MAX15462 [MAXIM]

42V, 300mA, Ultra-Small, High-Efficiency Synchronous Step-Down DC-DC Converters;
MAX15462
型号: MAX15462
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

42V, 300mA, Ultra-Small, High-Efficiency Synchronous Step-Down DC-DC Converters

文件: 总23页 (文件大小:2478K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
General Description  
Benefits and Features  
Eliminates External Components and Reduces  
The MAX15462 high-efficiency, high-voltage, synchronous  
step-down DC-DC converter with integrated MOSFETs  
operates over a 4.5V to 42V input voltage range. The  
converter delivers output current up to 300mA at 3.3V  
(MAX15462A), 5V (MAX15462B), and adjustable output  
voltages (MAX15462C). The device operates over the  
-40°C to +125°C temperature range and is available in a  
compact 8-pin (2mm x 2mm) TDFN package. Simulation  
models are available.  
Total Cost  
• No Schottky—Synchronous Operation for High  
Efficiency and Reduced Cost  
• Internal Compensation  
• Internal Feedback Divider for Fixed 3.3V, 5V  
Output Voltages  
• Internal Soft-Start  
• All-Ceramic Capacitors, Ultra-Compact Layout  
Reduces Number of DC-DC Regulators to Stock  
• Wide 4.5V to 42V Input Voltage Range  
• Fixed 3.3V and 5V Output Voltage Options  
The device employs a peak-current-mode control  
architecture with a MODE pin that can be used to  
operate the device in the pulse-width modulation (PWM)  
or pulse-frequency modulation (PFM) control schemes.  
PWM operation provides constant frequency operation at  
all loads and is useful in applications sensitive to variable  
switching frequency. PFM operation disables negative induc-  
tor current and additionally skips pulses at light loads for high  
efficiency. The low-resistance on-chip MOSFETs ensure high  
efficiency at full load and simplify the PCB layout.  
• Adjustable 0.9V to 0.89 x V Output Voltage Option  
IN  
• Delivers Up to 300mA Load Current  
Configurable Between PFM and Forced-PWM  
Modes  
Reduces Power Dissipation  
Peak Efficiency = 92%  
PFM Feature for High Light-Load Efficiency  
Shutdown Current = 2.2µA (typ)  
Operates Reliably in Adverse Industrial Environments  
• Hiccup-Mode Current Limit and Autoretry Startup  
• Built-In Output Voltage Monitoring with Open-Drain  
RESET Pin  
To reduce input inrush current, the device offers an  
internal soft-start. The device also incorporates an EN/  
UVLO pin that allows the user to turn on the part at the  
desired input-voltage level. An open-drain RESET pin can  
be used for output-voltage monitoring.  
• Programmable EN/UVLO Threshold  
• Monotonic Startup into Prebiased Output  
• Overtemperature Protection  
Applications  
Process Control  
Industrial Sensors  
4–20mA Current Loops  
HVAC and Building Control  
High-Voltage LDO Replacement  
General-Purpose Point of Load  
• High Industrial -40°C to +125°C Ambient Operating  
Temperature Range/-40°C to +150°C Junction  
Temperature Range  
Ordering Information appears at end of data sheet.  
Typical Operating Circuit  
L1  
V
OUT  
33µH  
V
IN  
3.3V,  
300mA  
4.5V TO  
42V  
V
LX  
IN  
C
1µF  
IN  
C
10µF  
OUT  
EN/UVLO  
GND  
MAX15462A  
V
CC  
RESET  
C
VCC  
1µF  
V
MODE  
OUT  
19-7552; Rev 1; 2/17  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Absolute Maximum Ratings  
V
to GND............................................................-0.3V to +48V  
Continuous Power Dissipation (T = +70°C)  
IN  
A
EN/UVLO to GND..................................................-0.3V to +48V  
LX to GND....................................................-0.3V to V + 0.3V  
8-Pin TDFN (derate 6.2mW/°C above +70°C) ............496mW  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN  
V
, FB/V  
, RESET to GND .............................-0.3V to +6V  
CC  
OUT  
MODE to GND.............................................-0.3V to V  
+ 0.3V  
CC  
LX total RMS Current.....................................................±800mA  
Output Short-Circuit Duration....................................Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability. Junction temperature greater than +125°C degrades operating lifetimes.  
(Note 1)  
Package Thermal Characteristics  
TDFN  
Junction-to-Ambient Thermal Resistance (θ ) ......+162°C/W  
JA  
Junction-to-Case Thermal Resistance (θ ).............+20°C/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, LX = MODE = RESET = unconnected; T = -40°C to +125°C, unless  
EN/UVLO A  
IN  
GND  
IN  
VCC  
otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2)  
A
PARAMETER  
INPUT SUPPLY (V  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
IN  
Input Voltage Range  
V
4.5  
42  
4
V
IN  
Input Shutdown Current  
Input Supply Current  
I
V
= 0V, shutdown mode  
2.2  
95  
µA  
IN-SH  
EN/UVLO  
MODE = unconnected,  
FB/V = 1.03 x FB/V  
I
160  
4
µA  
Q-PFM  
OUT  
OUT-REG  
I
Normal switching mode, V = 24V  
2.5  
mA  
Q-PWM  
IN  
ENABLE/UVLO (EN/UVLO)  
V
V
V
V
V
rising  
1.19  
1.06  
1.215  
1.09  
0.75  
1.24  
1.15  
ENR  
EN/UVLO  
EN/UVLO  
EN/UVLO  
EN/UVLO  
EN/UVLO Threshold  
V
falling  
V
ENF  
V
falling, true shutdown  
EN-TRUESD  
EN/UVLO Input Leakage Current  
I
= 42V, T = +25°C  
-100  
+100  
nA  
EN/UVLO  
A
LDO (V  
)
CC  
V
V
V
Output Voltage Range  
Current Limit  
V
6V < V < 42V, 0mA < I < 10mA  
VCC  
4.75  
5
5.25  
50  
V
mA  
V
CC  
CC  
CC  
CC  
IN  
I
V
V
V
V
= 4.3V, V = 12V  
13  
30  
VCC-MAX  
CC  
IN  
Dropout  
V
= 4.5V, I = 5mA  
VCC  
0.15  
4.18  
3.8  
0.3  
CC-DO  
IN  
V
rising  
falling  
4.05  
4.3  
CC-UVR  
CC  
CC  
V
UVLO  
V
CC  
V
3.7  
3.95  
CC-UVF  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Electrical Characteristics (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, LX = MODE = RESET = unconnected; T = -40°C to +125°C, unless  
IN  
GND  
IN  
VCC  
EN/UVLO  
A
otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2)  
A
PARAMETER  
POWER MOSFETs  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1.35  
0.45  
MAX  
UNITS  
T
T
T
T
= +25°C  
1.75  
2.7  
A
A
A
A
I
= 0.3A  
LX  
High-Side pMOS On-Resistance  
R
Ω
DS-ONH  
(sourcing)  
= T = +125°C  
J
= +25°C  
0.55  
0.9  
I
= 0.3A  
LX  
Low-Side nMOS On-Resistance  
LX Leakage Current  
R
Ω
DS-ONL  
(sinking)  
= T = +125°C  
J
V
V
= 0V, V = 42V, T = +25°C,  
IN A  
EN/UVLO  
I
-1  
+1  
µA  
LX-LKG  
= (V  
+ 1V) to (V - 1V)  
LX  
GND  
IN  
SOFT-START (SS)  
Soft-Start Time  
t
3.8  
4.1  
4.4  
ms  
SS  
FEEDBACK (FB)  
MODE = GND, MAX15462C  
MODE = unconnected, MAX15462C  
MAX15462C  
0.887  
0.887  
-100  
0.9  
0.915  
-25  
0.913  
0.936  
FB Regulation Voltage  
FB Leakage Current  
V
V
FB-REG  
I
nA  
FB  
OUTPUT VOLTAGE (V  
)
OUT  
MODE = GND, MAX15462A  
3.25  
3.25  
4.93  
4.93  
3.3  
3.35  
5
3.35  
3.42  
5.07  
5.18  
MODE = unconnected, MAX15462A  
MODE = GND, MAX15462B  
V
Regulation Voltage  
V
V
OUT  
OUT-REG  
MODE = unconnected, MAX15462B  
5.08  
CURRENT LIMIT  
Peak Current-Limit Threshold  
I
0.49  
0.58  
0.25  
0.56  
0.66  
0.62  
0.73  
0.35  
A
A
PEAK-LIMIT  
I
RUNAWAY-  
LIMIT  
Runaway Current-Limit Threshold  
MODE = GND  
0.3  
A
mA  
A
Negative Current-Limit  
Threshold  
I
SINK-LIMIT  
0.01  
0.13  
PFM Current Level  
TIMING  
I
PFM  
Switching Frequency  
f
465  
500  
1
535  
kHz  
SW  
Events to Hiccup After Crossing  
Runaway Current Limit  
Cycles  
FB/V  
to Cause Hiccup  
Undervoltage Trip Level  
OUT  
62.5  
64.5  
66.5  
%
Hiccup Timeout  
131  
90  
ms  
ns  
%
Minimum On-Time  
Maximum Duty Cycle  
t
130  
94  
ON-MIN  
D
MAX  
FB/V  
= 0.98 x FB/V  
OUT-REG  
89  
91.5  
OUT  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Electrical Characteristics (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, LX = MODE = RESET = unconnected; T = -40°C to +125°C, unless  
IN  
GND  
IN  
VCC  
EN/UVLO  
A
otherwise noted. Typical values are at T = +25°C. All voltages are referenced to GND, unless otherwise noted.) (Note 2)  
A
PARAMETER  
LX Dead Time  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
5
ns  
RESET  
FB/V  
Rising  
Threshold for RESET  
Threshold for RESET  
OUT  
FB/V  
FB/V  
rising  
93.5  
90  
95.5  
92  
2
97.5  
%
%
OUT  
FB/V  
OUT  
falling  
94  
OUT  
Falling  
RESET Delay After FB/V  
OUT  
ms  
Reaches 95% Regulation  
RESET Output Level Low  
RESET Output Leakage Current  
MODE  
I
= 5mA  
0.2  
0.1  
V
RESET  
V
= 5.5V, T = +25°C  
µA  
RESET  
A
MODE Internal Pullup Resistor  
THERMAL SHUTDOWN  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
500  
kΩ  
Temperature rising  
166  
10  
°C  
°C  
Note 2: Limits are 100% tested at T = +25°C. Limits over the operating temperature range and relevant supply voltage range are  
A
guaranteed by design and characterization.  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristics  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
IN  
GND  
IN  
VCC  
EN/UVLO  
A
EFFICIENCY vs. LOAD CURRENT  
toc02a  
EFFICIENCY vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENT toc02  
toc01  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
90  
80  
70  
VIN = 6V  
VIN = 12V  
VIN = 12V  
VIN = 24V  
VIN = 12V  
60  
VIN = 24V  
VIN = 24V  
50  
VIN = 36V  
VIN = 36V  
40  
FIGURE 7 APPLICATION  
CIRCUIT, PFM MODE  
FIGURE 5 APPLICATION  
CIRCUIT, PFM MODE  
FIGURE 6 APPLICATION  
CIRCUIT, PFM MODE  
VIN = 36V  
30  
20  
VOUT = 2.5V  
VOUT = 3.3V  
VOUT = 5V  
1
10  
100  
1
10  
100  
1
10  
100  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
EFFICIENCY vs. LOAD CURRENTtoc04  
EFFICIENCY vs. LOAD CURRENT toc02b  
EFFICIENCY vs. LOAD CURRENTtoc03  
100  
90  
80  
70  
60  
50  
40  
100.00  
90.00  
80.00  
70.00  
60.00  
50.00  
40.00  
30.00  
20.00  
10.00  
0.00  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 12V  
VIN = 24V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 24V  
VIN = 18V  
VIN = 36V  
VIN = 36V  
FIGURE 5 APPLICATION  
CIRCUIT, PWM MODE  
FIGURE 6 APPLICATION  
CIRCUIT, PWM MODE  
FIGURE 8 APPLICATION  
CIRCUIT, PFM MODE  
V
OUT = 3.3V  
V
OUT = 5V  
VOUT = 12V  
1
10  
100  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
EFFICIENCY vs. LOAD CURRENTtoc04a  
EFFICIENCY VS. LOAD CURRENT  
toc04b  
toc05  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.37  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
FIGURE 5 APPLICATION  
CIRCUIT, PFM MODE  
VOUT = 3.3V  
VIN = 18V  
VIN = 24V  
VIN = 24V  
VIN = 6V  
VIN = 12V  
VIN = 12V  
VIN = 36V  
VIN = 24V  
VIN = 36V  
VIN = 36V  
FIGURE 8 APPLICATION  
CIRCUIT, PWM MODE  
FIGURE 7 APPLICATION  
CIRCUIT, PWM MODE  
VOUT = 12V  
V
OUT = 2.5V  
3.29  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
IN  
GND  
IN  
VCC  
EN/UVLO  
A
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
toc06  
toc06a  
toc06b  
5.1  
5.08  
5.06  
5.04  
5.02  
5
2.54  
2.53  
2.52  
2.51  
2.5  
12.35  
FIGURE 6 APPLICATION  
CIRCUIT, PFM MODE  
FIGURE 7 APPLICATION  
CIRCUIT, PFM MODE  
FIGURE 8 APPLICATION  
CIRCUIT, PFM MODE  
12.3  
VOUT = 5V  
VOUT = 2.5V  
VOUT = 12V  
VIN = 24V  
12.25  
VIN = 18V  
VIN = 12V  
12.2  
VIN = 24V  
VIN = 36V  
VIN = 6V,24V  
VIN = 12V  
VIN = 36V  
VIN = 36V  
12.15  
12.1  
12.05  
12  
2.49  
4.98  
2.48  
0
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
FEEDBACK VOLTAGE  
vs. LOAD CURRENT  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
toc06c  
toc07  
toc08  
0.92  
0.915  
0.91  
3.303  
3.302  
3.301  
3.3  
5.003  
5.002  
5.001  
5
PFM MODE  
FIGURE 5 APPLICATION  
CIRCUIT, PWM MODE  
OUT = 3.3V  
FIGURE 5 APPLICATION  
CIRCUIT, PWM MODE  
V
V
OUT = 5V  
VIN = 12V  
VIN = 24V  
VIN = 36V  
VIN = 6V,24V  
4.999  
4.998  
4.997  
4.996  
0.905  
0.9  
VIN = 36V  
3.299  
3.298  
3.297  
VIN = 12V  
50  
VIN = 12V  
VIN = 24V  
150  
VIN = 36V  
0.895  
0
50  
100  
150  
200  
250  
300  
0
100  
200  
250  
300  
0
50  
100  
150  
200  
250  
300  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE  
vs. TEMPERATURE  
OUTPUT VOLTAGE vs. TEMPERATURE  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
FIGURE 6 APPLICATION  
CIRCUIT, LOAD = 300mA  
FIGURE 5 APPLICATION  
CIRCUIT, LOAD = 300mA  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
IN  
GND  
IN  
VCC  
EN/UVLO A  
NO-LOAD SUPPLY CURRENT  
vs. INPUT VOLTAGE  
FEEDBACK VOLTAGE  
VS. TEMPERATURE  
100  
98  
96  
94  
92  
90  
toc10a  
0.908  
0.904  
0.900  
0.896  
0.892  
0.888  
0.884  
0.880  
PFM MODE  
45 55  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
5
15  
25  
35  
INPUT VOLTAGE (V)  
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN CURRENT  
vs. INPUT VOLTAGE  
140  
6
130  
120  
110  
100  
90  
5
4
3
2
1
0
80  
70  
PFM MODE  
60  
5
15  
25  
35  
45  
55  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
SWITCH CURRENT LIMIT  
vs. INPUT VOLTAGE  
600  
550  
500  
450  
400  
350  
300  
250  
200  
2.40  
2.25  
2.10  
1.95  
1.80  
1.65  
1.50  
SWITCH PEAK CURRENT LIMIT  
SWITCH NEGATIVE CURRENT LIMIT  
5
15  
25  
35  
45  
55  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
IN  
GND  
IN  
VCC  
EN/UVLO A  
EN/UVLO THRESHOLD  
vs. TEMPERATURE  
SWITCH CURRENT LIMIT  
vs. TEMPERATURE  
600  
550  
500  
450  
400  
350  
300  
250  
200  
1.24  
1.22  
1.20  
1.18  
1.16  
1.14  
1.12  
1.10  
1.08  
RISING  
SWITCH PEAK CURRENT LIMIT  
SWITCH NEGATIVE CURRENT LIMIT  
FALLING  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
RESET THRESHOLD  
vs. TEMPERATURE  
560  
540  
520  
500  
480  
460  
98  
97  
96  
95  
94  
93  
92  
91  
90  
RISING  
FALLING  
440  
0
10  
20  
30  
40  
50  
60  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
LOAD TRANSIENT RESPONSE,  
PFM MODE (LOAD CURRENT STEPPED  
LOAD TRANSIENT RESPONSE,  
PFM MODE (LOAD CURRENT STEPPED  
FROM 5mA TO 150mA)  
FROM 5mA TO 150mA)  
MAX15462 toc20  
MAX15462 toc21  
V
OUT  
(AC)  
100mV/div  
V
OUT  
(AC)  
100mV/div  
FIGURE 5  
FIGURE 6  
APPLICATION CIRCUIT  
APPLICATION CIRCUIT  
V
OUT  
= 3.3V  
V
= 5V  
OUT  
I
I
OUT  
OUT  
100mA/div  
100mA/div  
100µs/div  
100µs/div  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
IN  
GND  
IN  
VCC  
EN/UVLO A  
LOAD TRANSIENT RESPONSE  
LOAD TRANSIENT RESPONSE,  
PFM MODE (LOAD CURRENT STEPPED  
FROM 5mA TO 150mA)  
PFM MODE (LOAD CURRENT STEPPED  
FROM 5mA TO 150mA)  
toc21b  
toc21a  
VOUT (AC)  
VOUT (AC)  
100mV/div  
200mV/div  
FIGURE 8  
APPLICATION CIRCUIT  
FIGURE 7  
APPLICATION CIRCUIT  
VOUT = 2.5V  
V
= 12V  
OUT  
IOUT  
IOUT  
100mA/div  
100mA/div  
100µs/div  
100µs/div  
LOAD TRANSIENT RESPONSE,  
LOAD TRANSIENT RESPONSE,  
PFM OR PWM MODE (LOAD CURRENT  
PFM OR PWM MODE (LOAD CURRENT  
STEPPED FROM 150mA TO 300mA)  
STEPPED FROM 150mA TO 300mA)  
MAX15062 toc22  
MAX15062 toc23  
V
(AC)  
V
(AC)  
OUT  
100mV/div  
OUT  
100mV/div  
I
OUT  
I
OUT  
100mA/div  
100mA/div  
FIGURE 5  
FIGURE 6  
APPLICATION CIRCUIT  
APPLICATION CIRCUIT  
V
OUT  
= 3.3V  
V
= 5V  
OUT  
40µs/div  
40µs/div  
LOAD TRANSIENT RESPONSE  
PFM OR PWM MODE (LOAD CURRENT  
STEPPED FROM 150mA TO 300mA)  
LOAD TRANSIENT RESPONSE  
PFM OR PWM MODE (LOAD CURRENT  
STEPPED FROM 150mA TO 300mA)  
toc23b  
toc23a  
VOUT (AC)  
50mV/div  
VOUT (AC)  
200mV/div  
IOUT  
100mA/div  
IOUT  
FIGURE 8  
APPLICATION CIRCUIT  
FIGURE 7  
APPLICATION CIRCUIT  
100mA/div  
V
= 12V  
V
= 2.5V  
OUT  
OUT  
40µs/div  
40µs/div  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
IN  
GND  
IN  
VCC  
EN/UVLO A  
LOAD TRANSIENT RESPONSE,  
PWM MODE (LOAD CURRENT  
LOAD TRANSIENT RESPONSE,  
PWM MODE PWM mode (LOAD CURRENT  
STEPPED FROM NO LOAD TO 150mA)  
STEPPED FROM NO LOAD TO 150mA)  
MAX15062 toc24  
MAX15062 toc25  
V
(AC)  
V
(AC)  
OUT  
OUT  
100mV/div  
100mV/div  
FIGURE 5  
FIGURE 6  
APPLICATION CIRCUIT  
APPLICATION CIRCUIT  
V
OUT  
= 5V  
V
= 3.3V  
OUT  
I
OUT  
I
OUT  
100mA/div  
100mA/div  
40µs/div  
40µs/div  
LOAD TRANSIENT RESPONSE  
LOAD TRANSIENT RESPONSE  
PWM MODE (LOAD CURRENT STEPPED  
PWM MODE (LOAD CURRENT STEPPED  
FROM NO LOAD TO 150mA)  
FROM NO LOAD TO 150mA)  
toc25a  
toc25b  
VOUT (AC)  
VOUT (AC)  
50mV/div  
200mV/div  
FIGURE 8  
APPLICATION CIRCUIT  
FIGURE 7  
APPLICATION CIRCUIT  
V = 12V  
OUT  
V
= 2.5V  
OUT  
IOUT  
IOUT  
100mA/div  
100mA/div  
40µs/div  
40µs/div  
FULL-LOAD SWITCHING WAVEFORMS  
SWITCHING WAVEFORMS  
(PFM MODE)  
(PWM OR PFM MODE)  
MAX15062 toc27  
MAX15062 toc26  
FIGURE 6 APPLICATION CIRCUIT  
= 5V, LOAD = 20mA  
V
= 5V,  
OUT  
V
OUT  
LOAD = 300mA  
V (AC)  
OUT  
20mV/div  
V
(AC)  
OUT  
100mV/div  
V
LX  
V
LX  
10V/div  
10V/div  
I
I
OUT  
OUT  
100mA/div  
200mA/div  
10µs/div  
s/div  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
IN  
GND  
IN  
VCC  
EN/UVLO A  
NO-LOAD SWITCHING WAVEFORMS  
SOFT-START  
(PWM MODE)  
MAX15062 toc29  
MAX15062 toc28  
V
OUT  
= 5V  
V
EN/UVLO  
5V/div  
V (AC)  
OUT  
20mV/div  
V
OUT  
1V/div  
V
LX  
10V/div  
FIGURE 5  
APPLICATION CIRCUIT  
= 3.3V  
V
OUT  
I
OUT  
100mA/div  
I
OUT  
100mA/div  
V
RESET  
5V/div  
1ms/div  
s/div  
SOFT-START  
SOFT-START  
MAX15062 toc30  
toc30a  
VEN/UVLO  
5V/div  
V
EN/UVLO  
5V/div  
VOUT  
1V/div  
IOUT  
V
OUT  
1V/div  
100mA/div  
FIGURE 6  
FIGURE 7  
APPLICATION CIRCUIT  
APPLICATION CIRCUIT  
= 5V  
V
= 2.5V  
V
OUT  
OUT  
I
OUT  
100mA/div  
VRESET  
5V/div  
V
RESET  
5V/div  
1ms/div  
1ms/div  
SHUTDOWN WITH ENABLE  
SOFT-START  
MAX15062 toc31  
toc30b  
VEN/UVLO  
5V/div  
V
EN/UVLO  
5V/div  
V
OUT  
1V/div  
VOUT  
5V/div  
I
OUT  
100mA/div  
IOUT  
100mA/div  
FIGURE 8  
APPLICATION CIRCUIT  
= 12V  
V
OUT  
V
RESET  
5V/div  
VRESET  
5V/div  
400µs/div  
1ms/div  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Typical Operating Characteristics (continued)  
(V = 24V, V  
= 0V, C = C  
= 1µF, V  
= 1.5V, T = +25°C, unless otherwise noted.)  
IN  
GND  
IN  
VCC  
EN/UVLO  
A
SOFT-START WITH 3V PREBIAS  
OVERLOAD PROTECTION  
BODE PLOT  
MAX15062 toc32  
MAX15062 toc33  
MAX15062 toc34  
50  
180  
144  
108  
72  
40  
30  
20  
10  
0
V
V
EN/UVLO  
5V/div  
IN  
20V/div  
GAIN  
PHASE  
V
OUT  
36  
V
OUT  
2V/div  
1V/div  
0
FIGURE 6  
APPLICATION CIRCUIT  
NO LOAD  
f
= 47kHz,  
PHASE MARGIN = 59°  
CR  
-10  
-20  
-30  
-40  
-50  
-36  
-72  
-108  
-144  
-180  
PWM MODE  
FIGURE 5 APPLICATION CIRCUIT  
= 3.3V  
I
V
OUT  
200mA/div  
OUT  
V
RESET  
5V/div  
2
4
6 8 1  
10k  
2
4
6 8 1  
100k  
2
1k  
FREQUENCY (Hz)  
1ms/div  
20ms/div  
BODE PLOT  
BODE PLOT  
MAX15062 toc35  
MAX15062 toc35a  
50  
40  
180  
144  
108  
72  
50  
40  
180  
GAIN  
144  
108  
GAIN  
30  
30  
PHASE  
20  
20  
72  
PHASE  
10  
36  
10  
36  
0
0
0
0
f
= 43kHz,  
PHASE MARGIN = 60°  
CR  
f
= 47kHz,  
CR  
PHASE MARGIN = 60°  
-10  
-20  
-30  
-40  
-50  
-36  
-72  
-108  
-144  
-180  
-10  
-20  
-30  
-40  
-50  
-36  
-72  
FIGURE 7 APPLICATION CIRCUIT  
V
FIGURE 6 APPLICATION CIRCUIT  
= 5V  
-108  
-144  
-180  
= 2.5V  
V
OUT  
OUT  
2
4
6 8 1  
10k  
2
4
6 8 1  
100k  
2
1k  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
MAX15462, 5V OUTPUT, 0.3A LOAD CURRENT  
,
CONDUCTED EMI CURVE  
BODE PLOT  
toc36  
MAX15062 toc35b  
50  
40  
180  
144  
108  
72  
70  
GAIN  
30  
QUASI-PEAK LIMIT  
AVERAGE LIMIT  
60  
50  
40  
30  
20  
10  
20  
PHASE  
10  
36  
0
0
f
= 36kHz,  
CR  
PHASE MARGIN = 66°  
-10  
-20  
-30  
-40  
-50  
-36  
-72  
-108  
-144  
-180  
PEAK  
EMISSIONS  
FIGURE 8 APPLICATION CIRCUIT  
AVERAGE  
EMISSIONS  
V
= 12V  
OUT  
30  
1
10  
0.15  
1k  
10k  
100k  
FREQUENCY (MHz)  
FREQUENCY (Hz)  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Pin Configuration  
TOP VIEW  
LX  
8
GND RESET MODE  
5
7
6
MAX15462  
1
2
3
4
FB/V  
+
V
IN  
EN/UVLO  
V
CC  
OUT  
TDFN  
(2mm x 2mm)  
Pin Description  
PIN  
NAME  
FUNCTION  
1
V
Switching Regulator Power Input. Connect a X7R 1µF ceramic capacitor from V to GND for bypassing.  
IN  
IN  
Active-High, Enable/Undervoltage-Detection Input. Pull EN/UVLO to GND to disable the regulator  
2
3
4
EN/UVLO  
output. Connect EN/UVLO to V for always-on operation. Connect a resistor-divider between V and  
EN/UVLO to GND to program the input voltage at which the device is enabled and turns on.  
IN  
IN  
V
Internal LDO Power Output. Bypass V  
to GND with a minimum 1µF capacitor.  
CC  
CC  
Feedback Input. For fixed-output voltage versions, connect FB/V  
directly to the output. For the  
OUT  
FB/V  
adjustable output voltage version, connect FB/V  
to a resistor-divider between V  
and GND to  
OUT  
OUT  
OUT  
adjust the output voltage from 0.9V to 0.89 x V  
.
IN  
PFM/PWM Mode Selection Input. Connect MODE to GND to enable the fixed-frequency PWM  
operation. Leave unconnected for light-load PFM operation.  
5
6
MODE  
Open-Drain Reset Output. Pull up RESET to an external power supply with an external resistor.  
RESET goes low when the output voltage drops below 92% of the set nominal regulated voltage.  
RESET goes high impedance 2ms after the output voltage rises above 95% of its regulation value. See  
the Electrical Characteristics table for threshold values.  
RESET  
Ground. Connect GND to the power ground plane. Connect all the circuit ground connections together at  
a single point. See the PCB Layout Guidelines section.  
7
GND  
LX  
Inductor Connection. Connect LX to the switching-side of the inductor. LX is high impedance when the  
device is in shutdown.  
8
Maxim Integrated  
13  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Block Diagram  
V
IN  
LDO  
REGULATOR  
PEAK-LIMIT  
RUNAWAY-  
LIMIT  
CURRENT-  
SENSE  
CURRENT-  
SENSE  
V
CC  
CS  
LOGIC  
AMPLIFIER  
PFM  
MAX15462  
POK  
EN/UVLO  
DH  
HIGH-SIDE  
DRIVER  
CHIPEN  
CLK  
1.215V  
THERMAL  
SHUTDOWN  
LX  
V
CC  
OSCILLATOR  
SLOPE  
500k  
MODE  
DL  
PFM/PWM  
CONTROL  
LOGIC  
LOW-SIDE  
DRIVER  
MODE SELECT  
0.55V  
CC  
SLOPE  
CS  
R1  
*
LOW-SIDE  
CURRENT  
SENSE  
SINK-LIMIT  
PWM  
FB/V  
OUT  
NEGATIVE  
CURRENT  
REF  
ERROR  
AMPLIFIER  
GND  
R2  
3.135V FOR MAX15462A  
4.75V FOR MAX15462B  
0.859V FOR MAX15462C  
CLK  
RESET  
REFERENCE  
SOFT-START  
2ms  
DELAY  
FB/V  
OUT  
*RESISTOR-DIVIDER ONLY FOR MAX15462A, MAX15462B  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
loads. However, the PWM mode of operation gives lower  
efficiency at light loads compared to PFM mode of operation.  
Detailed Description  
The MAX15462 high-efficiency, high-voltage, synchronous  
step-down DC-DC converter with integrated MOSFETs  
operates over a wide 4.5V to 42V input voltage range.  
The converter delivers output current up to 300mA at  
3.3V (MAX15462A), 5V (MAX15462B), and adjustable  
output voltages (MAX15462C). When EN/UVLO and  
PFM Mode Operation  
PFM mode operation disables negative inductor current  
and skips pulses at light loads for high efficiency. In  
PFM mode, the inductor current is forced to a fixed  
peak of 130mA every clock cycle until the output rises to  
102.3% of the nominal voltage. Once the output reaches  
102.3% of the nominal voltage, both high-side and low-  
side FETs are turned off and the part enters hibernate  
operation until the load discharges the output to 101.1%  
of the nominal voltage. Most of the internal blocks are  
turned off in hibernate operation to save quiescent cur-  
rent. After the output falls below 101.1% of the nominal  
voltage, the device comes out of hibernate operation,  
turns on all internal blocks, and again commences the  
process of delivering pulses of energy to the output until  
it reaches 102.3% of the nominal output voltage. The device  
naturally exits PFM mode when the load current exceeds  
55mA (typ). The advantage of the PFM mode is higher  
efficiency at light loads because of lower quiescent  
current drawn from supply.  
V
CC  
UVLO are satisfied, an internal power-up sequence  
soft-starts the error-amplifier reference, resulting in a  
clean monotonic output-voltage soft-start independent of  
the load current. The FB/V  
pin monitors the output  
OUT  
voltage through a resistor-divider. RESET transitions  
to a high-impedance state 2ms after the output voltage  
reaches 95% of regulation. The device selects either  
PFM or forced-PWM mode depending on the state of the  
MODE pin at power-up. By pulling the EN/UVLO pin low,  
the device enters the shutdown mode and consumes only  
2.2µA (typ) of standby current.  
DC-DC Switching Regulator  
The device uses an internally compensated, fixed-frequency,  
current-mode control scheme (see the Block Diagram).  
On the rising-edge of an internal clock, the high-side  
pMOSFET turns on. An internal error amplifier compares  
the feedback voltage to a fixed internal reference voltage  
and generates an error voltage. The error voltage is com-  
pared to a sum of the current-sense voltage and a slope-  
compensation voltage by a PWM comparator to set the  
on-time. During the on-time of the pMOSFET, the induc-  
tor current ramps up. For the remainder of the switching  
period (off-time), the pMOSFET is kept off and the low-  
side nMOSFET turns on. During the off-time, the inductor  
releases the stored energy as the inductor current ramps  
down, providing current to the output. Under overload  
conditions, the cycle-by-cycle current-limit feature limits  
the inductor peak current by turning off the high-side  
pMOSFET and turning on the low-side nMOSFET.  
Internal 5V Linear Regulator  
An internal regulator provides a 5V nominal supply to  
power the internal functions and to drive the power  
MOSFETs. The output of the linear regulator (V ) should  
CC  
be bypassed with a 1µF capacitor to GND. The V  
CC  
regulator dropout voltage is typically 150mV. An undervolt-  
age-lockout circuit that disables the regulator when V  
CC  
UVLO hysteresis  
falls below 3.8V (typ). The 400mV V  
CC  
prevents chattering on power-up and power-down.  
Enable Input (EN/UVLO), Soft-Start  
When EN/UVLO voltage is above 1.21V (typ), the device’s  
internal error-amplifier reference voltage starts to ramp up.  
The duration of the soft-start ramp is 4.1ms, allowing a  
smooth increase of the output voltage. Driving EN/UVLO  
low disables both power MOSFETs, as well as other internal  
Mode Selection (MODE)  
The logic state of the MODE pin is latched after V  
CC  
circuitry, and reduces V quiescent current to below 2.2µA.  
IN  
and EN/UVLO voltages exceed respective UVLO rising  
thresholds and all internal voltages are ready to allow  
LX switching. If the MODE pin is unconnected at power-  
up, the part operates in PFM mode at light loads. If the  
MODE pin is grounded at power-up, the part operates in  
constant-frequency PWM mode at all loads. State changes  
on the MODE pin are ignored during normal operation.  
EN/UVLO can be used as an input-voltage UVLO adjustment  
input. An external voltage-divider between V and EN/UVLO  
IN  
to GND adjusts the input voltage at which the device turns  
on or turns off. If input UVLO programming is not desired,  
connect EN/UVLO to V (see the Electrical Characteristics  
IN  
table for EN/UVLO rising and falling threshold voltages).  
PWM Mode Operation  
In PWM mode, the inductor current is allowed to go  
negative. PWM operation is useful in frequency-sensitive  
applications, providing fixed switching frequency at all  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
a fault condition, the output voltage drops to 65% (typ)  
of its nominal value any time after soft-start is complete,  
Reset Output (RESET)  
The device includes an open-drain RESET output to  
monitor the output voltage. RESET goes high impedance  
2ms after the output rises above 95% of its nominal set  
value and pulls low when the output voltage falls below  
92% of the set nominal regulated voltage. RESET asserts  
low during the hiccup timeout period.  
hiccup mode is triggered. In hiccup mode, the converter  
is protected by suspending switching for a hiccup timeout  
period of 131ms. Once the hiccup timeout period expires,  
soft-start is attempted again. Hiccup mode of operation  
ensures low power dissipation under output short-circuit  
conditions.  
Startup into a Prebiased Output  
Care should be taken in board layout and system wiring  
to prevent violation of the absolute maximum rating of the  
The device is capable of soft-start into a prebiased  
output, without discharging the output capacitor in both the  
PFM and forced-PWM modes. Such a feature is useful in  
applications where digital integrated circuits with multiple  
rails are powered.  
FB/V  
pin under short-circuit conditions. Under such  
OUT  
conditions, it is possible for the ceramic output capacitor  
to oscillate with the board or wiring inductance between  
the output capacitor or short-circuited load, thereby causing  
the absolute maximum rating of FB/V  
(-0.3V) to be  
OUT  
Operating Input Voltage Range  
exceeded. The parasitic board or wiring inductance should  
be minimized, and the output voltage waveform under  
short-circuit operation should be verified, to ensure the  
The maximum operating input voltage is determined  
by the minimum controllable on-time and the minimum  
operating input voltage is determined by the maximum  
duty cycle and circuit voltage drops. The minimum and  
maximum operating input voltages for a given output  
voltage should be calculated as follows:  
absolute maximum rating of FB/V  
is not exceeded.  
OUT  
Thermal Overload Protection  
Thermal overload protection limits the total power  
dissipation in the device. When the junction temperature  
exceeds +166°C, an on-chip thermal sensor shuts down  
the device, turns off the internal power MOSFETs, allowing  
the device to cool down. The thermal sensor turns the  
device on after the junction temperature cools by 10°C.  
V
+ (I  
×(R  
+ 0.5))  
DCR  
OUT  
OUT  
D
V
=
+ (I  
×1.0)  
OUT  
INMIN  
MAX  
V
OUT  
V
=
INMAX  
t
× f  
ONMIN SW  
Applications Information  
where V  
the maximum load current, R  
the inductor, f  
is maximum duty cycle (0.9), and t  
is the steady-state output voltage, I  
is  
OUT  
OUT  
is the DC resistance of  
DCR  
Inductor Selection  
A low-loss inductor having the lowest possible DC  
resistance that fits in the allotted dimensions should be  
is the switching frequency (max), D  
SW  
MAX  
is the worst-  
ONMIN  
case minimum controllable switch on-time (130ns).  
selected. The saturation current (I  
) must be high  
SAT  
enough to ensure that saturation cannot occur below the  
Overcurrent Protection/Hiccup Mode  
maximum current-limit value (I ) of 0.56A (typ).  
PEAK-LIMIT  
The device is provided with a robust overcurrent protec-  
tion scheme that protects the device under overload and  
output short-circuit conditions. A cycle-by-cycle peak  
current limit turns off the high-side MOSFET whenever  
the high-side switch current exceeds an internal limit  
of 0.56A (typ). A runaway current limit on the high-side  
switch current at 0.66A (typ) protects the device under  
high input voltage, and short-circuit conditions when  
there is insufficient output voltage available to restore the  
inductor current that was built up during the on period of  
the step-down converter. One occurrence of the runaway  
current limit triggers a hiccup mode. In addition, if, due to  
The required inductance for a given application can be  
determined from the following equation:  
L = 9.3 x V  
OUT  
where L is inductance in µH and V  
is output voltage.  
OUT  
Once the L value is known, the next step is to select the  
right core material. Ferrite and powdered iron are com-  
monly available core materials. Ferrite cores have low  
core losses and are preferred for high-efficiency designs.  
Powdered iron cores have more core losses and are rela-  
tively cheaper than ferrite cores. See Table 1 to select the  
inductors for typical applications.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Table 1. Inductor Selection  
INPUT VOLTAGE  
RANGE V (V)  
IN  
V
(V)  
I
(mA)  
OUT  
L (µH)  
RECOMMENDED PART NO.  
Coilcraft LPS4018-333ML  
OUT  
4.5 to 42  
6 to 42  
3.3  
300  
33  
47  
5
300  
300  
300  
300  
Coilcraft LPS4018-473ML  
Coilcraft LPS4018-223ML  
Wurth 74408943101  
4.5 to 42  
14 to 42  
17 to 42  
1.8 or 2.5  
22  
12  
15  
100  
150  
TDK VLC6045T-151M  
Table 2. Output Capacitor Selection  
INPUT VOLTAGE  
RANGE V (V)  
IN  
V
(V)  
I
(mA)  
OUT  
COUT (µF)  
RECOMMENDED PART NO.  
OUT  
4.5 to 42  
6 to 42  
3.3  
300  
10µF/1206/X7R/6.3V Murata GRM31CR70J106K  
10µF/1206/X7R/6.3V Murata GRM31CR70J106K  
22µF/1206/X7R/6.3V Murata GRM31CR70J226K  
4.7µF/1206/X7R/16V Murata GRM31CR71C475K  
4.7µF/1206/X7R/25V Murata GRM31CR71E475K  
5
300  
300  
300  
300  
4.5 to 42  
14 to 42  
17 to 42  
1.8 or 2.5  
12  
15  
application, such that the output-voltage deviation is less  
than 3%. Required output capacitance can be calculated  
from the following equation:  
V
IN  
V
IN  
R1  
R2  
MAX15462  
EN/UVLO  
30  
C
=
OUT  
V
OUT  
where C  
is the output capacitance in µF and V  
OUT  
OUT  
is the output voltage. See Table 2 to select the output  
capacitor for typical applications. It should be noted that  
dielectric materials used in ceramic capacitors exhibit  
capacitance loss due to DC bias levels and should be  
appropriately derated to ensure the required output  
capacitance is obtained in the application.  
Figure 1. Adjustable EN/UVLO Network  
Input Capacitor  
Small ceramic capacitors are recommended for the  
device. The input capacitor reduces peak current drawn  
from the power source and reduces noise and voltage  
ripple on the input caused by the switching circuitry. A  
minimum of 1µF, X7R-grade capacitor is recommended  
for the input capacitor of the device to keep the input  
voltage ripple under 2% of the minimum input voltage,  
and to meet the maximum ripple-current requirements.  
Setting the Input Undervoltage-Lockout Level  
The devices offer an adjustable input undervoltage-  
lockout level. Set the voltage at which the device turns  
on with a resistive voltage-divider connected from V  
IN  
to GND (see Figure 1). Connect the center node of the  
divider to EN/UVLO.  
Choose R1 to be 3.3MΩ max, and then calculate R2 as follows:  
R1×1.215  
R2 =  
Output Capacitor  
Small ceramic X7R-grade capacitors are sufficient and  
recommended for the device. The output capacitor has  
two functions. It filters the square wave generated by the  
device along with the output inductor. It stores sufficient  
energy to support the output voltage under load transient  
conditions and stabilizes the device’s internal control  
loop. Usually, the output capacitor is sized to support a  
step load of 50% of the maximum output current in the  
(V  
-1.215)  
INU  
where V  
is the voltage at which the device is required  
INU  
to turn on. If the EN/UVLO pin is driven from an external  
signal source, a series resistance of minimum 1kΩ is  
recommended to be placed between the signal source  
output and the EN/UVLO pin, to reduce voltage ringing  
on the line.  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Adjusting the Output Voltage  
PCB Layout Guidelines  
The MAX15462C output voltage can be programmed from  
Careful PCB layout is critical to achieve clean and stable  
operation. The switching power stage requires particular  
attention. Follow the guidelines below for good PCB layout.  
0.9V to 0.89 x V . Set the output voltage by connecting a  
IN  
resistor-divider from output to FB to GND (see Figure 2).  
For output voltages less than 6V, choose R2 in the 50kΩ  
to 150kΩ range. For the output voltages greater than 6V,  
choose R2 in the 25kΩ to 75kΩ range and calculate R1  
with the following equation:  
● Place the input ceramic capacitor as close as possible  
to the V and GND pins.  
IN  
● Connect the negative terminal of the V  
bypass  
CC  
capacitor to the GND pin with shortest possible trace or  
ground plane.  
V
OUT  
● Minimize the area formed by the LX pin and the inductor  
R1 = R2 ×  
1  
0.9  
connection to reduce the radiated EMI.  
● Place the V decoupling capacitor as close as possible  
CC  
Power Dissipation  
to the V  
pin.  
CC  
At a particular operating condition, the power losses that  
lead to temperature rise of the part are estimated as fol-  
lows:  
● Ensure that all feedback connections are short and  
direct.  
● Route the high-speed switching node (LX) away from  
1  
the FB/V , RESET, and MODE pins.  
OUT  
2
P
= P  
×
- 1 - (I  
×R  
)
DCR  
LOSS  
OUT  
OUT  
η
For a sample PCB layout that ensures the first-pass  
success, refer to the MAX15462 evaluation kit layouts  
available at www.maximintegrated.com.  
P
= V  
×I  
OUT OUT  
OUT  
where P  
is the output power, η is the efficiency of  
OUT  
power conversion, and R  
is the DC resistance of the  
DCR  
output inductor. See the Typical Operating Characteristics  
for the power-conversion efficiency or measure the  
efficiency to determine the total power dissipation.  
V
OUT  
R1  
R2  
The junction temperature (T ) of the device can be  
J
FB  
MAX15462C  
GND  
estimated at any ambient temperature (T ) from the  
A
following equation:  
T = T + θ ×P  
LOSS  
(
)
J
A
JA  
where θ is the junction-to-ambient thermal impedance  
JA  
of the package. Junction temperature greater than +125°C  
degrades operating lifetimes.  
Figure 2. Setting the Output Voltage  
Maxim Integrated  
18  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
L1  
V
V
IN  
V
OUT  
LX  
IN  
C
IN  
C
OUT  
R1  
R2  
GND  
EN/UVLO  
MAX15462A/B  
V
OUT  
V
CC  
V
CC  
RESET  
C
VCC  
R3  
MODE  
V
CC  
V
PLANE  
IN  
C
IN  
U1  
L1  
LX  
R1  
V
IN  
EN/UVLO  
GND  
RESET  
C
OUT  
V
CC  
R2  
V
OUT  
C
MODE  
VCC  
V
OUT  
PLANE  
GND  
PLANE  
R3  
VIAS TO V  
VIAS TO V  
VIAS TO BOTTOM-SIDE GROUND PLANE  
OUT  
CC  
Figure 3. Layout Guidelines for MAX15462A and MAX15462B  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
L1  
V
V
IN  
V
OUT  
LX  
IN  
C
IN  
C
OUT  
R1  
R2  
GND  
EN/UVLO  
R4  
R5  
MAX15462C  
FB  
V
CC  
V
CC  
RESET  
C
VCC  
R3  
MODE  
V
CC  
V
PLANE  
IN  
C
IN  
U1  
L1  
LX  
R1  
V
IN  
EN/UVLO  
GND  
RESET  
C
OUT  
V
CC  
R2  
FB  
C
MODE  
VCC  
V
OUT  
PLANE  
R5  
R4  
GND  
PLANE  
R3  
VIAS TO V  
VIAS TO V  
VIAS TO BOTTOM-SIDE GROUND PLANE  
OUT  
CC  
Figure 4. Layout Guidelines for MAX15462C  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
L1  
L1  
V
OUT  
V
OUT  
33µH  
47µH  
V
IN  
V
IN  
3.3V,  
300mA  
5V,  
300mA  
4.5V TO  
6V TO  
42V  
V
LX  
V
LX  
IN  
IN  
C
1µF  
C
IN  
1µF  
IN  
C
10µF  
C
OUT  
10µF  
42V  
OUT  
EN/UVLO  
GND  
EN/UVLO  
GND  
MAX15462A  
MAX15462B  
V
CC  
V
CC  
RESET  
RESET  
C
VCC  
1µF  
C
VCC  
1µF  
V
V
MODE  
MODE  
OUT  
OUT  
MODE = GND FOR PWM  
MODE = OPEN FOR PFM  
MODE = GND FOR PWM  
MODE = OPEN FOR PFM  
L1: COILCRAFT LPS4018-333ML  
L1: COILCRAFT LPS4018-473ML  
C
C
: MURATA 10µF/X7R/6.3V/1206 GRM31CR70J106K  
: MURATA 1μF/X7R/50V/1206 GRM31CR71H105K  
C
: MURATA 10µF/X7R/6.3V/1206 GRM31CR70J106K  
OUT  
OUT  
C : MURATA 1μF/X7R/50V/1206 GRM31CR71H105K  
IN  
IN  
Figure 5. 3.3V, 300mA Step-Down Regulator  
Figure 6. 5V, 300mA Step-Down Regulator  
L1  
L1  
V
OUT  
V
OUT  
22µH  
100µH  
V
IN  
V
IN  
2.5V,  
300mA  
12V,  
300mA  
4.5V TO  
42V  
14V TO  
42V  
V
LX  
V
LX  
IN  
IN  
C
1µF  
C
IN  
1µF  
IN  
C
22µF  
C
4.7µF  
OUT  
OUT  
EN/UVLO  
GND  
EN/UVLO  
GND  
R1  
133kΩ  
R1  
499kΩ  
MAX15462C  
MAX15462C  
V
CC  
FB  
V
CC  
FB  
C
VCC  
1µF  
C
VCC  
1µF  
R2  
75kΩ  
R2  
40.2kΩ  
MODE  
MODE  
RESET  
RESET  
MODE = GND FOR PWM  
MODE = OPEN FOR PFM  
MODE = GND FOR PWM  
MODE = OPEN FOR PFM  
L1: COILCRAFT LPS4018-223ML  
L1: Wurth 74408943101  
C
C
: MURATA 22µF/X7R/6.3V/1206 (GRM31CR70J226K)  
: M URATA 1μF/X7R/50V/1206 (GRM31CR71H105K)  
C
: MURATA 4.7µF/X7R/16V/1206 (GRM31CR71C475K)  
OUT  
OUT  
C : M URATA 1μF/X7R/50V/1206 (GRM31CR71H105K)  
IN  
IN  
Figure 7. 2.5V, 300mA Step-Down Regulator  
Figure 8. 12V, 300mA Step-Down Regulator  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
L1  
L1  
V
OUT  
V
OUT  
22µH  
150µH  
V
IN  
V
IN  
1.8V,  
300mA  
15V,  
300mA  
4.5V TO  
17V TO  
42V  
V
LX  
V
LX  
IN  
IN  
C
1µF  
C
IN  
1µF  
IN  
C
22µF  
C
OUT  
4.7µF  
42V  
OUT  
EN/UVLO  
GND  
EN/UVLO  
GND  
R1  
75kΩ  
R1  
499kΩ  
MAX15462C  
MAX15462C  
V
CC  
FB  
V
CC  
FB  
C
VCC  
1µF  
C
VCC  
1µF  
R2  
75kΩ  
R2  
31.6kΩ  
MODE  
MODE  
RESET  
RESET  
MODE = GND FOR PWM  
MODE = OPEN FOR PFM  
MODE = GND FOR PWM  
MODE = OPEN FOR PFM  
L1: COILCRAFT LPS4018-223ML  
L1: TDK VLC6045T-151M  
C
C
: MURATA 22µF/X7R/6.3V/1206 (GRM31CR70J226K)  
: MURATA 1μF/X7R/50V/1206 (GRM31CR71H105K)  
C
: MURATA 4.7µF/X7R/25V/1206 (GRM31CR71E475K)  
OUT  
OUT  
C : MURATA 1μF/X7R/50V/1206 (GRM31CR71H105K)  
IN  
IN  
Figure 9. 1.8V, 300mA Step-Down Regulator  
Figure 10. 15V, 300mA Step-Down Regulator  
Ordering Information  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
V
OUT  
MAX15462AATA+ -40°C to +125°C  
MAX15462BATA+ -40°C to +125°C  
MAX15462CATA+ -40°C to +125°C  
8 TDFN  
3.3V  
5V  
8 TDFN  
8 TDFN  
Adj  
PACKAGE  
PACKAGE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
TYPE  
CODE  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
8 TDFN  
T822CN+1  
21-0487  
90-0349  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX15462  
42V, 300mA, Ultra-Small, High-Efficiency,  
Synchronous Step-Down DC-DC Converters  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1
3/15  
Initial release  
Updated junction temperature and added text TOC36  
2/17  
1–4, 12, 17, 18  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2017 Maxim Integrated Products, Inc.  
23  

相关型号:

MAX15462AATA

42V, 300mA, Ultra-Small, High-Efficiency Synchronous Step-Down DC-DC Converters
MAXIM

MAX15462BATA

42V, 300mA, Ultra-Small, High-Efficiency Synchronous Step-Down DC-DC Converters
MAXIM

MAX15462CATA

42V, 300mA, Ultra-Small, High-Efficiency Synchronous Step-Down DC-DC Converters
MAXIM

MAX1546ETL

PLASTIC ENCAPSULATED DEVICES
MAXIM

MAX1549

MAX1549 Evaluation Kit
MAXIM

MAX15492GTA/V+

Half Bridge Based MOSFET Driver, BICMOS, PDSO8, TDFN-8
MAXIM

MAX15492GTA/V+T

MOSFET Driver, BICMOS, PDSO8,
MAXIM

MAX1549ETL

Dual, Interleaved, Fixed-Frequency Step-Down Controller with a Dynamically Adjustable Output
MAXIM

MAX1549ETL+

Dual Switching Controller, Current-mode, 450kHz Switching Freq-Max, BICMOS, PQCC40, 6 X 6 MM, 0.8 MM HEIGHT, MO220WJJD-2, QFN-40
MAXIM

MAX1549ETL+T

Dual Switching Controller, Current-mode, 3A, 450kHz Switching Freq-Max, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, MO-220WJJD-2, TQFN-40
MAXIM

MAX1549EVKIT

MAX1549 Evaluation Kit
MAXIM

MAX154ACAG

CMOS High-Speed 8-Bit ADCs with Multiplexer and Reference
MAXIM