MAX16016LTBM+T [MAXIM]

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, TDFN-10;
MAX16016LTBM+T
型号: MAX16016LTBM+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, TDFN-10

信息通信管理 光电二极管
文件: 总21页 (文件大小:459K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4145; Rev 6; 11/11  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
/MAX6021  
General Description  
Features  
o System Monitoring for 5V, 3.3V, 3V, 2.5V, or 1.8V  
The MAX16016/MAX16020/MAX16021 supervisory cir-  
cuits monitor power supplies, provide battery-backup  
control, and chip-enable (CE) gating to write protect  
memory in microprocessor (µP)-based systems. These  
low-power devices improve system reliability by providing  
several supervisory functions in a small, single integrated  
solution.  
Power-Supply Voltages  
o 1.53V to 5.5V Operating Voltage Range  
o Low 1.2µA Supply Current (0.25µA in Battery-  
Backup Mode)  
o 145ms (min) Reset Timeout Period  
o Battery Freshness Seal  
The MAX16016/MAX16020/MAX16021 perform four  
basic system functions:  
o On-Board Gating of CE Signals, 1.5ns  
Propagation Delay (MAX16020/MAX16021)  
1) Provide a µP reset output during V  
supply power-  
CC  
o Debounced Manual Reset Input  
o Watchdog Timer, 1.2s (typ) Timeout  
up, power-down, and brownout conditions.  
2) Control V to battery-backup switching internally  
CC  
o Power-Fail Comparator and Low-Line Indicator for  
to maintain data or low-power operation for memo-  
ries, real-time clocks (RTCs), and other digital logic  
when the main power is removed.  
Monitoring Voltages Down to 0.6V  
o Battery-On, Battery-OK, and Battery Test  
Indicators  
3) Provide memory write protection through internal  
chip-enable gating during brownout.  
o Small 10-Pin TDFN or 16-Pin TQFN Packages  
o UL -Certified to Conform to IEC 60950-1  
®
4) Provide a combination of additional supervisory  
functions listed in the Features section.  
Ordering Information  
The MAX16016/MAX16020/MAX16021 operate from a  
1.53V to 5.5V supply voltage and offer fixed reset  
thresholds for monitoring 5V, 3.3V, 3V, 2.5V, and 1.8V  
systems. Each device is available with either a push-  
pull or open-drain reset output.  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX16016_TB_+T  
-40°C to +85°C  
10 TDFN-EP*  
The first placeholder “_” designates all output options. Letter  
“L” indicates push-pull outputs and letter “P” indicates open-  
drain outputs. The last placeholder “_” designates the reset  
threshold (see Table 1).  
T = Tape and reel.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
The MAX16016/MAX16020/MAX16021 are available in  
small TDFN/TQFN packages and are fully specified for  
an operating temperature range of -40°C to +85°C.  
Applications  
Main/Backup Power for RTCs, CMOS Memories  
Ordering Information continued at end of data sheet.  
Selector Guide located at end of data sheet.  
Industrial Control  
Pin Configurations  
GPS Systems  
TOP VIEW  
Set-Top Boxes  
Point-of-Sale Equipment  
Portable/Battery Equipment  
16  
15  
14  
13  
BATT  
MR  
1
2
3
4
12 RESET  
11 GND  
10 PFO  
+
MAX16020  
PFI  
EP  
WDI  
9
WDO  
5
6
7
8
TQFN  
Pin Configurations continued at end of data sheet.  
UL is a registered trademark of Underwriters Laboratories, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
ABSOLUTE MAXIMUM RATINGS  
CC  
V
, BATT, OUT, BATT_TEST to GND.....................-0.3V to +6V  
Output Current  
OUT Short Circuit to GND Duration....................................10s  
RESET, RESET, BATTON....................................................20mA  
RESET, RESET, PFO, BATTOK, WDO, BATTON,  
BATT_TEST, LL, (all open-drain) to GND.................-0.3V to +6V  
RESET, RESET, BATTOK, WDO, BATTON,  
Continuous Power Dissipation (T = +70°C)  
A
10-Pin TDFN (derate 24.4mW/°C above +70°C) .......1951mW  
16-Pin TQFN (derate 25mW/°C above +70°C) ..........2000mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow)  
LL (all push-pull) to GND......................-0.3V to (V  
WDI, PFI to GND.......................................-0.3V to (V  
CEIN, CEOUT to GND..............................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
OUT  
OUT  
OUT  
MR to GND .................................................-0.3V to (V + 0.3V)  
CC  
Input Current  
V
V
Peak Current.................................................................1A  
Continuous Current ...............................................250mA  
CC  
CC  
TDFN............................................................................+260°C  
TQFN............................................................................+240°C  
BATT Peak Current .......................................................500mA  
BATT Continuous Current ...............................................70mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
TDFN  
Junction-to Ambient Thermal Resistance (θ ) ...........41°C/W  
TQFN  
Junction-to Ambient Thermal Resistance (θ ) ...........40°C/W  
JA  
JA  
Junction-to Case Thermal Resistance (θ ) ..................9°C/W  
Junction-to Case Thermal Resistance (θ ) ..................6°C/W  
JC  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS  
(V  
= 1.53V to 5.5V, V  
= 3V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
CC  
BATT  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
> V  
MIN  
TYP  
MAX  
5.5  
2
UNITS  
Operating Voltage Range (Note 3)  
Supply Current  
V
V
V
V
or V  
0
V
CC, BATT  
CC  
CC  
BATT  
TH  
V
V
V
V
= 1.62V  
= 2.8V  
= 3.6V  
= 5.5V  
1.2  
1.9  
2.3  
3.4  
CC  
CC  
CC  
CC  
/MAX6021  
3
I
> V  
µA  
CC  
TH  
3.5  
5
Supply Current in  
Battery-Backup Mode  
I
V
V
V
= 0V  
0.25  
0.5  
µA  
V
BATT  
CC  
CC  
CC  
0.1  
V
Switchover Threshold Voltage  
rising, V  
- V  
CC BATT  
CC  
x V  
CC  
BATT Switchover Threshold  
Voltage  
falling, V  
< V , V  
- V  
BATT  
0
mV  
CC  
TH CC  
BATT Standby Current  
V
V
V
V
V
V
V
V
> V  
+ 0.2V  
BATT  
-10  
+10  
20  
nA  
nA  
CC  
BATT Freshness Leakage Current  
= 5.5V  
BATT  
= 4.75V, I  
= 3.15V, I  
= 2.35V, I  
= 1.91V, I  
= 150mA  
= 65mA  
= 25mA  
= 10mA  
= 20mA  
= 20mA  
1.4  
1.7  
2.1  
2.6  
4.5  
4.5  
5.0  
5.5  
CC  
OUT  
OUT  
OUT  
OUT  
CC  
V
to OUT On-Resistance  
R
CC  
ON  
CC  
CC  
= 4.5V, I  
V
V
- 0.1  
BATT  
BATT  
OUT  
OUT  
BATT  
BATT  
Output Voltage in  
Battery-Backup Mode  
V
V
OUT  
= 2.5V, I  
- 0.15  
2
_______________________________________________________________________________________  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
/MAX6021  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 1.53V to 5.5V, V = 3V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
BATT A A  
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RESET OUTPUT (RESET, RESET)  
Reset Threshold  
V
(see Table 1)  
V
TH  
V
Falling to Reset Delay  
t
V
falling at 10V/ms  
20  
µs  
ms  
CC  
RD  
CC  
Reset Timeout Period  
t
145  
215  
285  
0.3  
0.3  
0.3  
RP  
V
V
V
3.3V, I  
1.6V, I  
1.2V, I  
= 3.2mA, RESET asserted  
= 1mA, RESET asserted  
= 100µA, RESET asserted  
CC  
CC  
CC  
SINK  
SINK  
SINK  
RESET Output Low Voltage  
V
V
OL  
RESET Output High Voltage  
(Push-Pull Output)  
V
= 1.1 x V , I  
= 100µA,  
V
OUT  
- 0.3  
CC  
TH SOURCE  
V
V
OH  
RESET deasserted  
RESET Output Leakage Current  
(Open-Drain Output)  
V
V
= 5.5V, RESET deasserted  
1
µA  
RESET  
3.3V, I  
= 3.2mA, RESET  
= 1.0mA, RESET  
CC  
SINK  
0.3  
0.3  
deasserted  
RESET Output Low Voltage  
V
V
OL  
V
1.8V, I  
CC  
SINK  
deasserted  
RESET Output High Voltage  
(Push-Pull Output)  
V
= 0.9 x V , I  
= 100µA,  
V
OUT  
- 0.3  
CC  
TH SOURCE  
V
V
OH  
RESET asserted  
RESET Output Leakage Current  
(Open-Drain Output)  
V
V
= 5.5V, RESET asserted  
1
µA  
RESET  
POWER-FAIL COMPARATOR  
PFI, Input Threshold  
PFI, Hysteresis  
V
falling, 1.6V V 5.5V  
CC  
0.572  
-1  
0.590  
30  
0.611  
V
PFT  
IN  
V
mV  
µA  
PFT-HYS  
PFI Input Current  
V
V
= 5.5V  
+1  
CC  
CC  
1.6V, I  
= 1mA, output asserted  
= 100µA, output asserted  
0.3  
SINK  
PFO Output Low Voltage  
V
V
OL  
V
1.2V, I  
0.3  
CC  
SINK  
PFO Output Voltage  
High (Push-Pull Output)  
V
= 1.1 x V , I  
= 100µA, output  
V
OUT  
- 0.3  
CC  
TH SOURCE  
V
V
OH  
asserted  
PFO, Leakage Current  
(Open-Drain Output)  
V
V
= 5.5V, output deasserted  
1
µA  
µs  
PFO  
PFO, Delay Time  
+ 100mV to V  
- 100mV  
20  
PFT  
PFT  
MANUAL RESET (MR)  
Input Low Voltage  
Input High Voltage  
Pullup Resistance  
Glitch Immunity  
V
0.3 x V  
V
V
IL  
CC  
V
0.7 x V  
20  
IH  
CC  
30  
kΩ  
ns  
ns  
V
= 3.3V  
100  
120  
CC  
MR to Reset Delay  
_______________________________________________________________________________________  
3
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 1.53V to 5.5V, V = 3V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
BATT A A  
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
WATCHDOG TIMER (WDI, WDO)  
Watchdog Timeout Period  
t
0.83  
320  
1.235  
1.64  
s
WD  
Minimum WDI Input Pulse Width  
t
ns  
WDI  
0.3 x  
WDI Input Low Voltage  
WDI Input High Voltage  
V
(Note 6)  
(Note 6)  
V
V
IL  
V
CC  
0.7 x  
V
IH  
V
CC  
WDI Input Current (Note 7)  
V
V
= 0V or 5.5V, time average  
-1  
+1  
µA  
V
WDI  
WDO Output Low Voltage  
V
= 5.0V, I = 1mA, WDO asserted  
SINK  
0.3  
OL  
CC  
WDO Output High Voltage  
(Push-Pull Output)  
V
= 1.1 x V , I  
= 100µA, WDO  
V
OUT  
- 0.3  
CC  
TH SOURCE  
V
V
OH  
deasserted  
WDO Leakage Current  
(Open-Drain Output)  
V
= 5.5V, WDO deasserted  
1
µA  
WDO  
BATTERY-ON INDICATOR (BATTON)  
Output Low Voltage  
V
I
= 3.2mA, V = 2.1V  
BATT  
0.3  
1
V
OL  
SINK  
BATTON Leakage Current  
V
= 5.5V  
µA  
BATTON  
V
= 0.9 x V , I  
= 100µA,  
V
OUT  
- 0.3  
CC  
TH SOURCE  
BATTON Output High Voltage  
V
V
OH  
BATTON asserted  
Output Short-Circuit Current  
(Note 4)  
Sink current, V = 5V  
60  
mA  
CC  
CE GATING (CEIN, CEOUT)  
CEIN Leakage Current  
Reset asserted, V  
= 0.9 x V or 0V  
-1  
+1  
50  
µA  
CC  
TH  
CEIN to CEOUT Resistance  
Reset not asserted (Note 5)  
8
/MAX6021  
Reset asserted, CEOUT = 0,  
CEOUT Short-Circuit Current  
0.75  
2
7
mA  
ns  
V
= 0.9 x V  
TH  
CC  
CEIN to CEOUT Propagation  
Delay  
50source, C  
= 50pF, V  
= 4.75V  
= 100µA  
= 1µA  
1.5  
LOAD  
CC  
0.8 x  
V
V
= 5V, V  
= 0V, V  
V , I  
BATT SOURCE  
CC  
CC  
CC  
V
CC  
Output High Voltage  
V
V
-
BATT  
0.1  
2.2V, I  
BATT  
SOURCE  
Reset to CEOUT Delay  
12  
µs  
4
_______________________________________________________________________________________  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
/MAX6021  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 1.53V to 5.5V, V = 3V, T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
BATT A A  
CC  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LOW LINE (LL)  
Low Line to Reset Threshold  
Voltage  
V
falling  
(see Table 2)  
20  
mV  
µs  
V
CC  
V
Falling to LL Delay  
V
V
V
V
falling at 10V/ms  
CC  
CC  
CC  
CC  
1.6V, I  
1.2V, I  
= 1mA, LL asserted  
= 100µA, LL asserted  
0.3  
0.3  
SINK  
SINK  
LL Output Low Voltage  
V
OL  
LL Output High Voltage (Push-  
Pull Output)  
= 0.9 x V  
, I  
= 100µA,  
V
-
CC  
TH_LL SOURCE  
OUT  
0.3  
V
V
OH  
LL deasserted  
Output Leakage Current  
V
= 5.5V, LL deasserted  
1
µA  
LL  
BATTERY-OK INDICATOR (BATTOK, BATT_TEST)  
BATTOK Threshold  
Inferred internally from BATT  
= 1.1 x V , I = 1mA, reset  
asserted  
2.508  
2.6  
2.673  
0.3  
V
V
V
CC  
TH SINK  
BATTOK Output Voltage Low  
V
OL  
V
= 1.1 x V , I  
= 100µA,  
V
-
CC  
TH SOURCE  
OUT  
0.3  
BATTOK Output High Voltage  
V
V
OH  
BATTOK asserted  
BATTOK Output Leakage  
Current  
V
V
= 5.5V, deasserted  
1
µA  
V
BATTOK  
BATT_TEST Output Low Voltage  
= 1.1 x V , I  
= 1mA  
0.3  
CC  
TH SINK  
Note 2: All devices are 100% production tested at T = +25°C and T = +85°C. Limits to -40°C are guaranteed by design.  
A
A
Note 3: V  
can be 0V anytime, or V  
can go down to 0V if V  
is active (except at startup).  
BATT  
CC  
BATT  
Note 4: Use external current-limit resistor to limit current to 20mA (max).  
Note 5: CEIN/CEOUT resistance is tested with V = 5V and V = 0V or 5V.  
CEIN  
CC  
Note 6: WDI is internally serviced within the watchdog period if WDI is left unconnected.  
Note 7: The WDI input current is specified as the average input current when the WDI input is driven high or low. The WDI input is  
designed for a three-stated output device with a 10µA maximum leakage current and capable of driving a maximum capaci-  
tive load of 200pF. The three-state device must be able to source and sink at least 200µA when active.  
Table 1b. Reset Threshold Ranges  
(MAX16020/MAX16021)  
Table 1a. Reset Threshold Ranges  
(MAX16016)  
RESET THRESHOLD RANGES (V)  
SUFFIX  
RESET THRESHOLD RANGES (V)  
SUFFIX  
MIN  
TYP  
MAX  
4.852  
4.585  
3.190  
3.034  
2.716  
2.390  
2.255  
1.710  
1.618  
MIN  
TYP  
4.63  
4.38  
3.08  
2.93  
2.63  
2.32  
2.19  
1.67  
1.575  
MAX  
4.906  
4.635  
3.239  
3.080  
2.755  
2.425  
2.288  
1.733  
1.639  
L
M
T
4.520  
4.275  
3.010  
2.862  
2.568  
2.260  
2.133  
1.616  
1.528  
4.684  
4.428  
3.100  
2.946  
2.640  
2.323  
2.192  
1.661  
1.571  
L
M
T
4.508  
4.264  
2.991  
2.845  
2.549  
2.243  
2.117  
1.603  
1.514  
S
S
R
Z
R
Z
Y
Y
W
V
W
V
_______________________________________________________________________________________  
5
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
Table 2. Low-Line Threshold Ranges  
LOW-LINE THRESHOLD RANGES (V)  
SUFFIX  
MIN  
TYP  
MAX  
4.955  
4.683  
L
M
T
4.627  
4.806  
4.543  
3.181  
3.023  
2.409  
2.383  
2.246  
1.704  
1.612  
4.378  
3.075  
2.922  
2.620  
3.274  
3.111  
2.787  
S
R
Z
2.309  
2.180  
1.653  
1.563  
2.450  
2.311  
1.752  
1.657  
Y
W
V
Typical Operating Characteristics  
(V = 5V, V  
CC  
= 0V, T = +25°C, unless otherwise noted.)  
A
BATT  
V
SUPPLY CURRENT  
V
SUPPLY CURRENT  
BATT SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
CC  
CC  
vs. SUPPLY VOLTAGE  
vs. TEMPERATURE (I  
= 0mA)  
OUT  
6
5
4
3
2
1
0
0.7  
0.6  
0.5  
0.4  
5
MAX16020PTEZ+  
MAX16020PTEZ+  
= 2.5V  
MAX16020PTEZ+  
V
BATT  
4
3
2
1
0
0.3  
0.2  
0.1  
/MAX6021  
0
-40  
-15  
10  
35  
60  
85  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
BATTERY SUPPLY CURRENT  
BATT STANDBY CURRENT  
vs. TEMPERATURE  
V
CC  
TO OUT ON-RESISTANCE  
vs. SUPPLY VOLTAGE  
vs. TEMPERATURE (V = 0V)  
CC  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
4
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.0V  
V
V
= 3.2V  
MAX16020PTEZ+  
BATT  
CC  
= 3.0V  
BATT  
3
I
= 25mA  
OUT  
2
1
0
-1  
-2  
-3  
-4  
-5  
I
= 10mA  
OUT  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
/MAX6021  
Typical Operating Characteristics (continued)  
(V = 5V, V  
CC  
= 0V, T = +25°C, unless otherwise noted.)  
A
BATT  
V
CC  
TO OUT ON-RESISTANCE  
vs. TEMPERATURE  
BATT TO OUT ON-RESISTANCE  
RESET OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
vs. TEMPERATURE (V = 0V, I  
= 20mA)  
CC  
OUT  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
5
4
3
2
1
0
V
= 3.15V, I  
= 65mA  
CC  
OUT  
V
= 2.5V  
BATT  
4
3
2
1
0
V
= 3V  
BATT  
V
= 3.3V  
CC  
V
= 5V  
CC  
V
= 4.5V  
BATT  
0
2
4
6
8
10 12 14 16 18 20  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
SINK CURRENT (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RESET TIMEOUT PERIOD  
vs. TEMPERATURE  
NORMALIZED RESET THRESHOLD  
vs. TEMPERATURE  
MAXIMUM TRANSIENT DURATION  
vs. RESET THRESHOLD OVERDRIVE  
210  
208  
206  
204  
202  
200  
198  
196  
194  
192  
190  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.996  
500  
450  
400  
350  
300  
MAX16020PTEZ+  
MAX16020PTEZ+  
250  
200  
150  
100  
50  
RESET OCCURS ABOVE THE CURVE  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
50 100 150 200 250 300 350 400  
RESET THRESHOLD OVERDRIVE (mV)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
NORMALIZED LL THRESHOLD  
vs. TEMPERATURE  
WATCHDOG TIMEOUT PERIOD  
vs. TEMPERATURE  
PFI THRESHOLD  
vs. TEMPERATURE  
1.005  
1.004  
1.003  
1.002  
1.001  
1.000  
0.999  
0.998  
0.997  
0.996  
0.995  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.65  
0.64  
0.63  
0.62  
0.61  
0.60  
0.59  
0.58  
0.57  
0.56  
0.55  
V
PFI+  
V
PFI-  
35  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
Typical Operating Characteristics (continued)  
(V = 5V, V  
CC  
= 0V, T = +25°C, unless otherwise noted.)  
A
BATT  
V
SUPPLY CURRENT  
BATTON OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
WDO OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
CC  
vs. WDI FREQUENCY  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.3V  
V
= 3.3V  
CC  
CC  
V
= 5V  
V
= 5V  
CC  
CC  
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
0
10  
100  
1000  
SINK CURRENT (mA)  
SINK CURRENT (mA)  
WDI FREQUENCY (kHz)  
BATTOK OUTPUT VOLTAGE LOW  
vs. SINK CURRENT  
MR FALLING TO RESET DELAY  
MAX16016 toc20  
0.5  
0.4  
0.3  
0.2  
0.1  
0
MR  
5V/div  
V
= 3.3V  
CC  
V
= 5V  
CC  
RESET  
5V/div  
/MAX6021  
0
2
4
6
8
10 12 14 16 18 20  
200ns/div  
SINK CURRENT (mA)  
RESET PROPAGATION DELAY  
vs. THRESHOLD OVERDRIVE  
CHIP-ENABLE GATING LOCKING OUT  
SIGNAL DURING RESET CONDITION  
MAX16016 toc22  
70  
60  
50  
40  
30  
20  
10  
0
MAX16020PTEZ+  
RESET  
5V/div  
CEIN  
5V/div  
CEOUT  
5V/div  
0
50 100 150 200 250 300 350 400  
THRESHOLD OVERDRIVE (mV)  
10µs/div  
8
_______________________________________________________________________________________  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
/MAX6021  
Pin Description—MAX16016  
PIN  
NAME  
FUNCTION  
1
V
Supply Voltage Input. Bypass V  
to GND with a 0.1µF capacitor.  
CC  
CC  
Backup Battery Input. If V  
falls below its reset threshold, and if V  
> V , OUT connects to  
BATT CC  
CC  
BATT. If V  
capacitor.  
rises above 1.01 x V  
, OUT connects to V . Bypass BATT to GND with a 0.1µF  
2
3
4
BATT  
MR  
CC  
BATT CC  
Active-Low Manual Reset Input. RESET asserts when MR is pulled low. RESET remains low for the  
duration of reset timeout period after MR transitions from low to high. Connect MR to V or leave  
unconnected if not used. MR is internally connected to V  
CC  
through a 30kΩ pullup resistor.  
CC  
Power-Fail Comparator Input. Connect PFI to a resistive divider to set the desired PFI threshold. The  
PFI input is referenced to an internal V threshold. A V internal hysteresis provides noise  
PFI  
PFT  
PFT-HYS  
immunity. The power-fail comparator is powered from OUT.  
Watchdog Timer Input. If WDI remains high or low for longer than the watchdog timeout period (t ),  
WD  
the internal watchdog timer runs out and a reset pulse is triggered for the reset timeout period. The  
internal watchdog clears when reset asserts or whenever WDI sees a rising or falling edge. To  
disable the watchdog feature, leave WDI unconnected or three-state the driver connected to WDI.  
5
WDI  
6
7
8
BATTON Active-High Battery-On Output. BATTON goes high when in battery-backup mode.  
Active-Low Power-Fail Comparator Output. PFO goes low when V  
falls below the internal V  
PFT  
PFI  
PFO  
threshold and goes high when V  
rises above V  
+ V  
hysteresis.  
PFI  
PFT  
PFT-HYS  
GND  
Ground  
Active-Low Reset Output. RESET asserts when V falls below the reset threshold or M R is pulled low.  
CC  
9
RESET  
RESET remains low for the duration of the reset timeout period after V rises above the reset threshold  
CC  
and M R goes high. RESET also asserts low when the internal watchdog timer runs out.  
Switched Output. OUT is connected to V  
when the reset output is not asserted or when V  
is  
CC  
CC  
10  
OUT  
greater than V  
. OUT connects to BATT when RESET is asserted and V  
is greater than V  
.
BATT  
BATT  
CC  
Bypass OUT to GND with a 0.1µF (min) capacitor.  
_______________________________________________________________________________________  
9
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
Pin Description—MAX16020/MAX16021  
PIN  
NAME  
FUNCTION  
MAX16020 MAX16021  
Backup Battery Input. If V  
falls below its reset threshold, and if V  
> V , OUT  
BATT CC  
CC  
connects to BATT. If V  
CC  
GND with a 0.1µF capacitor.  
rises above 1.01 x V  
, OUT connects to V . Bypass BATT to  
1
2
3
1
2
3
BATT  
BATT CC  
Active-Low Manual Reset Input. RESET asserts when MR is pulled low. RESET remains low  
for the duration of reset timeout period after MR transitions from low to high. Connect MR to  
MR  
V
or leave unconnected if not used. MR is internally connected to V  
through a 30kΩ  
CC  
CC  
pullup resistor.  
Power-Fail Comparator Input. Connect PFI to a resistive divider to set the desired PFI  
threshold. The PFI input is referenced to an internal threshold V , V internal  
PFI  
PFT PFT-HYS  
hysteresis provides noise immunity. The power-fail comparator is powered from OUT.  
Watchdog Timer Input. If WDI remains high or low for longer than the watchdog timeout  
period (t ), the internal watchdog timer runs out and asserts WDO. The internal watchdog  
clears when reset asserts or whenever WDI sees a rising or falling edge. To disable the  
watchdog feature, leave WDI unconnected or three-state the driver connected to WDI.  
WD  
4
5
4
5
WDI  
Active-Low Low-Line Output. LL goes low when V  
falls to 2.5% above the reset threshold  
CC  
(Table 2). LL provides an early warning of V  
failure before reset asserts. Use this output  
CC  
LL  
to generate a nonmaskable interrupt (NMI) to initiate an orderly shutdown routine when  
is falling.  
V
CC  
Open-Drain Battery-Test Output. Pulses low for 1.3s every 24 hours during the battery  
BATT_TEST voltage test. If V < 2.6V, BATTOK deasserts low. See Figure 6 for providing additional  
6
6
BATT  
load during the battery test.  
Active-High Reset Output. RESET asserts when V falls below the reset threshold or when  
CC  
/MAX6021  
MR asserts and stays asserted for the reset timeout period after V  
threshold and MR deasserts.  
rises above the reset  
RESET  
CC  
Battery-OK Output. BATTOK goes low when the battery voltage falls below the BATTOK  
threshold (BATTOK is low when in battery-backup mode).  
7
8
7
8
BATTOK  
BATTON  
Active-High Battery-On Output. BATTON goes high when in battery-backup mode.  
10 ______________________________________________________________________________________  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
/MAX6021  
Pin Description—MAX16020/MAX16021 (continued)  
PIN  
NAME  
FUNCTION  
MAX16020 MAX16021  
Active-Low Watchdog Output. WDO asserts when WDI remains high or low longer than the  
watchdog timeout period. WDO returns high on the next WDI transition or when a reset is  
asserted.  
9
9
WDO  
Active-Low Power-Fail Comparator Output. PFO goes low when V  
falls below the internal  
hysteresis.  
PFT-HYS  
PFI  
10  
11  
10  
11  
PFO  
0.6V V  
threshold and goes high when V  
rises above V  
+ V  
PFT  
PFI  
PFT  
GND  
Ground  
Active-Low Reset Output. RESET asserts when V falls below the reset threshold or MR is  
CC  
12  
13  
14  
12  
13  
14  
RESET  
pulled low. RESET remains low for the duration of the reset timeout period after V rises  
above the reset threshold and MR goes high.  
CC  
Switched Output. OUT is connected to V  
when the reset output is not asserted or when  
CC  
V
is greater than V  
. OUT connects to BATT when RESET is asserted and V  
is  
OUT  
CC  
BATT  
BATT  
greater than V . Bypass OUT to GND with a 0.1µF (min) capacitor.  
CC  
Active-Low Chip-Enable Output. CEOUT goes low only when CEIN is low and reset is not  
asserted. If CEIN is low when reset is asserted, CEOUT stays low for 12µs (typ) or until  
CEIN goes high, whichever occurs first.  
CEOUT  
CEIN  
15  
16  
15  
16  
Chip-Enable Input. The input to CE gating circuitry. Connect to GND or OUT if not used.  
V
Supply Voltage Input. Bypass V to GND with a 0.1µF capacitor.  
CC  
CC  
Exposed Pad. Internally connected to GND. Connect EP to a large ground plane to aid  
heat dissipation. Do not use EP as the only ground connection for the device.  
EP  
______________________________________________________________________________________ 11  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
Functional Diagrams  
BATT  
BATTERY  
FRESHNESS SEAL  
OUT  
V
CC  
BATTON  
RESET  
MR  
DELAY  
RESET  
OUT  
REF  
PFO  
/MAX6021  
PFI  
CLEAR  
WATCHDOG  
TRANSITION  
DETECTOR  
WATCHDOG  
TIMER  
WDI  
MAX16016  
100nA  
25k  
GND  
12 ______________________________________________________________________________________  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
/MAX6021  
Functional Diagrams (continued)  
BATT  
BATTERY TEST  
CIRCUIT  
BATT_TEST  
(MAX16020 ONLY)  
BATTERY  
FRESHNESS SEAL  
DISABLE  
OUT  
V
CC  
LATCH  
BATTOK  
BATTON  
MR  
RESET  
(RESET)  
(MAX16021  
ONLY)  
DELAY  
RESET  
LL  
OUT  
REF  
OUT  
PF1  
WDI  
PFO  
CE OUTPUT  
CONTROL  
CLEAR  
WATCHDOG  
TRANSITION  
DETECTOR  
WDO  
WATCHDOG  
TIMER  
25kΩ  
CEIN  
CEOUT  
100nA  
MAX16020  
MAX16021  
GND  
______________________________________________________________________________________ 13  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
brownout. During normal operation, the CE gate is  
Detailed Description  
enabled and passes all CE transitions. When the reset  
The Typical Application Circuit shows a typical connec-  
output asserts, this path becomes disabled, preventing  
erroneous data from corrupting the CMOS RAM.  
CEOUT is pulled up to OUT through an internal current  
source. The 1.5ns propagation delay from CEIN to  
CEOUT allows the devices to be used with most µPs  
and high-speed DSPs.  
tion using the MAX16020. OUT powers the static ran-  
dom-access memory (SRAM). If V  
is greater than the  
CC  
reset threshold (V ), or if V  
is lower than V , but  
TH  
, V  
CC  
TH  
higher than V  
connects to OUT. If V  
is lower  
BATT CC  
CC  
than V and V  
is less than V  
, BATT connects to  
TH  
CC  
BATT  
OUT (see the Functional Diagrams). In battery-backup  
mode, an internal MOSFET connects the backup battery  
to OUT. The on-resistance of the MOSFET is a function of  
backup-battery voltage and temperature.  
During normal operation (reset not asserted), CEIN is  
connected to CEOUT through a low on-resistance  
transmission gate. If CEIN is high when a reset asserts,  
CEOUT remains high regardless of any subsequent  
transition on CEIN during the reset event.  
Backup-Battery Switchover  
In a brownout or power failure, it may be necessary to  
preserve the contents of the RAM. With a backup battery  
installed at BATT, the MAX16016/MAX16020/MAX16021  
automatically switch the RAM to the backup power when  
If CEIN is low when reset asserts, CEOUT is held low  
for 12µs to allow completion of the read/write operation.  
After the 12µs delay expires, CEOUT goes high and  
stays high regardless of any subsequent transitions on  
CEIN during the reset event. When CEOUT is disconnect-  
ed from CEIN, CEOUT is actively pulled up to OUT.  
V
CC  
falls. The MAX16016/MAX16020/MAX16021 have a  
BATTON output that goes high when in battery-backup  
mode. These devices require two conditions before  
switching to battery-backup mode:  
The propagation delay through the CE circuitry  
depends on both the source impedance of the drive to  
CEIN and the capacitive loading at CEOUT. Minimize  
the capacitive load at CEOUT to minimize the propaga-  
tion delay, and use a low output-impedance driver.  
1) V  
2) V  
must be below the reset threshold.  
CC  
CC  
must be below V  
.
BATT  
Table 3 lists the status of the inputs and outputs in bat-  
tery-backup mode. The device does not power up if the  
only voltage source is on BATT. OUT only powers up  
Low-Line Output (LL)  
The low-line comparator monitors V  
with a threshold  
CC  
from V  
at startup.  
CC  
voltage typically 2.5% higher than the reset threshold  
(see Table 2). LL asserts prior to a reset condition during  
a brownout condition. On power-up, LL deasserts after  
the reset output. LL can be used to provide a nonmask-  
able interrupt (NMI) to the µP when the voltage begins to  
fall to initiate an orderly software shutdown routine.  
CE Signal Gating  
The MAX16020/MAX16021 provide internal gating of  
CE signals to prevent erroneous data from being written  
to CMOS RAM in the event of a power failure or  
/MAX6021  
Table 3. Input and Output Status in  
Battery-Backup Mode  
Manual Reset Input  
Many µP-based products require manual reset capability,  
allowing the operator, a test technician, or external logic  
circuitry to initiate a reset. For the MAX16016/MAX16020/  
MAX16021, a logic-low on MR asserts RESET/RESET.  
RESET/RESET remains asserted while MR is low. When  
MR goes high RESET/RESET deasserts after a minimum  
PIN  
STATUS  
V
Disconnected from OUT  
CC  
OUT  
Connected to BATT  
Connected to OUT. Current drawn from the  
of 145ms (t ). MR has an internal 30kpullup resistor to  
RP  
BATT  
battery is less than 0.55µA (at V  
= 3V,  
BATT  
V
. MR can be driven with TTL/CMOS logic levels or  
CC  
excluding I  
) when V  
= 0V.  
OUT  
CC  
with open-drain/collector outputs. Connect a normally  
open momentary switch from MR to GND to create a  
manual reset function; external debounce circuitry is not  
required. If MR is driven from a long cable or the device is  
used in a noisy environment, connect a 0.1µF capacitor  
from MR to GND to provide additional noise immunity.  
RESET/RESET Asserted  
High state (push-pull), high impedance  
(open-drain)  
BATTON, WDO  
BATTOK, LL  
CEIN  
Low state  
Disconnected from CEOUT  
CEOUT  
PFO  
Pulled up to V  
Not affected  
OUT  
14 ______________________________________________________________________________________  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
/MAX6021  
Watchdog Timer  
watchdog fault occurs in this mode, WDO goes low,  
which pulls MR low, causing a reset pulse to be issued.  
As soon as the reset output is asserted, the watchdog  
timer clears and WDO returns high. With WDO connect-  
ed to MR, a continuous high or low on WDI causes  
145ms (min) reset pulses to be issued every 1.235s.  
Watchdog Input  
The watchdog monitors µP activity through the input  
WDI. If the µP becomes inactive, either the reset output is  
asserted in pulses (MAX16016) or the watchdog output  
goes low (MAX16020/MAX16021). To use the watchdog  
function, connect WDI to a bus line or µP I/O line. If WDI  
remains high or low for longer than the watchdog timeout  
period, the internal watchdog timer runs out and RESET  
asserts for the reset timeout period (MAX16016) or WDO  
goes low (MAX16020/MAX16021). The internal watchdog  
timer clears whenever the reset output asserts or the  
WDI sees a rising or falling edge within the watchdog  
timeout period. The WDI input is designed for a three-  
stated output device with a 10µA maximum leakage cur-  
rent and the capability of driving a maximum capacitive  
load of 200pF. The three-state device must be able to  
source and sink at least 200µA when active. Disable the  
watchdog timer by leaving WDI unconnected or by  
three-stating the driver connected to WDI. The watchdog  
timer periodically attempts to pulse WDI to the opposite  
logic-level through a 25kresistor for 40µs to determine  
whether WDI is either unconnected or latched to a logic  
state. The watchdog function is also disabled when in  
battery-backup mode.  
Battery Testing Function/BATTOK  
Indicator (MAX16020/MAX16021)  
The MAX16020/MAX16021 feature a battery testing  
function that works in conjunction with the BATTOK out-  
put. The battery voltage is tested for 1.235s after V  
is  
CC  
applied and once every 24 hours thereafter. During this  
test, an internal 100kresistor is connected from BATT  
to ground and the battery is monitored to ensure that  
the battery voltage is above 2.6V. If the battery voltage  
is below 2.6V, the BATTOK output deasserts low to indi-  
cate a weak battery condition. The MAX16020 has a  
BATT_TEST output that pulses high during the battery  
voltage test. Connect a resistor and FET as shown in  
Figure 6 to provide an additional load during the battery  
test. In battery-backup mode, the battery testing function  
is disabled and BATTOK goes low.  
Battery Freshness Seal Mode  
The MAX16016/MAX16020/MAX16021 battery fresh-  
ness seal disconnects the backup battery from internal  
Watchdog Output  
WDO remains high if there is a transition or pulse at WDI  
during the watchdog-timeout period. WDO goes low if no  
transition occurs at WDI during the watchdog timeout  
period and remains low until the next transition at WDI or  
when a reset is asserted. Connect WDO to MR to gener-  
ate a system reset on every watchdog fault. When a  
circuitry and OUT until V  
is applied. This ensures the  
CC  
backup battery connected to BATT is fresh when the  
final product is used for the first time.  
The internal freshness seal latch prevents BATT from  
powering OUT until V  
has come up for the first time,  
CC  
CC  
setting the latch. When V  
subsequently turns off,  
BATT begins to power OUT.  
t
t
t
WD  
WD  
WD  
WDI  
WDO  
Figure 1. Watchdog Timing (MAX16016/MAX16020)  
______________________________________________________________________________________ 15  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
To reenable the freshness seal:  
1) Connect a battery to BATT.  
Power-Fail Comparator  
The MAX16016/MAX16020/MAX16021 offer an under-  
voltage comparator that the output PFO goes low when  
2) Bring V  
to 0V.  
CC  
the voltage at PFI falls below its V  
threshold.  
PFT  
3) Drive MR higher than V  
+ 1.2V for at least 3µs.  
BATT  
Common uses for the power-fail comparator include  
monitoring the power supply (such as a battery) before  
any voltage regulation to provide an early power-fail  
warning, so software can conduct an orderly system  
shutdown. The power-fail comparator has a typical  
4) Pull OUT to 0V.  
Reset Output  
A µP’s reset input starts the µP in a known state. The  
µP supervisory circuits assert a reset to prevent code-  
execution errors during power-up, power-down, and  
brownout conditions. Reset output is guaranteed to be  
a logic-low or logic-high depending on the device cho-  
input hysteresis of V  
and is powered from OUT,  
PFT-HYS  
making it independent of the reset circuit. Connect the  
PFI input to GND if not used.  
sen. RESET or RESET asserts when V  
is below the  
Applications Information  
CC  
reset threshold and remains asserted for at least 145ms  
(t ) after V rises above the reset threshold. RESET  
Monitoring an Additional Supply  
The MAX16016/MAX16020/MAX16021 µP supervisors  
can monitor either positive or negative supplies using a  
resistive voltage-divider to PFI. PFO can be used to  
generate an interrupt to the µP or to trigger a reset  
(Figures 2 and 3). To monitor a negative supply, con-  
RP  
CC  
or RESET also asserts when MR is low. The MAX16016  
watchdog function causes RESET to assert in pulses  
following a watchdog timeout. The reset output is avail-  
able in both push-pull and open-drain configurations.  
nect the top of the resistive divider to V . Connect the  
CC  
bottom of the resistive divider to the negative voltage to  
be monitored.  
5V  
V
1
0.1µF  
R1  
0.1µF  
V
V
2
CC  
/MAX6021  
V
CC  
PFI  
PFO  
R1  
R2  
RESET  
RESET  
PFI  
µP  
MAX16016  
MAX16020  
MAX16021  
R2  
MAX16016L  
MAX16020L  
MAX16021L  
V-  
PFO  
MR  
GND  
R2  
R1  
GND  
V
TRIP  
= V  
PFT  
-
(5 - V  
)
PFT  
ADDITIONAL SUPPLY RESET VOLTAGE  
R1+R2  
V
IS NEGATIVE  
TRIP  
+5V  
V
= V  
x
2(RESET) PFT (—)  
R2  
PFO  
0
V
TRIP  
V-  
0V  
Figure 3. Monitoring a Negative Supply  
Figure 2. Monitoring an Additional Supply by Connecting PFO  
to MR  
16 ______________________________________________________________________________________  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
/MAX6021  
Adding Hysteresis to PFI  
Battery-On Indicator (Push-Pull Version)  
BATTON goes high when in battery-backup mode. Use  
BATTON to indicate battery-switchover status or to sup-  
ply base drive to an external pass transistor for higher  
current applications (Figure 5).  
The power-fail comparators have a typical input hys-  
teresis of V  
. This is sufficient for most applica-  
PFT-HYS  
tions where a power-supply line is being monitored  
through an external voltage-divider (see the Monitoring  
an Additional Supply section). Figure 4 shows how to  
add hysteresis to the power-fail comparator. Select the  
Operation Without a Backup Power Source  
The MAX16016/MAX16020/MAX16021 provide a bat-  
tery-backup function. If a backup power source is not  
ratio of R1 and R2 so that PFI sees V  
when V falls  
IN  
PFT  
to the desired trip point (V  
). Resistor R3 adds hys-  
TRIP  
used, connect BATT to GND and OUT to V  
.
CC  
teresis. R3 is typically an order of magnitude greater  
than R1 or R2. R3 should be larger than 50kto pre-  
vent it from loading down PFO. Capacitor C1 adds  
additional noise rejection.  
+5V  
V
CC  
V
IN  
0.1µF  
1µF  
0.1µF  
R1  
R2  
V
CC  
V
BATTON  
CC  
OUT  
PFI  
BATT  
CEOUT  
CE  
C1*  
R3  
MAX16016L  
MAX16020L  
MAX16021L  
CMOS RAM  
MAX16020L  
ADDRESS  
DECODE  
PFO  
CEIN  
MR  
A0–A15  
TO µP  
µP  
RESET  
RESET  
GND  
*OPTIONAL  
R1+R2  
R2  
GND  
V
= V  
x
TRIP PFT (—)  
R1 R1  
+
+
1
V
= (V + V  
) x  
H
PFT PFT-HYS (– – )  
R2 R3  
Figure 5. BATTON Driving an External Pass Transistor  
V
V
- V  
R3  
PFT  
CC PFT  
+
V = R1 x  
+ V  
L
(
WHERE V IS THE POWER-FAIL THRESHOLD VOLTAGE  
)
PFT  
R2  
PFT  
+5V  
PFO  
0
V
L
V
H
V
IN  
V
TRIP  
Figure 4. Adding Hysteresis to the Power-Fail Comparator  
______________________________________________________________________________________ 17  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
Replacing the Backup Battery  
is above V , the backup power source can  
TH  
When V  
CC  
be removed without danger of triggering a reset pulse.  
The device does not enter battery-backup mode when  
CC  
BATT  
V
stays above the reset threshold voltage.  
V
CC  
Negative-Going V  
Transients  
CC  
R
LOAD  
The MAX16016/MAX16020/MAX16021 are relatively  
immune to short duration, negative going V tran-  
MAX16020L  
CC  
sients. Resetting the µP when V  
experiences only  
CC  
small glitches is usually not desirable. A 0.1µF bypass  
BATT_TEST  
capacitor mounted close to V  
transient immunity.  
provides additional  
CC  
Figure 6. Adjustable BATT_TEST Load  
/MAX6021  
18 ______________________________________________________________________________________  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
/MAX6021  
Pin Configurations (continued)  
TOP VIEW  
16  
15  
14  
13  
+
BATT  
MR  
1
2
3
4
12 RESET  
11 GND  
10 PFO  
10  
9
2
8
7
4
6
5
MAX16021  
MAX16016  
3
PFI  
EP  
+
EP  
1
WDI  
9
WDO  
5
6
7
8
TDFN  
TQFN  
Typical Application Circuit  
3.3V  
0.1µF  
SECONDARY  
DC VOLTAGE  
0.1µF  
V
CC  
R1  
R2  
V
CC  
RESET  
LL  
RST  
NMI  
I/O  
PFI  
µP  
WDI  
WDO  
I/O  
A0–A15  
MAX16020L  
OUT  
0.1µF  
(MIN)  
PFO  
MR  
RAM  
CE  
CEOUT  
CEIN  
RTC  
BATT  
ADDRESS  
DECODE  
GND  
0.1µF  
______________________________________________________________________________________ 19  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
Selector Guide  
ALL LOGIC  
OUTPUTS (EXCEPT  
BATT_TEST)  
LOW-  
LINE  
OUTPUT  
BATTOK/  
BATT_TEST/  
RESET  
POWER-FAIL  
COMPARATOR  
WATCHDOG  
TIMER  
CHIP-  
ENABLE  
PART  
MR  
BATTON  
MAX16016LTB_  
MAX16016PTB_  
Push-pull  
WDI  
WDI  
Open-drain  
BATTOK/  
BATT_TEST  
MAX16020LTE_  
MAX16020PTE_  
MAX16021LTE_  
MAX16021PTE_  
Push-pull  
Open-drain  
Push-pull  
WDI/WDO  
WDI/WDO  
WDI/WDO  
WDI/WDO  
BATTOK/  
BATT_TEST  
BATTOK/  
RESET  
BATTOK/  
RESET  
Open-drain  
Ordering Information (continued)  
Chip Information  
PROCESS: BiCMOS  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
16 TQFN-EP*  
16 TQFN-EP*  
MAX16020_TE_+T  
MAX16021_TE_+T  
The first placeholder “_” designates all output options. Letter  
“L” indicates push-pull outputs and letter “P” indicates open-  
drain outputs. The last placeholder “_” designates the reset  
threshold (see Table 1).  
T = Tape and reel.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
/MAX6021  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
10 TDFN-EP  
16 TQFN-EP  
T1033+1  
T1644+4  
21-0137  
21-0139  
90-0093  
90-0070  
20 ______________________________________________________________________________________  
Low-Power µP Supervisory Circuits with  
Battery-Backup Circuit and Chip-Enable Gating  
/MAX6021  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
0
1
2
3
5/08  
7/08  
Initial release  
Released the MAX16016. Updated Ordering Information, Electrical  
Characteristics, Tables 1 and 2, Pin Description, and Detailed Description.  
1, 3, 4, 5, 9, 10, 12,  
13, 15, 16, 19, 20  
10/08  
12/08  
Released the MAX16021.  
20  
Updated Electrical Characteristics, Pin Description, Table 3, and the Power-  
Fail Comparator section.  
3, 9, 10, 11, 14, 16  
4
5
6
1/10  
4/11  
Updated Electrical Characteristics.  
Updated Pin Description.  
4
9, 10  
9, 10  
11/11  
Updated Pin Description.  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in  
the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX16016LTBR+

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, TDFN-10
MAXIM

MAX16016LTBR+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, TDFN-10
MAXIM

MAX16016LTBS+

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, TDFN-10
MAXIM

MAX16016LTBT+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, TDFN-10
MAXIM

MAX16016LTBV+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, TDFN-10
MAXIM

MAX16016LTBW+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, TDFN-10
MAXIM

MAX16016LTBY+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, TDFN-10
MAXIM

MAX16016LTBZ+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, TDFN-10
MAXIM

MAX16016PTBL+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, TDFN-10
MAXIM

MAX16016PTBM+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, TDFN-10
MAXIM

MAX16016PTBR+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, PDSO10, ROHS COMPLIANT, TDFN-10
MAXIM

MAX16016PTBT+

Power Management Circuit, BICMOS, PDSO10,
MAXIM