________________________  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
MAX5041  
Simplified Block Diagram  
ENABLE CONTROL  
AND THERMAL  
SHUTDOWN  
EN  
5V LDO  
VDD  
UVLO  
COMPARATOR  
4V  
MAX15041  
VDD  
BIAS  
GENERATOR  
BST  
IN  
CURRENT-SENSE/CURRENT-LIMIT  
AMPLIFIER  
LX  
VOLTAGE  
REFERENCE  
N
CONTROL  
LOGIC AND  
SINK LIMIT  
0.65V  
LX  
VDD  
STRONG PREBIAS  
COMPARATOR  
5µA  
0.606V  
N
PWM  
COMPARATOR  
PGND  
SS  
FB  
ERROR  
AMPLIFIER  
Σ
OSCILLATOR  
COMP  
SGND  
PGOOD  
N
0.560V RISING,  
0.545V FALLING  
POWER-GOOD  
COMPARATOR  
_______________________________________________________________________________________  
9
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
2) The high-side MOSFET current limit is reached.  
Detailed Description  
3) The maximum duty cycle of 90% is reached.  
The MAX15041 is a high-efficiency, peak-current-  
mode, step-down DC-DC converter with integrated  
high-side (170m, typ) and low-side (105m, typ)  
power switches. The output voltage is set from 0.606V  
Then, the low-side MOSFET turns on; the low-side  
MOSFET turns off when the clock period ends.  
Starting into a Prebiased Output  
The MAX15041 is capable of safely soft-starting into a  
prebiased output without discharging the output  
capacitor. Starting up into a prebiased condition, both  
low-side and high-side MOSFETs remain off to avoid  
discharging the prebiased output. PWM operation  
starts only when the SS voltage crosses the FB voltage.  
The MAX15041 is also capable of soft-starting into an  
output prebiased above the OUT nominal set point. In  
this case, forced PWM operation starts when SS volt-  
age reaches 0.65V (typ).  
to 0.9 x V by using an adjustable, external resistive  
IN  
divider and can deliver up to 3A load current. The 4.5V  
to 28V input voltage range makes the device ideal for  
distributed power systems, notebook computers, and  
preregulation applications.  
MAX5041  
The MAX15041 features a PWM, internally fixed 350kHz  
switching frequency with a 90% maximum duty cycle.  
PWM current-mode control allows for an all-ceramic  
capacitor solution. The MAX15041 comes with a high-  
gain transconductance error amplifier. The current-  
mode control architecture simplifies compensation  
design and ensures a cycle-by-cycle current limit and  
fast reaction to line and load transients. The low  
In case of a prebiased output, below or above the OUT  
nominal set point, if the low-side MOSFET sink current  
reaches the sink current limit (-3A, typ), the low-side  
MOSFET turns off before the end of the clock period  
and the high-side MOSFET turns on until one of the fol-  
lowing conditions happens:  
R
, on-chip, MOSFET switches ensure high effi-  
ciency at heavy loads and minimize critical induc-  
tances, reducing layout sensitivity.  
DS-ON  
The MAX15041 also features thermal shutdown and  
overcurrent protection (high-side sourcing and low-side  
sinking), and an internal 5V, LDO with undervoltage  
lockout. An externally adjustable voltage soft-start  
gradually ramps up the output voltage and reduces  
inrush current. Independent enable control and power-  
good signals allow for flexible power sequencing. The  
MAX15041 also provides the ability to start up into a  
prebiased output, below or above the set point.  
1) High-side MOSFET source current hits the reduced  
high-side MOSFET current limit (0.75A, typ); in this  
case, the high-side MOSFET is turned off for the  
remaining clock period.  
2) The clock period ends.  
Enable Input and Power-Good Output  
The MAX15041 features independent device enable  
control and power-good signals that allow for flexible  
power sequencing. The enable input (EN) is an input  
with a 1.95V (typ) threshold that controls the regulator.  
Assert a voltage exceeding the threshold on EN to  
enable the regulator, or connect EN to IN for always-on  
operations. Power-good (PGOOD) is an open-drain  
Controller Function—PWM Logic  
The MAX15041 operates at a constant 350kHz switch-  
ing frequency. When EN is high, after a brief settling  
time, PWM operation starts when V crosses the FB  
SS  
voltage, at the beginning of soft-start.  
output that deasserts (goes high impedance) when V  
FB  
The first operation is always a high-side MOSFET turn-  
on, at the beginning of the clock cycle. The high-side  
MOSFET is turned off when:  
is above 560mV (typ), and asserts low if V is below  
FB  
545mV (typ).  
When the EN voltage is higher than 1.4V (typ) and  
lower than 1.95V (typ), most of the internal blocks are  
disabled, only an internal coarse preregulator, includ-  
ing the EN accurate comparator, is kept on.  
1) COMP voltage crosses the internal current-mode  
ramp waveform, which is the sum of the compensa-  
tion ramp and the current-mode ramp derived from  
the inductor current waveform (current-sense block).  
±0 ______________________________________________________________________________________  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
MAX5041  
capacitor, C for a fixed period of time (T = 70ns,  
Programmable Soft-Start (SS)  
The MAX15041 utilizes a soft-start feature to slowly ramp  
up the regulated output voltage to reduce input inrush  
current during startup. Connect a capacitor from SS to  
SGND to set the startup time (see the Setting the Soft-  
Start Time section for capacitor selection details).  
SS  
0
typ). If the overcurrent condition persists, SS is pulled  
below 0.606V and a hiccup event is triggered.  
During a hiccup event, high-side and low-side  
MOSFETs are kept off, and COMP is pulled low for a  
period equal to 16 times the nominal soft-start time  
(blanking time). This is obtained by charging SS from 0  
to 0.606V with a 5µA (typ) current, and then slowly dis-  
charging it back to 0V with a 333nA (typ) current. After  
the blanking time has elapsed, the device attempts to  
restart. If the overcurrent fault has cleared, the device  
resumes normal operation, otherwise a new hiccup  
event is triggered (see the Output Short-Circuit  
Waveforms in the Typical Operating Characteristics).  
Internal LDO (V  
)
DD  
DD  
The MAX15041 has an internal 5.1V (typ) LDO. V  
is  
externally compensated with a minimum 1µF, low-ESR  
ceramic capacitor. The V voltage is used to supply  
DD  
the low-side MOSFET driver, and to supply the internal  
control logic. When the input supply (IN) is below 4.5V,  
V
is 50mV (typ) lower than IN. The V  
output cur-  
DD  
DD  
rent limit is 80mA (typ) and an UVLO circuit inhibits  
switching when V falls below 3.85V (typ).  
DD  
Thermal-Shutdown Protection  
The MAX15041 contains an internal thermal sensor that  
limits the total power dissipation in the device and pro-  
tects it in the event of an extended thermal fault condi-  
tion. When the die temperature exceeds +155°C (typ),  
the thermal sensor shuts down the device, turning off  
the DC-DC converter and the LDO regulator to allow  
the die to cool. After the die temperature falls by 20°C  
(typ), the device restarts, using the soft-start sequence.  
Error Amplifier  
A high-gain error amplifier provides accuracy for the volt-  
age feedback loop regulation. Connect the necessary  
compensation network between COMP and SGND (see  
the Compensation Design Guidelines section). The error-  
amplifier transconductance is 1.6mS (typ). COMP clamp  
low is set to 0.68V (typ), just below the PWM ramp com-  
pensation valley, helping COMP to rapidly return to cor-  
rect set point during load and line transients.  
Applications Information  
PWM Comparator  
The PWM comparator compares COMP voltage to the  
current-derived ramp waveform (LX current to COMP volt-  
age transconductance value is 9A/V, typ.). To avoid insta-  
bility due to subharmonic oscillations when the duty cycle  
is around 50% or higher, a compensation ramp is added  
to the current-derived ramp waveform. The compensation  
ramp slope (0.45V x 350kHz) is equivalent to half of the  
inductor current down slope in the worst case (load 3A,  
current ripple 30% and maximum duty cycle operation of  
90%). Compensation ramp valley is set at 0.83V (typ).  
Setting the Output Voltage  
Connect a resistive divider (R and R , see Figures 1  
1
2
and 3) from OUT to FB to SGND to set the DC-DC con-  
verter output voltage. Choose R and R so that the DC  
1
2
errors due to the FB input bias current do not affect the  
output-voltage precision. With lower value resistors, the  
DC error is reduced, but the amount of power consumed  
in the resistive divider increases. A typical tradeoff value  
for R is 10k, but values between 5kand 50kare  
2
acceptable. Once R is chosen, calculate R using:  
2
1
V
OUT  
R = R ×  
1  
Overcurrent Protection  
and Hiccup Mode  
1
2
V
FB  
When the converter output is shorted or the device is  
overloaded, the high-side MOSFET current-limit event  
(6A, typ) turns off the high-side MOSFET and turns on  
the low-side MOSFET. In addition, it discharges the SS  
where the feedback threshold voltage V = 0.606V  
FB  
(typ).  
______________________________________________________________________________________ ±±  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
For ceramic capacitors, ESR contribution is negligible:  
1
Inductor Selection  
A larger inductor value results in reduced inductor ripple  
current, leading to a reduced output ripple voltage.  
However, a larger inductor value results in either a larger  
physical size or a higher series resistance (DCR) and a  
lower saturation current rating. Typically, inductor value  
is chosen to have current ripple equal to 30% of load  
current. Choose the inductor with the following formula:  
R
<<  
ESR _ COUT  
8 × f  
× C  
OUT  
SW  
For tantalum or electrolytic capacitors, ESR contribution  
is dominant:  
1
R
>>  
ESR _ COUT  
V
V
OUT  
8 × f  
× C  
OUT  
OUT  
SW  
L =  
× 1−  
f
× ∆I  
V
IN  
0
SW  
L
Compensation Design Guidelines  
The MAX15041 uses a fixed-frequency, peak-current-  
mode control scheme to provide easy compensation  
and fast transient response. The inductor peak current is  
monitored on a cycle-by-cycle basis and compared to  
the COMP voltage (output of the voltage error amplifier).  
The regulator’s duty-cycle is modulated based on the  
inductor’s peak current value. This cycle-by-cycle con-  
trol of the inductor current emulates a controlled current  
source. As a result, the inductor’s pole frequency is  
shifted beyond the gain-bandwidth of the regulator.  
where f  
is the internally fixed 350kHz switching fre-  
SW  
quency, and I is the estimated inductor ripple current  
L
(typically set to 0.3 x I  
inductor current, I  
). In addition, the peak  
LOAD  
must always be below both the  
L_PK,  
minimum high-side MOSFET current-limit value,  
(5A, typ), and the inductor saturation current  
I
HSCL_MIN  
rating, I  
. Ensure that the following relationship is  
L_SAT  
satisfied:  
1
2
I
= I  
+
× ∆I < min(I  
,I  
)
L _PK  
LOAD  
L
HSCL _MIN L _ SAT  
System stability is provided with the addition of a sim-  
ple series capacitor-resistor from COMP to SGND. This  
pole-zero combination serves to tailor the desired  
response of the closed-loop system.  
Diode Selection  
The MAX15041 requires an external bootstrap steering  
diode. Connect the diode between V and BST. The  
diode should have a reverse voltage rating, higher than  
the converter input voltage and a 150mA minimum cur-  
rent rating. Typically, a fast switching or Schottky diode  
is used in this application, such as a 1N4148 diode.  
DD  
The basic regulator loop consists of a power modulator  
(comprising the regulator’s pulse-width modulator,  
compensation ramp, control circuitry, MOSFETs, and  
inductor), the capacitive output filter and load, an out-  
put feedback divider, and a voltage-loop error amplifier  
with its associated compensation circuitry. See Figure 1  
for a graphical representation.  
Input Capacitor Selection  
For a step-down converter, input capacitor C helps to  
IN  
keep the DC input voltage steady, in spite of discontin-  
uous input AC current. Low-ESR capacitors are pre-  
ferred to minimize the voltage ripple due to ESR.  
The average current through the inductor is expressed as:  
I = G  
× V  
COMP  
Size C using the following formula:  
IN  
L
MOD  
I
V
OUT  
V
IN  
LOAD  
where I is the average inductor current and G  
the power modulator’s transconductance. For a buck  
converter:  
is  
L
MOD  
C
=
×
IN  
f
× ∆V  
SW  
IN_RIPPLE  
Output-Capacitor Selection  
V
= R  
× I  
LOAD L  
OUT  
Low-ESR capacitors are recommended to minimize the  
voltage ripple due to ESR. Total output-voltage peak-to-  
peak ripple is estimated by the following formula:  
where R  
is the equivalent load resistor value.  
LOAD  
Combining the two previous equations, the power mod-  
ulator’s transfer function in terms of V with respect  
OUT  
V
V
OUT  
1
OUT  
to V  
is:  
COMP  
V  
=
× 1−  
× R  
+
OUT  
ESR _ COUT  
f
× L  
V
8 × f  
× C  
SW  
IN  
SW OUT  
V
R
× I  
OUT  
LOAD L  
=
= R  
× G  
LOAD MOD  
V
I
COMP  
L
G
MOD  
±2 ______________________________________________________________________________________  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
MAX5041  
POWER MODULATOR  
OUTPUT FILTER  
AND LOAD  
ERROR AMPLIFIER  
FEEDBACK  
DIVIDER  
COMPENSATION  
RAMP  
V
OUT  
V
IN  
g
MC  
Σ
FB  
R
R
1
2
COMP  
Q
Q
HS  
V
OUT  
L0  
DCR  
CONTROL  
LOGIC  
I
L
PWM  
COMPARATOR  
LS  
ESR  
R
LOAD  
R
C
R
OUT  
*C  
CC  
g
MV  
C
OUT  
C
C
V
V
OUT  
COMP  
G
MOD  
I
L
R
OUT  
= A /g  
VEA MV  
NOTE: THE G  
STAGE SHOWN ABOVE MODELS THE AVERAGE CURRENT OF  
MOD  
THE INDUCTOR INJECTED INTO THE OUTPUT LOAD. THIS REPRESENTS A  
SIMPLIFICATION FOR THE POWER MODULATOR STAGE DRAWN ABOVE.  
*C IS OPTIONAL.  
CC  
REF  
Figure 1. Peak Current-Mode Regulator Transfer Model  
Having defined the power modulator’s transfer function  
gain, the total system loop gain can be written as fol-  
lows (see Figure 1):  
The dominate poles and zeros of the transfer loop gain  
is shown below:  
g
1
MV  
f
=
f
=
P1  
P2  
A
dB /20  
[
]
R
× sC R + 1  
C C  
(
)
2π × C  
ESR + R  
VEA  
(
)
OUT  
OUT  
LOAD  
2π × 10  
× C  
C
α =  
+ 1  
s C + C  
R
+ R  
OUT  
+ 1 × s C || C  
R
|| R  
OUT  
(
)(  
)
(
)(  
)
C
CC  
C
C
CC  
C
1
1
f
=
f
=
P3  
Z1  
sC  
ESR + 1  
(
)
2π × C  
R
2π × C R  
C C  
OUT  
ESR + R  
CC  
C
β = G  
× R ×  
LOAD  
MOD  
+ 1  
sC  
(
)
1
OUT  
LOAD  
f
=
Z2  
2π × C  
ESR  
R
A
OUT  
2
VEA  
Gain =  
×
× α × β  
R
+ R  
R
OUT  
1
2
The order of pole-zero occurrence is:  
< f < f < f f  
P3  
where R  
is the quotient of the error amplifier’s DC  
f
OUT  
P1 P2  
Z1 Z2  
gain, A  
, divided by the error amplifier’s transcon-  
VEA  
ductance, g ; R  
much larger than C  
is much larger than R and C is  
C C  
.
MV OUT  
Note under heavy load, f , may approach f  
.
P2  
Z1  
CC  
A graphical representation of the asymptotic system  
closed-loop response, including the dominant pole and  
zero locations is shown in Figure 2.  
Rewriting:  
sC R + 1  
(
)
V
C C  
FB  
Gain =  
A
×
VEA  
V
A
g
OUT  
VEA  
sC  
+ 1 × sC  
R + 1  
(
)
C
CC C  
MV  
sC  
ESR + 1  
(
)
OUT  
× G  
R
×
MOD LOAD  
sC  
ESR + R  
(
+ 1  
)
OUT  
LOAD  
______________________________________________________________________________________ ±3  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
1ST ASYMPTOTE  
A
[dB]/20  
x V -1 x 10  
x G  
x R  
MOD LOAD  
VEA  
V
GAIN  
FB  
OUT  
2ND ASYMPTOTE  
V
FB  
x V -1 x g x (C )-1 x G  
x R  
MOD LOAD  
OUT  
MV  
C
3RD ASYMPTOTE  
x V -1 x g x (C )-1 x G  
V
x R  
x( C (ESR + R  
))-1  
LOAD  
FB  
OUT  
MV  
C
MOD  
LOAD  
OUT  
MAX5041  
4TH ASYMPTOTE  
x V  
-1 x g x R x G  
V
x R  
LOAD  
x (C (ESR + R  
))-1  
LOAD  
FB  
OUT  
MV  
C
MOD  
OUT  
3RD POLE  
(C R )-1  
CC  
C
2ND ZERO  
(C ESR)-1  
OUT  
UNITY  
RAD/S  
1ST POLE  
x (10  
1ST ZERO  
(C R )-1  
A
[dB]/20  
C )-1  
C
CO  
VEA  
g
MV  
C
C
2ND POLE  
(C (ESR + R  
))-1  
OUT  
LOAD  
5TH ASYMPTOTE  
x (ESR || R  
V
FB  
x V -1 x g x R x G  
)
LOAD  
OUT  
MV  
C
MOD  
6TH ASYMPTOTE  
x (ESR || R  
-1  
V
FB  
x V -1 x g x( C  
)
x G  
MOD  
)
LOAD  
OUT  
MV  
CC  
Figure 2. Asymptotic Loop Response of Peak Current-Mode Regulator  
If C  
is large, or exhibits a lossy equivalent series  
the desired closed-loop frequency response and phase  
margin as outlined in the Closing the Loop: Designing  
the Compensation Circuitry section.  
OUT  
resistance (large ESR), the circuit’s second zero may  
come into play around the crossover frequency (f  
=
CO  
ω
/2π). In this case, a third pole may be induced by a  
CO  
Closing the Loop: Designing the  
Coꢄpensꢁtion Cirꢀuitrc  
second (optional) small compensation capacitor (C ),  
CC  
connected from COMP to SGND.  
1) Select the desired crossover frequency. Choose f  
CO  
The loop response’s fourth asymptote (in bold, Figure  
2) is the one of interest in establishing the desired  
crossover frequency (and determining the compensa-  
tion component values). A lower crossover frequency  
provides for stable closed-loop operation at the  
expense of a slower load and line transient response.  
Increasing the crossover frequency improves the tran-  
sient response at the (potential) cost of system instabili-  
ty. A standard rule of thumb sets the crossover  
frequency 1/10 of the switching frequency (for the  
MAX15041, this is approximately 35kHz for the 350kHz  
fixed switching frequency).  
equal to 1/10th of f , or f  
35kHz.  
CO  
SW  
2) Select R using the transfer-loop’s fourth asymptote  
C
gain (assuming f  
the overall loop gain to unity) as follows:  
> f , f , and f and setting  
P1 P2 Z1  
CO  
V
FB  
1=  
× g  
× R × G  
× R  
MV  
C
MOD LOAD  
V
OUT  
1
×
2π × f  
× C  
× ESR+ R  
(
)
CO  
OUT LOAD  
therefore:  
First, select the passive and active power components  
that meet the application’s requirements. Then, choose  
the small-signal compensation components to achieve  
2π × f  
× C  
× ESR + R  
V
(
)
CO  
OUT  
LOAD  
× R  
MOD LOAD  
OUT  
R
=
×
C
V
g
× G  
FB  
MV  
±4 ______________________________________________________________________________________  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
MAX5041  
For R  
much greater than ESR, the equation can be  
this third-pole placement is well beyond the desired  
crossover frequency, minimizing its interaction with the  
LOAD  
further simplified as follows:  
system loop response at crossover. If C  
is smaller than  
CC  
V
2π × f  
× C  
OUT  
× G  
OUT  
CO  
10pF, it can be neglected in these calculations.  
R
=
×
C
V
g
FB  
MV MOD  
Setting the Soft-Start Time  
The soft-start feature ramps up the output voltage slow-  
ly, reducing input inrush current during startup. Size the  
where V is equal to 0.606V.  
FB  
3) Select C . C is determined by selecting the  
C
capacitor to achieve the desired soft-start time t  
SS  
C
C
SS  
using:  
desired first system zero, f , based on the desired  
Z1  
phase margin. Typically, setting f below 1/5th of  
Z1  
I
× t  
SS  
f
provides sufficient phase margin.  
CO  
SS  
C
=
SS  
V
FB  
f
1
CO  
5
f
=
Z1  
2π × C R  
I
SS  
, the soft-start current, is 5µA (typ) and V , the out-  
FB  
C C  
put feedback voltage threshold, is 0.606V (typ). When  
using large C capacitance values, the high-side  
therefore:  
OUT  
current limit may trigger during the soft-start period. To  
ensure the correct soft-start time, t , choose C large  
5
SS  
SS  
C
C
enough to satisfy:  
2π × f  
× R  
CO  
C
V
× I  
OUT SS  
4) If the ESR output zero is located at less than one-half  
the switching frequency use the (optional) sec-  
C
>> C ×  
OUT  
SS  
(I  
I  
) × V  
FB  
HSCL _MIN  
OUT  
ondary compensation capacitor, C , to cancel it,  
CC  
as follows:  
I
is the minimum high-side switch, current-  
HSCL_MIN  
limit value.  
1
1
= f = f  
=
P3  
Z2  
Power Dissipation  
2π × C  
R
2π × C  
ESR  
CC C  
OUT  
The MAX15041 is available in a thermally enhanced  
TQFN package and can dissipate up to 1.666W at T =  
A
therefore:  
+70°C. The exposed pad should be connected to  
SGND externally, preferably soldered to a large ground  
plane to maximize thermal performance. When the die  
temperature exceeds +155°C, The thermal-shutdown  
protection is activated (see the Thermal-Shutdown  
Protection section).  
C
× ESR  
OUT  
C
=
CC  
R
C
If the ESR zero exceeds 1/2 the switching frequency,  
use the following equation:  
Layout Procedure  
Careful PCB layout is critical to achieve clean and sta-  
ble operation. It is highly recommended to duplicate  
the MAX15041 evaluation kit layout for optimum perfor-  
mance. If deviation is necessary, follow these guide-  
lines for good PCB layout:  
f
1
SW  
2
f
=
=
P3  
2π × C  
R
CC C  
therefore:  
2
1) Connect input and output capacitors to the power  
ground plane; connect all other capacitors to the  
signal ground plane.  
C
=
CC  
2π × f  
× R  
SW  
C
The downside of C  
is that it detracts from the overall  
CC  
system phase margin. Care should be taken to guarantee  
______________________________________________________________________________________ ±5  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
2) Place capacitors on V , IN, and SS as close as  
DD  
4) Connect IN, LX, and PGND separately to a large  
copper area to help cool the IC to further improve  
efficiency.  
possible to the IC and the corresponding pin using  
direct traces. Keep the power ground plane (con-  
nected to PGND) and signal ground plane (connect-  
ed to SGND) separate. PGND and SGND connect at  
only one common point near the input bypass  
capacitor return terminal.  
5) Ensure all feedback connections are short and  
direct. Place the feedback resistors and compensa-  
tion components as close as possible to the IC.  
6) Route high-speed switching nodes (such as LX and  
BST) away from sensitive analog areas (such as FB  
and COMP).  
3) Keep the high-current paths as short and wide as  
possible. Keep the path of switching current short  
and minimize the loop area formed by LX, the output  
capacitors, and the input capacitors.  
MAX5041  
D
INPUT  
4.5V TO 28V  
R
BST  
47Ω  
IN  
BST  
CIN  
CBST  
10nF  
47µF  
MAX15041  
EN  
V
L
4.7µH  
OUTPUT = 3.3V  
LX  
DD  
COUT  
22µF  
CVDD  
1µF  
RPU  
R1  
10kΩ  
45.3kΩ  
1%  
PGND  
PGOOD  
FB  
PGOOD  
SS  
COMP  
R2  
10.0kΩ  
1%  
RC  
1.8kΩ  
I.C.  
SGND  
CCC  
100pF  
CSS  
CC  
0.01µF  
12nF  
Figure 3. Typical Operating Circuit (4.5V to 28V Input Buck Converter)  
ꢃꢁble ±. ꢃcpiꢀꢁl Coꢄponent Vꢁlues for Coꢄꢄon Output-Voltꢁge Settings  
V
(V)  
L (µH)  
4.7  
C
(nF)  
R
(k)  
R ꢁnd R  
± 2  
OUꢃ  
5.0  
3.3  
2.5  
1.8  
1.2  
C
C
8
2.70  
1.80  
1.50  
1.00  
0.68  
Select R so that:  
2
4.7  
12  
22  
33  
47  
5kΩ ≤ R 50kΩ  
2
3.3  
Calculate R using the equation in the  
1
Setting the Output Voltage section.  
2.2  
2.2  
±6 ______________________________________________________________________________________  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
MAX5041  
Package Information  
Chip Information  
For the latest package outline information and land patterns  
(footprints), go to www.ꢄꢁxiꢄ-iꢀ.ꢀoꢄ/pꢁꢀkꢁges. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
LAND  
PAꢃꢃERN NO.  
PACKAGE  
ꢃYPE  
PACKAGE  
CODE  
OUꢃLINE NO.  
2±-0±36  
90-003±  
16 TQFN-EP  
T1633+4  
______________________________________________________________________________________ ±7  
Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM  
Step-Down DC-DC Regulator with Internal Switches  
Revision History  
REVISION  
NUMBER  
REVISION  
DAꢃE  
PAGES  
CHANGED  
DESCRIPꢃION  
0
7/09  
Initial release  
Revised General Description, Absolute Maximum Ratings, Electrical  
Characteristics, Applications Information, Figures 2 and 3.  
1, 2, 3, 8, 11–14,  
16, 17  
1
3/10  
2
3
9/10  
3/11  
Update Electrical Characteristics and Package Information  
2, 17, 18  
15  
Recommended new diode for boost  
MAX5041  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
±8 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX15041ETE

Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM Step-Down DC-DC Regulator with Internal
MAXIM

MAX15041ETE+

Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM Step-Down DC-DC Regulator with Internal Switches
MAXIM

MAX15041ETE+T

Switching Regulator, Current-mode, 8A, 385kHz Switching Freq-Max, BICMOS, 3 X 3 MM, ROHS COMPLIANT, TQFN-16
MAXIM

MAX15041ETE+TC90

LOW-COST, 3A, 4.5V TO 28V INPUT, 350KHZ, PWM STEP-DOWN DC-DC
MAXIM

MAX15041_10

Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM Step-Down DC-DC Regulator with Internal Switches
MAXIM

MAX15041_11

Low-Cost, 3A, 4.5V to 28V Input, 350kHz, PWM Step-Down DC-DC Regulator with Internal
MAXIM

MAX15046

40V, High-Performance, Synchronous Buck Controller
MAXIM

MAX15046AAEE+

40V, High-Performance, Synchronous Buck Controller
MAXIM

MAX15046B

350kHz Switching Frequency
MAXIM

MAX15046BAEE+

40V, High-Performance, Synchronous Buck Controller
MAXIM

MAX15046BEVKIT

350kHz Switching Frequency
MAXIM

MAX15046BEVKIT+

350kHz Switching Frequency
MAXIM