MAX15070BAUT

更新时间:2024-09-18 22:09:20
品牌:MAXIM
描述:7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers

MAX15070BAUT 概述

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers

MAX15070BAUT 数据手册

通过下载MAX15070BAUT数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
MAX15070A/MAX15070B  
7A Sink, 3A Source,  
12ns, SOT23 MOSFET Drivers  
General Description  
Features  
The MAX15070A/MAX15070B are high-speed MOSFET  
drivers capable of sinking 7A and sourcing 3A peak  
currents. The ICs, which are an enhancement over  
MAX5048 devices, have inverting and noninverting  
inputs that provide greater flexibility in controlling the  
MOSFET. They also feature two separate outputs work-  
ing in complementary mode, offering flexibility in control-  
ling both turn-on and turn-off switching speeds.  
S Independent Source and Sink Outputs  
S +4V to +14V Single Power-Supply Range  
S 7A Peak Sink Current  
S 3A Peak Source Current  
S Inputs Rated to +14V Regardless of V+ Voltage  
S 12ns Propagation Delay  
The ICs have internal logic circuitry that prevents shoot-  
through during output-state changes. The logic inputs  
are protected against voltage spikes up to +16V, regard-  
less of V+ voltage. Propagation delay time is minimized  
and matched between the inverting and noninverting  
inputs. The ICs have a very fast switching time, com-  
bined with short propagation delays (12ns typ), making  
them ideal for high-frequency circuits. The ICs operate  
from a +4V to +14V single power supply and typically  
consume 0.5mA of supply current. The MAX15070A has  
standard TTL input logic levels, while the MAX15070B  
has CMOS-like high-noise-margin (HNM) input logic  
levels.  
S Matched Delays Between Inverting and  
Noninverting Inputs Within 500ps  
S HNM or TTL Logic-Level Inputs  
S Low-Input Capacitance: 10pF (typ)  
S Thermal-Shutdown Protection  
S Small SOT23 Package Allows Routing PCB Traces  
Underneath  
S -40°C to +125°C Operating Temperature Range  
Ordering Information  
Both ICs are available in a 6-pin SOT23 package and  
operate over the -40NC to +125NC temperature range.  
INPUT LOGIC  
PART  
PIN-PACKAGE  
LEVELS  
Applications  
Power MOSFET Switching  
Switch-Mode Power Supplies  
DC-DC Converters  
MAX15070AAUT+  
MAX15070AAUT/V+  
MAX15070BAUT+  
TTL  
6 SOT23  
6 SOT23  
6 SOT23  
TTL  
HNM  
Note: All devices are specified over the -40°C to +125°C  
operating temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
/V Denotes an automotive-qualified part.  
Motor Control  
Power-Supply Modules  
Typical Operating Circuit  
V+  
V+  
P_OUT  
MAX15070A  
MAX15070B  
IN+  
IN-  
N
N_OUT  
GND  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-5516; Rev 3; 5/13  
MAX15070A/MAX15070B  
7A Sink, 3A Source,  
12ns, SOT23 MOSFET Drivers  
ABSOLUTE MAXIMUM RATINGS  
(Voltages referenced to GND.)  
Operating Temperature Range ...................... -40NC to +125NC  
V+, IN+, IN-.......................................................... -0.3V to +16V  
N_OUT, P_OUT ...........................................-0.3V to (V+ + 0.3V)  
N_OUT Continuous Output Current (Note 1)................. -200mA  
P_OUT Continuous Output Current (Note 1) ................ +125mA  
Junction Temperature ................................................... +150NC  
Storage Temperature Range........................... -65NC to +150NC  
Lead Temperature (soldering, 10s) ................................+300NC  
Soldering Temperature (reflow) ......................................+260NC  
Continuous Power Dissipation (T = +70NC)  
A
SOT23 (derate 8.7mW/NC above +70NC).................. 696mW*  
*As per JEDEC 51 standard.  
Note 1: Continuous output current is limited by the power dissipation of the package.  
PACKAGE THERMAL CHARACTERISTICS (Note 2)  
SOT23  
Junction-to-Ambient Thermal Resistance (B ) ........115NC/W  
JA  
Junction-to-Case Thermal Resistance (B ) .................. 80NC/W  
JC  
Note 2: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-lay-  
er board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V+ = +12V, C = 0F, T = T = -40NC to +125NC, unless otherwise noted. Typical values are at T = +25NC. Parameters specified at  
L
A
J
A
V+ = +4.5V apply to the MAX15070A only; see Figure 1.) (Note 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY (V+)  
MAX15070A  
MAX15070B  
V+ rising  
4
6
14  
14  
Input Voltage Range  
Undervoltage Lockout  
V
V
V
UVLO  
3.3  
3.45  
200  
3.6  
Undervoltage-Lockout  
Hysteresis  
mV  
Undervoltage Lockout to Output  
Rising Delay  
V+ rising  
V+ falling  
100  
2
Fs  
Fs  
Undervoltage Lockout to Output  
Falling Delay  
V+ = 14V, no switching  
0.5  
2.3  
1
Supply Current  
I
mA  
V+  
V+ = 14V, switching at 1MHz  
n-CHANNEL OUTPUT (N_OUT)  
T
T
T
T
= +25NC  
= +125NC  
= +25NC  
= +125NC  
0.256  
0.268  
0.32  
0.45  
0.33  
0.465  
1.9  
V+ = +12V,  
A
A
A
A
I
= -100mA  
N_OUT  
N_OUT Resistance  
R
I
N_OUT  
V+ = +4.5V,  
= -100mA  
I
N_OUT  
Power-Off Pulldown Resistance  
Output Bias Current  
V+ = unconnected, I  
= -1mA, T = +25NC  
1.3  
6
kI  
FA  
A
N_OUT  
A
I
V
= V+  
11  
BIASN  
N_OUT  
Peak Output Current  
I
C = 22nF  
L
7.0  
PEAKN  
2
Maxim Integrated  
MAX15070A/MAX15070B  
7A Sink, 3A Source,  
12ns, SOT23 MOSFET Drivers  
ELECTRICAL CHARACTERISTICS (continued)  
(V+ = +12V, C = 0F, T = T = -40NC to +125NC, unless otherwise noted. Typical values are at T = +25NC. Parameters specified at  
L
A
J
A
V+ = +4.5V apply to MAX15070A only, see Figure 1.) (Note 3)  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.88  
0.91  
MAX  
UNITS  
p-CHANNEL OUTPUT (P_OUT)  
T
A
T
A
T
A
T
A
= +25NC  
= +125NC  
= +25NC  
= +125NC  
1.2  
1.7  
1.25  
1.75  
1
V+ = +12V,  
= 100mA  
I
P_OUT  
P_OUT Resistance  
R
I
P_OUT  
V+ = +4.5V,  
= 100mA  
I
P_OUT  
Output Leakage Current  
Peak Output Current  
I
V
= 0V  
0.01  
3.0  
FA  
A
LEAKP  
P_OUT  
I
C = 22nF  
L
PEAKN  
LOGIC INPUTS (IN+, IN-)  
MAX15070A  
MAX15070B  
MAX15070A  
MAX15070B  
MAX15070A  
MAX15070B  
2.0  
Logic-High Input Voltage  
Logic-Low Input Voltage  
Logic-Input Hysteresis  
V
V
V
V
IH  
4.25  
0.8  
2.0  
V
IL  
0.2  
0.9  
0.02  
10  
V
HYS  
Logic-Input Leakage Current  
Logic-Input Bias Current  
Input Capacitance  
V
IN+  
V
IN+  
= V = 0V or V+, MAX15070A  
IN-  
FA  
= V = 0V or V+, MAX15070B  
IN-  
10  
pF  
SWITCHING CHARACTERISTICS FOR V+ = +12V (Figure 1)  
C = 1nF  
6
L
Rise Time  
t
C = 5nF  
22  
36  
4
ns  
ns  
R
L
C = 10nF  
L
C = 1nF  
L
Fall Time  
t
C = 5nF  
L
11  
17  
11  
12  
2
F
C = 10nF  
L
Turn-On Delay Time  
Turn-Off Delay Time  
Break-Before-Make Time  
t
C = 1nF (Note 4)  
L
7
7
17  
18  
ns  
ns  
ns  
D-ON  
t
C = 1nF (Note 4)  
L
D-OFF  
t
BBM  
SWITCHING CHARACTERISTICS FOR V+ = +4.5V (MAX15070A only) (Figure 1)  
C = 1nF  
5
L
Rise Time  
t
C = 5nF  
16  
25  
4
ns  
ns  
R
L
C = 10nF  
L
C = 1nF  
L
Fall Time  
t
C = 5nF  
L
10  
14  
13  
14  
2
F
C = 10nF  
L
Turn-On Delay Time  
t
C = 1nF (Note 4)  
L
7
7
21  
22  
ns  
ns  
ns  
D-ON  
Turn-Off Delay Time  
t
C = 1nF (Note 4)  
L
D-OFF  
Break-Before-Make Time  
THERMAL CHARACTERISTICS  
Thermal Shutdown  
t
BBM  
Temperature rising (Note 4)  
(Note 4)  
166  
13  
NC  
NC  
Thermal-Shutdown Hysteresis  
Note 3: Limits are 100% tested at T = +25°C. Limits over operating temperature range are guaranteed through correlation using  
A
the statistical quality control (SQC) method.  
Note 4: Design guaranteed by bench characterization. Limits are not production tested.  
Maxim Integrated  
3
MAX15070A/MAX15070B  
7A Sink, 3A Source,  
12ns, SOT23 MOSFET Drivers  
Typical Operating Characteristics  
(C = 1000pF, T = +25NC, unless otherwise noted. See Figure 1.)  
L
A
PROPAGATION DELAY (LOW TO HIGH)  
vs. SUPPLY VOLTAGE  
RISE TIME vs. SUPPLY VOLTAGE  
FALL TIME vs. SUPPLY VOLTAGE  
18  
16  
14  
12  
10  
8
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
T
A
= +85°C  
T
A
= +125°C  
T
A
= +125°C  
T
A
= +85°C  
T
A
= +25°C  
T
A
= +85°C  
T
A
= +125°C  
T
A
= +25°C  
T
A
= +25°C  
TA = -40°C  
TA = -40°C  
T
A
= 0°C  
T
= -40°C  
A
T
= 0°C  
A
T
A
= 0°C  
10  
4
6
8
10  
12  
14  
4
6
8
10  
12  
14  
4
6
8
12  
14  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
PROPAGATION DELAY (HIGH TO LOW)  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. LOAD CAPACITANCE  
20  
18  
16  
14  
12  
10  
8
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DUTY CYCLE = 50%  
1MHz  
V+ = 12V  
f = 100kHz  
DUTY CYCLE = 50%  
C = 0  
L
T
= +125°C  
A
T
= +85°C  
A
500kHz  
T
A
= +25°C  
100kHz  
T
= 0°C  
A
T
A
= -40°C  
75kHz  
40kHz  
4
6
8
10  
12  
14  
4
6
8
10  
12  
14  
0
400  
800  
1200  
1600  
2000  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
LOAD CAPACITANCE (pF)  
MAX15070A INPUT THRESHOLD  
VOLTAGE vs. SUPPLY VOLTAGE  
MAX15070A  
SUPPLY CURRENT vs. INPUT VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
V+ = 12V  
f = 100kHz, C = 0  
L
DUTY CYCLE = 50%  
INPUT LOW TO HIGH  
INPUT HIGH TO LOW  
RISING  
FALLING  
4
6
8
10  
12  
14  
0
1
2
3
4
5
14  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
INPUT VOLTAGE (V)  
4
Maxim Integrated  
MAX15070A/MAX15070B  
7A Sink, 3A Source,  
12ns, SOT23 MOSFET Drivers  
Typical Operating Characteristics (continued)  
(C = 1000pF, T = +25NC, unless otherwise noted. See Figure 1.)  
L
A
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V+ = +4V, C = 5000pF)  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V+ = +4V, C = 10,000pF)  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V+ = +4V, C = 5000pF)  
MAX15070A toc12  
L
L
L
MAX15070A toc10  
MAX15070A toc11  
V
V
IN+  
IN+  
2V/div  
2V/div  
V
IN+  
2V/div  
V
V
OUTPUT  
OUTPUT  
2V/div  
2V/div  
V
OUTPUT  
2V/div  
20ns/div  
20ns/div  
20ns/div  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V+ = +4V, C = 10,000pF)  
(V+ = +14V, C = 5000pF)  
(V+ = +14V, C = 10,000pF)  
L
MAX15070A toc15  
L
L
MAX15070A toc13  
MAX15070A toc14  
V
V
IN+  
IN+  
5V/div  
5V/div  
V
IN+  
2V/div  
V
V
OUTPUT  
OUTPUT  
5V/div  
5V/div  
V
OUTPUT  
2V/div  
20ns/div  
20ns/div  
20ns/div  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V+ = +14V, C = 5000pF)  
INPUT VOLTAGE vs. OUTPUT VOLTAGE  
(V+ = +14V, C = 10,000pF)  
L
L
MAX15070A toc16  
MAX15070A toc17  
V
V
IN+  
IN+  
5V/div  
5V/div  
V
V
OUTPUT  
OUTPUT  
5V/div  
5V/div  
20ns/div  
20ns/div  
Maxim Integrated  
5
MAX15070A/MAX15070B  
7A Sink, 3A Source,  
12ns, SOT23 MOSFET Drivers  
Pin Configuration  
TOP VIEW  
+
6
5
4
V+  
IN+  
1
2
MAX15070A  
MAX15070B  
GND  
P_OUT  
N_OUT  
IN-  
3
SOT23  
Pin Description  
PIN  
1
NAME  
IN+  
FUNCTION  
Noninverting Logic Input. Connect IN+ to V+ when not used.  
Ground  
2
GND  
IN-  
3
Inverting Logic Input. Connect IN- to GND when not used.  
4
N_OUT  
P_OUT  
V+  
Driver Sink Output. Open-drain n-channel output. Sinks current for power MOSFET turn-off.  
Driver Source Output. Open-drain p-channel output. Sources current for power MOSFET turn-on.  
Power-Supply Input. Bypass V+ to GND with a 1FF low-ESR ceramic capacitor.  
5
6
Functional Diagram  
V+  
P
BREAK-  
BEFORE-  
MAKE  
P_OUT  
N_OUT  
IN-  
IN+  
CONTROL  
N
MAX15070A  
MAX15070B  
GND  
6
Maxim Integrated  
MAX15070A/MAX15070B  
7A Sink, 3A Source,  
12ns, SOT23 MOSFET Drivers  
IN+  
V
IH  
V
IL  
P_OUT AND  
N_OUT  
CONNECTED  
TOGETHER  
90%  
10%  
t
t
F
t
t
R
D-OFF  
D-ON  
TIMING DIAGRAM  
V+  
V+  
MAX15070A  
MAX15070B  
P_OUT  
N_OUT  
INPUT  
IN+  
IN-  
OUTPUT  
GND  
C
L
TEST CIRCUIT  
Figure 1. Timing Diagram and Test Circuit  
while the MAX15070B has HNM (CMOS-like) logic-level  
thresholds (see the Electrical Characteristics). Connect  
IN+ to V+ or IN- to GND when not used. Alternatively,  
the unused input can be used as an on/off control input  
(Table 1).  
Detailed Description  
Logic Inputs  
The MAX15070A/MAX15070Bs’ logic inputs are pro-  
tected against voltage spikes up to +16V, regardless of  
the V+ voltage. The low 10pF input capacitance of the  
inputs reduces loading and increases switching speed.  
These ICs have two inputs that give the user greater  
flexibility in controlling the MOSFET. Table 1 shows all  
possible input combinations. The difference between the  
MAX15070A and the MAX15070B is the input threshold  
voltage. The MAX15070A has TTL logic-level thresholds,  
Undervoltage Lockout (UVLO)  
When V+ is below the UVLO threshold, the n-channel is  
on and the p-channel is off, independent of the state of  
the inputs. The UVLO is typically 3.45V with 200mV typi-  
cal hysteresis to avoid chattering. A typical falling delay  
of 2Fs makes the UVLO immune to narrow negative tran-  
sients in noisy environments.  
Table 1. Truth Table  
Driver Outputs  
The ICs provide two separate outputs. One is an open-  
drain p-channel, the other an open-drain n-channel. They  
have distinct current sourcing/sinking capabilities to inde-  
pendently control the rise and fall times of the MOSFET  
gate. Add a resistor in series with P_OUT/N_OUT to slow  
the corresponding rise/fall time of the MOSFET gate.  
IN+  
L
IN-  
L
p-CHANNEL  
n-CHANNEL  
Off  
Off  
On  
Off  
On  
On  
Off  
On  
L
H
L
H
H
H
L = Logic-low, H = Logic-high.  
Maxim Integrated  
7
MAX15070A/MAX15070B  
7A Sink, 3A Source,  
12ns, SOT23 MOSFET Drivers  
Layout Information  
Applications Information  
The ICs’ MOSFET drivers source and sink large currents  
to create very fast rise and fall edges at the gate of the  
switching MOSFET. The high di/dt can cause unaccept-  
able ringing if the trace lengths and impedances are not  
well controlled. The following PCB layout guidelines are  
recommended when designing with the ICs:  
Supply Bypassing, Device  
Grounding, and Placement  
Ample supply bypassing and device grounding are  
extremely important because when large external capac-  
itive loads are driven, the peak current at the V+ pin can  
approach 3A, while at the GND pin, the peak current can  
•ꢀ Place one or more 1FF decoupling ceramic  
capacitor(s) from V+ to GND as close as possible to  
the IC. At least one storage capacitor of 10FF (min)  
should be located on the PCB with a low resistance  
path to the V+ pin of the ICs. There are two AC cur-  
rent loops formed between the IC and the gate of  
the MOSFET being driven. The MOSFET looks like  
a large capacitance from gate to source when the  
gate is being pulled low. The active current loop is  
from N_OUT of the ICs to the MOSFET gate to the  
MOSFET source and to GND of the ICs. When the  
gate of the MOSFET is being pulled high, the active  
current loop is from P_OUT of the ICs to the MOSFET  
gate to the MOSFET source to the GND terminal of  
the decoupling capacitor to the V+ terminal of the  
decoupling capacitor and to the V+ terminal of the  
ICs. While the charging current loop is important, the  
discharging current loop is critical. It is important to  
minimize the physical distance and the impedance  
in these AC current paths.  
approach 7A. V  
drops and ground shifts are forms of  
CC  
negative feedback for inverters and, if excessive, can  
cause multiple switching when the IN- input is used and  
the input slew rate is low. The device driving the input  
should be referenced to the ICs’ GND pin, especially  
when the IN- input is used. Ground shifts due to insuffi-  
cient device grounding can disturb other circuits sharing  
the same AC ground return path. Any series inductance  
in the V+, P_OUT, N_OUT, and/or GND paths can cause  
oscillations due to the very high di/dt that results when  
the ICs are switched with any capacitive load. A 1FF  
or larger value ceramic capacitor is recommended,  
bypassing V+ to GND and placed as close as possible  
to the pins. When driving very large loads (e.g., 10nF)  
at minimum rise time, 10FF or more of parallel storage  
capacitance is recommended. A ground plane is highly  
recommended to minimize ground return resistance and  
series inductance. Care should be taken to place the  
ICs as close as possible to the external MOSFET being  
driven to further minimize board inductance and AC path  
resistance.  
•ꢀ In a multilayer PCB, the component surface layer sur-  
rounding the ICs should consist of a GND plane con-  
taining the discharging and charging current loops.  
Power Dissipation  
Power dissipation of the ICs consists of three compo-  
nents, caused by the quiescent current, capacitive  
charge and discharge of internal nodes, and the output  
current (either capacitive or resistive load). The sum of  
these components must be kept below the maximum  
power-dissipation limit of the package at the operating  
temperature.  
Chip Information  
Process: BiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character,  
but the drawing pertains to the package regardless of RoHS  
status.  
The quiescent current is 0.5mA typical. The current  
required to charge and discharge the internal nodes  
is frequency dependent (see the Typical Operating  
Characteristics).  
For capacitive loads, the total power dissipation is  
approximately:  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
P = C  
x (V+) 2 x FREQ  
LOAD  
6 SOT23  
U6+1  
21-0058  
90-0175  
where C  
is the capacitive load, V+ is the supply  
LOAD  
voltage, and FREQ is the switching frequency.  
8
Maxim Integrated  
MAX15070A/MAX15070B  
7A Sink, 3A Source,  
12ns, SOT23 MOSFET Drivers  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
11/10  
11/11  
8/12  
0
1
2
3
Initial release  
Added MAX15070AAVT/V+ to data sheet  
Removed Evaluation Kit Available banner  
Updated Ordering Information  
1, 2, 3, 8, 9  
1
1
5/13  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.  
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical  
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
9
©
2013 Maxim Integrated Products, Inc.  
The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.  

MAX15070BAUT 相关器件

型号 制造商 描述 价格 文档
MAX1507ETA MAXIM Linear Li+ Battery Charger with Integrated Pass FET and Thermal Regulation in 3mm x 3mm Thin DFN 获取价格
MAX1507ETA+T MAXIM Linear Li Battery Charger with Integrated Pass FET and Thermal Regulation in 3mm x 3mm Thin DFN 获取价格
MAX1507ETA-T MAXIM Linear Li Battery Charger with Integrated Pass FET and Thermal Regulation in 3mm x 3mm Thin DFN 获取价格
MAX1508 MAXIM Linear Li Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOKin 3mm x 3mm TDFN 获取价格
MAX1508 ADI 线性Li+电池充电器,带有集成调整FET、热调节和ACOK,3mm x 3mm TDFN封装 获取价格
MAX1508ETA MAXIM Linear Li Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOKin 3mm x 3mm TDFN 获取价格
MAX1508ETA+T MAXIM Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, LEAD FREE, MO-229WEEC, TDFN-8 获取价格
MAX1508ETA-T MAXIM Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEEC, TDFN-8 获取价格
MAX1508YETA MAXIM Linear Li Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOKin 3mm x 3mm TDFN 获取价格
MAX1508YETA-T MAXIM Power Supply Support Circuit, Fixed, 1 Channel, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEEC, TDFN-8 获取价格

MAX15070BAUT 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    5
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    8
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6