MAX1556ETB-T [MAXIM]

Switching Regulator, Current-mode, 2.25A, 1100kHz Switching Freq-Max, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEED-3, TDFN-10;
MAX1556ETB-T
型号: MAX1556ETB-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator, Current-mode, 2.25A, 1100kHz Switching Freq-Max, BICMOS, 3 X 3 MM, 0.80 MM HEIGHT, MO-229WEED-3, TDFN-10

信息通信管理 开关
文件: 总12页 (文件大小:714K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3336; Rev 0; 7/04  
16µA I , 1.2A PWM  
Q
Step-Down DC-DC Converters  
General Description  
Features  
The MAX1556/MAX1557 are low-operating-current  
(16µA), fixed-frequency step-down regulators. High effi-  
ciency, low-quiescent operating current, low dropout,  
and minimal (27µA) quiescent current in dropout make  
these converters ideal for powering portable devices  
from 1-cell Li-ion or 3-cell alkaline/NiMH batteries. The  
MAX1556 delivers up to 1.2A; has pin-selectable 1.8V,  
2.5V, and 3.3V outputs; and is also adjustable. The  
MAX1557 delivers up to 600mA; has pin-selectable 1V,  
1.3V, and 1.5V outputs; and is also adjustable.  
Up to 97% Efficiency  
95% Efficiency at 1mA Load Current  
Low 16µA Quiescent Current  
1MHz PWM Switching  
Tiny 3.3µH Inductor  
Selectable 3.3V, 2.5V, 1.8V, 1.5V, 1.3V, 1.0V, and  
Adjustable Output  
1.2A Guaranteed Output Current (MAX1556)  
The MAX1556/MAX1557 contain a low-on-resistance  
internal MOSFET switch and synchronous rectifier to  
maximize efficiency and dropout performance while  
minimizing external component count. A proprietary  
topology offers the benefits of a high fixed-frequency  
operation while still providing excellent efficiency at  
both light and full loads. A 1MHz PWM switching fre-  
quency keeps components small. Both devices also  
feature an adjustable soft-start to minimize battery tran-  
sient loading.  
Voltage Positioning Optimizes Load-Transient  
Response  
Low 27µA Quiescent Current in Dropout  
Low 0.1µA Shutdown Current  
No External Schottky Diode Required  
Analog Soft-Start with Zero Overshoot Current  
Small, 10-Pin, 3mm x 3mm TDFN Package  
The MAX1556/MAX1557 are available in a tiny 10-pin  
TDFN (3mm x 3mm) package.  
Applications  
Ordering Information  
TOP  
MARK  
PDAs and Palmtop Computers  
Cell Phones and Smart Phones  
Digital Cameras and Camcorders  
Portable MP3 and DVD Players  
Hand-Held Instruments  
PART  
TEMP RANGE PIN-PACKAGE  
10 TDFN-EP*  
(T1033-1)  
MAX1556ETB -40°C to +85°C  
ACQ  
10 TDFN-EP*  
(T1033-1)  
MAX1557ETB -40°C to +85°C  
*EP = Exposed paddle.  
ACR  
Typical Operating Circuit  
Pin Configuration  
TOP VIEW  
OUTPUT  
0.75V TO V  
INPUT  
2.6V TO 5.5V  
IN  
INP  
LX  
1
2
3
4
5
IN  
10 D1  
MAX1556/  
MAX1557  
GND  
SS  
INP  
LX  
9
8
7
6
PGND  
MAX1556/  
MAX1557  
IN  
D1  
D2  
PGND  
D2  
OUT  
SHDN  
VOLTAGE  
SELECT  
OUT  
SS  
ON  
OFF  
SHDN  
TDFN  
GND  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
ABSOLUTE MAXIMUM RATINGS  
IN, INP, OUT, D2, SHDN to GND ..........................-0.3V to +6.0V  
SS, D1 to GND.............................................-0.3V to (V + 0.3V)  
PGND to GND .......................................................-0.3V to +0.3V  
LX Current (Note 1)........................................................... 2.25A  
Output Short-Circuit Duration.....................................Continuous  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN  
Continuous Power Dissipation (T = +70°C)  
A
10-Pin TDFN (derate 24.4mW/°C above +70°C) .......1951mW  
Note 1: LX has internal clamp diodes to GND and IN. Applications that forward bias these diodes should take care not to exceed  
the IC’s package power-dissipation limits.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = V  
IN  
= V  
= 3.6V, T = - 40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
SHDN A A  
INP  
PARAMETER  
Input Voltage  
CONDITIONS  
MIN  
2.6  
TYP  
MAX  
5.5  
2.55  
25  
UNITS  
V
V
Undervoltage-Lockout Threshold  
V
rising and falling, 35mV hysteresis (typ)  
2.20  
2.35  
16  
IN  
No switching, D1 = D2 = GND  
Dropout  
Quiescent Supply Current  
µA  
27  
42  
T
= +25°C  
= +85°C  
0.1  
0.1  
1
A
A
Shutdown Supply Current  
Output Voltage Range  
SHDN = GND  
µA  
V
T
0.75  
-0.25  
-0.75  
-1.5  
V
IN  
No load  
+0.75  
0
+1.75  
+0.75  
0
300mA load  
T
A
= 0°C to +85°C  
(Note 2)  
600mA load  
-0.75  
-2.25  
1200mA load, MAX1556 only  
No load  
-2.75  
-0.75  
-1.5  
-1.25  
+2.25  
+1.5  
+0.50  
-1.0  
Output Accuracy  
%
300mA load  
T
A
= -40°C to +85°C  
(Note 2)  
600mA load  
-2.25  
-4.0  
1200mA load, MAX1556 only  
MAX1556  
MAX1557  
1200  
600  
Maximum Output Current  
OUT Bias Current  
mA  
µA  
T
T
= +25°C  
= +85°C  
0.01  
0.01  
3
0.1  
A
D1 = D2 = GND  
A
For preset output voltages  
No load  
4.5  
-0.50  
-1.2  
+0.75  
0
+1.75  
+1.2  
D1 = D2 = GND,  
= 0.75V at  
300mA load  
V
OUT  
300mA (typ),  
= 0°C to +85°C  
600mA load  
-1.75  
-3.25  
-1.25  
-1.75  
-2.75  
-4.25  
-0.75  
-2.25  
+0.25  
-1.25  
+2.25  
+1.50  
+0.25  
-1.00  
T
A
1200mA load, MAX1556 only  
No load  
FB Threshold Accuracy  
%
D1 = D2 = GND,  
= 0.75V  
300mA load  
V
OUT  
at 300mA (typ),  
= -40°C to +85°C  
600mA load  
T
A
1200mA load, MAX1556 only  
2
_______________________________________________________________________________________  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
ELECTRICAL CHARACTERISTICS (continued)  
(V = V  
IN  
= V  
= 3.6V, T = - 40°C to +85°C. Typical values are at T = +25°C, unless otherwise noted.) (Note 1)  
SHDN A A  
INP  
PARAMETER  
CONDITIONS  
MIN  
TYP  
-0.37  
0.33  
-0.1  
0.09  
0.19  
0.23  
0.35  
0.42  
0.27  
0.33  
1.8  
MAX  
UNITS  
V
V
V
V
V
V
V
V
= 2.6V to 3.6V  
= 3.6V to 5.5V  
= 2.6V to 3.6V  
= 3.6V to 5.5V  
= 3.6V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
MAX1556,  
D1 = IN, D2 = GND  
Line Regulation  
%
MAX1557,  
D1 = IN, D2 = GND  
0.35  
0.7  
MAX1556  
MAX1557  
= 2.6V  
p-Channel On-Resistance  
n-Channel On-Resistance  
= 3.6V  
= 2.6V  
V
V
= 3.6V  
= 2.6V  
0.48  
IN  
IN  
A
MAX1556  
MAX1557  
1.5  
0.8  
2.1  
1.2  
p-Channel Current-Limit  
Threshold  
1.0  
n-Channel Zero Crossing  
Threshold  
20  
35  
45  
mA  
MAX1556  
MAX1557  
1.8  
1.0  
10  
RMS LX Output Current  
LX Leakage Current  
A
RMS  
T
= +25°C  
= +85°C  
0.1  
0.1  
A
V
= 5.5V, LX =  
IN  
µA  
GND or IN  
T
A
Maximum Duty Cycle  
100  
%
%
Minimum Duty Cycle  
0
Internal Oscillator Frequency  
SS Output Impedance  
0.9  
1
200  
90  
1.1  
300  
200  
MHz  
kΩ  
V / I for I = 2µA  
130  
SS SS  
SS  
SS Discharge Resistance  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
SHDN = GND, 1mA sink current  
+160  
15  
°C  
°C  
LOGIC INPUTS (D1, D2, SHDN)  
Input-Voltage High  
2.6V V 5.5V  
1.4  
V
V
IN  
Input-Voltage Low  
0.4  
1
T
T
= +25°C  
= +85°C  
0.1  
0.1  
A
Input Leakage  
µA  
A
Note 1: All units are 100% production tested at T = +25°C. Limits over the operating range are guaranteed by design.  
A
Note 2: For the MAX1556, 3.3V output accuracy is specified with a 4.2V input.  
_______________________________________________________________________________________  
3
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
Typical Operating Characteristics  
(V = V  
IN  
= 3.6V, D1 = D2 = SHDN = IN, Circuits of Figures 2 and 3, T = +25°C, unless otherwise noted.)  
INP  
A
EFFICIENCY vs. LOAD CURRENT  
WITH 3.3V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
WITH 2.5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
WITH 1.8V OUTPUT  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
50  
40  
V
= 5V  
IN  
V
= 4.2V  
IN  
V = 5V  
IN  
V
= 3.6V  
V
= 3.6V  
IN  
IN  
V
= 5V  
IN  
V
= 3V  
IN  
V
= 2.6V  
IN  
V
= 3.6V  
IN  
V
= 2.6V  
V
= 3V  
IN  
IN  
40  
0.1  
1
10  
100  
1000  
10,000  
0.1  
1
10  
100  
1000 10,000  
0.1  
1
10  
100  
1000 10,000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
EFFICIENCY vs. LOAD CURRENT  
WITH 1.0V OUTPUT (MAX1557)  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
WITH 600mA LOAD  
100  
90  
80  
70  
60  
50  
1.84  
1.83  
1.82  
1.81  
1.80  
1.79  
1.78  
1.77  
1.76  
1.75  
1.74  
1.789  
1.788  
1.787  
1.786  
1.785  
1.784  
1.783  
1.782  
1.781  
1.780  
1.779  
T
= -45°C  
A
V
= 5V  
IN  
V
= 3.6V  
IN  
T
= -40°C  
A
T
= +25°C  
V
= 3V  
T
= +25°C  
A
A
IN  
V
= 2.6V  
IN  
T
= +85°C  
A
T
= +85°C  
A
40  
0.1  
1
10  
100  
1000  
0
200  
400  
600  
800 1000 1200  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
WITH NO LOAD  
SUPPLY CURRENT vs. INPUT VOLTAGE  
HEAVY-LOAD SWITCHING WAVEFORMS  
MAX1556/7 toc09  
1.812  
1.811  
1.810  
1.809  
1.808  
1.807  
1.806  
20  
18  
16  
14  
12  
10  
8
I
= 750mA  
LOAD  
V
OUT  
AC-COUPLED  
10mV/div  
T
= -40°C  
A
T
= +25°C  
A
V
LX  
2V/div  
0
6
T
= +85°C  
A
I
LX  
1.805  
1.804  
1.803  
4
500mA/div  
0
2
0
400ns  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
2
3
4
5
6
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
4
_______________________________________________________________________________________  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
Typical Operating Characteristics (continued)  
(V = V  
IN  
= 3.6V, D1 = D2 = SHDN = IN, Circuits of Figures 2 and 3, T = +25°C, unless otherwise noted.)  
INP  
A
LIGHT-LOAD SWITCHING WAVEFORMS  
SOFT-START/SHUTDOWN WAVEFORMS  
SOFT-START RAMP TIME vs. C  
SS  
MAX1556/7 toc10  
MAX1556/7 toc11  
10  
5V/div  
0
V
SHDN  
20mV/div  
V
OUT  
AC-COUPLED  
V
1V/div  
0
OUT  
C
R
= 470pF  
SS  
= 4Ω  
LOAD  
V
2V/div  
1
LX  
500mA/div  
0
I
LX  
0
200mA/div  
0
500mA/div  
0
I
I
IN  
LX  
0.1  
4µs/div  
100µs/div  
0
500  
1000  
1500  
(pF)  
2000  
2500  
C
SS  
LOAD TRANSIENT  
LOAD TRANSIENT  
MAX1556/7 toc14  
MAX1556/7 toc13  
50mV/div  
AC-COUPLED  
50mV/div  
AC-COUPLED  
V
V
OUT  
OUT  
500mA/div  
0
500mA/div  
0
I
I
OUT  
OUT  
I
= 20mA  
I
= 180mA  
OUTMIN  
OUTMIN  
20µs/div  
20µs/div  
LINE TRANSIENT  
BODE PLOT  
MAX1556/7 toc15  
MAX1556/7 toc16  
40  
30  
20  
10  
0
240  
210  
180  
150  
120  
90  
4V  
V
IN  
3.5V  
-10  
-20  
-30  
-40  
-50  
-60  
10mV/div  
AC-COUPLED  
V
OUT  
0dB  
60  
PHASE MARGIN = 53°  
30  
200mA/div  
0
0
I
LX  
-30  
C
= 22µF, R  
= 4Ω  
LOAD  
OUT  
-60  
40µs/div  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
_______________________________________________________________________________________  
5
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
Pin Description  
PIN  
1
NAME  
IN  
FUNCTION  
Supply Voltage Input. Connect to a 2.6V to 5.5V source.  
Ground. Connect to PGND.  
2
GND  
Soft-Start Control. Connect a 1000pF capacitor (C ) from SS to GND to eliminate input-current  
SS  
overshoot during startup. C is required for normal operation of the MAX1556/MAX1557. For greater  
SS  
3
SS  
than 22µF total output capacitance, increase C to C  
SS  
/ 22,000 for soft-start. SS is internally  
OUT  
discharged through 200to GND in shutdown.  
Output Sense Input. Connect to the output of the regulator. D1 and D2 select the desired output  
voltage through an internal feedback resistor-divider. The internal feedback resistor-divider remains  
connected in shutdown.  
4
5
OUT  
Shutdown Input. Drive SHDN low to enable low-power shutdown mode. Drive high or connect to IN  
for normal operation.  
SHDN  
6
7
D2  
OUT Voltage-Select Input. See Table 1.  
Power Ground. Connect to GND.  
PGND  
Inductor Connection. Connected to the drains of the internal power MOSFETs. High impedance in  
shutdown mode.  
8
LX  
Supply Voltage, High-Current Input. Connect to a 2.6V to 5.5V source. Bypass with a 10µF ceramic  
capacitor to PGND.  
9
INP  
D1  
10  
EP  
OUT Voltage-Select Input. See Table 1.  
Exposed Paddle. Connect to ground plane. EP also functions as a heatsink. Solder to circuit-board  
ground plane to maximize thermal dissipation.  
Control Scheme  
During PWM operation the converters use a fixed-fre-  
quency, current-mode control scheme. The heart of the  
current-mode PWM controller is an open-loop, multiple-  
input comparator that compares the error-amp voltage  
feedback signal against the sum of the amplified cur-  
rent-sense signal and the slope-compensation ramp. At  
the beginning of each clock cycle, the internal high-side  
p-channel MOSFET turns on until the PWM comparator  
trips. During this time the current in the inductor ramps  
up, sourcing current to the output and storing energy in  
the inductor’s magnetic field. When the p-channel turns  
off, the internal low-side n-channel MOSFET turns on.  
Now the inductor releases the stored energy while the  
current ramps down, still providing current to the output.  
The output capacitor stores charge when the inductor  
current exceeds the load and discharges when the  
inductor current is lower than the load. Under overload  
conditions, when the inductor current exceeds the cur-  
rent limit, the high-side MOSFET is turned off and the  
low-side MOSFET remains on until the next clock cycle.  
Table 1. Output-Voltage-Select Truth Table  
D1  
0
D2  
0
MAX1556 V  
MAX1557 V  
OUT  
OUT  
Adjustable from 0.75V to V  
IN  
0
1
3.3V  
2.5V  
1.8V  
1.5V  
1
0
1.3V  
1.0V  
1
1
A zero represents D_ being driven low or connected to GND.  
A 1 represents D_ being driven high or connected to IN.  
Detailed Description  
The MAX1556/MAX1557 synchronous step-down con-  
verters deliver a guaranteed 1.2A/600mA at output volt-  
ages from 0.75V to V . They use a 1MHz PWM  
IN  
current-mode control scheme with internal compensation,  
allowing for tiny external components and a fast transient  
response. At light loads the MAX1556/MAX1557 automat-  
ically switch to pulse-skipping mode to keep the quies-  
cent supply current as low as 16µA. Figures 2 and 3  
show the typical application circuits.  
6
_______________________________________________________________________________________  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
SHORT-CIRCUIT  
PROTECTION  
CLOCK  
1MHz  
IN  
BIAS  
SHDN  
CURRENT-LIMIT  
COMPARATOR  
INP  
V
CS  
CURRENT  
SENSE  
PWM  
AUTO SKIP  
CONTROL  
0.675V  
PWM  
COMPARATOR  
LX  
SLOPE  
COMP  
PGND  
SKIP-OVER  
ENTER SKIP/  
SR OFF  
ZERO-CROSS  
DETECT  
ERROR  
AMPLIFIER  
OUT  
GND  
REFERENCE  
1.25V  
D1  
D2  
OUTPUT  
VOLTAGE  
SELECTOR  
MAX1556  
MAX1557  
SS  
Figure 1. Functional Diagram  
OUTPUT  
OUTPUT  
L2  
4.7µH  
0.75V TO V  
L1  
3.3µH  
INPUT  
2.6V TO 5.5V  
IN  
0.75V TO V  
INPUT  
2.6V TO 5.5V  
IN  
600mA  
1.2A  
INP  
LX  
INP  
IN  
LX  
C4  
10µF  
C1  
10µF  
C5  
22µF  
R1  
100Ω  
C2  
22µF  
MAX1557  
MAX1556  
PGND  
PGND  
IN  
C4  
D1  
D2  
0.47µF  
VOLTAGE  
SELECT  
D1  
D2  
OUT  
SS  
VOLTAGE  
SELECT  
OUT  
SS  
ON  
C6  
1000pF  
ON  
C3  
1000pF  
OFF  
SHDN  
OFF  
SHDN  
GND  
GND  
Figure 2. MAX1556 Typical Application Circuit  
Figure 3. MAX1557 Typical Application Circuit  
_______________________________________________________________________________________  
7
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
As the load current decreases, the converters enter a  
pulse-skip mode in which the PWM comparator is dis-  
abled. At light loads, efficency is enhanced by a  
pulse-skip mode in which switching occurs only as  
needed to service the load. Quiescent current in skip  
mode is typically 16µA. See the Light-Load Switching  
Waveforms and Load Transient graphs in the Typical  
Operating Characteristics.  
1.0  
0.5  
0
V
= 3.6V  
IN  
V
= 5.5V  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
IN  
Load-Transient Response/  
Voltage Positioning  
V
= 2.6V  
IN  
The MAX1556/MAX1557 match the load regulation to  
the voltage droop seen during transients. This is some-  
times called voltage positioning. The load line used to  
achieve this behavior is shown in Figures 4 and 5. There  
is minimal overshoot when the load is removed and min-  
imal voltage drop during a transition from light load to  
400  
600  
800 1000  
0
200  
1200  
LOAD CURRENT (mA)  
Figure 4. MAX1556 Voltage-Positioning Load Line  
full load. Additionally, the MAX1556 and MAX1557 use a  
wide-bandwidth feedback loop to respond more quickly  
to a load transient than regulators using conventional  
integrating feedback loops (see Load Transient in the  
Typical Operating Characteristics).  
1.0  
0.8  
0.6  
0.4  
The MAX1556/MAX1557 use of a wide-band control  
loop and voltage positioning allows superior load-tran-  
sient response by minimizing the amplitude and dura-  
tion of overshoot and undershoot in response to load  
transients. Other DC-DC converters, with high gain-  
control loops, use external compensation to maintain  
tight DC load regulation but still allow large voltage  
droops of 5% or greater for several hundreds of  
microseconds during transients. For example, if the  
load is a CPU running at 600MHz, then a dip lasting  
100µs corresponds to 60,000 CPU clock cycles.  
V
= 3.6V  
IN  
0.2  
0
V
= 5.5V  
IN  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
V
IN  
= 2.6V  
0
200  
400  
600  
LOAD CURRENT (mA)  
Voltage positioning on the MAX1556/MAX1557 allows  
up to 2.25% (typ) of load-regulation voltage shift but  
has no further transient droop. Thus, during load tran-  
sients, the voltage delivered to the CPU remains within  
spec more effectively than with other regulators that  
might have tighter initial DC accuracy. In summary, a  
2.25% load regulation with no transient droop is much  
better than a converter with 0.5% load regulation and  
5% or more of voltage droop during load transients.  
Load-transient variation can be seen only with an oscil-  
loscope (see the Typical Operating Characteristics),  
while DC load regulation read by a voltmeter does not  
show how the power supply reacts to load transients.  
Figure 5. MAX1557 Voltage-Positioning Load Line  
operate normally down to 3V or less. The MAX1556/  
MAX1557 allow the output to follow the input battery  
voltage as it drops below the regulation voltage. The qui-  
escent current in this state rises minimally to only 27µA  
(typ), which aids in extending battery life. This  
dropout/100% duty-cycle operation achieves long battery  
life by taking full advantage of the entire battery range.  
The input voltage required to maintain regulation is a  
function of the output voltage and the load. The differ-  
ence between this minimum input voltage and the out-  
put voltage is called the dropout voltage. The dropout  
voltage is therefore a function of the on-resistance of  
Dropout/100% Duty-Cycle Operation  
The MAX1556/MAX1557 function with a low input-to-out-  
put voltage difference by operating at 100% duty cycle.  
In this state, the high-side p-channel MOSFET is always  
on. This is particularly useful in battery-powered appli-  
cations with a 3.3V output. The system and load might  
the internal p-channel MOSFET (R  
inductor resistance (DCR).  
) and the  
DS(ON)P  
V
= I  
x (R  
+ DCR)  
DS(ON)P  
DROPOUT  
OUT  
8
_______________________________________________________________________________________  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
Table 2. Inductor Selection  
MANUFACTURER  
Taiyo Yuden  
Taiyo Yuden  
TOKO  
PART  
LMNP04SB3R3N  
LMNP04SB4R7N  
D52LC  
VALUE (µH)  
DCR (m)  
36  
I
(mA)  
SIZE (mm)  
5 x 5 x 2.0  
SHIELDED  
Yes  
SAT  
3.3  
4.7  
3.5  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
1300  
50  
1200  
1340  
1140  
1200  
1200*  
790  
5 x 5 x 2.0  
Yes  
73  
5 x 5 x 2.0  
Yes  
TOKO  
D52LC  
87  
5 x 5 x 2.0  
Yes  
Sumida  
CDRH3D16  
D412F  
50  
3.8 x 3.8 x 1.8  
4.8 x 4.8 x 1.2  
2.5 x 3.2 x 2.0  
3.0 x 3.2 x 1.7  
2.8 x 3.2 x 1.5  
Yes  
TOKO  
100*  
97  
Yes  
Murata  
LQH32CN  
CXL180  
No  
Sumitomo  
Sumitomo  
70*  
1000*  
800*  
No  
CXLD140  
100*  
No  
*Estimated based upon similar-valued prototype inductors.  
(R  
) is given in the Electrical Characteristics. DCR  
thermal shutdown. In this mode the internal p-channel  
switch and the internal n-channel synchronous rectifier  
are turned off. The device resumes normal operation  
when the junction temperature falls below +145°C.  
DS(ON)P  
for a few recommended inductors is listed in Table 2.  
Soft-Start  
The MAX1556/MAX1557 use soft-start to eliminate  
inrush current during startup, reducing transients at the  
input source. Soft-start is particularly useful for higher-  
impedance input sources such as Li+ and alkaline  
cells. Connect the required soft-start capacitor from SS  
to GND. For most applications using a 22µF output  
capacitor, connect a 1000pF capacitor from SS to  
GND. If a larger output capacitor is used, then use the  
following formula to find the value of the soft-start  
capacitor:  
Applications Information  
The MAX1556/MAX1557 are optimized for use with small  
external components. The correct selection of inductors  
and input and output capacitors ensures high efficiency,  
low output ripple, and fast transient response.  
Adjusting the Output Voltage  
The adjustable output is selected when D1 = D2 = 0  
and an external resistor-divider is used to set the output  
voltage (see Figure 6). The MAX1556/MAX1557 have a  
defined line- and load-regulation slope. The load regu-  
lation is for both preset and adjustable outputs and is  
described in the Electrical Characteristics table and  
Figures 4 and 5. The impact of the line-regulation slope  
can be reduced by applying a correction factor to the  
feedback resistor equation.  
C
22000  
OUT  
C
=
SS  
Soft-start is implemented by exponentially ramping up  
the output voltage from 0 to V with a time con-  
OUT(NOM)  
times 200k(see the Typical  
Operating Characteristics). Assuming three time con-  
stants to full output voltage, use the following formula to  
calculate the soft-start time:  
stant equal to C  
SS  
First, calculate the correction factor, k, by plugging the  
desired output voltage into the following formula:  
3
t
= 600 x 10 x C  
V
0.75V  
3.6V  
SS  
SS  
2  
OUTPUT  
k = 1.06 x 10 V x  
Shutdown Mode  
k represents the shift in the operating point at the feed-  
back node (OUT).  
Connecting SHDN to GND or logic low places the  
MAX1556/MAX1557 in shutdown mode and reduces  
supply current to 0.1µA. In shutdown, the control cir-  
cuitry and the internal p-channel and n-channel  
MOSFETs turn off and LX becomes high impedance.  
Connect SHDN to IN or logic high for normal operation.  
Select the lower feedback resistor, R3, to be 35.7kto  
ensure stability and solve for R2:  
0.75V k  
R3  
R3+R2  
=
V
(
)
Thermal Shutdown  
As soon as the junction temperature of the  
MAX1556/MAX1557 exceeds +160°C, the ICs go into  
OUTPUT  
_______________________________________________________________________________________  
9
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
Inductor Selection  
A 4.7µH inductor with a saturation current of at least  
800mA is recommended for the MAX1557 full-load  
(600mA) application. For the MAX1556 application with  
1.2A full load, use a 3.3µH inductor with at least 1.34A  
saturation current. For lower full-load currents the  
inductor current rating can be reduced. For maximum  
efficiency, the inductor’s resistance (DCR) should be as  
low as possible. Please note that the core material dif-  
fers among different manufacturers and inductor types  
and has an impact on the efficiency. See Table 2 for  
recommended inductors and manufacturers.  
OUTPUT  
R2  
ERROR  
AMPLIFIER  
OUT  
R3  
REFERENCE  
1.25V  
Capacitor Selection  
Ceramic input and output capacitors are recommend-  
ed for most applications. For best stability over a wide  
temperature range, use capacitors with an X5R or bet-  
ter dielectric due to their small size, low ESR, and low  
temperature coefficients.  
SS  
Output Capacitor  
is required to keep the out-  
Figure 6. Adjustable Output Voltage  
The output capacitor C  
OUT  
put voltage ripple small and to ensure regulation loop  
stability. C must have low impedance at the switch-  
ing frequency. A 22µF ceramic output capacitor is rec-  
ommended for most applications. If a larger output  
capacitor is used, then paralleling smaller capacitors is  
suggested to keep the effective impedance of the  
capacitor low at the switching frequency.  
OUT  
PC Board Layout and Routing  
Due to fast-switching waveforms and high-current  
paths, careful PC board layout is required. An evalua-  
tion kit (MAX1556EVKIT) is available to speed design.  
When laying out a board, minimize trace lengths  
between the IC, the inductor, the input capacitor, and  
the output capacitor. Keep these traces short, direct,  
and wide. Keep noisy traces, such as the LX node  
trace, away from OUT. The input bypass capacitors  
should be placed as close to the IC as possible.  
Connect GND to the exposed paddle and star PGND  
and GND together at the output capacitor. The ground  
connections of the input and output capacitors should  
be as close together as possible.  
Input Capacitor  
Due to the pulsating nature of the input current in a buck  
converter, a low-ESR input capacitor at INP is required  
for input voltage filtering and to minimize interference  
with other circuits. The impedance of the input capacitor  
C
should be kept very low at the switching frequen-  
INP  
cy. A minimum value of 10µF is recommended at INP for  
most applications. The input capacitor can be increased  
for better input filtering.  
Chip Information  
TRANSISTOR COUNT: 7567  
IN Input Filter  
In all MAX1557 applications, connect INP directly to IN  
and bypass INP as described in the Input Capacitor sec-  
tion. No additional bypass capacitor is required at IN.  
For applications using the MAX1556, an RC filter  
between INP and IN keeps power-supply noise from  
entering the IC. Connect a 100resistor between INP  
and IN, and connect a 0.47µF capacitor from IN to GND.  
PROCESS: BiCMOS  
Soft-Start Capacitor  
The soft-start capacitor, C , is required for proper  
SS  
operation of the MAX1556/MAX1557. The recommend-  
ed value of C is discussed in the Soft-Start section.  
SS  
Soft-start times for various soft-start capacitors are  
shown in the Typical Operating Characteristics.  
10 ______________________________________________________________________________________  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.  
D
N
PIN 1  
INDEX  
AREA  
E
E2  
DETAIL A  
C
C
L
L
L
L
A
e
e
PACKAGE OUTLINE, 6, 8, 10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
1
NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY  
21-0137  
F
2
______________________________________________________________________________________ 11  
16µA I , 1.2A PWM DC-DC  
Q
Step-Down Converters  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.  
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.95 REF  
2.00 REF  
2.40 REF  
2.40 REF  
1.50 0.10 2.30 0.10 0.95 BSC  
1.50 0.10 2.30 0.10 0.65 BSC  
0.40 0.05  
0.30 0.05  
T833-1  
8
T1033-1  
T1433-1  
T1433-2  
10  
14  
14  
1.50 0.10 2.30 0.10 0.50 BSC MO229 / WEED-3 0.25 0.05  
1.70 0.10 2.30 0.10 0.40 BSC  
1.70 0.10 2.30 0.10 0.40 BSC  
- - - -  
- - - -  
0.20 0.03  
0.20 0.03  
PACKAGE OUTLINE, 6, 8, 10 & 14L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
2
21-0137  
F
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1556ETB/V+

Switching Regulator, Current-mode, 1.2A, 1100kHz Switching Freq-Max, BICMOS, PDSO10,
MAXIM

MAX1556ETB/V+T

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1556EVKIT

MAX1556 Evaluation Kit
MAXIM

MAX1556_1

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1556_10

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1556_11

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1557

16レA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1557ETB

16レA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1557ETB+

16μA IQ, 1.2A PWM Step-Down DC-DC Converters
MAXIM

MAX1557ETB+T

Switching Regulator, Current-mode, 2.25A, 1100kHz Switching Freq-Max, BICMOS, PDSO10, 3 X 3 MM, ROHS COMPLIANT, TDFN-10
MAXIM

MAX1558

Dual, 3mm x 3mm, 1.2A/Programmable-Current USB Switches with Autoreset
MAXIM

MAX1558ETB

Dual, 3mm x 3mm, 1.2A/Programmable-Current USB Switches with Autoreset
MAXIM