MAX1602 [MAXIM]

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network; 单通道的CardBus和PCMCIA VCC / VPP电力交换网
MAX1602
型号: MAX1602
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network
单通道的CardBus和PCMCIA VCC / VPP电力交换网

PC
文件: 总12页 (文件大小:132K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1125; Rev 0; 9/96  
S in g le -Ch a n n e l Ca rd Bu s a n d P CMCIA VCC/VP P  
P o w e r-S w it c h in g Ne t w o rk  
MAX1602  
_______________Ge n e ra l De s c rip t io n  
____________________________Fe a t u re s  
The MAX1602 DC power-switching IC contains a net-  
work of low-resistance MOSFET switches that deliver  
selectable VCC and VPP voltages to a single CardBus  
or PC Ca rd hos t s oc ke t. Ke y fe a ture s inc lud e low-  
resistance switches, small packaging, soft-switching  
action, and compliance with PCMCIA specifications for  
3V/5V switching. 3.3V-only power switching for fast,  
32-bit CardBus applications is supported in two ways:  
low-resistance 3.3V switches allow high 3.3V load cur-  
rents (up to 1A); and completely independent internal  
charge pumps let the 3.3V switch operate normally,  
even if the +5V and +12V supplies are disconnected or  
turne d off to c ons e rve p owe r. The inte rna l c ha rg e  
pumps are regulating types that draw reduced input  
current when the VCC switches are static. Power con-  
sumption is automatically reduced to 11µA max when  
the outputs are high-Z or GND.  
Supports a Single PC Card/CardBus Socket  
1A, 0.25Max 3.3V VCC Switch  
1A, 0.25Max 5V VCC Switch  
Soft Switching for Low Inrush Surge Current  
Overcurrent Protection  
Overcurrent/Thermal-Fault Flag Output  
Thermal Shutdown at T = +150°C  
j
Independent Internal Charge Pumps  
Break-Before-Make Switching Action  
11µA Max Standby Supply Current  
5V and 12V Not Required for Low-R  
DS(ON)  
3.3V Switching  
Complies with PCMCIA 3V/5V Switching  
Other key features include guaranteed specifications  
for output current limit level, and guaranteed specifi-  
cations for output rise/fall times (in compliance with  
PCMCIA specifications). Reliability is enhanced by  
thermal-overload protection, accurate current limiting,  
an overcurrent-fault flag output, and undervoltage lock-  
outs. The CMOS/TTL-logic interface is flexible, and can  
tolerate logic input levels in excess of the positive sup-  
ply rail.  
Specifications  
Super-Small 16-Pin QSOP Package  
Code Compatible with:  
Cirrus CL-PD67XX Family  
Databook DB86184  
Intel 82365SL (industry-standard coding)  
__________S im p lifie d Blo c k Dia g ra m  
The MAX1602 fits a complete CardBus/PCMCIA switch  
into a space-saving, 16-pin QSOP package.  
VPP  
12IN  
MAX1602  
________________________Ap p lic a t io n s  
VCC  
VCC  
VX  
Data Loggers  
VY  
VY  
VCC  
VCC  
Handy-Terminals  
Docking Stations  
VDD  
PCMCIA Read/Write Drives  
OVERCURRENT  
AND  
THERMAL  
SHUTDOWN  
DECODE  
LOGIC  
CONTROL  
INPUTS  
FAULT  
CODE  
CODE  
SELECT  
______________Ord e rin g In fo rm a t io n  
GND  
PART  
TEMP. RANGE  
PIN-PACKAGE  
MAX1602EEE  
-40°C to +85°C  
16 QSOP  
Pin Configuration appears on last page.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800  
S in g le -Ch a n n e l Ca rd Bu s a n d P CMCIA VCC/VP P  
P o w e r-S w it c h in g Ne t w o rk  
ABSOLUTE MAXIMUM RATINGS  
Inputs/Outputs to GND  
VCC Short Circuit to GND ..........................................Continuous  
VPP Short Circuit to GND...........................................Continuous  
(VX, VY, VCC) (Note 1) ..........................................-0.3V, +6V  
VPP Input/Output to GND  
Continuous Power Dissipation (T = +70°C)  
A
(12IN, VPP) (Note 1) ............................................-0.3V, +15V  
Logic Inputs to GND (A0VCC, A1VCC,  
QSOP (derate 8.3mW/°C above +70°C) ....................667mW  
Operating Temperature Range  
A0VPP, A1VPP) (Note 1)........................................-0.3V, +6V  
CODE Input to GND ........................................-0.3V, (VY + 0.3V)  
VCC Output Current (Note 2)...................................................4A  
VPP Output Current (Note 2).............................................260mA  
MAX1602EEE.................................................-40°C to +85°C  
Storage Temperature Range .............................-65°C to +160°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
MAX1602  
Note 1: There are no parasitic diodes between any of these pins, so there are no power-up sequencing restrictions (for example,  
logic input signals can be applied even if all of the supply voltage inputs are grounded).  
Note 2: VCC and VPP outputs are internally current limited. See the Electrical Characteristics.  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(VY = 3.3V, VX = 5V, 12IN = 12V, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER-SUPPLY SECTION  
VX, VY  
3.0  
11  
5.5  
13  
Input Voltage Range  
V
12IN  
VY falling edge  
12IN falling edge  
12IN rising edge  
VX falling edge  
2.4  
1.8  
5.0  
1.4  
2.6  
3.0  
8.0  
1.9  
2.8  
Undervoltage Lockout Threshold  
V
10.0  
2.8  
All switches 0V or high-Z,  
control inputs = 0V or VY, T = +25°C  
A
VY Standby Supply Current  
VX Standby Supply Current  
12IN Standby Supply Current  
3
11  
1
µA  
µA  
µA  
VX all switches 0V or high-Z,  
control inputs = 0V or VY, T = +25°C  
A
All switches 0V or high-Z,  
control inputs = 0V or VY, T = +25°C  
A
1
Any combination of VY switches on,  
control inputs = 0V or VY, no VCC loads  
VY Quiescent Supply Current  
VX Quiescent Supply Current  
12IN Quiescent Supply Current  
VCC SWITCHES  
20  
10  
5
200  
50  
µA  
µA  
µA  
Control inputs = 0V or VY, no VCC loads  
VPP 12V switches on,  
control inputs = 0V or VY, no VPP loads  
100  
Operating Output Current Range VCC, VX = VY = 3V to 5.5V  
0
1
A
12IN = 0V to 13V, VY = 3V, VX = 0V to 5.5V,  
= 1A, T = +25°C  
On-Resistance, VY Switches  
0.09  
0.09  
0.25  
I
SWITCH  
A
12IN = 0V to 13V, VX = 4.5V, VY = 0V to 5.5V,  
= 1A, T = +25°C  
On-Resistance, VX Switches  
Output Current Limit  
0.25  
4
I
SWITCH  
A
VCC  
1.2  
A
2
_______________________________________________________________________________________  
S in g le -Ch a n n e l Ca rd Bu s a n d P CMCIA VCC/VP P  
P o w e r-S w it c h in g Ne t w o rk  
MAX1602  
ELECTRICAL CHARACTERISTICS (continued)  
(VY = 3.3V, VX = 5V, 12IN = 12V, T = 0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
A
A
MIN  
10  
PARAMETER  
Output Sink Current  
CONDITIONS  
TYP  
MAX  
UNITS  
mA  
VCC < 0.4V, programmed to 0V state  
Output Leakage Current  
VCC forced to 0V, high-Z state, T = +25°C  
1
2
10  
10  
µA  
A
Output Propagation Delay  
Plus Rise Time  
VCC, 0V to VX or VY, C = 30µF, R = 25,  
L L  
ms  
µs  
50% of input to 90% of output, T = +25°C  
A
VCC, 0V to VX or VY, C = 1µF, R = open circuit,  
L
L
Output Rise Time  
100  
1200  
90  
10% to 90% points, T = +25°C  
A
Output Propagation Delay  
Plus Fall Time  
VCC, VX or VY to 0V, C = 30µF, R = open circuit,  
L L  
150  
ms  
ms  
50% of input to 10% of output, T = +25°C  
A
VCC, VX or VY to 0V, C = 1µF, R = 25,  
L
L
Output Fall Time  
6
90% to 10% points  
VPP SWITCHES  
Operating Output Current Range  
On-Resistance, 12V Switches  
VPP  
0
120  
1
mA  
12IN = 11.6V, I  
= 100mA, T = +25°C  
0.70  
3
SWITCH  
A
On-Resistance, VPP = VCC Switches Programmed to VX (5V) or VY (3.3V), T = +25°C  
6
A
Output Current Limit  
Output Sink Current  
Output Leakage Current  
VPP programmed to 12V  
130  
10  
200  
260  
mA  
mA  
µA  
VPP < 0.4V, programmed to 0V state  
VPP forced to 0V, high-Z state, T = +25°C  
0.1  
1.2  
10  
30  
A
Output Propagation Delay  
Plus Rise Time  
VPP, 0V to 12IN, C = 0.1µF,  
L
50% of input to 90% of output, T = +25°C  
ms  
µs  
A
VPP, 0V to 12IN, C = 0.1µF,  
L
Output Rise Time  
100  
600  
9
10% to 90% points, T = +25°C  
A
Output Propagation Delay  
Plus Fall Time  
VPP, 12IN to 0V, C = 0.1µF,  
L
50% of input to 10% of output, T = +25°C  
60  
ms  
ms  
A
VPP, 12IN to 0V, C = 0.1µF, R = 100  
L
L
Output Fall Time  
6
90% to 10% points  
INTERFACE AND LOGIC SECTION  
VCC or VPP, load step to FAULT output,  
50% point to 50% point (Note 3)  
1
µs  
FAULT Signal Propagation Delay  
I
= 1mA, low state  
= 5.5V, high state  
0.4  
0.5  
V
µA  
°C  
V
FAULT Output Low Voltage  
FAULT Output Leakage Current  
Thermal Shutdown Threshold  
Logic Input Low Voltage  
SINK  
V
-0.5  
FAULT  
Hysteresis = 20°C (Note 4)  
__VCC, __VPP  
150  
0.6  
Logic Input High Voltage  
Code Input Low Voltage  
__VCC, __VPP  
1.5  
0
V
“Intelcode  
0.4  
VY  
V
Code Input High Voltage  
Code Input Mid-Level Voltage  
Logic Input Bias Current  
Cirrus” code  
VY - 0.4  
1.2  
V
“Databook” code  
__VCC, __VPP, code  
VY - 1.2  
1
V
-1  
µA  
_______________________________________________________________________________________  
3
S in g le -Ch a n n e l Ca rd Bu s a n d P CMCIA VCC/VP P  
P o w e r-S w it c h in g Ne t w o rk  
ELECTRICAL CHARACTERISTICS  
(VY = 3.3V, VX = 5V, 12IN = 12V, T = -40°C to +85°C, unless otherwise noted.)  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER-SUPPLY SECTION  
VX, VY  
12IN  
3.0  
11  
2.3  
1.8  
5
5.5  
13  
Input Voltage Range  
V
VY falling edge, hysteresis = 1%  
12IN falling edge  
2.9  
MAX1602  
Undervoltage Lockout Threshold  
VY Standby Supply Current  
V
12IN rising edge  
10  
VX, VY falling edge  
1.4  
2.9  
All switches 0V or high-Z, control inputs = 0V or VY  
30  
µA  
VX, all switches 0V or high-Z,  
VX Standby Supply Current  
12IN Standby Supply Current  
VY Quiescent Supply Current  
15  
15  
µA  
µA  
µA  
control inputs = 0V or VY, T = T  
to T  
MAX  
A
MIN  
All switches 0V or high-Z, control inputs = 0V or VY  
Any combination of VY switches on,  
control inputs = 0V or VY, no VCC loads  
200  
Any combination of VX switches on,  
control inputs = 0V or high-Z, no VCC loads  
VX Quiescent Supply Current  
50  
µA  
12IN Quiescent Supply Current  
FAULT Output Low Voltage  
Logic Input Low Voltage  
12V switches on, control inputs = 0V or VY, no VPP loads  
100  
0.4  
0.6  
µA  
V
ISINK = 1mA, low state  
__VCC, __VPP  
V
Logic Input High Voltage  
__VCC, __VPP  
1.6  
V
Note 3: Not production tested.  
Note 4: Thermal limit not active in standby state (all switches programmed to GND or high-Z state).  
4
_______________________________________________________________________________________  
S in g le -Ch a n n e l Ca rd Bu s a n d P CMCIA VCC/VP P  
P o w e r-S w it c h in g Ne t w o rk  
MAX1602  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(VY = 3.3V, VX = 5V, 12IN = 12V, T = +25°C, unless otherwise noted.)  
A
VCC SWITCHING (RISE)  
VCC SWITCHING (RISE)  
3
2
1
0
6
4
2
VCC  
(V)  
VCC  
(V)  
0
5
0
CONTROL  
INPUT  
(V)  
CONTROL  
INPUT  
(V)  
5
0
500µs/div  
500µs/div  
C = 30µF, R = 25Ω  
C = 1µF, R =  
L
L
L
L
VCC SWITCHING (FALL)  
VCC SWITCHING (FALL)  
6
6
4
4
2
0
VCC  
(V)  
VCC  
(V)  
2
0
5
5
0
CONTROL  
INPUT  
(V)  
CONTROL  
INPUT  
(V)  
0
10ms/div  
20ms/div  
C = 33µF, R = ∞  
C = 1µF, R = 25Ω  
L
L
L
L
VPP SWITCHING (FALL)  
VPP SWITCHING (RISE)  
15  
15  
10  
5
10  
5
VPP  
(V)  
VPP  
(V)  
0
0
5
0
5
0
CONTROL  
INPUT  
(V)  
CONTROL  
INPUT  
(V)  
2ms/div  
200µs/div  
C = 0.1µF, R = ∞  
L
L
C = 0.1µF, R = ∞  
L
L
_______________________________________________________________________________________  
5
S in g le -Ch a n n e l Ca rd Bu s a n d P CMCIA VCC/VP P  
P o w e r-S w it c h in g Ne t w o rk  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(VY = 3.3V, VX = 5V, 12IN = 12V, T = +25°C, unless otherwise noted.)  
A
INPUT CURRENT (VCC OUTPUT SHORTED)  
VCC CURRENT LIMITING  
2.0  
1.5  
1.0  
0.5  
0
MAX1602  
4
I
(A)  
VY  
2
0
VCC  
(V)  
1ms/div  
2ms/div  
C = 1µF, RESISTIVE OVERLOAD, R = 1Ω  
L
L
INPUT CURRENT (VPP OUTPUT SHORTED)  
VPP CURRENT LIMITING  
10  
5
10  
VPP  
(V)  
VPP  
(V)  
0
5
0
300  
200  
I
12IN  
(mA)  
100  
0
100µs/div  
2ms/div  
R = 0.1Ω  
L
C = 1µF, R = 50Ω  
L
L
6
_______________________________________________________________________________________  
S in g le -Ch a n n e l Ca rd Bu s a n d P CMCIA VCC/VP P  
P o w e r-S w it c h in g Ne t w o rk  
MAX1602  
_____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(VY = 3.3V, VX = 5V, 12IN = 12V, T = +25°C, unless otherwise noted.)  
A
12IN ON-RESISTANCE  
vs. CURRENT  
12IN ON-RESISTANCE  
vs. TEMPERATURE  
VX SUPPLY CURRENT  
vs. INPUT VOLTAGE  
680  
675  
670  
665  
850  
800  
0.9  
0.8  
I
= 100mA  
LOAD  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
750  
700  
660  
655  
650  
645  
640  
650  
600  
550  
500  
0
20  
40  
60  
80  
100 120  
-40 -20  
0
20  
40  
60  
80 100  
0
1
2
3
4
5
6
CURRENT (mA)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
VY SUPPLY CURRENT  
vs. INPUT VOLTAGE  
12IN SUPPLY CURRENT  
vs. INPUT VOLTAGE  
50  
7
6
5
45  
40  
35  
30  
25  
20  
15  
10  
5
NORMAL  
OPERATION  
4
3
2
1
0
SHUTDOWN  
0
0
1
2
3
4
5
0
2
4
6
8
10  
12  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
VY ON-RESISTANCE  
vs. VCC LOAD CURRENT  
VX ON-RESISTANCE  
vs. VCC LOAD CURRENT  
130  
120  
130  
120  
T = +85°C  
A
T = +85°C  
A
110  
100  
110  
100  
T = +25°C  
A
T = +25°C  
A
90  
80  
90  
80  
T = -40°C  
A
70  
T = -40°C  
A
70  
60  
60  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
VCC LOAD CURRENT (mA)  
VCC LOAD CURRENT (mA)  
_______________________________________________________________________________________  
7
S in g le -Ch a n n e l Ca rd Bu s a n d P CMCIA VCC/VP P  
P o w e r-S w it c h in g Ne t w o rk  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
GND  
12IN  
VPP  
FUNCTION  
1
Ground  
2
+12V Supply Voltage Input  
VPP Output  
3
4, 6, 7, 9  
5
VCC  
VX  
VCC Output. Connect all four VCC pins together.  
VX Supply Voltage Input. Input range is +3.0V to +5.5V. VX is normally connected to 5V.  
MAX1602  
VY and Logic Supply Voltage Inputs. VY pins must be connected together. Input range is +3V to  
+5.5V. VY is normally connected to 3.3V.  
8, 10  
VY  
11  
12  
13  
14  
A0VPP  
A1VPP  
A0VCC  
A1VCC  
VPP Control Input (see Logic Truth Tables).  
VPP Control Input (see Logic Truth Tables).  
VCC Control Input (see Logic Truth Tables).  
VCC Control Input (see Logic Truth Tables).  
Three-Level Code-Select Input (see Logic Truth Tables): Low = Standard Intelcode,  
High = Cirrus” code, Mid-Supply = “Databook” code (Figure 4).  
15  
16  
CODE  
Fault-Detection Output. FAULT goes low during current limit, undervoltage lockout, or thermal  
limit. FAULT is an open-drain output that requires an external pull-up resistor.  
FAULT  
__________________________________________________________Lo g ic Tru t h Ta b le s  
Table 1. Standard “Intel” Code (82365SL),  
CODE = GND  
Table 2. “Cirrus” Code, CODE = High (VY)  
A1VCC A0VCC A1VPP A0VPP VCC  
VPP  
MODE  
A1VCC A0VCC A1VPP A0VPP VCC  
VPP  
GND  
GND  
GND  
GND  
GND  
VCC  
12IN  
MODE  
STBY  
STBY  
STBY  
STBY  
Active  
Active  
Active  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
High-Z High-Z STBY  
High-Z High-Z STBY  
High-Z High-Z STBY  
High-Z High-Z STBY  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GND  
GND  
GND  
GND  
VY  
VX  
VX  
GND  
VCC  
12IN  
Active  
Active  
Active  
VY  
VX  
VY  
VX  
High-Z Active  
VY  
High-Z Active  
VY  
GND  
VCC  
12IN  
Active  
Active  
Active  
VX  
GND  
VCC  
12IN  
Active  
Active  
Active  
VY  
VX  
VY  
VX  
VY  
High-Z Active  
VX  
High-Z Active  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
STBY  
STBY  
STBY  
STBY  
VY  
GND  
VCC  
12IN  
Active  
Active  
Active  
VY  
VY  
VY  
High-Z Active  
STBY = Standby Mode  
STBY = Standby Mode  
8
_______________________________________________________________________________________  
S in g le -Ch a n n e l Ca rd Bu s a n d P CMCIA VCC/VP P  
P o w e r-S w it c h in g Ne t w o rk  
MAX1602  
_________Lo g ic Tru t h Ta b le s (c o n t .)  
_______________De t a ile d De s c rip t io n  
The MAX1602 power-switching IC contains a network of  
low-resistance MOSFET switches that deliver selectable  
VCC and VPP voltages to two CardBus or PC Card host  
socket. Figure 1 is the detailed block diagram.  
Table 3. “Databook” Code,  
CODE = Mid-Supply (VY/2)  
A1VCC A0VCC AVPP A0VPP VCC  
VPP  
MODE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
X
X
X
X
X
X
X
X
GND High-Z STBY  
The power-input pins (VY, VX, 12IN) are completely  
independent, however, power must always be applied  
to VY for proper operation. Low inrush current is guaran-  
teed by controlled switch rise times. VCCs 100µs mini-  
mum outp ut ris e time is 100% te s te d with a 1µF  
capacitive load, and VPPs 1ms minimum rise time is  
guaranteed with a 0.1µF load. These respective capaci-  
tive loads are chosen as worst-case card-insertion para-  
meters. The internal switching control allows VCC and  
VPP rise times to be controlled, and makes them nearly  
VY  
GND  
VX  
12IN  
GND  
12IN  
VCC  
GND  
VCC  
GND  
Active  
STBY  
Active  
Active  
Active  
Active  
Active  
VY  
VY  
VX  
VX  
STBY = Standby Mode, X = Dont Care  
1Ω  
VB12  
12IN  
VPP  
MAX1602  
CHARGE  
PUMP  
CURRENT  
LIMIT  
6Ω  
40Ω  
VB3  
0.25Ω  
VY  
VY  
VCC  
VCC  
VCC  
CURRENT  
LIMIT  
CHARGE  
PUMP  
VCC  
VB5 0.25Ω  
VX  
40Ω  
CHARGE  
PUMP  
CURRENT  
LIMIT  
FAULT  
VDD  
DECODE  
LOGIC  
AND UVLO  
CONTROL  
INPUTS  
SHDN  
GND  
THERMAL  
SHUTDOWN  
Figure 1. Detailed Block Diagram  
_______________________________________________________________________________________  
9
S in g le -Ch a n n e l Ca rd Bu s a n d P CMCIA VCC/VP P  
P o w e r-S w it c h in g Ne t w o rk  
independent of resistive and capacitive loads (see rise-  
time photos in the Typical Operating Characteristics).  
Fall times are a function of loading, and are compensat-  
ed by internal circuitry.  
Ove rc u rre n t P ro t e c t io n  
Peak detecting circuitry protects both the VCC and VPP  
switches against overcurrent conditions. When current  
through any switch exceeds the internal current limit  
(4A for VCC switches and 200mA for VPP switches) the  
switch turns off briefly, then turns on again at the con-  
trolled rise rate. If the overcurrent condition lasts more  
than 2µs, the FAULT output goes low. FAULT is not  
latched. A continuous short-circuit condition results in a  
pulsed output current and a pulsed FAULT output until  
thermal shutdown is reached. FAULT is open-drain and  
requires an external pull-up resistor.  
Power savings is automatic: internal charge pumps draw  
very low current when the VCC switches are static.  
Standby mode reduces switch supply current to 11µA.  
Op e ra t in g Mo d e s  
The MAX1602 is c omp a tib le with the Cirrus  
CL-PD67XX, Databook DB86184, and Intel 82365SL PC  
Card Interface Controllers (PCIC). Four control inputs  
select the internal switches’ positions and the operating  
modes according to the input code. Select the proper  
code format for the chosen controller with the CODE  
input pin (see Pin Description and Tables 1, 2, and 3).  
CODE reconfigures the logic decoder to one of three  
interface controllers:  
MAX1602  
Th e rm a l S h u t d o w n  
If the IC junction temperature rises above +150°C, the  
thermal shutdown circuitry opens all switches, including  
the GND switches, and FAULT is pulled low. When the  
temperature falls below +130°C, the switches turn on  
again at the controlled rise rate. If the overcurrent con-  
dition remains, the part cycles between thermal shut-  
down and overcurrent.  
Low = Standard Intelcode (Figure 3)  
High = Cirrus” code (Figure 2)  
Mid-supply = “Databook” code (Figure 4)  
Un d e rvo lt a g e Lo c k o u t  
If the VX switch input voltage drops below 1.9V, the  
associated switch turns off and FAULT goes low. For  
example, if VY is 3.3V and VX is 0V, and if the interface  
controller selects VY, the VCC output will be 3.3V. If VX  
is selected, VCC changes to a high-impedance output  
and FAULT goes low.  
An additional 1µA (3µA max) of VY supply current will  
flow if CODE = mid-supply (VY/2).  
The MAX1602 has two operating modes: normal and  
standby. Normal mode supplies the selected outputs  
with their appropriate supply voltages. Standby mode  
places all switches at ground, high impedance, or a  
combination of the two.  
When a voltage is initially applied to 12IN, it must be  
g re a te r tha n 8V to a llow the s witc h to op e ra te .  
Operation continues until the voltage falls below 2V  
(the VPP output is high impedance).  
TO PC CARD SOCKET  
Whe n VY d rop s to le s s tha n 2.6V, a ll s witc he s a re  
turne d off a nd the VCC a nd VPP outp uts a re hig h  
impedance.  
V
CC  
VCC VPP  
MAX1602  
SOCKET  
INTERFACE  
CIRRUS LOGIC  
CL-PD6720  
CL-PD6722  
CL-PD6729  
__________Ap p lic a t io n s In fo rm a t io n  
+3.3V  
VY  
VY  
TO PC  
CARD  
SOCKET  
S u p p ly Byp a s s in g  
Bypass the VY, VX, and 12IN inputs with ceramic 0.1µF  
capacitors. Bypass the VCC and VPP outputs with a  
0.1µF capacitor for noise reduction and ESD protection.  
+5V  
+12V  
VX  
A:VPP_VCC  
A:VPP_PGM  
A:VCC_5  
A0VPP  
A1VPP  
A0VCC  
A1VCC  
12IN  
CODE  
A:VCC_3  
GND  
GND  
Figure 2. Application with Cirrus Logic Interface  
10 ______________________________________________________________________________________  
S in g le -Ch a n n e l Ca rd Bu s a n d P CMCIA VCC/VP P  
P o w e r-S w it c h in g Ne t w o rk  
MAX1602  
TO SOCKETS  
V
CC  
TO PC CARD SOCKET  
V
CC  
VCC VPP  
MAX1602  
SOCKET  
INTERFACE  
VCC VPP  
MAX1602  
SOCKET  
INTERFACE  
TO PC  
CARD  
SOCKET  
82365SL DF  
DB87144  
+3.3V  
VY  
VY  
TO PC  
CARD  
+3.3V  
VY  
SOCKET  
VY  
A:VPP_EN0  
A0VPP  
A1VPP  
A0VCC  
A1VCC  
A1VPP  
A0VCC  
A1VCC  
A:_VCTL1  
+5V  
+12V  
VX  
A:VPP_EN1  
A:VCC_EN0  
A:VCC_EN1  
1M  
1M  
+5V  
+12V  
VX  
A:_VCTL2  
A:_VCTL0  
12IN  
CODE  
12IN  
CODE  
GND  
ISA  
BUS  
GND  
NOTE: A0VPP, PIN 11 ON THE MAX1602, IS TIED TO GND.  
Figure 3. Application with Intel Interface  
Figure 4. Block Diagram of the Databook DB87144 PCI to  
CardBus Controller Interface to the MAX1602  
______________________________________________________________________________________ 11  
S in g le -Ch a n n e l Ca rd Bu s a n d P CMCIA VCC/VP P  
P o w e r-S w it c h in g Ne t w o rk  
__________________P in Co n fig u ra t io n  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 1452  
TOP VIEW  
GND  
12IN  
VPP  
VCC  
VX  
16  
15  
FAULT  
CODE  
1
2
3
4
5
6
7
8
14 A1VCC  
13 A0VCC  
12 A1VPP  
11 A0VPP  
10 VY  
MAX1602  
MAX1602  
VCC  
VCC  
VY  
9
VCC  
QSOP  
________________________________________________________P a c k a g e In fo rm a t io n  
INCHES  
MILLIMETERS  
INCHES  
MILLIMETERS  
DIM  
DIM PINS  
MIN  
0.061  
MAX  
MIN  
MAX  
1.73  
0.25  
1.55  
0.31  
0.25  
MIN MAX MIN  
MAX  
4.98  
0.18  
8.74  
1.40  
8.74  
0.76  
9.98  
A
0.068  
1.55  
16 0.189 0.196 4.80  
16 0.0020 0.0070 0.05  
20 0.337 0.344 8.56  
20 0.0500 0.0550 1.27  
24 0.337 0.344 8.56  
24 0.0250 0.0300 0.64  
28 0.386 0.393 9.80  
28 0.0250 0.0300 0.64  
D
S
D
S
D
S
D
S
D
A1 0.004 0.0098 0.127  
A2 0.055  
0.061  
0.012  
1.40  
0.20  
0.19  
B
C
D
E
e
0.008  
A
0.0075 0.0098  
SEE VARIATIONS  
e
0.150  
0.157  
3.81  
3.99  
A1  
B
0.25 BSC  
0.635 BSC  
0.76  
21-0055A  
H
h
0.230  
0.010  
0.016  
0.244  
0.016  
0.035  
5.84  
0.25  
0.41  
6.20  
0.41  
0.89  
S
L
N
S
α
SEE VARIATIONS  
SEE VARIATIONS  
0°  
8°  
0°  
8°  
E
H
QSOP  
QUARTER  
SMALL-OUTLINE  
PACKAGE  
h x 45°  
α
A2  
N
E
L
C
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1996 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX16020

Low-Power uP Supervisory Circuits with Battery-Backup Circuit and Chip-Enable Gating
MAXIM

MAX16020LTBL+T

暂无描述
MAXIM

MAX16020LTBM+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBR+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBS+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBT+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBW+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBY+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBZ+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTES+

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, TQFN-16
MAXIM

MAX16020LTES+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTET+

Power Management Circuit, BICMOS, PQCC16,
MAXIM